mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	This patch corresponds to review: http://reviews.llvm.org/D9440 It adds a new register class to the PPC back end to contain single precision values in VSX registers. Additionally, it adds scalar loads and stores for VSX registers. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@236755 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4295 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4295 lines
		
	
	
		
			158 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a pattern matching instruction selector for PowerPC,
 | 
						|
// converting from a legalized dag to a PPC dag.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPC.h"
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPCMachineFunctionInfo.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-codegen"
 | 
						|
 | 
						|
// FIXME: Remove this once the bug has been fixed!
 | 
						|
cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
 | 
						|
cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
 | 
						|
                       cl::desc("use aggressive ppc isel for bit permutations"),
 | 
						|
                       cl::Hidden);
 | 
						|
static cl::opt<bool> BPermRewriterNoMasking(
 | 
						|
    "ppc-bit-perm-rewriter-stress-rotates",
 | 
						|
    cl::desc("stress rotate selection in aggressive ppc isel for "
 | 
						|
             "bit permutations"),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  void initializePPCDAGToDAGISelPass(PassRegistry&);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | 
						|
  /// instructions for SelectionDAG operations.
 | 
						|
  ///
 | 
						|
  class PPCDAGToDAGISel : public SelectionDAGISel {
 | 
						|
    const PPCTargetMachine &TM;
 | 
						|
    const PPCSubtarget *PPCSubTarget;
 | 
						|
    const PPCTargetLowering *PPCLowering;
 | 
						|
    unsigned GlobalBaseReg;
 | 
						|
  public:
 | 
						|
    explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
 | 
						|
        : SelectionDAGISel(tm), TM(tm) {
 | 
						|
      initializePPCDAGToDAGISelPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override {
 | 
						|
      // Make sure we re-emit a set of the global base reg if necessary
 | 
						|
      GlobalBaseReg = 0;
 | 
						|
      PPCSubTarget = &MF.getSubtarget<PPCSubtarget>();
 | 
						|
      PPCLowering = PPCSubTarget->getTargetLowering();
 | 
						|
      SelectionDAGISel::runOnMachineFunction(MF);
 | 
						|
 | 
						|
      if (!PPCSubTarget->isSVR4ABI())
 | 
						|
        InsertVRSaveCode(MF);
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void PreprocessISelDAG() override;
 | 
						|
    void PostprocessISelDAG() override;
 | 
						|
 | 
						|
    /// getI32Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i32.
 | 
						|
    inline SDValue getI32Imm(unsigned Imm, SDLoc dl) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getI64Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i64.
 | 
						|
    inline SDValue getI64Imm(uint64_t Imm, SDLoc dl) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getSmallIPtrImm - Return a target constant of pointer type.
 | 
						|
    inline SDValue getSmallIPtrImm(unsigned Imm, SDLoc dl) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, dl, PPCLowering->getPointerTy());
 | 
						|
    }
 | 
						|
 | 
						|
    /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
 | 
						|
    /// rotate and mask opcode and mask operation.
 | 
						|
    static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
 | 
						|
                                unsigned &SH, unsigned &MB, unsigned &ME);
 | 
						|
 | 
						|
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | 
						|
    /// base register.  Return the virtual register that holds this value.
 | 
						|
    SDNode *getGlobalBaseReg();
 | 
						|
 | 
						|
    SDNode *getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
 | 
						|
 | 
						|
    // Select - Convert the specified operand from a target-independent to a
 | 
						|
    // target-specific node if it hasn't already been changed.
 | 
						|
    SDNode *Select(SDNode *N) override;
 | 
						|
 | 
						|
    SDNode *SelectBitfieldInsert(SDNode *N);
 | 
						|
    SDNode *SelectBitPermutation(SDNode *N);
 | 
						|
 | 
						|
    /// SelectCC - Select a comparison of the specified values with the
 | 
						|
    /// specified condition code, returning the CR# of the expression.
 | 
						|
    SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDLoc dl);
 | 
						|
 | 
						|
    /// SelectAddrImm - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 16-bit displacement [r+imm].
 | 
						|
    bool SelectAddrImm(SDValue N, SDValue &Disp,
 | 
						|
                       SDValue &Base) {
 | 
						|
      return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, false);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
 | 
						|
    /// immediate field.  Note that the operand at this point is already the
 | 
						|
    /// result of a prior SelectAddressRegImm call.
 | 
						|
    bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
 | 
						|
      if (N.getOpcode() == ISD::TargetConstant ||
 | 
						|
          N.getOpcode() == ISD::TargetGlobalAddress) {
 | 
						|
        Out = N;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | 
						|
    /// represented as an indexed [r+r] operation.  Returns false if it can
 | 
						|
    /// be represented by [r+imm], which are preferred.
 | 
						|
    bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
 | 
						|
      return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | 
						|
    /// represented as an indexed [r+r] operation.
 | 
						|
    bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
 | 
						|
      return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectAddrImmX4 - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 16-bit displacement that is a multiple of 4.
 | 
						|
    /// Suitable for use by STD and friends.
 | 
						|
    bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
 | 
						|
      return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, true);
 | 
						|
    }
 | 
						|
 | 
						|
    // Select an address into a single register.
 | 
						|
    bool SelectAddr(SDValue N, SDValue &Base) {
 | 
						|
      Base = N;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | 
						|
    /// inline asm expressions.  It is always correct to compute the value into
 | 
						|
    /// a register.  The case of adding a (possibly relocatable) constant to a
 | 
						|
    /// register can be improved, but it is wrong to substitute Reg+Reg for
 | 
						|
    /// Reg in an asm, because the load or store opcode would have to change.
 | 
						|
    bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | 
						|
                                      unsigned ConstraintID,
 | 
						|
                                      std::vector<SDValue> &OutOps) override {
 | 
						|
 | 
						|
      switch(ConstraintID) {
 | 
						|
      default:
 | 
						|
        errs() << "ConstraintID: " << ConstraintID << "\n";
 | 
						|
        llvm_unreachable("Unexpected asm memory constraint");
 | 
						|
      case InlineAsm::Constraint_es:
 | 
						|
      case InlineAsm::Constraint_i:
 | 
						|
      case InlineAsm::Constraint_m:
 | 
						|
      case InlineAsm::Constraint_o:
 | 
						|
      case InlineAsm::Constraint_Q:
 | 
						|
      case InlineAsm::Constraint_Z:
 | 
						|
      case InlineAsm::Constraint_Zy:
 | 
						|
        // We need to make sure that this one operand does not end up in r0
 | 
						|
        // (because we might end up lowering this as 0(%op)).
 | 
						|
        const TargetRegisterInfo *TRI = PPCSubTarget->getRegisterInfo();
 | 
						|
        const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
 | 
						|
        SDLoc dl(Op);
 | 
						|
        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
 | 
						|
        SDValue NewOp =
 | 
						|
          SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
 | 
						|
                                         dl, Op.getValueType(),
 | 
						|
                                         Op, RC), 0);
 | 
						|
 | 
						|
        OutOps.push_back(NewOp);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    void InsertVRSaveCode(MachineFunction &MF);
 | 
						|
 | 
						|
    const char *getPassName() const override {
 | 
						|
      return "PowerPC DAG->DAG Pattern Instruction Selection";
 | 
						|
    }
 | 
						|
 | 
						|
// Include the pieces autogenerated from the target description.
 | 
						|
#include "PPCGenDAGISel.inc"
 | 
						|
 | 
						|
private:
 | 
						|
    SDNode *SelectSETCC(SDNode *N);
 | 
						|
 | 
						|
    void PeepholePPC64();
 | 
						|
    void PeepholePPC64ZExt();
 | 
						|
    void PeepholeCROps();
 | 
						|
 | 
						|
    SDValue combineToCMPB(SDNode *N);
 | 
						|
    void foldBoolExts(SDValue &Res, SDNode *&N);
 | 
						|
 | 
						|
    bool AllUsersSelectZero(SDNode *N);
 | 
						|
    void SwapAllSelectUsers(SDNode *N);
 | 
						|
 | 
						|
    SDNode *transferMemOperands(SDNode *N, SDNode *Result);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// InsertVRSaveCode - Once the entire function has been instruction selected,
 | 
						|
/// all virtual registers are created and all machine instructions are built,
 | 
						|
/// check to see if we need to save/restore VRSAVE.  If so, do it.
 | 
						|
void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
 | 
						|
  // Check to see if this function uses vector registers, which means we have to
 | 
						|
  // save and restore the VRSAVE register and update it with the regs we use.
 | 
						|
  //
 | 
						|
  // In this case, there will be virtual registers of vector type created
 | 
						|
  // by the scheduler.  Detect them now.
 | 
						|
  bool HasVectorVReg = false;
 | 
						|
  for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
 | 
						|
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | 
						|
    if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
 | 
						|
      HasVectorVReg = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!HasVectorVReg) return;  // nothing to do.
 | 
						|
 | 
						|
  // If we have a vector register, we want to emit code into the entry and exit
 | 
						|
  // blocks to save and restore the VRSAVE register.  We do this here (instead
 | 
						|
  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | 
						|
  //
 | 
						|
  // 1. This (trivially) reduces the load on the register allocator, by not
 | 
						|
  //    having to represent the live range of the VRSAVE register.
 | 
						|
  // 2. This (more significantly) allows us to create a temporary virtual
 | 
						|
  //    register to hold the saved VRSAVE value, allowing this temporary to be
 | 
						|
  //    register allocated, instead of forcing it to be spilled to the stack.
 | 
						|
 | 
						|
  // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | 
						|
  // function and one for the value after having bits or'd into it.
 | 
						|
  unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
  unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
 | 
						|
  const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
 | 
						|
  MachineBasicBlock &EntryBB = *Fn.begin();
 | 
						|
  DebugLoc dl;
 | 
						|
  // Emit the following code into the entry block:
 | 
						|
  // InVRSAVE = MFVRSAVE
 | 
						|
  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | 
						|
  // MTVRSAVE UpdatedVRSAVE
 | 
						|
  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | 
						|
  BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
 | 
						|
          UpdatedVRSAVE).addReg(InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
 | 
						|
 | 
						|
  // Find all return blocks, outputting a restore in each epilog.
 | 
						|
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | 
						|
    if (!BB->empty() && BB->back().isReturn()) {
 | 
						|
      IP = BB->end(); --IP;
 | 
						|
 | 
						|
      // Skip over all terminator instructions, which are part of the return
 | 
						|
      // sequence.
 | 
						|
      MachineBasicBlock::iterator I2 = IP;
 | 
						|
      while (I2 != BB->begin() && (--I2)->isTerminator())
 | 
						|
        IP = I2;
 | 
						|
 | 
						|
      // Emit: MTVRSAVE InVRSave
 | 
						|
      BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getGlobalBaseReg - Output the instructions required to put the
 | 
						|
/// base address to use for accessing globals into a register.
 | 
						|
///
 | 
						|
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
 | 
						|
  if (!GlobalBaseReg) {
 | 
						|
    const TargetInstrInfo &TII = *PPCSubTarget->getInstrInfo();
 | 
						|
    // Insert the set of GlobalBaseReg into the first MBB of the function
 | 
						|
    MachineBasicBlock &FirstMBB = MF->front();
 | 
						|
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | 
						|
    const Module *M = MF->getFunction()->getParent();
 | 
						|
    DebugLoc dl;
 | 
						|
 | 
						|
    if (PPCLowering->getPointerTy() == MVT::i32) {
 | 
						|
      if (PPCSubTarget->isTargetELF()) {
 | 
						|
        GlobalBaseReg = PPC::R30;
 | 
						|
        if (M->getPICLevel() == PICLevel::Small) {
 | 
						|
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
 | 
						|
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | 
						|
          MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
 | 
						|
        } else {
 | 
						|
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
 | 
						|
          BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | 
						|
          unsigned TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
          BuildMI(FirstMBB, MBBI, dl,
 | 
						|
                  TII.get(PPC::UpdateGBR), GlobalBaseReg)
 | 
						|
                  .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
 | 
						|
          MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        GlobalBaseReg =
 | 
						|
          RegInfo->createVirtualRegister(&PPC::GPRC_NOR0RegClass);
 | 
						|
        BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
 | 
						|
        BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_NOX0RegClass);
 | 
						|
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
 | 
						|
      BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return CurDAG->getRegister(GlobalBaseReg,
 | 
						|
                             PPCLowering->getPointerTy()).getNode();
 | 
						|
}
 | 
						|
 | 
						|
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | 
						|
/// or 64-bit immediate, and if the value can be accurately represented as a
 | 
						|
/// sign extension from a 16-bit value.  If so, this returns true and the
 | 
						|
/// immediate.
 | 
						|
static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | 
						|
  if (N->getOpcode() != ISD::Constant)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  if (N->getValueType(0) == MVT::i32)
 | 
						|
    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  else
 | 
						|
    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
}
 | 
						|
 | 
						|
static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | 
						|
  return isIntS16Immediate(Op.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
 | 
						|
/// operand. If so Imm will receive the 32-bit value.
 | 
						|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
 | 
						|
/// operand.  If so Imm will receive the 64-bit value.
 | 
						|
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isInt32Immediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
 | 
						|
  return isInt32Immediate(N.getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
 | 
						|
// opcode and that it has a immediate integer right operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | 
						|
  return N->getOpcode() == Opc
 | 
						|
         && isInt32Immediate(N->getOperand(1).getNode(), Imm);
 | 
						|
}
 | 
						|
 | 
						|
SDNode *PPCDAGToDAGISel::getFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
 | 
						|
  SDLoc dl(SN);
 | 
						|
  int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
  SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
 | 
						|
  unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
 | 
						|
  if (SN->hasOneUse())
 | 
						|
    return CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
 | 
						|
                                getSmallIPtrImm(Offset, dl));
 | 
						|
  return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
 | 
						|
                                getSmallIPtrImm(Offset, dl));
 | 
						|
}
 | 
						|
 | 
						|
bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
 | 
						|
                                      bool isShiftMask, unsigned &SH,
 | 
						|
                                      unsigned &MB, unsigned &ME) {
 | 
						|
  // Don't even go down this path for i64, since different logic will be
 | 
						|
  // necessary for rldicl/rldicr/rldimi.
 | 
						|
  if (N->getValueType(0) != MVT::i32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Shift  = 32;
 | 
						|
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (N->getNumOperands() != 2 ||
 | 
						|
      !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Opcode == ISD::SHL) {
 | 
						|
    // apply shift left to mask if it comes first
 | 
						|
    if (isShiftMask) Mask = Mask << Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu << Shift);
 | 
						|
  } else if (Opcode == ISD::SRL) {
 | 
						|
    // apply shift right to mask if it comes first
 | 
						|
    if (isShiftMask) Mask = Mask >> Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | 
						|
    // adjust for the left rotate
 | 
						|
    Shift = 32 - Shift;
 | 
						|
  } else if (Opcode == ISD::ROTL) {
 | 
						|
    Indeterminant = 0;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // if the mask doesn't intersect any Indeterminant bits
 | 
						|
  if (Mask && !(Mask & Indeterminant)) {
 | 
						|
    SH = Shift & 31;
 | 
						|
    // make sure the mask is still a mask (wrap arounds may not be)
 | 
						|
    return isRunOfOnes(Mask, MB, ME);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectBitfieldInsert - turn an or of two masked values into
 | 
						|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
 | 
						|
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | 
						|
  SDValue Op0 = N->getOperand(0);
 | 
						|
  SDValue Op1 = N->getOperand(1);
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  APInt LKZ, LKO, RKZ, RKO;
 | 
						|
  CurDAG->computeKnownBits(Op0, LKZ, LKO);
 | 
						|
  CurDAG->computeKnownBits(Op1, RKZ, RKO);
 | 
						|
 | 
						|
  unsigned TargetMask = LKZ.getZExtValue();
 | 
						|
  unsigned InsertMask = RKZ.getZExtValue();
 | 
						|
 | 
						|
  if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
 | 
						|
    unsigned Op0Opc = Op0.getOpcode();
 | 
						|
    unsigned Op1Opc = Op1.getOpcode();
 | 
						|
    unsigned Value, SH = 0;
 | 
						|
    TargetMask = ~TargetMask;
 | 
						|
    InsertMask = ~InsertMask;
 | 
						|
 | 
						|
    // If the LHS has a foldable shift and the RHS does not, then swap it to the
 | 
						|
    // RHS so that we can fold the shift into the insert.
 | 
						|
    if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | 
						|
      if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | 
						|
          Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | 
						|
        if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | 
						|
            Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | 
						|
          std::swap(Op0, Op1);
 | 
						|
          std::swap(Op0Opc, Op1Opc);
 | 
						|
          std::swap(TargetMask, InsertMask);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
 | 
						|
      if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
 | 
						|
          Op1.getOperand(0).getOpcode() != ISD::SRL) {
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
        std::swap(Op0Opc, Op1Opc);
 | 
						|
        std::swap(TargetMask, InsertMask);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned MB, ME;
 | 
						|
    if (isRunOfOnes(InsertMask, MB, ME)) {
 | 
						|
      SDValue Tmp1, Tmp2;
 | 
						|
 | 
						|
      if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
 | 
						|
          isInt32Immediate(Op1.getOperand(1), Value)) {
 | 
						|
        Op1 = Op1.getOperand(0);
 | 
						|
        SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
 | 
						|
      }
 | 
						|
      if (Op1Opc == ISD::AND) {
 | 
						|
       // The AND mask might not be a constant, and we need to make sure that
 | 
						|
       // if we're going to fold the masking with the insert, all bits not
 | 
						|
       // know to be zero in the mask are known to be one.
 | 
						|
        APInt MKZ, MKO;
 | 
						|
        CurDAG->computeKnownBits(Op1.getOperand(1), MKZ, MKO);
 | 
						|
        bool CanFoldMask = InsertMask == MKO.getZExtValue();
 | 
						|
 | 
						|
        unsigned SHOpc = Op1.getOperand(0).getOpcode();
 | 
						|
        if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
 | 
						|
            isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
 | 
						|
          // Note that Value must be in range here (less than 32) because
 | 
						|
          // otherwise there would not be any bits set in InsertMask.
 | 
						|
          Op1 = Op1.getOperand(0).getOperand(0);
 | 
						|
          SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SH &= 31;
 | 
						|
      SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
 | 
						|
                          getI32Imm(ME, dl) };
 | 
						|
      return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Predict the number of instructions that would be generated by calling
 | 
						|
// SelectInt64(N).
 | 
						|
static unsigned SelectInt64CountDirect(int64_t Imm) {
 | 
						|
  // Assume no remaining bits.
 | 
						|
  unsigned Remainder = 0;
 | 
						|
  // Assume no shift required.
 | 
						|
  unsigned Shift = 0;
 | 
						|
 | 
						|
  // If it can't be represented as a 32 bit value.
 | 
						|
  if (!isInt<32>(Imm)) {
 | 
						|
    Shift = countTrailingZeros<uint64_t>(Imm);
 | 
						|
    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | 
						|
 | 
						|
    // If the shifted value fits 32 bits.
 | 
						|
    if (isInt<32>(ImmSh)) {
 | 
						|
      // Go with the shifted value.
 | 
						|
      Imm = ImmSh;
 | 
						|
    } else {
 | 
						|
      // Still stuck with a 64 bit value.
 | 
						|
      Remainder = Imm;
 | 
						|
      Shift = 32;
 | 
						|
      Imm >>= 32;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Intermediate operand.
 | 
						|
  unsigned Result = 0;
 | 
						|
 | 
						|
  // Handle first 32 bits.
 | 
						|
  unsigned Lo = Imm & 0xFFFF;
 | 
						|
  unsigned Hi = (Imm >> 16) & 0xFFFF;
 | 
						|
 | 
						|
  // Simple value.
 | 
						|
  if (isInt<16>(Imm)) {
 | 
						|
    // Just the Lo bits.
 | 
						|
    ++Result;
 | 
						|
  } else if (Lo) {
 | 
						|
    // Handle the Hi bits and Lo bits.
 | 
						|
    Result += 2;
 | 
						|
  } else {
 | 
						|
    // Just the Hi bits.
 | 
						|
    ++Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // If no shift, we're done.
 | 
						|
  if (!Shift) return Result;
 | 
						|
 | 
						|
  // Shift for next step if the upper 32-bits were not zero.
 | 
						|
  if (Imm)
 | 
						|
    ++Result;
 | 
						|
 | 
						|
  // Add in the last bits as required.
 | 
						|
  if ((Hi = (Remainder >> 16) & 0xFFFF))
 | 
						|
    ++Result;
 | 
						|
  if ((Lo = Remainder & 0xFFFF))
 | 
						|
    ++Result;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t Rot64(uint64_t Imm, unsigned R) {
 | 
						|
  return (Imm << R) | (Imm >> (64 - R));
 | 
						|
}
 | 
						|
 | 
						|
static unsigned SelectInt64Count(int64_t Imm) {
 | 
						|
  unsigned Count = SelectInt64CountDirect(Imm);
 | 
						|
  if (Count == 1)
 | 
						|
    return Count;
 | 
						|
 | 
						|
  for (unsigned r = 1; r < 63; ++r) {
 | 
						|
    uint64_t RImm = Rot64(Imm, r);
 | 
						|
    unsigned RCount = SelectInt64CountDirect(RImm) + 1;
 | 
						|
    Count = std::min(Count, RCount);
 | 
						|
 | 
						|
    // See comments in SelectInt64 for an explanation of the logic below.
 | 
						|
    unsigned LS = findLastSet(RImm);
 | 
						|
    if (LS != r-1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
 | 
						|
    uint64_t RImmWithOnes = RImm | OnesMask;
 | 
						|
 | 
						|
    RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
 | 
						|
    Count = std::min(Count, RCount);
 | 
						|
  }
 | 
						|
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
// Select a 64-bit constant. For cost-modeling purposes, SelectInt64Count
 | 
						|
// (above) needs to be kept in sync with this function.
 | 
						|
static SDNode *SelectInt64Direct(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
 | 
						|
  // Assume no remaining bits.
 | 
						|
  unsigned Remainder = 0;
 | 
						|
  // Assume no shift required.
 | 
						|
  unsigned Shift = 0;
 | 
						|
 | 
						|
  // If it can't be represented as a 32 bit value.
 | 
						|
  if (!isInt<32>(Imm)) {
 | 
						|
    Shift = countTrailingZeros<uint64_t>(Imm);
 | 
						|
    int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
 | 
						|
 | 
						|
    // If the shifted value fits 32 bits.
 | 
						|
    if (isInt<32>(ImmSh)) {
 | 
						|
      // Go with the shifted value.
 | 
						|
      Imm = ImmSh;
 | 
						|
    } else {
 | 
						|
      // Still stuck with a 64 bit value.
 | 
						|
      Remainder = Imm;
 | 
						|
      Shift = 32;
 | 
						|
      Imm >>= 32;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Intermediate operand.
 | 
						|
  SDNode *Result;
 | 
						|
 | 
						|
  // Handle first 32 bits.
 | 
						|
  unsigned Lo = Imm & 0xFFFF;
 | 
						|
  unsigned Hi = (Imm >> 16) & 0xFFFF;
 | 
						|
 | 
						|
  auto getI32Imm = [CurDAG, dl](unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | 
						|
  };
 | 
						|
 | 
						|
  // Simple value.
 | 
						|
  if (isInt<16>(Imm)) {
 | 
						|
    // Just the Lo bits.
 | 
						|
    Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
 | 
						|
  } else if (Lo) {
 | 
						|
    // Handle the Hi bits.
 | 
						|
    unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
 | 
						|
    Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
 | 
						|
    // And Lo bits.
 | 
						|
    Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | 
						|
                                    SDValue(Result, 0), getI32Imm(Lo));
 | 
						|
  } else {
 | 
						|
    // Just the Hi bits.
 | 
						|
    Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
 | 
						|
  }
 | 
						|
 | 
						|
  // If no shift, we're done.
 | 
						|
  if (!Shift) return Result;
 | 
						|
 | 
						|
  // Shift for next step if the upper 32-bits were not zero.
 | 
						|
  if (Imm) {
 | 
						|
    Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
 | 
						|
                                    SDValue(Result, 0),
 | 
						|
                                    getI32Imm(Shift),
 | 
						|
                                    getI32Imm(63 - Shift));
 | 
						|
  }
 | 
						|
 | 
						|
  // Add in the last bits as required.
 | 
						|
  if ((Hi = (Remainder >> 16) & 0xFFFF)) {
 | 
						|
    Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
 | 
						|
                                    SDValue(Result, 0), getI32Imm(Hi));
 | 
						|
  }
 | 
						|
  if ((Lo = Remainder & 0xFFFF)) {
 | 
						|
    Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
 | 
						|
                                    SDValue(Result, 0), getI32Imm(Lo));
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
static SDNode *SelectInt64(SelectionDAG *CurDAG, SDLoc dl, int64_t Imm) {
 | 
						|
  unsigned Count = SelectInt64CountDirect(Imm);
 | 
						|
  if (Count == 1)
 | 
						|
    return SelectInt64Direct(CurDAG, dl, Imm);
 | 
						|
 | 
						|
  unsigned RMin = 0;
 | 
						|
 | 
						|
  int64_t MatImm;
 | 
						|
  unsigned MaskEnd;
 | 
						|
 | 
						|
  for (unsigned r = 1; r < 63; ++r) {
 | 
						|
    uint64_t RImm = Rot64(Imm, r);
 | 
						|
    unsigned RCount = SelectInt64CountDirect(RImm) + 1;
 | 
						|
    if (RCount < Count) {
 | 
						|
      Count = RCount;
 | 
						|
      RMin = r;
 | 
						|
      MatImm = RImm;
 | 
						|
      MaskEnd = 63;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the immediate to generate has many trailing zeros, it might be
 | 
						|
    // worthwhile to generate a rotated value with too many leading ones
 | 
						|
    // (because that's free with li/lis's sign-extension semantics), and then
 | 
						|
    // mask them off after rotation.
 | 
						|
 | 
						|
    unsigned LS = findLastSet(RImm);
 | 
						|
    // We're adding (63-LS) higher-order ones, and we expect to mask them off
 | 
						|
    // after performing the inverse rotation by (64-r). So we need that:
 | 
						|
    //   63-LS == 64-r => LS == r-1
 | 
						|
    if (LS != r-1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    uint64_t OnesMask = -(int64_t) (UINT64_C(1) << (LS+1));
 | 
						|
    uint64_t RImmWithOnes = RImm | OnesMask;
 | 
						|
 | 
						|
    RCount = SelectInt64CountDirect(RImmWithOnes) + 1;
 | 
						|
    if (RCount < Count) {
 | 
						|
      Count = RCount;
 | 
						|
      RMin = r;
 | 
						|
      MatImm = RImmWithOnes;
 | 
						|
      MaskEnd = LS;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!RMin)
 | 
						|
    return SelectInt64Direct(CurDAG, dl, Imm);
 | 
						|
 | 
						|
  auto getI32Imm = [CurDAG, dl](unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | 
						|
  };
 | 
						|
 | 
						|
  SDValue Val = SDValue(SelectInt64Direct(CurDAG, dl, MatImm), 0);
 | 
						|
  return CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Val,
 | 
						|
                                getI32Imm(64 - RMin), getI32Imm(MaskEnd));
 | 
						|
}
 | 
						|
 | 
						|
// Select a 64-bit constant.
 | 
						|
static SDNode *SelectInt64(SelectionDAG *CurDAG, SDNode *N) {
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  // Get 64 bit value.
 | 
						|
  int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
 | 
						|
  return SelectInt64(CurDAG, dl, Imm);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class BitPermutationSelector {
 | 
						|
  struct ValueBit {
 | 
						|
    SDValue V;
 | 
						|
 | 
						|
    // The bit number in the value, using a convention where bit 0 is the
 | 
						|
    // lowest-order bit.
 | 
						|
    unsigned Idx;
 | 
						|
 | 
						|
    enum Kind {
 | 
						|
      ConstZero,
 | 
						|
      Variable
 | 
						|
    } K;
 | 
						|
 | 
						|
    ValueBit(SDValue V, unsigned I, Kind K = Variable)
 | 
						|
      : V(V), Idx(I), K(K) {}
 | 
						|
    ValueBit(Kind K = Variable)
 | 
						|
      : V(SDValue(nullptr, 0)), Idx(UINT32_MAX), K(K) {}
 | 
						|
 | 
						|
    bool isZero() const {
 | 
						|
      return K == ConstZero;
 | 
						|
    }
 | 
						|
 | 
						|
    bool hasValue() const {
 | 
						|
      return K == Variable;
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue getValue() const {
 | 
						|
      assert(hasValue() && "Cannot get the value of a constant bit");
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getValueBitIndex() const {
 | 
						|
      assert(hasValue() && "Cannot get the value bit index of a constant bit");
 | 
						|
      return Idx;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // A bit group has the same underlying value and the same rotate factor.
 | 
						|
  struct BitGroup {
 | 
						|
    SDValue V;
 | 
						|
    unsigned RLAmt;
 | 
						|
    unsigned StartIdx, EndIdx;
 | 
						|
 | 
						|
    // This rotation amount assumes that the lower 32 bits of the quantity are
 | 
						|
    // replicated in the high 32 bits by the rotation operator (which is done
 | 
						|
    // by rlwinm and friends in 64-bit mode).
 | 
						|
    bool Repl32;
 | 
						|
    // Did converting to Repl32 == true change the rotation factor? If it did,
 | 
						|
    // it decreased it by 32.
 | 
						|
    bool Repl32CR;
 | 
						|
    // Was this group coalesced after setting Repl32 to true?
 | 
						|
    bool Repl32Coalesced;
 | 
						|
 | 
						|
    BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
 | 
						|
      : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
 | 
						|
        Repl32Coalesced(false) {
 | 
						|
      DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R <<
 | 
						|
                      " [" << S << ", " << E << "]\n");
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Information on each (Value, RLAmt) pair (like the number of groups
 | 
						|
  // associated with each) used to choose the lowering method.
 | 
						|
  struct ValueRotInfo {
 | 
						|
    SDValue V;
 | 
						|
    unsigned RLAmt;
 | 
						|
    unsigned NumGroups;
 | 
						|
    unsigned FirstGroupStartIdx;
 | 
						|
    bool Repl32;
 | 
						|
 | 
						|
    ValueRotInfo()
 | 
						|
      : RLAmt(UINT32_MAX), NumGroups(0), FirstGroupStartIdx(UINT32_MAX),
 | 
						|
        Repl32(false) {}
 | 
						|
 | 
						|
    // For sorting (in reverse order) by NumGroups, and then by
 | 
						|
    // FirstGroupStartIdx.
 | 
						|
    bool operator < (const ValueRotInfo &Other) const {
 | 
						|
      // We need to sort so that the non-Repl32 come first because, when we're
 | 
						|
      // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
 | 
						|
      // masking operation.
 | 
						|
      if (Repl32 < Other.Repl32)
 | 
						|
        return true;
 | 
						|
      else if (Repl32 > Other.Repl32)
 | 
						|
        return false;
 | 
						|
      else if (NumGroups > Other.NumGroups)
 | 
						|
        return true;
 | 
						|
      else if (NumGroups < Other.NumGroups)
 | 
						|
        return false;
 | 
						|
      else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
 | 
						|
        return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // Return true if something interesting was deduced, return false if we're
 | 
						|
  // providing only a generic representation of V (or something else likewise
 | 
						|
  // uninteresting for instruction selection).
 | 
						|
  bool getValueBits(SDValue V, SmallVector<ValueBit, 64> &Bits) {
 | 
						|
    switch (V.getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    case ISD::ROTL:
 | 
						|
      if (isa<ConstantSDNode>(V.getOperand(1))) {
 | 
						|
        unsigned RotAmt = V.getConstantOperandVal(1);
 | 
						|
 | 
						|
        SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | 
						|
        getValueBits(V.getOperand(0), LHSBits);
 | 
						|
 | 
						|
        for (unsigned i = 0; i < Bits.size(); ++i)
 | 
						|
          Bits[i] = LHSBits[i < RotAmt ? i + (Bits.size() - RotAmt) : i - RotAmt];
 | 
						|
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ISD::SHL:
 | 
						|
      if (isa<ConstantSDNode>(V.getOperand(1))) {
 | 
						|
        unsigned ShiftAmt = V.getConstantOperandVal(1);
 | 
						|
 | 
						|
        SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | 
						|
        getValueBits(V.getOperand(0), LHSBits);
 | 
						|
 | 
						|
        for (unsigned i = ShiftAmt; i < Bits.size(); ++i)
 | 
						|
          Bits[i] = LHSBits[i - ShiftAmt];
 | 
						|
 | 
						|
        for (unsigned i = 0; i < ShiftAmt; ++i)
 | 
						|
          Bits[i] = ValueBit(ValueBit::ConstZero);
 | 
						|
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ISD::SRL:
 | 
						|
      if (isa<ConstantSDNode>(V.getOperand(1))) {
 | 
						|
        unsigned ShiftAmt = V.getConstantOperandVal(1);
 | 
						|
 | 
						|
        SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | 
						|
        getValueBits(V.getOperand(0), LHSBits);
 | 
						|
 | 
						|
        for (unsigned i = 0; i < Bits.size() - ShiftAmt; ++i)
 | 
						|
          Bits[i] = LHSBits[i + ShiftAmt];
 | 
						|
 | 
						|
        for (unsigned i = Bits.size() - ShiftAmt; i < Bits.size(); ++i)
 | 
						|
          Bits[i] = ValueBit(ValueBit::ConstZero);
 | 
						|
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ISD::AND:
 | 
						|
      if (isa<ConstantSDNode>(V.getOperand(1))) {
 | 
						|
        uint64_t Mask = V.getConstantOperandVal(1);
 | 
						|
 | 
						|
        SmallVector<ValueBit, 64> LHSBits(Bits.size());
 | 
						|
        bool LHSTrivial = getValueBits(V.getOperand(0), LHSBits);
 | 
						|
 | 
						|
        for (unsigned i = 0; i < Bits.size(); ++i)
 | 
						|
          if (((Mask >> i) & 1) == 1)
 | 
						|
            Bits[i] = LHSBits[i];
 | 
						|
          else
 | 
						|
            Bits[i] = ValueBit(ValueBit::ConstZero);
 | 
						|
 | 
						|
        // Mark this as interesting, only if the LHS was also interesting. This
 | 
						|
        // prevents the overall procedure from matching a single immediate 'and'
 | 
						|
        // (which is non-optimal because such an and might be folded with other
 | 
						|
        // things if we don't select it here).
 | 
						|
        return LHSTrivial;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ISD::OR: {
 | 
						|
      SmallVector<ValueBit, 64> LHSBits(Bits.size()), RHSBits(Bits.size());
 | 
						|
      getValueBits(V.getOperand(0), LHSBits);
 | 
						|
      getValueBits(V.getOperand(1), RHSBits);
 | 
						|
 | 
						|
      bool AllDisjoint = true;
 | 
						|
      for (unsigned i = 0; i < Bits.size(); ++i)
 | 
						|
        if (LHSBits[i].isZero())
 | 
						|
          Bits[i] = RHSBits[i];
 | 
						|
        else if (RHSBits[i].isZero())
 | 
						|
          Bits[i] = LHSBits[i];
 | 
						|
        else {
 | 
						|
          AllDisjoint = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      if (!AllDisjoint)
 | 
						|
        break;
 | 
						|
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned i = 0; i < Bits.size(); ++i)
 | 
						|
      Bits[i] = ValueBit(V, i);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For each value (except the constant ones), compute the left-rotate amount
 | 
						|
  // to get it from its original to final position.
 | 
						|
  void computeRotationAmounts() {
 | 
						|
    HasZeros = false;
 | 
						|
    RLAmt.resize(Bits.size());
 | 
						|
    for (unsigned i = 0; i < Bits.size(); ++i)
 | 
						|
      if (Bits[i].hasValue()) {
 | 
						|
        unsigned VBI = Bits[i].getValueBitIndex();
 | 
						|
        if (i >= VBI)
 | 
						|
          RLAmt[i] = i - VBI;
 | 
						|
        else
 | 
						|
          RLAmt[i] = Bits.size() - (VBI - i);
 | 
						|
      } else if (Bits[i].isZero()) {
 | 
						|
        HasZeros = true;
 | 
						|
        RLAmt[i] = UINT32_MAX;
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Unknown value bit type");
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Collect groups of consecutive bits with the same underlying value and
 | 
						|
  // rotation factor. If we're doing late masking, we ignore zeros, otherwise
 | 
						|
  // they break up groups.
 | 
						|
  void collectBitGroups(bool LateMask) {
 | 
						|
    BitGroups.clear();
 | 
						|
 | 
						|
    unsigned LastRLAmt = RLAmt[0];
 | 
						|
    SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
 | 
						|
    unsigned LastGroupStartIdx = 0;
 | 
						|
    for (unsigned i = 1; i < Bits.size(); ++i) {
 | 
						|
      unsigned ThisRLAmt = RLAmt[i];
 | 
						|
      SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
 | 
						|
      if (LateMask && !ThisValue) {
 | 
						|
        ThisValue = LastValue;
 | 
						|
        ThisRLAmt = LastRLAmt;
 | 
						|
        // If we're doing late masking, then the first bit group always starts
 | 
						|
        // at zero (even if the first bits were zero).
 | 
						|
        if (BitGroups.empty())
 | 
						|
          LastGroupStartIdx = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this bit has the same underlying value and the same rotate factor as
 | 
						|
      // the last one, then they're part of the same group.
 | 
						|
      if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (LastValue.getNode())
 | 
						|
        BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
 | 
						|
                                     i-1));
 | 
						|
      LastRLAmt = ThisRLAmt;
 | 
						|
      LastValue = ThisValue;
 | 
						|
      LastGroupStartIdx = i;
 | 
						|
    }
 | 
						|
    if (LastValue.getNode())
 | 
						|
      BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
 | 
						|
                                   Bits.size()-1));
 | 
						|
 | 
						|
    if (BitGroups.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    // We might be able to combine the first and last groups.
 | 
						|
    if (BitGroups.size() > 1) {
 | 
						|
      // If the first and last groups are the same, then remove the first group
 | 
						|
      // in favor of the last group, making the ending index of the last group
 | 
						|
      // equal to the ending index of the to-be-removed first group.
 | 
						|
      if (BitGroups[0].StartIdx == 0 &&
 | 
						|
          BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
 | 
						|
          BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
 | 
						|
          BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
 | 
						|
        DEBUG(dbgs() << "\tcombining final bit group with inital one\n");
 | 
						|
        BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
 | 
						|
        BitGroups.erase(BitGroups.begin());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
 | 
						|
  // associated with each. If there is a degeneracy, pick the one that occurs
 | 
						|
  // first (in the final value).
 | 
						|
  void collectValueRotInfo() {
 | 
						|
    ValueRots.clear();
 | 
						|
 | 
						|
    for (auto &BG : BitGroups) {
 | 
						|
      unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
 | 
						|
      ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
 | 
						|
      VRI.V = BG.V;
 | 
						|
      VRI.RLAmt = BG.RLAmt;
 | 
						|
      VRI.Repl32 = BG.Repl32;
 | 
						|
      VRI.NumGroups += 1;
 | 
						|
      VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we've collected the various ValueRotInfo instances, we need to
 | 
						|
    // sort them.
 | 
						|
    ValueRotsVec.clear();
 | 
						|
    for (auto &I : ValueRots) {
 | 
						|
      ValueRotsVec.push_back(I.second);
 | 
						|
    }
 | 
						|
    std::sort(ValueRotsVec.begin(), ValueRotsVec.end());
 | 
						|
  }
 | 
						|
 | 
						|
  // In 64-bit mode, rlwinm and friends have a rotation operator that
 | 
						|
  // replicates the low-order 32 bits into the high-order 32-bits. The mask
 | 
						|
  // indices of these instructions can only be in the lower 32 bits, so they
 | 
						|
  // can only represent some 64-bit bit groups. However, when they can be used,
 | 
						|
  // the 32-bit replication can be used to represent, as a single bit group,
 | 
						|
  // otherwise separate bit groups. We'll convert to replicated-32-bit bit
 | 
						|
  // groups when possible. Returns true if any of the bit groups were
 | 
						|
  // converted.
 | 
						|
  void assignRepl32BitGroups() {
 | 
						|
    // If we have bits like this:
 | 
						|
    //
 | 
						|
    // Indices:    15 14 13 12 11 10 9 8  7  6  5  4  3  2  1  0
 | 
						|
    // V bits: ... 7  6  5  4  3  2  1 0 31 30 29 28 27 26 25 24
 | 
						|
    // Groups:    |      RLAmt = 8      |      RLAmt = 40       |
 | 
						|
    //
 | 
						|
    // But, making use of a 32-bit operation that replicates the low-order 32
 | 
						|
    // bits into the high-order 32 bits, this can be one bit group with a RLAmt
 | 
						|
    // of 8.
 | 
						|
 | 
						|
    auto IsAllLow32 = [this](BitGroup & BG) {
 | 
						|
      if (BG.StartIdx <= BG.EndIdx) {
 | 
						|
        for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
 | 
						|
          if (!Bits[i].hasValue())
 | 
						|
            continue;
 | 
						|
          if (Bits[i].getValueBitIndex() >= 32)
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
 | 
						|
          if (!Bits[i].hasValue())
 | 
						|
            continue;
 | 
						|
          if (Bits[i].getValueBitIndex() >= 32)
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        for (unsigned i = 0; i <= BG.EndIdx; ++i) {
 | 
						|
          if (!Bits[i].hasValue())
 | 
						|
            continue;
 | 
						|
          if (Bits[i].getValueBitIndex() >= 32)
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      return true;
 | 
						|
    };
 | 
						|
 | 
						|
    for (auto &BG : BitGroups) {
 | 
						|
      if (BG.StartIdx < 32 && BG.EndIdx < 32) {
 | 
						|
        if (IsAllLow32(BG)) {
 | 
						|
          if (BG.RLAmt >= 32) {
 | 
						|
            BG.RLAmt -= 32;
 | 
						|
            BG.Repl32CR = true;
 | 
						|
          }
 | 
						|
 | 
						|
          BG.Repl32 = true;
 | 
						|
 | 
						|
          DEBUG(dbgs() << "\t32-bit replicated bit group for " <<
 | 
						|
                          BG.V.getNode() << " RLAmt = " << BG.RLAmt <<
 | 
						|
                          " [" << BG.StartIdx << ", " << BG.EndIdx << "]\n");
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now walk through the bit groups, consolidating where possible.
 | 
						|
    for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | 
						|
      // We might want to remove this bit group by merging it with the previous
 | 
						|
      // group (which might be the ending group).
 | 
						|
      auto IP = (I == BitGroups.begin()) ?
 | 
						|
                std::prev(BitGroups.end()) : std::prev(I);
 | 
						|
      if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
 | 
						|
          I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
 | 
						|
 | 
						|
        DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for " <<
 | 
						|
                        I->V.getNode() << " RLAmt = " << I->RLAmt <<
 | 
						|
                        " [" << I->StartIdx << ", " << I->EndIdx <<
 | 
						|
                        "] with group with range [" <<
 | 
						|
                        IP->StartIdx << ", " << IP->EndIdx << "]\n");
 | 
						|
 | 
						|
        IP->EndIdx = I->EndIdx;
 | 
						|
        IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
 | 
						|
        IP->Repl32Coalesced = true;
 | 
						|
        I = BitGroups.erase(I);
 | 
						|
        continue;
 | 
						|
      } else {
 | 
						|
        // There is a special case worth handling: If there is a single group
 | 
						|
        // covering the entire upper 32 bits, and it can be merged with both
 | 
						|
        // the next and previous groups (which might be the same group), then
 | 
						|
        // do so. If it is the same group (so there will be only one group in
 | 
						|
        // total), then we need to reverse the order of the range so that it
 | 
						|
        // covers the entire 64 bits.
 | 
						|
        if (I->StartIdx == 32 && I->EndIdx == 63) {
 | 
						|
          assert(std::next(I) == BitGroups.end() &&
 | 
						|
                 "bit group ends at index 63 but there is another?");
 | 
						|
          auto IN = BitGroups.begin();
 | 
						|
 | 
						|
          if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V && 
 | 
						|
              (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
 | 
						|
              IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
 | 
						|
              IsAllLow32(*I)) {
 | 
						|
 | 
						|
            DEBUG(dbgs() << "\tcombining bit group for " <<
 | 
						|
                            I->V.getNode() << " RLAmt = " << I->RLAmt <<
 | 
						|
                            " [" << I->StartIdx << ", " << I->EndIdx <<
 | 
						|
                            "] with 32-bit replicated groups with ranges [" <<
 | 
						|
                            IP->StartIdx << ", " << IP->EndIdx << "] and [" <<
 | 
						|
                            IN->StartIdx << ", " << IN->EndIdx << "]\n");
 | 
						|
 | 
						|
            if (IP == IN) {
 | 
						|
              // There is only one other group; change it to cover the whole
 | 
						|
              // range (backward, so that it can still be Repl32 but cover the
 | 
						|
              // whole 64-bit range).
 | 
						|
              IP->StartIdx = 31;
 | 
						|
              IP->EndIdx = 30;
 | 
						|
              IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
 | 
						|
              IP->Repl32Coalesced = true;
 | 
						|
              I = BitGroups.erase(I);
 | 
						|
            } else {
 | 
						|
              // There are two separate groups, one before this group and one
 | 
						|
              // after us (at the beginning). We're going to remove this group,
 | 
						|
              // but also the group at the very beginning.
 | 
						|
              IP->EndIdx = IN->EndIdx;
 | 
						|
              IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
 | 
						|
              IP->Repl32Coalesced = true;
 | 
						|
              I = BitGroups.erase(I);
 | 
						|
              BitGroups.erase(BitGroups.begin());
 | 
						|
            }
 | 
						|
 | 
						|
            // This must be the last group in the vector (and we might have
 | 
						|
            // just invalidated the iterator above), so break here.
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue getI32Imm(unsigned Imm, SDLoc dl) {
 | 
						|
    return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t getZerosMask() {
 | 
						|
    uint64_t Mask = 0;
 | 
						|
    for (unsigned i = 0; i < Bits.size(); ++i) {
 | 
						|
      if (Bits[i].hasValue())
 | 
						|
        continue;
 | 
						|
      Mask |= (UINT64_C(1) << i);
 | 
						|
    }
 | 
						|
 | 
						|
    return ~Mask;
 | 
						|
  }
 | 
						|
 | 
						|
  // Depending on the number of groups for a particular value, it might be
 | 
						|
  // better to rotate, mask explicitly (using andi/andis), and then or the
 | 
						|
  // result. Select this part of the result first.
 | 
						|
  void SelectAndParts32(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
 | 
						|
    if (BPermRewriterNoMasking)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (ValueRotInfo &VRI : ValueRotsVec) {
 | 
						|
      unsigned Mask = 0;
 | 
						|
      for (unsigned i = 0; i < Bits.size(); ++i) {
 | 
						|
        if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
 | 
						|
          continue;
 | 
						|
        if (RLAmt[i] != VRI.RLAmt)
 | 
						|
          continue;
 | 
						|
        Mask |= (1u << i);
 | 
						|
      }
 | 
						|
 | 
						|
      // Compute the masks for andi/andis that would be necessary.
 | 
						|
      unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
 | 
						|
      assert((ANDIMask != 0 || ANDISMask != 0) &&
 | 
						|
             "No set bits in mask for value bit groups");
 | 
						|
      bool NeedsRotate = VRI.RLAmt != 0;
 | 
						|
 | 
						|
      // We're trying to minimize the number of instructions. If we have one
 | 
						|
      // group, using one of andi/andis can break even.  If we have three
 | 
						|
      // groups, we can use both andi and andis and break even (to use both
 | 
						|
      // andi and andis we also need to or the results together). We need four
 | 
						|
      // groups if we also need to rotate. To use andi/andis we need to do more
 | 
						|
      // than break even because rotate-and-mask instructions tend to be easier
 | 
						|
      // to schedule.
 | 
						|
 | 
						|
      // FIXME: We've biased here against using andi/andis, which is right for
 | 
						|
      // POWER cores, but not optimal everywhere. For example, on the A2,
 | 
						|
      // andi/andis have single-cycle latency whereas the rotate-and-mask
 | 
						|
      // instructions take two cycles, and it would be better to bias toward
 | 
						|
      // andi/andis in break-even cases.
 | 
						|
 | 
						|
      unsigned NumAndInsts = (unsigned) NeedsRotate +
 | 
						|
                             (unsigned) (ANDIMask != 0) +
 | 
						|
                             (unsigned) (ANDISMask != 0) +
 | 
						|
                             (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
 | 
						|
                             (unsigned) (bool) Res;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
 | 
						|
                      " RL: " << VRI.RLAmt << ":" <<
 | 
						|
                      "\n\t\t\tisel using masking: " << NumAndInsts <<
 | 
						|
                      " using rotates: " << VRI.NumGroups << "\n");
 | 
						|
 | 
						|
      if (NumAndInsts >= VRI.NumGroups)
 | 
						|
        continue;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "\t\t\t\tusing masking\n");
 | 
						|
 | 
						|
      if (InstCnt) *InstCnt += NumAndInsts;
 | 
						|
 | 
						|
      SDValue VRot;
 | 
						|
      if (VRI.RLAmt) {
 | 
						|
        SDValue Ops[] =
 | 
						|
          { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
 | 
						|
            getI32Imm(31, dl) };
 | 
						|
        VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
 | 
						|
                                              Ops), 0);
 | 
						|
      } else {
 | 
						|
        VRot = VRI.V;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue ANDIVal, ANDISVal;
 | 
						|
      if (ANDIMask != 0)
 | 
						|
        ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
 | 
						|
                            VRot, getI32Imm(ANDIMask, dl)), 0);
 | 
						|
      if (ANDISMask != 0)
 | 
						|
        ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
 | 
						|
                             VRot, getI32Imm(ANDISMask, dl)), 0);
 | 
						|
 | 
						|
      SDValue TotalVal;
 | 
						|
      if (!ANDIVal)
 | 
						|
        TotalVal = ANDISVal;
 | 
						|
      else if (!ANDISVal)
 | 
						|
        TotalVal = ANDIVal;
 | 
						|
      else
 | 
						|
        TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
 | 
						|
                             ANDIVal, ANDISVal), 0);
 | 
						|
 | 
						|
      if (!Res)
 | 
						|
        Res = TotalVal;
 | 
						|
      else
 | 
						|
        Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
 | 
						|
                        Res, TotalVal), 0);
 | 
						|
 | 
						|
      // Now, remove all groups with this underlying value and rotation
 | 
						|
      // factor.
 | 
						|
      for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | 
						|
        if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
 | 
						|
          I = BitGroups.erase(I);
 | 
						|
        else
 | 
						|
          ++I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Instruction selection for the 32-bit case.
 | 
						|
  SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
 | 
						|
    SDLoc dl(N);
 | 
						|
    SDValue Res;
 | 
						|
 | 
						|
    if (InstCnt) *InstCnt = 0;
 | 
						|
 | 
						|
    // Take care of cases that should use andi/andis first.
 | 
						|
    SelectAndParts32(dl, Res, InstCnt);
 | 
						|
 | 
						|
    // If we've not yet selected a 'starting' instruction, and we have no zeros
 | 
						|
    // to fill in, select the (Value, RLAmt) with the highest priority (largest
 | 
						|
    // number of groups), and start with this rotated value.
 | 
						|
    if ((!HasZeros || LateMask) && !Res) {
 | 
						|
      ValueRotInfo &VRI = ValueRotsVec[0];
 | 
						|
      if (VRI.RLAmt) {
 | 
						|
        if (InstCnt) *InstCnt += 1;
 | 
						|
        SDValue Ops[] =
 | 
						|
          { VRI.V, getI32Imm(VRI.RLAmt, dl), getI32Imm(0, dl),
 | 
						|
            getI32Imm(31, dl) };
 | 
						|
        Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
 | 
						|
                      0);
 | 
						|
      } else {
 | 
						|
        Res = VRI.V;
 | 
						|
      }
 | 
						|
 | 
						|
      // Now, remove all groups with this underlying value and rotation factor.
 | 
						|
      for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | 
						|
        if (I->V == VRI.V && I->RLAmt == VRI.RLAmt)
 | 
						|
          I = BitGroups.erase(I);
 | 
						|
        else
 | 
						|
          ++I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (InstCnt) *InstCnt += BitGroups.size();
 | 
						|
 | 
						|
    // Insert the other groups (one at a time).
 | 
						|
    for (auto &BG : BitGroups) {
 | 
						|
      if (!Res) {
 | 
						|
        SDValue Ops[] =
 | 
						|
          { BG.V, getI32Imm(BG.RLAmt, dl),
 | 
						|
            getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
 | 
						|
            getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
 | 
						|
        Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | 
						|
      } else {
 | 
						|
        SDValue Ops[] =
 | 
						|
          { Res, BG.V, getI32Imm(BG.RLAmt, dl),
 | 
						|
              getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
 | 
						|
            getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
 | 
						|
        Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (LateMask) {
 | 
						|
      unsigned Mask = (unsigned) getZerosMask();
 | 
						|
 | 
						|
      unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
 | 
						|
      assert((ANDIMask != 0 || ANDISMask != 0) &&
 | 
						|
             "No set bits in zeros mask?");
 | 
						|
 | 
						|
      if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
 | 
						|
                               (unsigned) (ANDISMask != 0) +
 | 
						|
                               (unsigned) (ANDIMask != 0 && ANDISMask != 0);
 | 
						|
 | 
						|
      SDValue ANDIVal, ANDISVal;
 | 
						|
      if (ANDIMask != 0)
 | 
						|
        ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo, dl, MVT::i32,
 | 
						|
                            Res, getI32Imm(ANDIMask, dl)), 0);
 | 
						|
      if (ANDISMask != 0)
 | 
						|
        ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo, dl, MVT::i32,
 | 
						|
                             Res, getI32Imm(ANDISMask, dl)), 0);
 | 
						|
 | 
						|
      if (!ANDIVal)
 | 
						|
        Res = ANDISVal;
 | 
						|
      else if (!ANDISVal)
 | 
						|
        Res = ANDIVal;
 | 
						|
      else
 | 
						|
        Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
 | 
						|
                        ANDIVal, ANDISVal), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    return Res.getNode();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
 | 
						|
                                unsigned MaskStart, unsigned MaskEnd,
 | 
						|
                                bool IsIns) {
 | 
						|
    // In the notation used by the instructions, 'start' and 'end' are reversed
 | 
						|
    // because bits are counted from high to low order.
 | 
						|
    unsigned InstMaskStart = 64 - MaskEnd - 1,
 | 
						|
             InstMaskEnd   = 64 - MaskStart - 1;
 | 
						|
 | 
						|
    if (Repl32)
 | 
						|
      return 1;
 | 
						|
 | 
						|
    if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
 | 
						|
        InstMaskEnd == 63 - RLAmt)
 | 
						|
      return 1;
 | 
						|
 | 
						|
    return 2;
 | 
						|
  }
 | 
						|
 | 
						|
  // For 64-bit values, not all combinations of rotates and masks are
 | 
						|
  // available. Produce one if it is available.
 | 
						|
  SDValue SelectRotMask64(SDValue V, SDLoc dl, unsigned RLAmt, bool Repl32,
 | 
						|
                          unsigned MaskStart, unsigned MaskEnd,
 | 
						|
                          unsigned *InstCnt = nullptr) {
 | 
						|
    // In the notation used by the instructions, 'start' and 'end' are reversed
 | 
						|
    // because bits are counted from high to low order.
 | 
						|
    unsigned InstMaskStart = 64 - MaskEnd - 1,
 | 
						|
             InstMaskEnd   = 64 - MaskStart - 1;
 | 
						|
 | 
						|
    if (InstCnt) *InstCnt += 1;
 | 
						|
 | 
						|
    if (Repl32) {
 | 
						|
      // This rotation amount assumes that the lower 32 bits of the quantity
 | 
						|
      // are replicated in the high 32 bits by the rotation operator (which is
 | 
						|
      // done by rlwinm and friends).
 | 
						|
      assert(InstMaskStart >= 32 && "Mask cannot start out of range");
 | 
						|
      assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
 | 
						|
      SDValue Ops[] =
 | 
						|
        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
 | 
						|
          getI32Imm(InstMaskEnd - 32, dl) };
 | 
						|
      return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
 | 
						|
                                            Ops), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (InstMaskEnd == 63) {
 | 
						|
      SDValue Ops[] =
 | 
						|
        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
 | 
						|
      return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (InstMaskStart == 0) {
 | 
						|
      SDValue Ops[] =
 | 
						|
        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskEnd, dl) };
 | 
						|
      return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (InstMaskEnd == 63 - RLAmt) {
 | 
						|
      SDValue Ops[] =
 | 
						|
        { V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
 | 
						|
      return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // We cannot do this with a single instruction, so we'll use two. The
 | 
						|
    // problem is that we're not free to choose both a rotation amount and mask
 | 
						|
    // start and end independently. We can choose an arbitrary mask start and
 | 
						|
    // end, but then the rotation amount is fixed. Rotation, however, can be
 | 
						|
    // inverted, and so by applying an "inverse" rotation first, we can get the
 | 
						|
    // desired result.
 | 
						|
    if (InstCnt) *InstCnt += 1;
 | 
						|
 | 
						|
    // The rotation mask for the second instruction must be MaskStart.
 | 
						|
    unsigned RLAmt2 = MaskStart;
 | 
						|
    // The first instruction must rotate V so that the overall rotation amount
 | 
						|
    // is RLAmt.
 | 
						|
    unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
 | 
						|
    if (RLAmt1)
 | 
						|
      V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
 | 
						|
    return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
 | 
						|
  }
 | 
						|
 | 
						|
  // For 64-bit values, not all combinations of rotates and masks are
 | 
						|
  // available. Produce a rotate-mask-and-insert if one is available.
 | 
						|
  SDValue SelectRotMaskIns64(SDValue Base, SDValue V, SDLoc dl, unsigned RLAmt,
 | 
						|
                             bool Repl32, unsigned MaskStart,
 | 
						|
                             unsigned MaskEnd, unsigned *InstCnt = nullptr) {
 | 
						|
    // In the notation used by the instructions, 'start' and 'end' are reversed
 | 
						|
    // because bits are counted from high to low order.
 | 
						|
    unsigned InstMaskStart = 64 - MaskEnd - 1,
 | 
						|
             InstMaskEnd   = 64 - MaskStart - 1;
 | 
						|
 | 
						|
    if (InstCnt) *InstCnt += 1;
 | 
						|
 | 
						|
    if (Repl32) {
 | 
						|
      // This rotation amount assumes that the lower 32 bits of the quantity
 | 
						|
      // are replicated in the high 32 bits by the rotation operator (which is
 | 
						|
      // done by rlwinm and friends).
 | 
						|
      assert(InstMaskStart >= 32 && "Mask cannot start out of range");
 | 
						|
      assert(InstMaskEnd   >= 32 && "Mask cannot end out of range");
 | 
						|
      SDValue Ops[] =
 | 
						|
        { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart - 32, dl),
 | 
						|
          getI32Imm(InstMaskEnd - 32, dl) };
 | 
						|
      return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
 | 
						|
                                            Ops), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    if (InstMaskEnd == 63 - RLAmt) {
 | 
						|
      SDValue Ops[] =
 | 
						|
        { Base, V, getI32Imm(RLAmt, dl), getI32Imm(InstMaskStart, dl) };
 | 
						|
      return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
 | 
						|
    }
 | 
						|
 | 
						|
    // We cannot do this with a single instruction, so we'll use two. The
 | 
						|
    // problem is that we're not free to choose both a rotation amount and mask
 | 
						|
    // start and end independently. We can choose an arbitrary mask start and
 | 
						|
    // end, but then the rotation amount is fixed. Rotation, however, can be
 | 
						|
    // inverted, and so by applying an "inverse" rotation first, we can get the
 | 
						|
    // desired result.
 | 
						|
    if (InstCnt) *InstCnt += 1;
 | 
						|
 | 
						|
    // The rotation mask for the second instruction must be MaskStart.
 | 
						|
    unsigned RLAmt2 = MaskStart;
 | 
						|
    // The first instruction must rotate V so that the overall rotation amount
 | 
						|
    // is RLAmt.
 | 
						|
    unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
 | 
						|
    if (RLAmt1)
 | 
						|
      V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
 | 
						|
    return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
 | 
						|
  }
 | 
						|
 | 
						|
  void SelectAndParts64(SDLoc dl, SDValue &Res, unsigned *InstCnt) {
 | 
						|
    if (BPermRewriterNoMasking)
 | 
						|
      return;
 | 
						|
 | 
						|
    // The idea here is the same as in the 32-bit version, but with additional
 | 
						|
    // complications from the fact that Repl32 might be true. Because we
 | 
						|
    // aggressively convert bit groups to Repl32 form (which, for small
 | 
						|
    // rotation factors, involves no other change), and then coalesce, it might
 | 
						|
    // be the case that a single 64-bit masking operation could handle both
 | 
						|
    // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
 | 
						|
    // form allowed coalescing, then we must use a 32-bit rotaton in order to
 | 
						|
    // completely capture the new combined bit group.
 | 
						|
 | 
						|
    for (ValueRotInfo &VRI : ValueRotsVec) {
 | 
						|
      uint64_t Mask = 0;
 | 
						|
 | 
						|
      // We need to add to the mask all bits from the associated bit groups.
 | 
						|
      // If Repl32 is false, we need to add bits from bit groups that have
 | 
						|
      // Repl32 true, but are trivially convertable to Repl32 false. Such a
 | 
						|
      // group is trivially convertable if it overlaps only with the lower 32
 | 
						|
      // bits, and the group has not been coalesced.
 | 
						|
      auto MatchingBG = [VRI](BitGroup &BG) {
 | 
						|
        if (VRI.V != BG.V)
 | 
						|
          return false;
 | 
						|
 | 
						|
        unsigned EffRLAmt = BG.RLAmt;
 | 
						|
        if (!VRI.Repl32 && BG.Repl32) {
 | 
						|
          if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
 | 
						|
              !BG.Repl32Coalesced) {
 | 
						|
            if (BG.Repl32CR)
 | 
						|
              EffRLAmt += 32;
 | 
						|
          } else {
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
        } else if (VRI.Repl32 != BG.Repl32) {
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
        if (VRI.RLAmt != EffRLAmt)
 | 
						|
          return false;
 | 
						|
 | 
						|
        return true;
 | 
						|
      };
 | 
						|
 | 
						|
      for (auto &BG : BitGroups) {
 | 
						|
        if (!MatchingBG(BG))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (BG.StartIdx <= BG.EndIdx) {
 | 
						|
          for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
 | 
						|
            Mask |= (UINT64_C(1) << i);
 | 
						|
        } else {
 | 
						|
          for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
 | 
						|
            Mask |= (UINT64_C(1) << i);
 | 
						|
          for (unsigned i = 0; i <= BG.EndIdx; ++i)
 | 
						|
            Mask |= (UINT64_C(1) << i);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // We can use the 32-bit andi/andis technique if the mask does not
 | 
						|
      // require any higher-order bits. This can save an instruction compared
 | 
						|
      // to always using the general 64-bit technique.
 | 
						|
      bool Use32BitInsts = isUInt<32>(Mask);
 | 
						|
      // Compute the masks for andi/andis that would be necessary.
 | 
						|
      unsigned ANDIMask = (Mask & UINT16_MAX),
 | 
						|
               ANDISMask = (Mask >> 16) & UINT16_MAX;
 | 
						|
 | 
						|
      bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
 | 
						|
 | 
						|
      unsigned NumAndInsts = (unsigned) NeedsRotate +
 | 
						|
                             (unsigned) (bool) Res;
 | 
						|
      if (Use32BitInsts)
 | 
						|
        NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
 | 
						|
                       (unsigned) (ANDIMask != 0 && ANDISMask != 0);
 | 
						|
      else
 | 
						|
        NumAndInsts += SelectInt64Count(Mask) + /* and */ 1;
 | 
						|
 | 
						|
      unsigned NumRLInsts = 0;
 | 
						|
      bool FirstBG = true;
 | 
						|
      for (auto &BG : BitGroups) {
 | 
						|
        if (!MatchingBG(BG))
 | 
						|
          continue;
 | 
						|
        NumRLInsts +=
 | 
						|
          SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
 | 
						|
                               !FirstBG);
 | 
						|
        FirstBG = false;
 | 
						|
      }
 | 
						|
 | 
						|
      DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode() <<
 | 
						|
                      " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":") <<
 | 
						|
                      "\n\t\t\tisel using masking: " << NumAndInsts <<
 | 
						|
                      " using rotates: " << NumRLInsts << "\n");
 | 
						|
 | 
						|
      // When we'd use andi/andis, we bias toward using the rotates (andi only
 | 
						|
      // has a record form, and is cracked on POWER cores). However, when using
 | 
						|
      // general 64-bit constant formation, bias toward the constant form,
 | 
						|
      // because that exposes more opportunities for CSE.
 | 
						|
      if (NumAndInsts > NumRLInsts)
 | 
						|
        continue;
 | 
						|
      if (Use32BitInsts && NumAndInsts == NumRLInsts)
 | 
						|
        continue;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "\t\t\t\tusing masking\n");
 | 
						|
 | 
						|
      if (InstCnt) *InstCnt += NumAndInsts;
 | 
						|
 | 
						|
      SDValue VRot;
 | 
						|
      // We actually need to generate a rotation if we have a non-zero rotation
 | 
						|
      // factor or, in the Repl32 case, if we care about any of the
 | 
						|
      // higher-order replicated bits. In the latter case, we generate a mask
 | 
						|
      // backward so that it actually includes the entire 64 bits.
 | 
						|
      if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
 | 
						|
        VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
 | 
						|
                               VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
 | 
						|
      else
 | 
						|
        VRot = VRI.V;
 | 
						|
 | 
						|
      SDValue TotalVal;
 | 
						|
      if (Use32BitInsts) {
 | 
						|
        assert((ANDIMask != 0 || ANDISMask != 0) &&
 | 
						|
               "No set bits in mask when using 32-bit ands for 64-bit value");
 | 
						|
 | 
						|
        SDValue ANDIVal, ANDISVal;
 | 
						|
        if (ANDIMask != 0)
 | 
						|
          ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
 | 
						|
                              VRot, getI32Imm(ANDIMask, dl)), 0);
 | 
						|
        if (ANDISMask != 0)
 | 
						|
          ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
 | 
						|
                               VRot, getI32Imm(ANDISMask, dl)), 0);
 | 
						|
 | 
						|
        if (!ANDIVal)
 | 
						|
          TotalVal = ANDISVal;
 | 
						|
        else if (!ANDISVal)
 | 
						|
          TotalVal = ANDIVal;
 | 
						|
        else
 | 
						|
          TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
 | 
						|
                               ANDIVal, ANDISVal), 0);
 | 
						|
      } else {
 | 
						|
        TotalVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
 | 
						|
        TotalVal =
 | 
						|
          SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
 | 
						|
                                         VRot, TotalVal), 0);
 | 
						|
     }
 | 
						|
 | 
						|
      if (!Res)
 | 
						|
        Res = TotalVal;
 | 
						|
      else
 | 
						|
        Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
 | 
						|
                                             Res, TotalVal), 0);
 | 
						|
 | 
						|
      // Now, remove all groups with this underlying value and rotation
 | 
						|
      // factor.
 | 
						|
      for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | 
						|
        if (MatchingBG(*I))
 | 
						|
          I = BitGroups.erase(I);
 | 
						|
        else
 | 
						|
          ++I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Instruction selection for the 64-bit case.
 | 
						|
  SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
 | 
						|
    SDLoc dl(N);
 | 
						|
    SDValue Res;
 | 
						|
 | 
						|
    if (InstCnt) *InstCnt = 0;
 | 
						|
 | 
						|
    // Take care of cases that should use andi/andis first.
 | 
						|
    SelectAndParts64(dl, Res, InstCnt);
 | 
						|
 | 
						|
    // If we've not yet selected a 'starting' instruction, and we have no zeros
 | 
						|
    // to fill in, select the (Value, RLAmt) with the highest priority (largest
 | 
						|
    // number of groups), and start with this rotated value.
 | 
						|
    if ((!HasZeros || LateMask) && !Res) {
 | 
						|
      // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
 | 
						|
      // groups will come first, and so the VRI representing the largest number
 | 
						|
      // of groups might not be first (it might be the first Repl32 groups).
 | 
						|
      unsigned MaxGroupsIdx = 0;
 | 
						|
      if (!ValueRotsVec[0].Repl32) {
 | 
						|
        for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
 | 
						|
          if (ValueRotsVec[i].Repl32) {
 | 
						|
            if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
 | 
						|
              MaxGroupsIdx = i;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
      ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
 | 
						|
      bool NeedsRotate = false;
 | 
						|
      if (VRI.RLAmt) {
 | 
						|
        NeedsRotate = true;
 | 
						|
      } else if (VRI.Repl32) {
 | 
						|
        for (auto &BG : BitGroups) {
 | 
						|
          if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
 | 
						|
              BG.Repl32 != VRI.Repl32)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // We don't need a rotate if the bit group is confined to the lower
 | 
						|
          // 32 bits.
 | 
						|
          if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
 | 
						|
            continue;
 | 
						|
 | 
						|
          NeedsRotate = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (NeedsRotate)
 | 
						|
        Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
 | 
						|
                              VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
 | 
						|
                              InstCnt);
 | 
						|
      else
 | 
						|
        Res = VRI.V;
 | 
						|
 | 
						|
      // Now, remove all groups with this underlying value and rotation factor.
 | 
						|
      if (Res)
 | 
						|
        for (auto I = BitGroups.begin(); I != BitGroups.end();) {
 | 
						|
          if (I->V == VRI.V && I->RLAmt == VRI.RLAmt && I->Repl32 == VRI.Repl32)
 | 
						|
            I = BitGroups.erase(I);
 | 
						|
          else
 | 
						|
            ++I;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Because 64-bit rotates are more flexible than inserts, we might have a
 | 
						|
    // preference regarding which one we do first (to save one instruction).
 | 
						|
    if (!Res)
 | 
						|
      for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
 | 
						|
        if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
 | 
						|
                                false) <
 | 
						|
            SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
 | 
						|
                                true)) {
 | 
						|
          if (I != BitGroups.begin()) {
 | 
						|
            BitGroup BG = *I;
 | 
						|
            BitGroups.erase(I);
 | 
						|
            BitGroups.insert(BitGroups.begin(), BG);
 | 
						|
          }
 | 
						|
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    // Insert the other groups (one at a time).
 | 
						|
    for (auto &BG : BitGroups) {
 | 
						|
      if (!Res)
 | 
						|
        Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
 | 
						|
                              BG.EndIdx, InstCnt);
 | 
						|
      else
 | 
						|
        Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
 | 
						|
                                 BG.StartIdx, BG.EndIdx, InstCnt);
 | 
						|
    }
 | 
						|
 | 
						|
    if (LateMask) {
 | 
						|
      uint64_t Mask = getZerosMask();
 | 
						|
 | 
						|
      // We can use the 32-bit andi/andis technique if the mask does not
 | 
						|
      // require any higher-order bits. This can save an instruction compared
 | 
						|
      // to always using the general 64-bit technique.
 | 
						|
      bool Use32BitInsts = isUInt<32>(Mask);
 | 
						|
      // Compute the masks for andi/andis that would be necessary.
 | 
						|
      unsigned ANDIMask = (Mask & UINT16_MAX),
 | 
						|
               ANDISMask = (Mask >> 16) & UINT16_MAX;
 | 
						|
 | 
						|
      if (Use32BitInsts) {
 | 
						|
        assert((ANDIMask != 0 || ANDISMask != 0) &&
 | 
						|
               "No set bits in mask when using 32-bit ands for 64-bit value");
 | 
						|
 | 
						|
        if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
 | 
						|
                                 (unsigned) (ANDISMask != 0) +
 | 
						|
                                 (unsigned) (ANDIMask != 0 && ANDISMask != 0);
 | 
						|
 | 
						|
        SDValue ANDIVal, ANDISVal;
 | 
						|
        if (ANDIMask != 0)
 | 
						|
          ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDIo8, dl, MVT::i64,
 | 
						|
                              Res, getI32Imm(ANDIMask, dl)), 0);
 | 
						|
        if (ANDISMask != 0)
 | 
						|
          ANDISVal = SDValue(CurDAG->getMachineNode(PPC::ANDISo8, dl, MVT::i64,
 | 
						|
                               Res, getI32Imm(ANDISMask, dl)), 0);
 | 
						|
 | 
						|
        if (!ANDIVal)
 | 
						|
          Res = ANDISVal;
 | 
						|
        else if (!ANDISVal)
 | 
						|
          Res = ANDIVal;
 | 
						|
        else
 | 
						|
          Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
 | 
						|
                          ANDIVal, ANDISVal), 0);
 | 
						|
      } else {
 | 
						|
        if (InstCnt) *InstCnt += SelectInt64Count(Mask) + /* and */ 1;
 | 
						|
 | 
						|
        SDValue MaskVal = SDValue(SelectInt64(CurDAG, dl, Mask), 0);
 | 
						|
        Res =
 | 
						|
          SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
 | 
						|
                                         Res, MaskVal), 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return Res.getNode();
 | 
						|
  }
 | 
						|
 | 
						|
  SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
 | 
						|
    // Fill in BitGroups.
 | 
						|
    collectBitGroups(LateMask);
 | 
						|
    if (BitGroups.empty())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // For 64-bit values, figure out when we can use 32-bit instructions.
 | 
						|
    if (Bits.size() == 64)
 | 
						|
      assignRepl32BitGroups();
 | 
						|
 | 
						|
    // Fill in ValueRotsVec.
 | 
						|
    collectValueRotInfo();
 | 
						|
 | 
						|
    if (Bits.size() == 32) {
 | 
						|
      return Select32(N, LateMask, InstCnt);
 | 
						|
    } else {
 | 
						|
      assert(Bits.size() == 64 && "Not 64 bits here?");
 | 
						|
      return Select64(N, LateMask, InstCnt);
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<ValueBit, 64> Bits;
 | 
						|
 | 
						|
  bool HasZeros;
 | 
						|
  SmallVector<unsigned, 64> RLAmt;
 | 
						|
 | 
						|
  SmallVector<BitGroup, 16> BitGroups;
 | 
						|
 | 
						|
  DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
 | 
						|
  SmallVector<ValueRotInfo, 16> ValueRotsVec;
 | 
						|
 | 
						|
  SelectionDAG *CurDAG;
 | 
						|
 | 
						|
public:
 | 
						|
  BitPermutationSelector(SelectionDAG *DAG)
 | 
						|
    : CurDAG(DAG) {}
 | 
						|
 | 
						|
  // Here we try to match complex bit permutations into a set of
 | 
						|
  // rotate-and-shift/shift/and/or instructions, using a set of heuristics
 | 
						|
  // known to produce optimial code for common cases (like i32 byte swapping).
 | 
						|
  SDNode *Select(SDNode *N) {
 | 
						|
    Bits.resize(N->getValueType(0).getSizeInBits());
 | 
						|
    if (!getValueBits(SDValue(N, 0), Bits))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Considering bit-permutation-based instruction"
 | 
						|
                    " selection for:    ");
 | 
						|
    DEBUG(N->dump(CurDAG));
 | 
						|
 | 
						|
    // Fill it RLAmt and set HasZeros.
 | 
						|
    computeRotationAmounts();
 | 
						|
 | 
						|
    if (!HasZeros)
 | 
						|
      return Select(N, false);
 | 
						|
 | 
						|
    // We currently have two techniques for handling results with zeros: early
 | 
						|
    // masking (the default) and late masking. Late masking is sometimes more
 | 
						|
    // efficient, but because the structure of the bit groups is different, it
 | 
						|
    // is hard to tell without generating both and comparing the results. With
 | 
						|
    // late masking, we ignore zeros in the resulting value when inserting each
 | 
						|
    // set of bit groups, and then mask in the zeros at the end. With early
 | 
						|
    // masking, we only insert the non-zero parts of the result at every step.
 | 
						|
 | 
						|
    unsigned InstCnt, InstCntLateMask;
 | 
						|
    DEBUG(dbgs() << "\tEarly masking:\n");
 | 
						|
    SDNode *RN = Select(N, false, &InstCnt);
 | 
						|
    DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "\tLate masking:\n");
 | 
						|
    SDNode *RNLM = Select(N, true, &InstCntLateMask);
 | 
						|
    DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask <<
 | 
						|
                    " instructions\n");
 | 
						|
 | 
						|
    if (InstCnt <= InstCntLateMask) {
 | 
						|
      DEBUG(dbgs() << "\tUsing early-masking for isel\n");
 | 
						|
      return RN;
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "\tUsing late-masking for isel\n");
 | 
						|
    return RNLM;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
SDNode *PPCDAGToDAGISel::SelectBitPermutation(SDNode *N) {
 | 
						|
  if (N->getValueType(0) != MVT::i32 &&
 | 
						|
      N->getValueType(0) != MVT::i64)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!UseBitPermRewriter)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::ROTL:
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRL:
 | 
						|
  case ISD::AND:
 | 
						|
  case ISD::OR: {
 | 
						|
    BitPermutationSelector BPS(CurDAG);
 | 
						|
    return BPS.Select(N);
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectCC - Select a comparison of the specified values with the specified
 | 
						|
/// condition code, returning the CR# of the expression.
 | 
						|
SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
 | 
						|
                                    ISD::CondCode CC, SDLoc dl) {
 | 
						|
  // Always select the LHS.
 | 
						|
  unsigned Opc;
 | 
						|
 | 
						|
  if (LHS.getValueType() == MVT::i32) {
 | 
						|
    unsigned Imm;
 | 
						|
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
      if (isInt32Immediate(RHS, Imm)) {
 | 
						|
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | 
						|
        if (isUInt<16>(Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF, dl)),
 | 
						|
                         0);
 | 
						|
        // If this is a 16-bit signed immediate, fold it.
 | 
						|
        if (isInt<16>((int)Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF, dl)),
 | 
						|
                         0);
 | 
						|
 | 
						|
        // For non-equality comparisons, the default code would materialize the
 | 
						|
        // constant, then compare against it, like this:
 | 
						|
        //   lis r2, 4660
 | 
						|
        //   ori r2, r2, 22136
 | 
						|
        //   cmpw cr0, r3, r2
 | 
						|
        // Since we are just comparing for equality, we can emit this instead:
 | 
						|
        //   xoris r0,r3,0x1234
 | 
						|
        //   cmplwi cr0,r0,0x5678
 | 
						|
        //   beq cr0,L6
 | 
						|
        SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
 | 
						|
                                           getI32Imm(Imm >> 16, dl)), 0);
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
 | 
						|
                                              getI32Imm(Imm & 0xFFFF, dl)), 0);
 | 
						|
      }
 | 
						|
      Opc = PPC::CMPLW;
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
 | 
						|
                                              getI32Imm(Imm & 0xFFFF, dl)), 0);
 | 
						|
      Opc = PPC::CMPLW;
 | 
						|
    } else {
 | 
						|
      short SImm;
 | 
						|
      if (isIntS16Immediate(RHS, SImm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
 | 
						|
                                              getI32Imm((int)SImm & 0xFFFF,
 | 
						|
                                                        dl)),
 | 
						|
                         0);
 | 
						|
      Opc = PPC::CMPW;
 | 
						|
    }
 | 
						|
  } else if (LHS.getValueType() == MVT::i64) {
 | 
						|
    uint64_t Imm;
 | 
						|
    if (CC == ISD::SETEQ || CC == ISD::SETNE) {
 | 
						|
      if (isInt64Immediate(RHS.getNode(), Imm)) {
 | 
						|
        // SETEQ/SETNE comparison with 16-bit immediate, fold it.
 | 
						|
        if (isUInt<16>(Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF, dl)),
 | 
						|
                         0);
 | 
						|
        // If this is a 16-bit signed immediate, fold it.
 | 
						|
        if (isInt<16>(Imm))
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | 
						|
                                                getI32Imm(Imm & 0xFFFF, dl)),
 | 
						|
                         0);
 | 
						|
 | 
						|
        // For non-equality comparisons, the default code would materialize the
 | 
						|
        // constant, then compare against it, like this:
 | 
						|
        //   lis r2, 4660
 | 
						|
        //   ori r2, r2, 22136
 | 
						|
        //   cmpd cr0, r3, r2
 | 
						|
        // Since we are just comparing for equality, we can emit this instead:
 | 
						|
        //   xoris r0,r3,0x1234
 | 
						|
        //   cmpldi cr0,r0,0x5678
 | 
						|
        //   beq cr0,L6
 | 
						|
        if (isUInt<32>(Imm)) {
 | 
						|
          SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
 | 
						|
                                             getI64Imm(Imm >> 16, dl)), 0);
 | 
						|
          return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
 | 
						|
                                                getI64Imm(Imm & 0xFFFF, dl)),
 | 
						|
                         0);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Opc = PPC::CMPLD;
 | 
						|
    } else if (ISD::isUnsignedIntSetCC(CC)) {
 | 
						|
      if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
 | 
						|
                                              getI64Imm(Imm & 0xFFFF, dl)), 0);
 | 
						|
      Opc = PPC::CMPLD;
 | 
						|
    } else {
 | 
						|
      short SImm;
 | 
						|
      if (isIntS16Immediate(RHS, SImm))
 | 
						|
        return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
 | 
						|
                                              getI64Imm(SImm & 0xFFFF, dl)),
 | 
						|
                         0);
 | 
						|
      Opc = PPC::CMPD;
 | 
						|
    }
 | 
						|
  } else if (LHS.getValueType() == MVT::f32) {
 | 
						|
    Opc = PPC::FCMPUS;
 | 
						|
  } else {
 | 
						|
    assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
 | 
						|
    Opc = PPCSubTarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
 | 
						|
  }
 | 
						|
  return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
 | 
						|
}
 | 
						|
 | 
						|
static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETONE:
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETOGE:
 | 
						|
    llvm_unreachable("Should be lowered by legalize!");
 | 
						|
  default: llvm_unreachable("Unknown condition!");
 | 
						|
  case ISD::SETOEQ:
 | 
						|
  case ISD::SETEQ:  return PPC::PRED_EQ;
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:  return PPC::PRED_NE;
 | 
						|
  case ISD::SETOLT:
 | 
						|
  case ISD::SETLT:  return PPC::PRED_LT;
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  return PPC::PRED_LE;
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETGT:  return PPC::PRED_GT;
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  return PPC::PRED_GE;
 | 
						|
  case ISD::SETO:   return PPC::PRED_NU;
 | 
						|
  case ISD::SETUO:  return PPC::PRED_UN;
 | 
						|
    // These two are invalid for floating point.  Assume we have int.
 | 
						|
  case ISD::SETULT: return PPC::PRED_LT;
 | 
						|
  case ISD::SETUGT: return PPC::PRED_GT;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getCRIdxForSetCC - Return the index of the condition register field
 | 
						|
/// associated with the SetCC condition, and whether or not the field is
 | 
						|
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | 
						|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
 | 
						|
  Invert = false;
 | 
						|
  switch (CC) {
 | 
						|
  default: llvm_unreachable("Unknown condition!");
 | 
						|
  case ISD::SETOLT:
 | 
						|
  case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
 | 
						|
  case ISD::SETOGT:
 | 
						|
  case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
 | 
						|
  case ISD::SETOEQ:
 | 
						|
  case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
 | 
						|
  case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
 | 
						|
  case ISD::SETUNE:
 | 
						|
  case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
 | 
						|
  case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
 | 
						|
  case ISD::SETUEQ:
 | 
						|
  case ISD::SETOGE:
 | 
						|
  case ISD::SETOLE:
 | 
						|
  case ISD::SETONE:
 | 
						|
    llvm_unreachable("Invalid branch code: should be expanded by legalize");
 | 
						|
  // These are invalid for floating point.  Assume integer.
 | 
						|
  case ISD::SETULT: return 0;
 | 
						|
  case ISD::SETUGT: return 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// getVCmpInst: return the vector compare instruction for the specified
 | 
						|
// vector type and condition code. Since this is for altivec specific code,
 | 
						|
// only support the altivec types (v16i8, v8i16, v4i32, v2i64, and v4f32).
 | 
						|
static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
 | 
						|
                                bool HasVSX, bool &Swap, bool &Negate) {
 | 
						|
  Swap = false;
 | 
						|
  Negate = false;
 | 
						|
 | 
						|
  if (VecVT.isFloatingPoint()) {
 | 
						|
    /* Handle some cases by swapping input operands.  */
 | 
						|
    switch (CC) {
 | 
						|
      case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
 | 
						|
      case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
 | 
						|
      case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
 | 
						|
      case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
 | 
						|
      case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
 | 
						|
      case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
 | 
						|
      default: break;
 | 
						|
    }
 | 
						|
    /* Handle some cases by negating the result.  */
 | 
						|
    switch (CC) {
 | 
						|
      case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
 | 
						|
      case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
 | 
						|
      case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
 | 
						|
      case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
 | 
						|
      default: break;
 | 
						|
    }
 | 
						|
    /* We have instructions implementing the remaining cases.  */
 | 
						|
    switch (CC) {
 | 
						|
      case ISD::SETEQ:
 | 
						|
      case ISD::SETOEQ:
 | 
						|
        if (VecVT == MVT::v4f32)
 | 
						|
          return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
 | 
						|
        else if (VecVT == MVT::v2f64)
 | 
						|
          return PPC::XVCMPEQDP;
 | 
						|
        break;
 | 
						|
      case ISD::SETGT:
 | 
						|
      case ISD::SETOGT:
 | 
						|
        if (VecVT == MVT::v4f32)
 | 
						|
          return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
 | 
						|
        else if (VecVT == MVT::v2f64)
 | 
						|
          return PPC::XVCMPGTDP;
 | 
						|
        break;
 | 
						|
      case ISD::SETGE:
 | 
						|
      case ISD::SETOGE:
 | 
						|
        if (VecVT == MVT::v4f32)
 | 
						|
          return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
 | 
						|
        else if (VecVT == MVT::v2f64)
 | 
						|
          return PPC::XVCMPGEDP;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Invalid floating-point vector compare condition");
 | 
						|
  } else {
 | 
						|
    /* Handle some cases by swapping input operands.  */
 | 
						|
    switch (CC) {
 | 
						|
      case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
 | 
						|
      case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
 | 
						|
      case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
 | 
						|
      case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
 | 
						|
      default: break;
 | 
						|
    }
 | 
						|
    /* Handle some cases by negating the result.  */
 | 
						|
    switch (CC) {
 | 
						|
      case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
 | 
						|
      case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
 | 
						|
      case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
 | 
						|
      case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
 | 
						|
      default: break;
 | 
						|
    }
 | 
						|
    /* We have instructions implementing the remaining cases.  */
 | 
						|
    switch (CC) {
 | 
						|
      case ISD::SETEQ:
 | 
						|
      case ISD::SETUEQ:
 | 
						|
        if (VecVT == MVT::v16i8)
 | 
						|
          return PPC::VCMPEQUB;
 | 
						|
        else if (VecVT == MVT::v8i16)
 | 
						|
          return PPC::VCMPEQUH;
 | 
						|
        else if (VecVT == MVT::v4i32)
 | 
						|
          return PPC::VCMPEQUW;
 | 
						|
        else if (VecVT == MVT::v2i64)
 | 
						|
          return PPC::VCMPEQUD;
 | 
						|
        break;
 | 
						|
      case ISD::SETGT:
 | 
						|
        if (VecVT == MVT::v16i8)
 | 
						|
          return PPC::VCMPGTSB;
 | 
						|
        else if (VecVT == MVT::v8i16)
 | 
						|
          return PPC::VCMPGTSH;
 | 
						|
        else if (VecVT == MVT::v4i32)
 | 
						|
          return PPC::VCMPGTSW;
 | 
						|
        else if (VecVT == MVT::v2i64)
 | 
						|
          return PPC::VCMPGTSD;
 | 
						|
        break;
 | 
						|
      case ISD::SETUGT:
 | 
						|
        if (VecVT == MVT::v16i8)
 | 
						|
          return PPC::VCMPGTUB;
 | 
						|
        else if (VecVT == MVT::v8i16)
 | 
						|
          return PPC::VCMPGTUH;
 | 
						|
        else if (VecVT == MVT::v4i32)
 | 
						|
          return PPC::VCMPGTUW;
 | 
						|
        else if (VecVT == MVT::v2i64)
 | 
						|
          return PPC::VCMPGTUD;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    llvm_unreachable("Invalid integer vector compare condition");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
 | 
						|
  SDLoc dl(N);
 | 
						|
  unsigned Imm;
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | 
						|
  bool isPPC64 = (PtrVT == MVT::i64);
 | 
						|
 | 
						|
  if (!PPCSubTarget->useCRBits() &&
 | 
						|
      isInt32Immediate(N->getOperand(1), Imm)) {
 | 
						|
    // We can codegen setcc op, imm very efficiently compared to a brcond.
 | 
						|
    // Check for those cases here.
 | 
						|
    // setcc op, 0
 | 
						|
    if (Imm == 0) {
 | 
						|
      SDValue Op = N->getOperand(0);
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ: {
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
 | 
						|
        SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
 | 
						|
                          getI32Imm(31, dl) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
      }
 | 
						|
      case ISD::SETNE: {
 | 
						|
        if (isPPC64) break;
 | 
						|
        SDValue AD =
 | 
						|
          SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                         Op, getI32Imm(~0U, dl)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
 | 
						|
                                    AD.getValue(1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
 | 
						|
                          getI32Imm(31, dl) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
      }
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDValue T =
 | 
						|
          SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
 | 
						|
        T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
 | 
						|
        SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
 | 
						|
                          getI32Imm(31, dl) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
      }
 | 
						|
      }
 | 
						|
    } else if (Imm == ~0U) {        // setcc op, -1
 | 
						|
      SDValue Op = N->getOperand(0);
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ:
 | 
						|
        if (isPPC64) break;
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                            Op, getI32Imm(1, dl)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | 
						|
                              SDValue(CurDAG->getMachineNode(PPC::LI, dl,
 | 
						|
                                                             MVT::i32,
 | 
						|
                                                             getI32Imm(0, dl)),
 | 
						|
                                      0), Op.getValue(1));
 | 
						|
      case ISD::SETNE: {
 | 
						|
        if (isPPC64) break;
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
 | 
						|
        SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                            Op, getI32Imm(~0U, dl));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
 | 
						|
                                    Op, SDValue(AD, 1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
 | 
						|
                                                    getI32Imm(1, dl)), 0);
 | 
						|
        SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
 | 
						|
                                                    Op), 0);
 | 
						|
        SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
 | 
						|
                          getI32Imm(31, dl) };
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
      }
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
 | 
						|
                          getI32Imm(31, dl) };
 | 
						|
        Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
 | 
						|
                                    getI32Imm(1, dl));
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue LHS = N->getOperand(0);
 | 
						|
  SDValue RHS = N->getOperand(1);
 | 
						|
 | 
						|
  // Altivec Vector compare instructions do not set any CR register by default and
 | 
						|
  // vector compare operations return the same type as the operands.
 | 
						|
  if (LHS.getValueType().isVector()) {
 | 
						|
    if (PPCSubTarget->hasQPX())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    EVT VecVT = LHS.getValueType();
 | 
						|
    bool Swap, Negate;
 | 
						|
    unsigned int VCmpInst = getVCmpInst(VecVT.getSimpleVT(), CC,
 | 
						|
                                        PPCSubTarget->hasVSX(), Swap, Negate);
 | 
						|
    if (Swap)
 | 
						|
      std::swap(LHS, RHS);
 | 
						|
 | 
						|
    if (Negate) {
 | 
						|
      SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, VecVT, LHS, RHS), 0);
 | 
						|
      return CurDAG->SelectNodeTo(N, PPCSubTarget->hasVSX() ? PPC::XXLNOR :
 | 
						|
                                                              PPC::VNOR,
 | 
						|
                                  VecVT, VCmp, VCmp);
 | 
						|
    }
 | 
						|
 | 
						|
    return CurDAG->SelectNodeTo(N, VCmpInst, VecVT, LHS, RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PPCSubTarget->useCRBits())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  bool Inv;
 | 
						|
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | 
						|
  SDValue CCReg = SelectCC(LHS, RHS, CC, dl);
 | 
						|
  SDValue IntCR;
 | 
						|
 | 
						|
  // Force the ccreg into CR7.
 | 
						|
  SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | 
						|
 | 
						|
  SDValue InFlag(nullptr, 0);  // Null incoming flag value.
 | 
						|
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
 | 
						|
                               InFlag).getValue(1);
 | 
						|
 | 
						|
  IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
 | 
						|
                                         CCReg), 0);
 | 
						|
 | 
						|
  SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
 | 
						|
                      getI32Imm(31, dl), getI32Imm(31, dl) };
 | 
						|
  if (!Inv)
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
 | 
						|
  // Get the specified bit.
 | 
						|
  SDValue Tmp =
 | 
						|
    SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
 | 
						|
  return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
 | 
						|
}
 | 
						|
 | 
						|
SDNode *PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
 | 
						|
  // Transfer memoperands.
 | 
						|
  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | 
						|
  MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
 | 
						|
  cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Select - Convert the specified operand from a target-independent to a
 | 
						|
// target-specific node if it hasn't already been changed.
 | 
						|
SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
 | 
						|
  SDLoc dl(N);
 | 
						|
  if (N->isMachineOpcode()) {
 | 
						|
    N->setNodeId(-1);
 | 
						|
    return nullptr;   // Already selected.
 | 
						|
  }
 | 
						|
 | 
						|
  // In case any misguided DAG-level optimizations form an ADD with a
 | 
						|
  // TargetConstant operand, crash here instead of miscompiling (by selecting
 | 
						|
  // an r+r add instead of some kind of r+i add).
 | 
						|
  if (N->getOpcode() == ISD::ADD &&
 | 
						|
      N->getOperand(1).getOpcode() == ISD::TargetConstant)
 | 
						|
    llvm_unreachable("Invalid ADD with TargetConstant operand");
 | 
						|
 | 
						|
  // Try matching complex bit permutations before doing anything else.
 | 
						|
  if (SDNode *NN = SelectBitPermutation(N))
 | 
						|
    return NN;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
 | 
						|
  case ISD::Constant: {
 | 
						|
    if (N->getValueType(0) == MVT::i64)
 | 
						|
      return SelectInt64(CurDAG, N);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::SETCC: {
 | 
						|
    SDNode *SN = SelectSETCC(N);
 | 
						|
    if (SN)
 | 
						|
      return SN;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case PPCISD::GlobalBaseReg:
 | 
						|
    return getGlobalBaseReg();
 | 
						|
 | 
						|
  case ISD::FrameIndex:
 | 
						|
    return getFrameIndex(N, N);
 | 
						|
 | 
						|
  case PPCISD::MFOCRF: {
 | 
						|
    SDValue InFlag = N->getOperand(1);
 | 
						|
    return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
 | 
						|
                                  N->getOperand(0), InFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  case PPCISD::READ_TIME_BASE: {
 | 
						|
    return CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
 | 
						|
                                  MVT::Other, N->getOperand(0));
 | 
						|
  }
 | 
						|
 | 
						|
  case PPCISD::SRA_ADDZE: {
 | 
						|
    SDValue N0 = N->getOperand(0);
 | 
						|
    SDValue ShiftAmt =
 | 
						|
      CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
 | 
						|
                                  getConstantIntValue(), dl,
 | 
						|
                                  N->getValueType(0));
 | 
						|
    if (N->getValueType(0) == MVT::i64) {
 | 
						|
      SDNode *Op =
 | 
						|
        CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
 | 
						|
                               N0, ShiftAmt);
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64,
 | 
						|
                                  SDValue(Op, 0), SDValue(Op, 1));
 | 
						|
    } else {
 | 
						|
      assert(N->getValueType(0) == MVT::i32 &&
 | 
						|
             "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
 | 
						|
      SDNode *Op =
 | 
						|
        CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
 | 
						|
                               N0, ShiftAmt);
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
 | 
						|
                                  SDValue(Op, 0), SDValue(Op, 1));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::LOAD: {
 | 
						|
    // Handle preincrement loads.
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
    EVT LoadedVT = LD->getMemoryVT();
 | 
						|
 | 
						|
    // Normal loads are handled by code generated from the .td file.
 | 
						|
    if (LD->getAddressingMode() != ISD::PRE_INC)
 | 
						|
      break;
 | 
						|
 | 
						|
    SDValue Offset = LD->getOffset();
 | 
						|
    if (Offset.getOpcode() == ISD::TargetConstant ||
 | 
						|
        Offset.getOpcode() == ISD::TargetGlobalAddress) {
 | 
						|
 | 
						|
      unsigned Opcode;
 | 
						|
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
      if (LD->getValueType(0) != MVT::i64) {
 | 
						|
        // Handle PPC32 integer and normal FP loads.
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::f64: Opcode = PPC::LFDU; break;
 | 
						|
          case MVT::f32: Opcode = PPC::LFSU; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZU; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZU; break;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::i64: Opcode = PPC::LDU; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZU8; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZU8; break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[] = { Offset, Base, Chain };
 | 
						|
      return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
 | 
						|
                                      LD->getValueType(0),
 | 
						|
                                      PPCLowering->getPointerTy(),
 | 
						|
                                      MVT::Other, Ops));
 | 
						|
    } else {
 | 
						|
      unsigned Opcode;
 | 
						|
      bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
      if (LD->getValueType(0) != MVT::i64) {
 | 
						|
        // Handle PPC32 integer and normal FP loads.
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::v4f64: Opcode = PPC::QVLFDUX; break; // QPX
 | 
						|
          case MVT::v4f32: Opcode = PPC::QVLFSUX; break; // QPX
 | 
						|
          case MVT::f64: Opcode = PPC::LFDUX; break;
 | 
						|
          case MVT::f32: Opcode = PPC::LFSUX; break;
 | 
						|
          case MVT::i32: Opcode = PPC::LWZUX; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZUX; break;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
 | 
						|
        assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
 | 
						|
               "Invalid sext update load");
 | 
						|
        switch (LoadedVT.getSimpleVT().SimpleTy) {
 | 
						|
          default: llvm_unreachable("Invalid PPC load type!");
 | 
						|
          case MVT::i64: Opcode = PPC::LDUX; break;
 | 
						|
          case MVT::i32: Opcode = isSExt ? PPC::LWAUX  : PPC::LWZUX8; break;
 | 
						|
          case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
 | 
						|
          case MVT::i1:
 | 
						|
          case MVT::i8:  Opcode = PPC::LBZUX8; break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Chain = LD->getChain();
 | 
						|
      SDValue Base = LD->getBasePtr();
 | 
						|
      SDValue Ops[] = { Base, Offset, Chain };
 | 
						|
      return transferMemOperands(N, CurDAG->getMachineNode(Opcode, dl,
 | 
						|
                                      LD->getValueType(0),
 | 
						|
                                      PPCLowering->getPointerTy(),
 | 
						|
                                      MVT::Other, Ops));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::AND: {
 | 
						|
    unsigned Imm, Imm2, SH, MB, ME;
 | 
						|
    uint64_t Imm64;
 | 
						|
 | 
						|
    // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | 
						|
    // with a mask, emit rlwinm
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
 | 
						|
      SDValue Val = N->getOperand(0).getOperand(0);
 | 
						|
      SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
 | 
						|
                        getI32Imm(ME, dl) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
    // If this is just a masked value where the input is not handled above, and
 | 
						|
    // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        isRunOfOnes(Imm, MB, ME) &&
 | 
						|
        N->getOperand(0).getOpcode() != ISD::ROTL) {
 | 
						|
      SDValue Val = N->getOperand(0);
 | 
						|
      SDValue Ops[] = { Val, getI32Imm(0, dl), getI32Imm(MB, dl),
 | 
						|
                        getI32Imm(ME, dl) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
    // If this is a 64-bit zero-extension mask, emit rldicl.
 | 
						|
    if (isInt64Immediate(N->getOperand(1).getNode(), Imm64) &&
 | 
						|
        isMask_64(Imm64)) {
 | 
						|
      SDValue Val = N->getOperand(0);
 | 
						|
      MB = 64 - countTrailingOnes(Imm64);
 | 
						|
      SH = 0;
 | 
						|
 | 
						|
      // If the operand is a logical right shift, we can fold it into this
 | 
						|
      // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
 | 
						|
      // for n <= mb. The right shift is really a left rotate followed by a
 | 
						|
      // mask, and this mask is a more-restrictive sub-mask of the mask implied
 | 
						|
      // by the shift.
 | 
						|
      if (Val.getOpcode() == ISD::SRL &&
 | 
						|
          isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
 | 
						|
        assert(Imm < 64 && "Illegal shift amount");
 | 
						|
        Val = Val.getOperand(0);
 | 
						|
        SH = 64 - Imm;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Ops[] = { Val, getI32Imm(SH, dl), getI32Imm(MB, dl) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
 | 
						|
    }
 | 
						|
    // AND X, 0 -> 0, not "rlwinm 32".
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
 | 
						|
      ReplaceUses(SDValue(N, 0), N->getOperand(1));
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    // ISD::OR doesn't get all the bitfield insertion fun.
 | 
						|
    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | 
						|
    if (isInt32Immediate(N->getOperand(1), Imm) &&
 | 
						|
        N->getOperand(0).getOpcode() == ISD::OR &&
 | 
						|
        isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
 | 
						|
      unsigned MB, ME;
 | 
						|
      Imm = ~(Imm^Imm2);
 | 
						|
      if (isRunOfOnes(Imm, MB, ME)) {
 | 
						|
        SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                            N->getOperand(0).getOperand(1),
 | 
						|
                            getI32Imm(0, dl), getI32Imm(MB, dl),
 | 
						|
                            getI32Imm(ME, dl) };
 | 
						|
        return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::OR: {
 | 
						|
    if (N->getValueType(0) == MVT::i32)
 | 
						|
      if (SDNode *I = SelectBitfieldInsert(N))
 | 
						|
        return I;
 | 
						|
 | 
						|
    short Imm;
 | 
						|
    if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
 | 
						|
        isIntS16Immediate(N->getOperand(1), Imm)) {
 | 
						|
      APInt LHSKnownZero, LHSKnownOne;
 | 
						|
      CurDAG->computeKnownBits(N->getOperand(0), LHSKnownZero, LHSKnownOne);
 | 
						|
 | 
						|
      // If this is equivalent to an add, then we can fold it with the
 | 
						|
      // FrameIndex calculation.
 | 
						|
      if ((LHSKnownZero.getZExtValue()|~(uint64_t)Imm) == ~0ULL)
 | 
						|
        return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::ADD: {
 | 
						|
    short Imm;
 | 
						|
    if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
 | 
						|
        isIntS16Immediate(N->getOperand(1), Imm))
 | 
						|
      return getFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SHL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          getI32Imm(SH, dl), getI32Imm(MB, dl),
 | 
						|
                          getI32Imm(ME, dl) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SRL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | 
						|
      SDValue Ops[] = { N->getOperand(0).getOperand(0),
 | 
						|
                          getI32Imm(SH, dl), getI32Imm(MB, dl),
 | 
						|
                          getI32Imm(ME, dl) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  // FIXME: Remove this once the ANDI glue bug is fixed:
 | 
						|
  case PPCISD::ANDIo_1_EQ_BIT:
 | 
						|
  case PPCISD::ANDIo_1_GT_BIT: {
 | 
						|
    if (!ANDIGlueBug)
 | 
						|
      break;
 | 
						|
 | 
						|
    EVT InVT = N->getOperand(0).getValueType();
 | 
						|
    assert((InVT == MVT::i64 || InVT == MVT::i32) &&
 | 
						|
           "Invalid input type for ANDIo_1_EQ_BIT");
 | 
						|
 | 
						|
    unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDIo8 : PPC::ANDIo;
 | 
						|
    SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
 | 
						|
                                        N->getOperand(0),
 | 
						|
                                        CurDAG->getTargetConstant(1, dl, InVT)),
 | 
						|
                 0);
 | 
						|
    SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
 | 
						|
    SDValue SRIdxVal =
 | 
						|
      CurDAG->getTargetConstant(N->getOpcode() == PPCISD::ANDIo_1_EQ_BIT ?
 | 
						|
                                PPC::sub_eq : PPC::sub_gt, dl, MVT::i32);
 | 
						|
 | 
						|
    return CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1,
 | 
						|
                                CR0Reg, SRIdxVal,
 | 
						|
                                SDValue(AndI.getNode(), 1) /* glue */);
 | 
						|
  }
 | 
						|
  case ISD::SELECT_CC: {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | 
						|
    EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
 | 
						|
    bool isPPC64 = (PtrVT == MVT::i64);
 | 
						|
 | 
						|
    // If this is a select of i1 operands, we'll pattern match it.
 | 
						|
    if (PPCSubTarget->useCRBits() &&
 | 
						|
        N->getOperand(0).getValueType() == MVT::i1)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | 
						|
    if (!isPPC64)
 | 
						|
      if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | 
						|
        if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | 
						|
          if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | 
						|
            if (N1C->isNullValue() && N3C->isNullValue() &&
 | 
						|
                N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
 | 
						|
                // FIXME: Implement this optzn for PPC64.
 | 
						|
                N->getValueType(0) == MVT::i32) {
 | 
						|
              SDNode *Tmp =
 | 
						|
                CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
 | 
						|
                                       N->getOperand(0), getI32Imm(~0U, dl));
 | 
						|
              return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | 
						|
                                          SDValue(Tmp, 0), N->getOperand(0),
 | 
						|
                                          SDValue(Tmp, 1));
 | 
						|
            }
 | 
						|
 | 
						|
    SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
 | 
						|
 | 
						|
    if (N->getValueType(0) == MVT::i1) {
 | 
						|
      // An i1 select is: (c & t) | (!c & f).
 | 
						|
      bool Inv;
 | 
						|
      unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | 
						|
 | 
						|
      unsigned SRI;
 | 
						|
      switch (Idx) {
 | 
						|
      default: llvm_unreachable("Invalid CC index");
 | 
						|
      case 0: SRI = PPC::sub_lt; break;
 | 
						|
      case 1: SRI = PPC::sub_gt; break;
 | 
						|
      case 2: SRI = PPC::sub_eq; break;
 | 
						|
      case 3: SRI = PPC::sub_un; break;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
 | 
						|
 | 
						|
      SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
 | 
						|
                                              CCBit, CCBit), 0);
 | 
						|
      SDValue C =    Inv ? NotCCBit : CCBit,
 | 
						|
              NotC = Inv ? CCBit    : NotCCBit;
 | 
						|
 | 
						|
      SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
 | 
						|
                                           C, N->getOperand(2)), 0);
 | 
						|
      SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
 | 
						|
                                              NotC, N->getOperand(3)), 0);
 | 
						|
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned BROpc = getPredicateForSetCC(CC);
 | 
						|
 | 
						|
    unsigned SelectCCOp;
 | 
						|
    if (N->getValueType(0) == MVT::i32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_I4;
 | 
						|
    else if (N->getValueType(0) == MVT::i64)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_I8;
 | 
						|
    else if (N->getValueType(0) == MVT::f32)
 | 
						|
      if (PPCSubTarget->hasP8Vector())
 | 
						|
        SelectCCOp = PPC::SELECT_CC_VSSRC;
 | 
						|
      else
 | 
						|
        SelectCCOp = PPC::SELECT_CC_F4;
 | 
						|
    else if (N->getValueType(0) == MVT::f64)
 | 
						|
      if (PPCSubTarget->hasVSX())
 | 
						|
        SelectCCOp = PPC::SELECT_CC_VSFRC;
 | 
						|
      else
 | 
						|
        SelectCCOp = PPC::SELECT_CC_F8;
 | 
						|
    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f64)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_QFRC;
 | 
						|
    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4f32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_QSRC;
 | 
						|
    else if (PPCSubTarget->hasQPX() && N->getValueType(0) == MVT::v4i1)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_QBRC;
 | 
						|
    else if (N->getValueType(0) == MVT::v2f64 ||
 | 
						|
             N->getValueType(0) == MVT::v2i64)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_VSRC;
 | 
						|
    else
 | 
						|
      SelectCCOp = PPC::SELECT_CC_VRRC;
 | 
						|
 | 
						|
    SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
 | 
						|
                        getI32Imm(BROpc, dl) };
 | 
						|
    return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
 | 
						|
  }
 | 
						|
  case ISD::VSELECT:
 | 
						|
    if (PPCSubTarget->hasVSX()) {
 | 
						|
      SDValue Ops[] = { N->getOperand(2), N->getOperand(1), N->getOperand(0) };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::XXSEL, N->getValueType(0), Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  case ISD::VECTOR_SHUFFLE:
 | 
						|
    if (PPCSubTarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
 | 
						|
                                  N->getValueType(0) == MVT::v2i64)) {
 | 
						|
      ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
 | 
						|
      
 | 
						|
      SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
 | 
						|
              Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
 | 
						|
      unsigned DM[2];
 | 
						|
 | 
						|
      for (int i = 0; i < 2; ++i)
 | 
						|
        if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
 | 
						|
          DM[i] = 0;
 | 
						|
        else
 | 
						|
          DM[i] = 1;
 | 
						|
 | 
						|
      // For little endian, we must swap the input operands and adjust
 | 
						|
      // the mask elements (reverse and invert them).
 | 
						|
      if (PPCSubTarget->isLittleEndian()) {
 | 
						|
        std::swap(Op1, Op2);
 | 
						|
        unsigned tmp = DM[0];
 | 
						|
        DM[0] = 1 - DM[1];
 | 
						|
        DM[1] = 1 - tmp;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
 | 
						|
                                              MVT::i32);
 | 
						|
 | 
						|
      if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
 | 
						|
          Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
 | 
						|
          isa<LoadSDNode>(Op1.getOperand(0))) {
 | 
						|
        LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
 | 
						|
        SDValue Base, Offset;
 | 
						|
 | 
						|
        if (LD->isUnindexed() &&
 | 
						|
            SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
 | 
						|
          SDValue Chain = LD->getChain();
 | 
						|
          SDValue Ops[] = { Base, Offset, Chain };
 | 
						|
          return CurDAG->SelectNodeTo(N, PPC::LXVDSX,
 | 
						|
                                      N->getValueType(0), Ops);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Ops[] = { Op1, Op2, DMV };
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  case PPCISD::BDNZ:
 | 
						|
  case PPCISD::BDZ: {
 | 
						|
    bool IsPPC64 = PPCSubTarget->isPPC64();
 | 
						|
    SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
 | 
						|
    return CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ ?
 | 
						|
                                   (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | 
						|
                                   (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
 | 
						|
                                MVT::Other, Ops);
 | 
						|
  }
 | 
						|
  case PPCISD::COND_BRANCH: {
 | 
						|
    // Op #0 is the Chain.
 | 
						|
    // Op #1 is the PPC::PRED_* number.
 | 
						|
    // Op #2 is the CR#
 | 
						|
    // Op #3 is the Dest MBB
 | 
						|
    // Op #4 is the Flag.
 | 
						|
    // Prevent PPC::PRED_* from being selected into LI.
 | 
						|
    SDValue Pred =
 | 
						|
      getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(), dl);
 | 
						|
    SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
 | 
						|
      N->getOperand(0), N->getOperand(4) };
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
 | 
						|
  }
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    unsigned PCC = getPredicateForSetCC(CC);
 | 
						|
 | 
						|
    if (N->getOperand(2).getValueType() == MVT::i1) {
 | 
						|
      unsigned Opc;
 | 
						|
      bool Swap;
 | 
						|
      switch (PCC) {
 | 
						|
      default: llvm_unreachable("Unexpected Boolean-operand predicate");
 | 
						|
      case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true;  break;
 | 
						|
      case PPC::PRED_LE: Opc = PPC::CRORC;  Swap = true;  break;
 | 
						|
      case PPC::PRED_EQ: Opc = PPC::CREQV;  Swap = false; break;
 | 
						|
      case PPC::PRED_GE: Opc = PPC::CRORC;  Swap = false; break;
 | 
						|
      case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
 | 
						|
      case PPC::PRED_NE: Opc = PPC::CRXOR;  Swap = false; break;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
 | 
						|
                                             N->getOperand(Swap ? 3 : 2),
 | 
						|
                                             N->getOperand(Swap ? 2 : 3)), 0);
 | 
						|
      return CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other,
 | 
						|
                                  BitComp, N->getOperand(4), N->getOperand(0));
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
 | 
						|
    SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
 | 
						|
                        N->getOperand(4), N->getOperand(0) };
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
 | 
						|
  }
 | 
						|
  case ISD::BRIND: {
 | 
						|
    // FIXME: Should custom lower this.
 | 
						|
    SDValue Chain = N->getOperand(0);
 | 
						|
    SDValue Target = N->getOperand(1);
 | 
						|
    unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
 | 
						|
    unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
 | 
						|
    Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
 | 
						|
                                           Chain), 0);
 | 
						|
    return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
 | 
						|
  }
 | 
						|
  case PPCISD::TOC_ENTRY: {
 | 
						|
    assert ((PPCSubTarget->isPPC64() || PPCSubTarget->isSVR4ABI()) &&
 | 
						|
            "Only supported for 64-bit ABI and 32-bit SVR4");
 | 
						|
    if (PPCSubTarget->isSVR4ABI() && !PPCSubTarget->isPPC64()) {
 | 
						|
      SDValue GA = N->getOperand(0);
 | 
						|
      return transferMemOperands(N, CurDAG->getMachineNode(PPC::LWZtoc, dl,
 | 
						|
                                      MVT::i32, GA, N->getOperand(1)));
 | 
						|
    }
 | 
						|
 | 
						|
    // For medium and large code model, we generate two instructions as
 | 
						|
    // described below.  Otherwise we allow SelectCodeCommon to handle this,
 | 
						|
    // selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA.
 | 
						|
    CodeModel::Model CModel = TM.getCodeModel();
 | 
						|
    if (CModel != CodeModel::Medium && CModel != CodeModel::Large)
 | 
						|
      break;
 | 
						|
 | 
						|
    // The first source operand is a TargetGlobalAddress or a TargetJumpTable.
 | 
						|
    // If it is an externally defined symbol, a symbol with common linkage,
 | 
						|
    // a non-local function address, or a jump table address, or if we are
 | 
						|
    // generating code for large code model, we generate:
 | 
						|
    //   LDtocL(<ga:@sym>, ADDIStocHA(%X2, <ga:@sym>))
 | 
						|
    // Otherwise we generate:
 | 
						|
    //   ADDItocL(ADDIStocHA(%X2, <ga:@sym>), <ga:@sym>)
 | 
						|
    SDValue GA = N->getOperand(0);
 | 
						|
    SDValue TOCbase = N->getOperand(1);
 | 
						|
    SDNode *Tmp = CurDAG->getMachineNode(PPC::ADDIStocHA, dl, MVT::i64,
 | 
						|
                                         TOCbase, GA);
 | 
						|
 | 
						|
    if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA) ||
 | 
						|
        CModel == CodeModel::Large)
 | 
						|
      return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
 | 
						|
                                      MVT::i64, GA, SDValue(Tmp, 0)));
 | 
						|
 | 
						|
    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA)) {
 | 
						|
      const GlobalValue *GValue = G->getGlobal();
 | 
						|
      if ((GValue->getType()->getElementType()->isFunctionTy() &&
 | 
						|
           (GValue->isDeclaration() || GValue->isWeakForLinker())) ||
 | 
						|
          GValue->isDeclaration() || GValue->hasCommonLinkage() ||
 | 
						|
          GValue->hasAvailableExternallyLinkage())
 | 
						|
        return transferMemOperands(N, CurDAG->getMachineNode(PPC::LDtocL, dl,
 | 
						|
                                        MVT::i64, GA, SDValue(Tmp, 0)));
 | 
						|
    }
 | 
						|
 | 
						|
    return CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
 | 
						|
                                  SDValue(Tmp, 0), GA);
 | 
						|
  }
 | 
						|
  case PPCISD::PPC32_PICGOT: {
 | 
						|
    // Generate a PIC-safe GOT reference.
 | 
						|
    assert(!PPCSubTarget->isPPC64() && PPCSubTarget->isSVR4ABI() &&
 | 
						|
      "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT, PPCLowering->getPointerTy(),  MVT::i32);
 | 
						|
  }
 | 
						|
  case PPCISD::VADD_SPLAT: {
 | 
						|
    // This expands into one of three sequences, depending on whether
 | 
						|
    // the first operand is odd or even, positive or negative.
 | 
						|
    assert(isa<ConstantSDNode>(N->getOperand(0)) &&
 | 
						|
           isa<ConstantSDNode>(N->getOperand(1)) &&
 | 
						|
           "Invalid operand on VADD_SPLAT!");
 | 
						|
 | 
						|
    int Elt     = N->getConstantOperandVal(0);
 | 
						|
    int EltSize = N->getConstantOperandVal(1);
 | 
						|
    unsigned Opc1, Opc2, Opc3;
 | 
						|
    EVT VT;
 | 
						|
 | 
						|
    if (EltSize == 1) {
 | 
						|
      Opc1 = PPC::VSPLTISB;
 | 
						|
      Opc2 = PPC::VADDUBM;
 | 
						|
      Opc3 = PPC::VSUBUBM;
 | 
						|
      VT = MVT::v16i8;
 | 
						|
    } else if (EltSize == 2) {
 | 
						|
      Opc1 = PPC::VSPLTISH;
 | 
						|
      Opc2 = PPC::VADDUHM;
 | 
						|
      Opc3 = PPC::VSUBUHM;
 | 
						|
      VT = MVT::v8i16;
 | 
						|
    } else {
 | 
						|
      assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
 | 
						|
      Opc1 = PPC::VSPLTISW;
 | 
						|
      Opc2 = PPC::VADDUWM;
 | 
						|
      Opc3 = PPC::VSUBUWM;
 | 
						|
      VT = MVT::v4i32;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((Elt & 1) == 0) {
 | 
						|
      // Elt is even, in the range [-32,-18] + [16,30].
 | 
						|
      //
 | 
						|
      // Convert: VADD_SPLAT elt, size
 | 
						|
      // Into:    tmp = VSPLTIS[BHW] elt
 | 
						|
      //          VADDU[BHW]M tmp, tmp
 | 
						|
      // Where:   [BHW] = B for size = 1, H for size = 2, W for size = 4
 | 
						|
      SDValue EltVal = getI32Imm(Elt >> 1, dl);
 | 
						|
      SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      SDValue TmpVal = SDValue(Tmp, 0);
 | 
						|
      return CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal);
 | 
						|
 | 
						|
    } else if (Elt > 0) {
 | 
						|
      // Elt is odd and positive, in the range [17,31].
 | 
						|
      //
 | 
						|
      // Convert: VADD_SPLAT elt, size
 | 
						|
      // Into:    tmp1 = VSPLTIS[BHW] elt-16
 | 
						|
      //          tmp2 = VSPLTIS[BHW] -16
 | 
						|
      //          VSUBU[BHW]M tmp1, tmp2
 | 
						|
      SDValue EltVal = getI32Imm(Elt - 16, dl);
 | 
						|
      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      EltVal = getI32Imm(-16, dl);
 | 
						|
      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      return CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
 | 
						|
                                    SDValue(Tmp2, 0));
 | 
						|
 | 
						|
    } else {
 | 
						|
      // Elt is odd and negative, in the range [-31,-17].
 | 
						|
      //
 | 
						|
      // Convert: VADD_SPLAT elt, size
 | 
						|
      // Into:    tmp1 = VSPLTIS[BHW] elt+16
 | 
						|
      //          tmp2 = VSPLTIS[BHW] -16
 | 
						|
      //          VADDU[BHW]M tmp1, tmp2
 | 
						|
      SDValue EltVal = getI32Imm(Elt + 16, dl);
 | 
						|
      SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      EltVal = getI32Imm(-16, dl);
 | 
						|
      SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
 | 
						|
      return CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
 | 
						|
                                    SDValue(Tmp2, 0));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return SelectCode(N);
 | 
						|
}
 | 
						|
 | 
						|
// If the target supports the cmpb instruction, do the idiom recognition here.
 | 
						|
// We don't do this as a DAG combine because we don't want to do it as nodes
 | 
						|
// are being combined (because we might miss part of the eventual idiom). We
 | 
						|
// don't want to do it during instruction selection because we want to reuse
 | 
						|
// the logic for lowering the masking operations already part of the
 | 
						|
// instruction selector.
 | 
						|
SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
 | 
						|
  SDLoc dl(N);
 | 
						|
 | 
						|
  assert(N->getOpcode() == ISD::OR &&
 | 
						|
         "Only OR nodes are supported for CMPB");
 | 
						|
 | 
						|
  SDValue Res;
 | 
						|
  if (!PPCSubTarget->hasCMPB())
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (N->getValueType(0) != MVT::i32 &&
 | 
						|
      N->getValueType(0) != MVT::i64)
 | 
						|
    return Res;
 | 
						|
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
 | 
						|
  SDValue RHS, LHS;
 | 
						|
  bool BytesFound[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
 | 
						|
  uint64_t Mask = 0, Alt = 0;
 | 
						|
 | 
						|
  auto IsByteSelectCC = [this](SDValue O, unsigned &b,
 | 
						|
                               uint64_t &Mask, uint64_t &Alt,
 | 
						|
                               SDValue &LHS, SDValue &RHS) {
 | 
						|
    if (O.getOpcode() != ISD::SELECT_CC)
 | 
						|
      return false;
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
 | 
						|
 | 
						|
    if (!isa<ConstantSDNode>(O.getOperand(2)) ||
 | 
						|
        !isa<ConstantSDNode>(O.getOperand(3)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t PM = O.getConstantOperandVal(2);
 | 
						|
    uint64_t PAlt = O.getConstantOperandVal(3);
 | 
						|
    for (b = 0; b < 8; ++b) {
 | 
						|
      uint64_t Mask = UINT64_C(0xFF) << (8*b);
 | 
						|
      if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (b == 8)
 | 
						|
      return false;
 | 
						|
    Mask |= PM;
 | 
						|
    Alt  |= PAlt;
 | 
						|
 | 
						|
    if (!isa<ConstantSDNode>(O.getOperand(1)) ||
 | 
						|
        O.getConstantOperandVal(1) != 0) {
 | 
						|
      SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
 | 
						|
      if (Op0.getOpcode() == ISD::TRUNCATE)
 | 
						|
        Op0 = Op0.getOperand(0);
 | 
						|
      if (Op1.getOpcode() == ISD::TRUNCATE)
 | 
						|
        Op1 = Op1.getOperand(0);
 | 
						|
 | 
						|
      if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
 | 
						|
          Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
 | 
						|
          isa<ConstantSDNode>(Op0.getOperand(1))) {
 | 
						|
 | 
						|
        unsigned Bits = Op0.getValueType().getSizeInBits();
 | 
						|
        if (b != Bits/8-1)
 | 
						|
          return false;
 | 
						|
        if (Op0.getConstantOperandVal(1) != Bits-8)
 | 
						|
          return false;
 | 
						|
 | 
						|
        LHS = Op0.getOperand(0);
 | 
						|
        RHS = Op1.getOperand(0);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // When we have small integers (i16 to be specific), the form present
 | 
						|
      // post-legalization uses SETULT in the SELECT_CC for the
 | 
						|
      // higher-order byte, depending on the fact that the
 | 
						|
      // even-higher-order bytes are known to all be zero, for example:
 | 
						|
      //   select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
 | 
						|
      // (so when the second byte is the same, because all higher-order
 | 
						|
      // bits from bytes 3 and 4 are known to be zero, the result of the
 | 
						|
      // xor can be at most 255)
 | 
						|
      if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
 | 
						|
          isa<ConstantSDNode>(O.getOperand(1))) {
 | 
						|
 | 
						|
        uint64_t ULim = O.getConstantOperandVal(1);
 | 
						|
        if (ULim != (UINT64_C(1) << b*8))
 | 
						|
          return false;
 | 
						|
 | 
						|
        // Now we need to make sure that the upper bytes are known to be
 | 
						|
        // zero.
 | 
						|
        unsigned Bits = Op0.getValueType().getSizeInBits();
 | 
						|
        if (!CurDAG->MaskedValueIsZero(Op0,
 | 
						|
              APInt::getHighBitsSet(Bits, Bits - (b+1)*8)))
 | 
						|
          return false;
 | 
						|
        
 | 
						|
        LHS = Op0.getOperand(0);
 | 
						|
        RHS = Op0.getOperand(1);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CC != ISD::SETEQ)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDValue Op = O.getOperand(0);
 | 
						|
    if (Op.getOpcode() == ISD::AND) {
 | 
						|
      if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | 
						|
        return false;
 | 
						|
      if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
 | 
						|
        return false;
 | 
						|
 | 
						|
      SDValue XOR = Op.getOperand(0);
 | 
						|
      if (XOR.getOpcode() == ISD::TRUNCATE)
 | 
						|
        XOR = XOR.getOperand(0);
 | 
						|
      if (XOR.getOpcode() != ISD::XOR)
 | 
						|
        return false;
 | 
						|
 | 
						|
      LHS = XOR.getOperand(0);
 | 
						|
      RHS = XOR.getOperand(1);
 | 
						|
      return true;
 | 
						|
    } else if (Op.getOpcode() == ISD::SRL) {
 | 
						|
      if (!isa<ConstantSDNode>(Op.getOperand(1)))
 | 
						|
        return false;
 | 
						|
      unsigned Bits = Op.getValueType().getSizeInBits();
 | 
						|
      if (b != Bits/8-1)
 | 
						|
        return false;
 | 
						|
      if (Op.getConstantOperandVal(1) != Bits-8)
 | 
						|
        return false;
 | 
						|
 | 
						|
      SDValue XOR = Op.getOperand(0);
 | 
						|
      if (XOR.getOpcode() == ISD::TRUNCATE)
 | 
						|
        XOR = XOR.getOperand(0);
 | 
						|
      if (XOR.getOpcode() != ISD::XOR)
 | 
						|
        return false;
 | 
						|
 | 
						|
      LHS = XOR.getOperand(0);
 | 
						|
      RHS = XOR.getOperand(1);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    SDValue V = Queue.pop_back_val();
 | 
						|
 | 
						|
    for (const SDValue &O : V.getNode()->ops()) {
 | 
						|
      unsigned b;
 | 
						|
      uint64_t M = 0, A = 0;
 | 
						|
      SDValue OLHS, ORHS;
 | 
						|
      if (O.getOpcode() == ISD::OR) {
 | 
						|
        Queue.push_back(O);
 | 
						|
      } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
 | 
						|
        if (!LHS) {
 | 
						|
          LHS = OLHS;
 | 
						|
          RHS = ORHS;
 | 
						|
          BytesFound[b] = true;
 | 
						|
          Mask |= M;
 | 
						|
          Alt  |= A;
 | 
						|
        } else if ((LHS == ORHS && RHS == OLHS) ||
 | 
						|
                   (RHS == ORHS && LHS == OLHS)) {
 | 
						|
          BytesFound[b] = true;
 | 
						|
          Mask |= M;
 | 
						|
          Alt  |= A;
 | 
						|
        } else {
 | 
						|
          return Res;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        return Res;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned LastB = 0, BCnt = 0;
 | 
						|
  for (unsigned i = 0; i < 8; ++i)
 | 
						|
    if (BytesFound[LastB]) {
 | 
						|
      ++BCnt;
 | 
						|
      LastB = i;
 | 
						|
    }
 | 
						|
 | 
						|
  if (!LastB || BCnt < 2)
 | 
						|
    return Res;
 | 
						|
 | 
						|
  // Because we'll be zero-extending the output anyway if don't have a specific
 | 
						|
  // value for each input byte (via the Mask), we can 'anyext' the inputs.
 | 
						|
  if (LHS.getValueType() != VT) {
 | 
						|
    LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
 | 
						|
    RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
 | 
						|
  }
 | 
						|
 | 
						|
  Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
 | 
						|
 | 
						|
  bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
 | 
						|
  if (NonTrivialMask && !Alt) {
 | 
						|
    // Res = Mask & CMPB
 | 
						|
    Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
 | 
						|
                          CurDAG->getConstant(Mask, dl, VT));
 | 
						|
  } else if (Alt) {
 | 
						|
    // Res = (CMPB & Mask) | (~CMPB & Alt)
 | 
						|
    // Which, as suggested here:
 | 
						|
    //   https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
 | 
						|
    // can be written as:
 | 
						|
    // Res = Alt ^ ((Alt ^ Mask) & CMPB)
 | 
						|
    // useful because the (Alt ^ Mask) can be pre-computed.
 | 
						|
    Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
 | 
						|
                          CurDAG->getConstant(Mask ^ Alt, dl, VT));
 | 
						|
    Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
 | 
						|
                          CurDAG->getConstant(Alt, dl, VT));
 | 
						|
  }
 | 
						|
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
// When CR bit registers are enabled, an extension of an i1 variable to a i32
 | 
						|
// or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
 | 
						|
// involves constant materialization of a 0 or a 1 or both. If the result of
 | 
						|
// the extension is then operated upon by some operator that can be constant
 | 
						|
// folded with a constant 0 or 1, and that constant can be materialized using
 | 
						|
// only one instruction (like a zero or one), then we should fold in those
 | 
						|
// operations with the select.
 | 
						|
void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
 | 
						|
  if (!PPCSubTarget->useCRBits())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (N->getOpcode() != ISD::ZERO_EXTEND &&
 | 
						|
      N->getOpcode() != ISD::SIGN_EXTEND &&
 | 
						|
      N->getOpcode() != ISD::ANY_EXTEND)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (N->getOperand(0).getValueType() != MVT::i1)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (!N->hasOneUse())
 | 
						|
    return;
 | 
						|
 | 
						|
  SDLoc dl(N);
 | 
						|
  EVT VT = N->getValueType(0);
 | 
						|
  SDValue Cond = N->getOperand(0);
 | 
						|
  SDValue ConstTrue =
 | 
						|
    CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
 | 
						|
  SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
 | 
						|
 | 
						|
  do {
 | 
						|
    SDNode *User = *N->use_begin();
 | 
						|
    if (User->getNumOperands() != 2)
 | 
						|
      break;
 | 
						|
 | 
						|
    auto TryFold = [this, N, User, dl](SDValue Val) {
 | 
						|
      SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
 | 
						|
      SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
 | 
						|
      SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
 | 
						|
 | 
						|
      return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
 | 
						|
                                            User->getValueType(0),
 | 
						|
                                            O0.getNode(), O1.getNode());
 | 
						|
    };
 | 
						|
 | 
						|
    SDValue TrueRes = TryFold(ConstTrue);
 | 
						|
    if (!TrueRes)
 | 
						|
      break;
 | 
						|
    SDValue FalseRes = TryFold(ConstFalse);
 | 
						|
    if (!FalseRes)
 | 
						|
      break;
 | 
						|
 | 
						|
    // For us to materialize these using one instruction, we must be able to
 | 
						|
    // represent them as signed 16-bit integers.
 | 
						|
    uint64_t True  = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
 | 
						|
             False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
 | 
						|
    if (!isInt<16>(True) || !isInt<16>(False))
 | 
						|
      break;
 | 
						|
 | 
						|
    // We can replace User with a new SELECT node, and try again to see if we
 | 
						|
    // can fold the select with its user.
 | 
						|
    Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
 | 
						|
    N = User;
 | 
						|
    ConstTrue = TrueRes;
 | 
						|
    ConstFalse = FalseRes;
 | 
						|
  } while (N->hasOneUse());
 | 
						|
}
 | 
						|
 | 
						|
void PPCDAGToDAGISel::PreprocessISelDAG() {
 | 
						|
  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | 
						|
  ++Position;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  while (Position != CurDAG->allnodes_begin()) {
 | 
						|
    SDNode *N = --Position;
 | 
						|
    if (N->use_empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue Res;
 | 
						|
    switch (N->getOpcode()) {
 | 
						|
    default: break;
 | 
						|
    case ISD::OR:
 | 
						|
      Res = combineToCMPB(N);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Res)
 | 
						|
      foldBoolExts(Res, N);
 | 
						|
 | 
						|
    if (Res) {
 | 
						|
      DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld:    ");
 | 
						|
      DEBUG(N->dump(CurDAG));
 | 
						|
      DEBUG(dbgs() << "\nNew: ");
 | 
						|
      DEBUG(Res.getNode()->dump(CurDAG));
 | 
						|
      DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
      CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MadeChange)
 | 
						|
    CurDAG->RemoveDeadNodes();
 | 
						|
}
 | 
						|
 | 
						|
/// PostprocessISelDAG - Perform some late peephole optimizations
 | 
						|
/// on the DAG representation.
 | 
						|
void PPCDAGToDAGISel::PostprocessISelDAG() {
 | 
						|
 | 
						|
  // Skip peepholes at -O0.
 | 
						|
  if (TM.getOptLevel() == CodeGenOpt::None)
 | 
						|
    return;
 | 
						|
 | 
						|
  PeepholePPC64();
 | 
						|
  PeepholeCROps();
 | 
						|
  PeepholePPC64ZExt();
 | 
						|
}
 | 
						|
 | 
						|
// Check if all users of this node will become isel where the second operand
 | 
						|
// is the constant zero. If this is so, and if we can negate the condition,
 | 
						|
// then we can flip the true and false operands. This will allow the zero to
 | 
						|
// be folded with the isel so that we don't need to materialize a register
 | 
						|
// containing zero.
 | 
						|
bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
 | 
						|
  // If we're not using isel, then this does not matter.
 | 
						|
  if (!PPCSubTarget->hasISEL())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    SDNode *User = *UI;
 | 
						|
    if (!User->isMachineOpcode())
 | 
						|
      return false;
 | 
						|
    if (User->getMachineOpcode() != PPC::SELECT_I4 &&
 | 
						|
        User->getMachineOpcode() != PPC::SELECT_I8)
 | 
						|
      return false;
 | 
						|
 | 
						|
    SDNode *Op2 = User->getOperand(2).getNode();
 | 
						|
    if (!Op2->isMachineOpcode())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Op2->getMachineOpcode() != PPC::LI &&
 | 
						|
        Op2->getMachineOpcode() != PPC::LI8)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
 | 
						|
    if (!C)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!C->isNullValue())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
 | 
						|
  SmallVector<SDNode *, 4> ToReplace;
 | 
						|
  for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
 | 
						|
       UI != UE; ++UI) {
 | 
						|
    SDNode *User = *UI;
 | 
						|
    assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
 | 
						|
            User->getMachineOpcode() == PPC::SELECT_I8) &&
 | 
						|
           "Must have all select users");
 | 
						|
    ToReplace.push_back(User);
 | 
						|
  }
 | 
						|
 | 
						|
  for (SmallVector<SDNode *, 4>::iterator UI = ToReplace.begin(),
 | 
						|
       UE = ToReplace.end(); UI != UE; ++UI) {
 | 
						|
    SDNode *User = *UI;
 | 
						|
    SDNode *ResNode =
 | 
						|
      CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
 | 
						|
                             User->getValueType(0), User->getOperand(0),
 | 
						|
                             User->getOperand(2),
 | 
						|
                             User->getOperand(1));
 | 
						|
 | 
						|
      DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
 | 
						|
      DEBUG(User->dump(CurDAG));
 | 
						|
      DEBUG(dbgs() << "\nNew: ");
 | 
						|
      DEBUG(ResNode->dump(CurDAG));
 | 
						|
      DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
      ReplaceUses(User, ResNode);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void PPCDAGToDAGISel::PeepholeCROps() {
 | 
						|
  bool IsModified;
 | 
						|
  do {
 | 
						|
    IsModified = false;
 | 
						|
    for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | 
						|
         E = CurDAG->allnodes_end(); I != E; ++I) {
 | 
						|
      MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(I);
 | 
						|
      if (!MachineNode || MachineNode->use_empty())
 | 
						|
        continue;
 | 
						|
      SDNode *ResNode = MachineNode;
 | 
						|
 | 
						|
      bool Op1Set   = false, Op1Unset = false,
 | 
						|
           Op1Not   = false,
 | 
						|
           Op2Set   = false, Op2Unset = false,
 | 
						|
           Op2Not   = false;
 | 
						|
 | 
						|
      unsigned Opcode = MachineNode->getMachineOpcode();
 | 
						|
      switch (Opcode) {
 | 
						|
      default: break;
 | 
						|
      case PPC::CRAND:
 | 
						|
      case PPC::CRNAND:
 | 
						|
      case PPC::CROR:
 | 
						|
      case PPC::CRXOR:
 | 
						|
      case PPC::CRNOR:
 | 
						|
      case PPC::CREQV:
 | 
						|
      case PPC::CRANDC:
 | 
						|
      case PPC::CRORC: {
 | 
						|
        SDValue Op = MachineNode->getOperand(1);
 | 
						|
        if (Op.isMachineOpcode()) {
 | 
						|
          if (Op.getMachineOpcode() == PPC::CRSET)
 | 
						|
            Op2Set = true;
 | 
						|
          else if (Op.getMachineOpcode() == PPC::CRUNSET)
 | 
						|
            Op2Unset = true;
 | 
						|
          else if (Op.getMachineOpcode() == PPC::CRNOR &&
 | 
						|
                   Op.getOperand(0) == Op.getOperand(1))
 | 
						|
            Op2Not = true;
 | 
						|
        }
 | 
						|
        }  // fallthrough
 | 
						|
      case PPC::BC:
 | 
						|
      case PPC::BCn:
 | 
						|
      case PPC::SELECT_I4:
 | 
						|
      case PPC::SELECT_I8:
 | 
						|
      case PPC::SELECT_F4:
 | 
						|
      case PPC::SELECT_F8:
 | 
						|
      case PPC::SELECT_QFRC:
 | 
						|
      case PPC::SELECT_QSRC:
 | 
						|
      case PPC::SELECT_QBRC:
 | 
						|
      case PPC::SELECT_VRRC:
 | 
						|
      case PPC::SELECT_VSFRC:
 | 
						|
      case PPC::SELECT_VSSRC:
 | 
						|
      case PPC::SELECT_VSRC: {
 | 
						|
        SDValue Op = MachineNode->getOperand(0);
 | 
						|
        if (Op.isMachineOpcode()) {
 | 
						|
          if (Op.getMachineOpcode() == PPC::CRSET)
 | 
						|
            Op1Set = true;
 | 
						|
          else if (Op.getMachineOpcode() == PPC::CRUNSET)
 | 
						|
            Op1Unset = true;
 | 
						|
          else if (Op.getMachineOpcode() == PPC::CRNOR &&
 | 
						|
                   Op.getOperand(0) == Op.getOperand(1))
 | 
						|
            Op1Not = true;
 | 
						|
        }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      bool SelectSwap = false;
 | 
						|
      switch (Opcode) {
 | 
						|
      default: break;
 | 
						|
      case PPC::CRAND:
 | 
						|
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | 
						|
          // x & x = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Set)
 | 
						|
          // 1 & y = y
 | 
						|
          ResNode = MachineNode->getOperand(1).getNode();
 | 
						|
        else if (Op2Set)
 | 
						|
          // x & 1 = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Unset || Op2Unset)
 | 
						|
          // x & 0 = 0 & y = 0
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Not)
 | 
						|
          // ~x & y = andc(y, x)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(0).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (Op2Not)
 | 
						|
          // x & ~y = andc(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::CRNAND:
 | 
						|
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | 
						|
          // nand(x, x) -> nor(x, x)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(0));
 | 
						|
        else if (Op1Set)
 | 
						|
          // nand(1, y) -> nor(y, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Set)
 | 
						|
          // nand(x, 1) -> nor(x, x)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(0));
 | 
						|
        else if (Op1Unset || Op2Unset)
 | 
						|
          // nand(x, 0) = nand(0, y) = 1
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Not)
 | 
						|
          // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Not)
 | 
						|
          // nand(x, ~y) = ~x | y = orc(y, x)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::CROR:
 | 
						|
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | 
						|
          // x | x = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Set || Op2Set)
 | 
						|
          // x | 1 = 1 | y = 1
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Unset)
 | 
						|
          // 0 | y = y
 | 
						|
          ResNode = MachineNode->getOperand(1).getNode();
 | 
						|
        else if (Op2Unset)
 | 
						|
          // x | 0 = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Not)
 | 
						|
          // ~x | y = orc(y, x)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(0).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (Op2Not)
 | 
						|
          // x | ~y = orc(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::CRXOR:
 | 
						|
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | 
						|
          // xor(x, x) = 0
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Set)
 | 
						|
          // xor(1, y) -> nor(y, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Set)
 | 
						|
          // xor(x, 1) -> nor(x, x)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(0));
 | 
						|
        else if (Op1Unset)
 | 
						|
          // xor(0, y) = y
 | 
						|
          ResNode = MachineNode->getOperand(1).getNode();
 | 
						|
        else if (Op2Unset)
 | 
						|
          // xor(x, 0) = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Not)
 | 
						|
          // xor(~x, y) = eqv(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Not)
 | 
						|
          // xor(x, ~y) = eqv(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::CRNOR:
 | 
						|
        if (Op1Set || Op2Set)
 | 
						|
          // nor(1, y) -> 0
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Unset)
 | 
						|
          // nor(0, y) = ~y -> nor(y, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Unset)
 | 
						|
          // nor(x, 0) = ~x
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(0));
 | 
						|
        else if (Op1Not)
 | 
						|
          // nor(~x, y) = andc(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Not)
 | 
						|
          // nor(x, ~y) = andc(y, x)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::CREQV:
 | 
						|
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | 
						|
          // eqv(x, x) = 1
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Set)
 | 
						|
          // eqv(1, y) = y
 | 
						|
          ResNode = MachineNode->getOperand(1).getNode();
 | 
						|
        else if (Op2Set)
 | 
						|
          // eqv(x, 1) = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Unset)
 | 
						|
          // eqv(0, y) = ~y -> nor(y, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Unset)
 | 
						|
          // eqv(x, 0) = ~x
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(0));
 | 
						|
        else if (Op1Not)
 | 
						|
          // eqv(~x, y) = xor(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Not)
 | 
						|
          // eqv(x, ~y) = xor(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::CRANDC:
 | 
						|
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | 
						|
          // andc(x, x) = 0
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Set)
 | 
						|
          // andc(1, y) = ~y
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op1Unset || Op2Set)
 | 
						|
          // andc(0, y) = andc(x, 1) = 0
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op2Unset)
 | 
						|
          // andc(x, 0) = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Not)
 | 
						|
          // andc(~x, y) = ~(x | y) = nor(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Not)
 | 
						|
          // andc(x, ~y) = x & y
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(0)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::CRORC:
 | 
						|
        if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
 | 
						|
          // orc(x, x) = 1
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op1Set || Op2Unset)
 | 
						|
          // orc(1, y) = orc(x, 0) = 1
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1);
 | 
						|
        else if (Op2Set)
 | 
						|
          // orc(x, 1) = x
 | 
						|
          ResNode = MachineNode->getOperand(0).getNode();
 | 
						|
        else if (Op1Unset)
 | 
						|
          // orc(0, y) = ~y
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op1Not)
 | 
						|
          // orc(~x, y) = ~(x & y) = nand(x, y)
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0).
 | 
						|
                                                      getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        else if (Op2Not)
 | 
						|
          // orc(x, ~y) = x | y
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1).
 | 
						|
                                             getOperand(0));
 | 
						|
        else if (AllUsersSelectZero(MachineNode))
 | 
						|
          ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
 | 
						|
                                           MVT::i1, MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(0)),
 | 
						|
          SelectSwap = true;
 | 
						|
        break;
 | 
						|
      case PPC::SELECT_I4:
 | 
						|
      case PPC::SELECT_I8:
 | 
						|
      case PPC::SELECT_F4:
 | 
						|
      case PPC::SELECT_F8:
 | 
						|
      case PPC::SELECT_QFRC:
 | 
						|
      case PPC::SELECT_QSRC:
 | 
						|
      case PPC::SELECT_QBRC:
 | 
						|
      case PPC::SELECT_VRRC:
 | 
						|
      case PPC::SELECT_VSFRC:
 | 
						|
      case PPC::SELECT_VSSRC:
 | 
						|
      case PPC::SELECT_VSRC:
 | 
						|
        if (Op1Set)
 | 
						|
          ResNode = MachineNode->getOperand(1).getNode();
 | 
						|
        else if (Op1Unset)
 | 
						|
          ResNode = MachineNode->getOperand(2).getNode();
 | 
						|
        else if (Op1Not)
 | 
						|
          ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
 | 
						|
                                           SDLoc(MachineNode),
 | 
						|
                                           MachineNode->getValueType(0),
 | 
						|
                                           MachineNode->getOperand(0).
 | 
						|
                                             getOperand(0),
 | 
						|
                                           MachineNode->getOperand(2),
 | 
						|
                                           MachineNode->getOperand(1));
 | 
						|
        break;
 | 
						|
      case PPC::BC:
 | 
						|
      case PPC::BCn:
 | 
						|
        if (Op1Not)
 | 
						|
          ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
 | 
						|
                                                               PPC::BC,
 | 
						|
                                           SDLoc(MachineNode),
 | 
						|
                                           MVT::Other,
 | 
						|
                                           MachineNode->getOperand(0).
 | 
						|
                                             getOperand(0),
 | 
						|
                                           MachineNode->getOperand(1),
 | 
						|
                                           MachineNode->getOperand(2));
 | 
						|
        // FIXME: Handle Op1Set, Op1Unset here too.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we're inverting this node because it is used only by selects that
 | 
						|
      // we'd like to swap, then swap the selects before the node replacement.
 | 
						|
      if (SelectSwap)
 | 
						|
        SwapAllSelectUsers(MachineNode);
 | 
						|
 | 
						|
      if (ResNode != MachineNode) {
 | 
						|
        DEBUG(dbgs() << "CR Peephole replacing:\nOld:    ");
 | 
						|
        DEBUG(MachineNode->dump(CurDAG));
 | 
						|
        DEBUG(dbgs() << "\nNew: ");
 | 
						|
        DEBUG(ResNode->dump(CurDAG));
 | 
						|
        DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
        ReplaceUses(MachineNode, ResNode);
 | 
						|
        IsModified = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (IsModified)
 | 
						|
      CurDAG->RemoveDeadNodes();
 | 
						|
  } while (IsModified);
 | 
						|
}
 | 
						|
 | 
						|
// Gather the set of 32-bit operations that are known to have their
 | 
						|
// higher-order 32 bits zero, where ToPromote contains all such operations.
 | 
						|
static bool PeepholePPC64ZExtGather(SDValue Op32,
 | 
						|
                                    SmallPtrSetImpl<SDNode *> &ToPromote) {
 | 
						|
  if (!Op32.isMachineOpcode())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // First, check for the "frontier" instructions (those that will clear the
 | 
						|
  // higher-order 32 bits.
 | 
						|
 | 
						|
  // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
 | 
						|
  // around. If it does not, then these instructions will clear the
 | 
						|
  // higher-order bits.
 | 
						|
  if ((Op32.getMachineOpcode() == PPC::RLWINM ||
 | 
						|
       Op32.getMachineOpcode() == PPC::RLWNM) &&
 | 
						|
      Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // SLW and SRW always clear the higher-order bits.
 | 
						|
  if (Op32.getMachineOpcode() == PPC::SLW ||
 | 
						|
      Op32.getMachineOpcode() == PPC::SRW) {
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For LI and LIS, we need the immediate to be positive (so that it is not
 | 
						|
  // sign extended).
 | 
						|
  if (Op32.getMachineOpcode() == PPC::LI ||
 | 
						|
      Op32.getMachineOpcode() == PPC::LIS) {
 | 
						|
    if (!isUInt<15>(Op32.getConstantOperandVal(0)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // LHBRX and LWBRX always clear the higher-order bits.
 | 
						|
  if (Op32.getMachineOpcode() == PPC::LHBRX ||
 | 
						|
      Op32.getMachineOpcode() == PPC::LWBRX) {
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // CNTLZW always produces a 64-bit value in [0,32], and so is zero extended.
 | 
						|
  if (Op32.getMachineOpcode() == PPC::CNTLZW) {
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, check for those instructions we can look through.
 | 
						|
 | 
						|
  // Assuming the mask does not wrap around, then the higher-order bits are
 | 
						|
  // taken directly from the first operand.
 | 
						|
  if (Op32.getMachineOpcode() == PPC::RLWIMI &&
 | 
						|
      Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
 | 
						|
    SmallPtrSet<SDNode *, 16> ToPromote1;
 | 
						|
    if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
 | 
						|
      return false;
 | 
						|
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For OR, the higher-order bits are zero if that is true for both operands.
 | 
						|
  // For SELECT_I4, the same is true (but the relevant operand numbers are
 | 
						|
  // shifted by 1).
 | 
						|
  if (Op32.getMachineOpcode() == PPC::OR ||
 | 
						|
      Op32.getMachineOpcode() == PPC::SELECT_I4) {
 | 
						|
    unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
 | 
						|
    SmallPtrSet<SDNode *, 16> ToPromote1;
 | 
						|
    if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
 | 
						|
      return false;
 | 
						|
    if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
 | 
						|
      return false;
 | 
						|
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For ORI and ORIS, we need the higher-order bits of the first operand to be
 | 
						|
  // zero, and also for the constant to be positive (so that it is not sign
 | 
						|
  // extended).
 | 
						|
  if (Op32.getMachineOpcode() == PPC::ORI ||
 | 
						|
      Op32.getMachineOpcode() == PPC::ORIS) {
 | 
						|
    SmallPtrSet<SDNode *, 16> ToPromote1;
 | 
						|
    if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
 | 
						|
      return false;
 | 
						|
    if (!isUInt<15>(Op32.getConstantOperandVal(1)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
    ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // The higher-order bits of AND are zero if that is true for at least one of
 | 
						|
  // the operands.
 | 
						|
  if (Op32.getMachineOpcode() == PPC::AND) {
 | 
						|
    SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
 | 
						|
    bool Op0OK =
 | 
						|
      PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
 | 
						|
    bool Op1OK =
 | 
						|
      PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
 | 
						|
    if (!Op0OK && !Op1OK)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
 | 
						|
    if (Op0OK)
 | 
						|
      ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | 
						|
 | 
						|
    if (Op1OK)
 | 
						|
      ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // For ANDI and ANDIS, the higher-order bits are zero if either that is true
 | 
						|
  // of the first operand, or if the second operand is positive (so that it is
 | 
						|
  // not sign extended).
 | 
						|
  if (Op32.getMachineOpcode() == PPC::ANDIo ||
 | 
						|
      Op32.getMachineOpcode() == PPC::ANDISo) {
 | 
						|
    SmallPtrSet<SDNode *, 16> ToPromote1;
 | 
						|
    bool Op0OK =
 | 
						|
      PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
 | 
						|
    bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
 | 
						|
    if (!Op0OK && !Op1OK)
 | 
						|
      return false;
 | 
						|
 | 
						|
    ToPromote.insert(Op32.getNode());
 | 
						|
 | 
						|
    if (Op0OK)
 | 
						|
      ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void PPCDAGToDAGISel::PeepholePPC64ZExt() {
 | 
						|
  if (!PPCSubTarget->isPPC64())
 | 
						|
    return;
 | 
						|
 | 
						|
  // When we zero-extend from i32 to i64, we use a pattern like this:
 | 
						|
  // def : Pat<(i64 (zext i32:$in)),
 | 
						|
  //           (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
 | 
						|
  //                   0, 32)>;
 | 
						|
  // There are several 32-bit shift/rotate instructions, however, that will
 | 
						|
  // clear the higher-order bits of their output, rendering the RLDICL
 | 
						|
  // unnecessary. When that happens, we remove it here, and redefine the
 | 
						|
  // relevant 32-bit operation to be a 64-bit operation.
 | 
						|
 | 
						|
  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | 
						|
  ++Position;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  while (Position != CurDAG->allnodes_begin()) {
 | 
						|
    SDNode *N = --Position;
 | 
						|
    // Skip dead nodes and any non-machine opcodes.
 | 
						|
    if (N->use_empty() || !N->isMachineOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (N->getMachineOpcode() != PPC::RLDICL)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (N->getConstantOperandVal(1) != 0 ||
 | 
						|
        N->getConstantOperandVal(2) != 32)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue ISR = N->getOperand(0);
 | 
						|
    if (!ISR.isMachineOpcode() ||
 | 
						|
        ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!ISR.hasOneUse())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (ISR.getConstantOperandVal(2) != PPC::sub_32)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue IDef = ISR.getOperand(0);
 | 
						|
    if (!IDef.isMachineOpcode() ||
 | 
						|
        IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We now know that we're looking at a canonical i32 -> i64 zext. See if we
 | 
						|
    // can get rid of it.
 | 
						|
 | 
						|
    SDValue Op32 = ISR->getOperand(1);
 | 
						|
    if (!Op32.isMachineOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // There are some 32-bit instructions that always clear the high-order 32
 | 
						|
    // bits, there are also some instructions (like AND) that we can look
 | 
						|
    // through.
 | 
						|
    SmallPtrSet<SDNode *, 16> ToPromote;
 | 
						|
    if (!PeepholePPC64ZExtGather(Op32, ToPromote))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the ToPromote set contains nodes that have uses outside of the set
 | 
						|
    // (except for the original INSERT_SUBREG), then abort the transformation.
 | 
						|
    bool OutsideUse = false;
 | 
						|
    for (SDNode *PN : ToPromote) {
 | 
						|
      for (SDNode *UN : PN->uses()) {
 | 
						|
        if (!ToPromote.count(UN) && UN != ISR.getNode()) {
 | 
						|
          OutsideUse = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (OutsideUse)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (OutsideUse)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MadeChange = true;
 | 
						|
 | 
						|
    // We now know that this zero extension can be removed by promoting to
 | 
						|
    // nodes in ToPromote to 64-bit operations, where for operations in the
 | 
						|
    // frontier of the set, we need to insert INSERT_SUBREGs for their
 | 
						|
    // operands.
 | 
						|
    for (SDNode *PN : ToPromote) {
 | 
						|
      unsigned NewOpcode;
 | 
						|
      switch (PN->getMachineOpcode()) {
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Don't know the 64-bit variant of this instruction");
 | 
						|
      case PPC::RLWINM:    NewOpcode = PPC::RLWINM8; break;
 | 
						|
      case PPC::RLWNM:     NewOpcode = PPC::RLWNM8; break;
 | 
						|
      case PPC::SLW:       NewOpcode = PPC::SLW8; break;
 | 
						|
      case PPC::SRW:       NewOpcode = PPC::SRW8; break;
 | 
						|
      case PPC::LI:        NewOpcode = PPC::LI8; break;
 | 
						|
      case PPC::LIS:       NewOpcode = PPC::LIS8; break;
 | 
						|
      case PPC::LHBRX:     NewOpcode = PPC::LHBRX8; break;
 | 
						|
      case PPC::LWBRX:     NewOpcode = PPC::LWBRX8; break;
 | 
						|
      case PPC::CNTLZW:    NewOpcode = PPC::CNTLZW8; break;
 | 
						|
      case PPC::RLWIMI:    NewOpcode = PPC::RLWIMI8; break;
 | 
						|
      case PPC::OR:        NewOpcode = PPC::OR8; break;
 | 
						|
      case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
 | 
						|
      case PPC::ORI:       NewOpcode = PPC::ORI8; break;
 | 
						|
      case PPC::ORIS:      NewOpcode = PPC::ORIS8; break;
 | 
						|
      case PPC::AND:       NewOpcode = PPC::AND8; break;
 | 
						|
      case PPC::ANDIo:     NewOpcode = PPC::ANDIo8; break;
 | 
						|
      case PPC::ANDISo:    NewOpcode = PPC::ANDISo8; break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Note: During the replacement process, the nodes will be in an
 | 
						|
      // inconsistent state (some instructions will have operands with values
 | 
						|
      // of the wrong type). Once done, however, everything should be right
 | 
						|
      // again.
 | 
						|
 | 
						|
      SmallVector<SDValue, 4> Ops;
 | 
						|
      for (const SDValue &V : PN->ops()) {
 | 
						|
        if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
 | 
						|
            !isa<ConstantSDNode>(V)) {
 | 
						|
          SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
 | 
						|
          SDNode *ReplOp =
 | 
						|
            CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
 | 
						|
                                   ISR.getNode()->getVTList(), ReplOpOps);
 | 
						|
          Ops.push_back(SDValue(ReplOp, 0));
 | 
						|
        } else {
 | 
						|
          Ops.push_back(V);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Because all to-be-promoted nodes only have users that are other
 | 
						|
      // promoted nodes (or the original INSERT_SUBREG), we can safely replace
 | 
						|
      // the i32 result value type with i64.
 | 
						|
 | 
						|
      SmallVector<EVT, 2> NewVTs;
 | 
						|
      SDVTList VTs = PN->getVTList();
 | 
						|
      for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
 | 
						|
        if (VTs.VTs[i] == MVT::i32)
 | 
						|
          NewVTs.push_back(MVT::i64);
 | 
						|
        else
 | 
						|
          NewVTs.push_back(VTs.VTs[i]);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld:    ");
 | 
						|
      DEBUG(PN->dump(CurDAG));
 | 
						|
 | 
						|
      CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
 | 
						|
 | 
						|
      DEBUG(dbgs() << "\nNew: ");
 | 
						|
      DEBUG(PN->dump(CurDAG));
 | 
						|
      DEBUG(dbgs() << "\n");
 | 
						|
    }
 | 
						|
 | 
						|
    // Now we replace the original zero extend and its associated INSERT_SUBREG
 | 
						|
    // with the value feeding the INSERT_SUBREG (which has now been promoted to
 | 
						|
    // return an i64).
 | 
						|
 | 
						|
    DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld:    ");
 | 
						|
    DEBUG(N->dump(CurDAG));
 | 
						|
    DEBUG(dbgs() << "\nNew: ");
 | 
						|
    DEBUG(Op32.getNode()->dump(CurDAG));
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
    ReplaceUses(N, Op32.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  if (MadeChange)
 | 
						|
    CurDAG->RemoveDeadNodes();
 | 
						|
}
 | 
						|
 | 
						|
void PPCDAGToDAGISel::PeepholePPC64() {
 | 
						|
  // These optimizations are currently supported only for 64-bit SVR4.
 | 
						|
  if (PPCSubTarget->isDarwin() || !PPCSubTarget->isPPC64())
 | 
						|
    return;
 | 
						|
 | 
						|
  SelectionDAG::allnodes_iterator Position(CurDAG->getRoot().getNode());
 | 
						|
  ++Position;
 | 
						|
 | 
						|
  while (Position != CurDAG->allnodes_begin()) {
 | 
						|
    SDNode *N = --Position;
 | 
						|
    // Skip dead nodes and any non-machine opcodes.
 | 
						|
    if (N->use_empty() || !N->isMachineOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned FirstOp;
 | 
						|
    unsigned StorageOpcode = N->getMachineOpcode();
 | 
						|
 | 
						|
    switch (StorageOpcode) {
 | 
						|
    default: continue;
 | 
						|
 | 
						|
    case PPC::LBZ:
 | 
						|
    case PPC::LBZ8:
 | 
						|
    case PPC::LD:
 | 
						|
    case PPC::LFD:
 | 
						|
    case PPC::LFS:
 | 
						|
    case PPC::LHA:
 | 
						|
    case PPC::LHA8:
 | 
						|
    case PPC::LHZ:
 | 
						|
    case PPC::LHZ8:
 | 
						|
    case PPC::LWA:
 | 
						|
    case PPC::LWZ:
 | 
						|
    case PPC::LWZ8:
 | 
						|
      FirstOp = 0;
 | 
						|
      break;
 | 
						|
 | 
						|
    case PPC::STB:
 | 
						|
    case PPC::STB8:
 | 
						|
    case PPC::STD:
 | 
						|
    case PPC::STFD:
 | 
						|
    case PPC::STFS:
 | 
						|
    case PPC::STH:
 | 
						|
    case PPC::STH8:
 | 
						|
    case PPC::STW:
 | 
						|
    case PPC::STW8:
 | 
						|
      FirstOp = 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a load or store with a zero offset, we may be able to
 | 
						|
    // fold an add-immediate into the memory operation.
 | 
						|
    if (!isa<ConstantSDNode>(N->getOperand(FirstOp)) ||
 | 
						|
        N->getConstantOperandVal(FirstOp) != 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue Base = N->getOperand(FirstOp + 1);
 | 
						|
    if (!Base.isMachineOpcode())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned Flags = 0;
 | 
						|
    bool ReplaceFlags = true;
 | 
						|
 | 
						|
    // When the feeding operation is an add-immediate of some sort,
 | 
						|
    // determine whether we need to add relocation information to the
 | 
						|
    // target flags on the immediate operand when we fold it into the
 | 
						|
    // load instruction.
 | 
						|
    //
 | 
						|
    // For something like ADDItocL, the relocation information is
 | 
						|
    // inferred from the opcode; when we process it in the AsmPrinter,
 | 
						|
    // we add the necessary relocation there.  A load, though, can receive
 | 
						|
    // relocation from various flavors of ADDIxxx, so we need to carry
 | 
						|
    // the relocation information in the target flags.
 | 
						|
    switch (Base.getMachineOpcode()) {
 | 
						|
    default: continue;
 | 
						|
 | 
						|
    case PPC::ADDI8:
 | 
						|
    case PPC::ADDI:
 | 
						|
      // In some cases (such as TLS) the relocation information
 | 
						|
      // is already in place on the operand, so copying the operand
 | 
						|
      // is sufficient.
 | 
						|
      ReplaceFlags = false;
 | 
						|
      // For these cases, the immediate may not be divisible by 4, in
 | 
						|
      // which case the fold is illegal for DS-form instructions.  (The
 | 
						|
      // other cases provide aligned addresses and are always safe.)
 | 
						|
      if ((StorageOpcode == PPC::LWA ||
 | 
						|
           StorageOpcode == PPC::LD  ||
 | 
						|
           StorageOpcode == PPC::STD) &&
 | 
						|
          (!isa<ConstantSDNode>(Base.getOperand(1)) ||
 | 
						|
           Base.getConstantOperandVal(1) % 4 != 0))
 | 
						|
        continue;
 | 
						|
      break;
 | 
						|
    case PPC::ADDIdtprelL:
 | 
						|
      Flags = PPCII::MO_DTPREL_LO;
 | 
						|
      break;
 | 
						|
    case PPC::ADDItlsldL:
 | 
						|
      Flags = PPCII::MO_TLSLD_LO;
 | 
						|
      break;
 | 
						|
    case PPC::ADDItocL:
 | 
						|
      Flags = PPCII::MO_TOC_LO;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // We found an opportunity.  Reverse the operands from the add
 | 
						|
    // immediate and substitute them into the load or store.  If
 | 
						|
    // needed, update the target flags for the immediate operand to
 | 
						|
    // reflect the necessary relocation information.
 | 
						|
    DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase:    ");
 | 
						|
    DEBUG(Base->dump(CurDAG));
 | 
						|
    DEBUG(dbgs() << "\nN: ");
 | 
						|
    DEBUG(N->dump(CurDAG));
 | 
						|
    DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
    SDValue ImmOpnd = Base.getOperand(1);
 | 
						|
 | 
						|
    // If the relocation information isn't already present on the
 | 
						|
    // immediate operand, add it now.
 | 
						|
    if (ReplaceFlags) {
 | 
						|
      if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
 | 
						|
        SDLoc dl(GA);
 | 
						|
        const GlobalValue *GV = GA->getGlobal();
 | 
						|
        // We can't perform this optimization for data whose alignment
 | 
						|
        // is insufficient for the instruction encoding.
 | 
						|
        if (GV->getAlignment() < 4 &&
 | 
						|
            (StorageOpcode == PPC::LD || StorageOpcode == PPC::STD ||
 | 
						|
             StorageOpcode == PPC::LWA)) {
 | 
						|
          DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, 0, Flags);
 | 
						|
      } else if (ConstantPoolSDNode *CP =
 | 
						|
                 dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
 | 
						|
        const Constant *C = CP->getConstVal();
 | 
						|
        ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64,
 | 
						|
                                                CP->getAlignment(),
 | 
						|
                                                0, Flags);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (FirstOp == 1) // Store
 | 
						|
      (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
 | 
						|
                                       Base.getOperand(0), N->getOperand(3));
 | 
						|
    else // Load
 | 
						|
      (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
 | 
						|
                                       N->getOperand(2));
 | 
						|
 | 
						|
    // The add-immediate may now be dead, in which case remove it.
 | 
						|
    if (Base.getNode()->use_empty())
 | 
						|
      CurDAG->RemoveDeadNode(Base.getNode());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// createPPCISelDag - This pass converts a legalized DAG into a
 | 
						|
/// PowerPC-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | 
						|
  return new PPCDAGToDAGISel(TM);
 | 
						|
}
 | 
						|
 | 
						|
static void initializePassOnce(PassRegistry &Registry) {
 | 
						|
  const char *Name = "PowerPC DAG->DAG Pattern Instruction Selection";
 | 
						|
  PassInfo *PI = new PassInfo(Name, "ppc-codegen", &SelectionDAGISel::ID,
 | 
						|
                              nullptr, false, false);
 | 
						|
  Registry.registerPass(*PI, true);
 | 
						|
}
 | 
						|
 | 
						|
void llvm::initializePPCDAGToDAGISelPass(PassRegistry &Registry) {
 | 
						|
  CALL_ONCE_INITIALIZATION(initializePassOnce);
 | 
						|
}
 | 
						|
 |