mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@149848 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			797 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			797 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ConstantsContext.h - Constants-related Context Interals -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines various helper methods and classes used by
 | |
| // LLVMContextImpl for creating and managing constants.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CONSTANTSCONTEXT_H
 | |
| #define LLVM_CONSTANTSCONTEXT_H
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/InlineAsm.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <map>
 | |
| 
 | |
| namespace llvm {
 | |
| template<class ValType>
 | |
| struct ConstantTraits;
 | |
| 
 | |
| /// UnaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement unary constant exprs.
 | |
| class UnaryConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   UnaryConstantExpr(unsigned Opcode, Constant *C, Type *Ty)
 | |
|     : ConstantExpr(Ty, Opcode, &Op<0>(), 1) {
 | |
|     Op<0>() = C;
 | |
|   }
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// BinaryConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement binary constant exprs.
 | |
| class BinaryConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   BinaryConstantExpr(unsigned Opcode, Constant *C1, Constant *C2,
 | |
|                      unsigned Flags)
 | |
|     : ConstantExpr(C1->getType(), Opcode, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     SubclassOptionalData = Flags;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// SelectConstantExpr - This class is private to Constants.cpp, and is used
 | |
| /// behind the scenes to implement select constant exprs.
 | |
| class SelectConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   SelectConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C2->getType(), Instruction::Select, &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractelement constant exprs.
 | |
| class ExtractElementConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   ExtractElementConstantExpr(Constant *C1, Constant *C2)
 | |
|     : ConstantExpr(cast<VectorType>(C1->getType())->getElementType(), 
 | |
|                    Instruction::ExtractElement, &Op<0>(), 2) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertElementConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertelement constant exprs.
 | |
| class InsertElementConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   InsertElementConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|     : ConstantExpr(C1->getType(), Instruction::InsertElement, 
 | |
|                    &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ShuffleVectorConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// shufflevector constant exprs.
 | |
| class ShuffleVectorConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly three operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 3);
 | |
|   }
 | |
|   ShuffleVectorConstantExpr(Constant *C1, Constant *C2, Constant *C3)
 | |
|   : ConstantExpr(VectorType::get(
 | |
|                    cast<VectorType>(C1->getType())->getElementType(),
 | |
|                    cast<VectorType>(C3->getType())->getNumElements()),
 | |
|                  Instruction::ShuffleVector, 
 | |
|                  &Op<0>(), 3) {
 | |
|     Op<0>() = C1;
 | |
|     Op<1>() = C2;
 | |
|     Op<2>() = C3;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// ExtractValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// extractvalue constant exprs.
 | |
| class ExtractValueConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 1);
 | |
|   }
 | |
|   ExtractValueConstantExpr(Constant *Agg,
 | |
|                            const SmallVector<unsigned, 4> &IdxList,
 | |
|                            Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::ExtractValue, &Op<0>(), 1),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify which value to extract.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| /// InsertValueConstantExpr - This class is private to
 | |
| /// Constants.cpp, and is used behind the scenes to implement
 | |
| /// insertvalue constant exprs.
 | |
| class InsertValueConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly one operand
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   InsertValueConstantExpr(Constant *Agg, Constant *Val,
 | |
|                           const SmallVector<unsigned, 4> &IdxList,
 | |
|                           Type *DestTy)
 | |
|     : ConstantExpr(DestTy, Instruction::InsertValue, &Op<0>(), 2),
 | |
|       Indices(IdxList) {
 | |
|     Op<0>() = Agg;
 | |
|     Op<1>() = Val;
 | |
|   }
 | |
| 
 | |
|   /// Indices - These identify the position for the insertion.
 | |
|   const SmallVector<unsigned, 4> Indices;
 | |
| 
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| 
 | |
| /// GetElementPtrConstantExpr - This class is private to Constants.cpp, and is
 | |
| /// used behind the scenes to implement getelementpr constant exprs.
 | |
| class GetElementPtrConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
 | |
|                             Type *DestTy);
 | |
| public:
 | |
|   static GetElementPtrConstantExpr *Create(Constant *C,
 | |
|                                            ArrayRef<Constant*> IdxList,
 | |
|                                            Type *DestTy,
 | |
|                                            unsigned Flags) {
 | |
|     GetElementPtrConstantExpr *Result =
 | |
|       new(IdxList.size() + 1) GetElementPtrConstantExpr(C, IdxList, DestTy);
 | |
|     Result->SubclassOptionalData = Flags;
 | |
|     return Result;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| // CompareConstantExpr - This class is private to Constants.cpp, and is used
 | |
| // behind the scenes to implement ICmp and FCmp constant expressions. This is
 | |
| // needed in order to store the predicate value for these instructions.
 | |
| class CompareConstantExpr : public ConstantExpr {
 | |
|   virtual void anchor();
 | |
|   void *operator new(size_t, unsigned);  // DO NOT IMPLEMENT
 | |
| public:
 | |
|   // allocate space for exactly two operands
 | |
|   void *operator new(size_t s) {
 | |
|     return User::operator new(s, 2);
 | |
|   }
 | |
|   unsigned short predicate;
 | |
|   CompareConstantExpr(Type *ty, Instruction::OtherOps opc,
 | |
|                       unsigned short pred,  Constant* LHS, Constant* RHS)
 | |
|     : ConstantExpr(ty, opc, &Op<0>(), 2), predicate(pred) {
 | |
|     Op<0>() = LHS;
 | |
|     Op<1>() = RHS;
 | |
|   }
 | |
|   /// Transparently provide more efficient getOperand methods.
 | |
|   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<UnaryConstantExpr> :
 | |
|   public FixedNumOperandTraits<UnaryConstantExpr, 1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<BinaryConstantExpr> :
 | |
|   public FixedNumOperandTraits<BinaryConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<SelectConstantExpr> :
 | |
|   public FixedNumOperandTraits<SelectConstantExpr, 3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractElementConstantExpr> :
 | |
|   public FixedNumOperandTraits<ExtractElementConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertElementConstantExpr> :
 | |
|   public FixedNumOperandTraits<InsertElementConstantExpr, 3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ShuffleVectorConstantExpr> :
 | |
|     public FixedNumOperandTraits<ShuffleVectorConstantExpr, 3> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<ExtractValueConstantExpr> :
 | |
|   public FixedNumOperandTraits<ExtractValueConstantExpr, 1> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<InsertValueConstantExpr> :
 | |
|   public FixedNumOperandTraits<InsertValueConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueConstantExpr, Value)
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<GetElementPtrConstantExpr> :
 | |
|   public VariadicOperandTraits<GetElementPtrConstantExpr, 1> {
 | |
| };
 | |
| 
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrConstantExpr, Value)
 | |
| 
 | |
| 
 | |
| template <>
 | |
| struct OperandTraits<CompareConstantExpr> :
 | |
|   public FixedNumOperandTraits<CompareConstantExpr, 2> {
 | |
| };
 | |
| DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
 | |
| 
 | |
| struct ExprMapKeyType {
 | |
|   ExprMapKeyType(unsigned opc,
 | |
|       ArrayRef<Constant*> ops,
 | |
|       unsigned short flags = 0,
 | |
|       unsigned short optionalflags = 0,
 | |
|       ArrayRef<unsigned> inds = ArrayRef<unsigned>())
 | |
|         : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
 | |
|         operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
 | |
|   uint8_t opcode;
 | |
|   uint8_t subclassoptionaldata;
 | |
|   uint16_t subclassdata;
 | |
|   std::vector<Constant*> operands;
 | |
|   SmallVector<unsigned, 4> indices;
 | |
|   bool operator==(const ExprMapKeyType& that) const {
 | |
|     return this->opcode == that.opcode &&
 | |
|            this->subclassdata == that.subclassdata &&
 | |
|            this->subclassoptionaldata == that.subclassoptionaldata &&
 | |
|            this->operands == that.operands &&
 | |
|            this->indices == that.indices;
 | |
|   }
 | |
|   bool operator<(const ExprMapKeyType & that) const {
 | |
|     if (this->opcode != that.opcode) return this->opcode < that.opcode;
 | |
|     if (this->operands != that.operands) return this->operands < that.operands;
 | |
|     if (this->subclassdata != that.subclassdata)
 | |
|       return this->subclassdata < that.subclassdata;
 | |
|     if (this->subclassoptionaldata != that.subclassoptionaldata)
 | |
|       return this->subclassoptionaldata < that.subclassoptionaldata;
 | |
|     if (this->indices != that.indices) return this->indices < that.indices;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const ExprMapKeyType& that) const {
 | |
|     return !(*this == that);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct InlineAsmKeyType {
 | |
|   InlineAsmKeyType(StringRef AsmString,
 | |
|                    StringRef Constraints, bool hasSideEffects,
 | |
|                    bool isAlignStack)
 | |
|     : asm_string(AsmString), constraints(Constraints),
 | |
|       has_side_effects(hasSideEffects), is_align_stack(isAlignStack) {}
 | |
|   std::string asm_string;
 | |
|   std::string constraints;
 | |
|   bool has_side_effects;
 | |
|   bool is_align_stack;
 | |
|   bool operator==(const InlineAsmKeyType& that) const {
 | |
|     return this->asm_string == that.asm_string &&
 | |
|            this->constraints == that.constraints &&
 | |
|            this->has_side_effects == that.has_side_effects &&
 | |
|            this->is_align_stack == that.is_align_stack;
 | |
|   }
 | |
|   bool operator<(const InlineAsmKeyType& that) const {
 | |
|     if (this->asm_string != that.asm_string)
 | |
|       return this->asm_string < that.asm_string;
 | |
|     if (this->constraints != that.constraints)
 | |
|       return this->constraints < that.constraints;
 | |
|     if (this->has_side_effects != that.has_side_effects)
 | |
|       return this->has_side_effects < that.has_side_effects;
 | |
|     if (this->is_align_stack != that.is_align_stack)
 | |
|       return this->is_align_stack < that.is_align_stack;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const InlineAsmKeyType& that) const {
 | |
|     return !(*this == that);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // The number of operands for each ConstantCreator::create method is
 | |
| // determined by the ConstantTraits template.
 | |
| // ConstantCreator - A class that is used to create constants by
 | |
| // ConstantUniqueMap*.  This class should be partially specialized if there is
 | |
| // something strange that needs to be done to interface to the ctor for the
 | |
| // constant.
 | |
| //
 | |
| template<typename T, typename Alloc>
 | |
| struct ConstantTraits< std::vector<T, Alloc> > {
 | |
|   static unsigned uses(const std::vector<T, Alloc>& v) {
 | |
|     return v.size();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantTraits<Constant *> {
 | |
|   static unsigned uses(Constant * const & v) {
 | |
|     return 1;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ConstantClass, class TypeClass, class ValType>
 | |
| struct ConstantCreator {
 | |
|   static ConstantClass *create(TypeClass *Ty, const ValType &V) {
 | |
|     return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ConstantClass, class TypeClass>
 | |
| struct ConstantArrayCreator {
 | |
|   static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
 | |
|     return new(V.size()) ConstantClass(Ty, V);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ConstantClass>
 | |
| struct ConstantKeyData {
 | |
|   typedef void ValType;
 | |
|   static ValType getValType(ConstantClass *C) {
 | |
|     llvm_unreachable("Unknown Constant type!");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
 | |
|   static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
 | |
|       unsigned short pred = 0) {
 | |
|     if (Instruction::isCast(V.opcode))
 | |
|       return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
 | |
|     if ((V.opcode >= Instruction::BinaryOpsBegin &&
 | |
|          V.opcode < Instruction::BinaryOpsEnd))
 | |
|       return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
 | |
|                                     V.subclassoptionaldata);
 | |
|     if (V.opcode == Instruction::Select)
 | |
|       return new SelectConstantExpr(V.operands[0], V.operands[1], 
 | |
|                                     V.operands[2]);
 | |
|     if (V.opcode == Instruction::ExtractElement)
 | |
|       return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
 | |
|     if (V.opcode == Instruction::InsertElement)
 | |
|       return new InsertElementConstantExpr(V.operands[0], V.operands[1],
 | |
|                                            V.operands[2]);
 | |
|     if (V.opcode == Instruction::ShuffleVector)
 | |
|       return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
 | |
|                                            V.operands[2]);
 | |
|     if (V.opcode == Instruction::InsertValue)
 | |
|       return new InsertValueConstantExpr(V.operands[0], V.operands[1],
 | |
|                                          V.indices, Ty);
 | |
|     if (V.opcode == Instruction::ExtractValue)
 | |
|       return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
 | |
|     if (V.opcode == Instruction::GetElementPtr) {
 | |
|       std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
 | |
|       return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
 | |
|                                                V.subclassoptionaldata);
 | |
|     }
 | |
| 
 | |
|     // The compare instructions are weird. We have to encode the predicate
 | |
|     // value and it is combined with the instruction opcode by multiplying
 | |
|     // the opcode by one hundred. We must decode this to get the predicate.
 | |
|     if (V.opcode == Instruction::ICmp)
 | |
|       return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
 | |
|                                      V.operands[0], V.operands[1]);
 | |
|     if (V.opcode == Instruction::FCmp) 
 | |
|       return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
 | |
|                                      V.operands[0], V.operands[1]);
 | |
|     llvm_unreachable("Invalid ConstantExpr!");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<ConstantExpr> {
 | |
|   typedef ExprMapKeyType ValType;
 | |
|   static ValType getValType(ConstantExpr *CE) {
 | |
|     std::vector<Constant*> Operands;
 | |
|     Operands.reserve(CE->getNumOperands());
 | |
|     for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
 | |
|       Operands.push_back(cast<Constant>(CE->getOperand(i)));
 | |
|     return ExprMapKeyType(CE->getOpcode(), Operands,
 | |
|         CE->isCompare() ? CE->getPredicate() : 0,
 | |
|         CE->getRawSubclassOptionalData(),
 | |
|         CE->hasIndices() ?
 | |
|           CE->getIndices() : ArrayRef<unsigned>());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
 | |
|   static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
 | |
|     return new InlineAsm(Ty, Key.asm_string, Key.constraints,
 | |
|                          Key.has_side_effects, Key.is_align_stack);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ConstantKeyData<InlineAsm> {
 | |
|   typedef InlineAsmKeyType ValType;
 | |
|   static ValType getValType(InlineAsm *Asm) {
 | |
|     return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
 | |
|                             Asm->hasSideEffects(), Asm->isAlignStack());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
 | |
|          bool HasLargeKey = false /*true for arrays and structs*/ >
 | |
| class ConstantUniqueMap {
 | |
| public:
 | |
|   typedef std::pair<TypeClass*, ValType> MapKey;
 | |
|   typedef std::map<MapKey, ConstantClass *> MapTy;
 | |
|   typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
 | |
| private:
 | |
|   /// Map - This is the main map from the element descriptor to the Constants.
 | |
|   /// This is the primary way we avoid creating two of the same shape
 | |
|   /// constant.
 | |
|   MapTy Map;
 | |
|     
 | |
|   /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
 | |
|   /// from the constants to their element in Map.  This is important for
 | |
|   /// removal of constants from the array, which would otherwise have to scan
 | |
|   /// through the map with very large keys.
 | |
|   InverseMapTy InverseMap;
 | |
| 
 | |
| public:
 | |
|   typename MapTy::iterator map_begin() { return Map.begin(); }
 | |
|   typename MapTy::iterator map_end() { return Map.end(); }
 | |
| 
 | |
|   void freeConstants() {
 | |
|     for (typename MapTy::iterator I=Map.begin(), E=Map.end();
 | |
|          I != E; ++I) {
 | |
|       // Asserts that use_empty().
 | |
|       delete I->second;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   /// InsertOrGetItem - Return an iterator for the specified element.
 | |
|   /// If the element exists in the map, the returned iterator points to the
 | |
|   /// entry and Exists=true.  If not, the iterator points to the newly
 | |
|   /// inserted entry and returns Exists=false.  Newly inserted entries have
 | |
|   /// I->second == 0, and should be filled in.
 | |
|   typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
 | |
|                                  &InsertVal,
 | |
|                                  bool &Exists) {
 | |
|     std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
 | |
|     Exists = !IP.second;
 | |
|     return IP.first;
 | |
|   }
 | |
|     
 | |
| private:
 | |
|   typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
 | |
|     if (HasLargeKey) {
 | |
|       typename InverseMapTy::iterator IMI = InverseMap.find(CP);
 | |
|       assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
 | |
|              IMI->second->second == CP &&
 | |
|              "InverseMap corrupt!");
 | |
|       return IMI->second;
 | |
|     }
 | |
|       
 | |
|     typename MapTy::iterator I =
 | |
|       Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
 | |
|                       ConstantKeyData<ConstantClass>::getValType(CP)));
 | |
|     if (I == Map.end() || I->second != CP) {
 | |
|       // FIXME: This should not use a linear scan.  If this gets to be a
 | |
|       // performance problem, someone should look at this.
 | |
|       for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
 | |
|         /* empty */;
 | |
|     }
 | |
|     return I;
 | |
|   }
 | |
| 
 | |
|   ConstantClass *Create(TypeClass *Ty, ValRefType V,
 | |
|                         typename MapTy::iterator I) {
 | |
|     ConstantClass* Result =
 | |
|       ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
 | |
| 
 | |
|     assert(Result->getType() == Ty && "Type specified is not correct!");
 | |
|     I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
 | |
| 
 | |
|     if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|       InverseMap.insert(std::make_pair(Result, I));
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| public:
 | |
|     
 | |
|   /// getOrCreate - Return the specified constant from the map, creating it if
 | |
|   /// necessary.
 | |
|   ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
 | |
|     MapKey Lookup(Ty, V);
 | |
|     ConstantClass* Result = 0;
 | |
|     
 | |
|     typename MapTy::iterator I = Map.find(Lookup);
 | |
|     // Is it in the map?  
 | |
|     if (I != Map.end())
 | |
|       Result = I->second;
 | |
|         
 | |
|     if (!Result) {
 | |
|       // If no preexisting value, create one now...
 | |
|       Result = Create(Ty, V, I);
 | |
|     }
 | |
|         
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   void remove(ConstantClass *CP) {
 | |
|     typename MapTy::iterator I = FindExistingElement(CP);
 | |
|     assert(I != Map.end() && "Constant not found in constant table!");
 | |
|     assert(I->second == CP && "Didn't find correct element?");
 | |
| 
 | |
|     if (HasLargeKey)  // Remember the reverse mapping if needed.
 | |
|       InverseMap.erase(CP);
 | |
| 
 | |
|     Map.erase(I);
 | |
|   }
 | |
| 
 | |
|   /// MoveConstantToNewSlot - If we are about to change C to be the element
 | |
|   /// specified by I, update our internal data structures to reflect this
 | |
|   /// fact.
 | |
|   void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
 | |
|     // First, remove the old location of the specified constant in the map.
 | |
|     typename MapTy::iterator OldI = FindExistingElement(C);
 | |
|     assert(OldI != Map.end() && "Constant not found in constant table!");
 | |
|     assert(OldI->second == C && "Didn't find correct element?");
 | |
|       
 | |
|      // Remove the old entry from the map.
 | |
|     Map.erase(OldI);
 | |
|     
 | |
|     // Update the inverse map so that we know that this constant is now
 | |
|     // located at descriptor I.
 | |
|     if (HasLargeKey) {
 | |
|       assert(I->second == C && "Bad inversemap entry!");
 | |
|       InverseMap[C] = I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void dump() const {
 | |
|     DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Unique map for aggregate constants
 | |
| template<class TypeClass, class ConstantClass>
 | |
| class ConstantAggrUniqueMap {
 | |
| public:
 | |
|   typedef ArrayRef<Constant*> Operands;
 | |
|   typedef std::pair<TypeClass*, Operands> LookupKey;
 | |
| private:
 | |
|   struct MapInfo {
 | |
|     typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
 | |
|     typedef DenseMapInfo<Constant*> ConstantInfo;
 | |
|     typedef DenseMapInfo<TypeClass*> TypeClassInfo;
 | |
|     static inline ConstantClass* getEmptyKey() {
 | |
|       return ConstantClassInfo::getEmptyKey();
 | |
|     }
 | |
|     static inline ConstantClass* getTombstoneKey() {
 | |
|       return ConstantClassInfo::getTombstoneKey();
 | |
|     }
 | |
|     static unsigned getHashValue(const ConstantClass *CP) {
 | |
|       // This is adapted from SuperFastHash by Paul Hsieh.
 | |
|       unsigned Hash = TypeClassInfo::getHashValue(CP->getType());
 | |
|       for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I) {
 | |
|         unsigned Data = ConstantInfo::getHashValue(CP->getOperand(I));
 | |
|         Hash         += Data & 0xFFFF;
 | |
|         unsigned Tmp  = ((Data >> 16) << 11) ^ Hash;
 | |
|         Hash          = (Hash << 16) ^ Tmp;
 | |
|         Hash         += Hash >> 11;
 | |
|       }
 | |
| 
 | |
|       // Force "avalanching" of final 127 bits.
 | |
|       Hash ^= Hash << 3;
 | |
|       Hash += Hash >> 5;
 | |
|       Hash ^= Hash << 4;
 | |
|       Hash += Hash >> 17;
 | |
|       Hash ^= Hash << 25;
 | |
|       Hash += Hash >> 6;
 | |
|       return Hash;
 | |
|     }
 | |
|     static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
 | |
|       return LHS == RHS;
 | |
|     }
 | |
|     static unsigned getHashValue(const LookupKey &Val) {
 | |
|       // This is adapted from SuperFastHash by Paul Hsieh.
 | |
|       unsigned Hash = TypeClassInfo::getHashValue(Val.first);
 | |
|       for (Operands::const_iterator
 | |
|         I = Val.second.begin(), E = Val.second.end(); I != E; ++I) {
 | |
|         unsigned Data = ConstantInfo::getHashValue(*I);
 | |
|         Hash         += Data & 0xFFFF;
 | |
|         unsigned Tmp  = ((Data >> 16) << 11) ^ Hash;
 | |
|         Hash          = (Hash << 16) ^ Tmp;
 | |
|         Hash         += Hash >> 11;
 | |
|       }
 | |
| 
 | |
|       // Force "avalanching" of final 127 bits.
 | |
|       Hash ^= Hash << 3;
 | |
|       Hash += Hash >> 5;
 | |
|       Hash ^= Hash << 4;
 | |
|       Hash += Hash >> 17;
 | |
|       Hash ^= Hash << 25;
 | |
|       Hash += Hash >> 6;
 | |
|       return Hash;
 | |
|     }
 | |
|     static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
 | |
|       if (RHS == getEmptyKey() || RHS == getTombstoneKey())
 | |
|         return false;
 | |
|       if (LHS.first != RHS->getType()
 | |
|           || LHS.second.size() != RHS->getNumOperands())
 | |
|         return false;
 | |
|       for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
 | |
|         if (LHS.second[I] != RHS->getOperand(I))
 | |
|           return false;
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|   };
 | |
| public:
 | |
|   typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
 | |
| 
 | |
| private:
 | |
|   /// Map - This is the main map from the element descriptor to the Constants.
 | |
|   /// This is the primary way we avoid creating two of the same shape
 | |
|   /// constant.
 | |
|   MapTy Map;
 | |
| 
 | |
| public:
 | |
|   typename MapTy::iterator map_begin() { return Map.begin(); }
 | |
|   typename MapTy::iterator map_end() { return Map.end(); }
 | |
| 
 | |
|   void freeConstants() {
 | |
|     for (typename MapTy::iterator I=Map.begin(), E=Map.end();
 | |
|          I != E; ++I) {
 | |
|       // Asserts that use_empty().
 | |
|       delete I->first;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   typename MapTy::iterator findExistingElement(ConstantClass *CP) {
 | |
|     return Map.find(CP);
 | |
|   }
 | |
| 
 | |
|   ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
 | |
|     ConstantClass* Result =
 | |
|       ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
 | |
| 
 | |
|     assert(Result->getType() == Ty && "Type specified is not correct!");
 | |
|     Map[Result] = '\0';
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   /// getOrCreate - Return the specified constant from the map, creating it if
 | |
|   /// necessary.
 | |
|   ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
 | |
|     LookupKey Lookup(Ty, V);
 | |
|     ConstantClass* Result = 0;
 | |
| 
 | |
|     typename MapTy::iterator I = Map.find_as(Lookup);
 | |
|     // Is it in the map?
 | |
|     if (I != Map.end())
 | |
|       Result = I->first;
 | |
| 
 | |
|     if (!Result) {
 | |
|       // If no preexisting value, create one now...
 | |
|       Result = Create(Ty, V, I);
 | |
|     }
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// Find the constant by lookup key.
 | |
|   typename MapTy::iterator find(LookupKey Lookup) {
 | |
|     return Map.find_as(Lookup);
 | |
|   }
 | |
| 
 | |
|   /// Insert the constant into its proper slot.
 | |
|   void insert(ConstantClass *CP) {
 | |
|     Map[CP] = '\0';
 | |
|   }
 | |
| 
 | |
|   /// Remove this constant from the map
 | |
|   void remove(ConstantClass *CP) {
 | |
|     typename MapTy::iterator I = findExistingElement(CP);
 | |
|     assert(I != Map.end() && "Constant not found in constant table!");
 | |
|     assert(I->first == CP && "Didn't find correct element?");
 | |
|     Map.erase(I);
 | |
|   }
 | |
| 
 | |
|   void dump() const {
 | |
|     DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |