mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	we sometimes compare singular iterators, reported by ENABLE_EXPENSIVE_CHECKS. This fixes PR7825. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110355 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2558 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2558 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/CodeGen/Rewriter.cpp -  Rewriter -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "virtregrewriter"
 | |
| #include "VirtRegRewriter.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumDSE     , "Number of dead stores elided");
 | |
| STATISTIC(NumDSS     , "Number of dead spill slots removed");
 | |
| STATISTIC(NumCommutes, "Number of instructions commuted");
 | |
| STATISTIC(NumDRM     , "Number of re-materializable defs elided");
 | |
| STATISTIC(NumStores  , "Number of stores added");
 | |
| STATISTIC(NumPSpills , "Number of physical register spills");
 | |
| STATISTIC(NumOmitted , "Number of reloads omited");
 | |
| STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
 | |
| STATISTIC(NumCopified, "Number of available reloads turned into copies");
 | |
| STATISTIC(NumReMats  , "Number of re-materialization");
 | |
| STATISTIC(NumLoads   , "Number of loads added");
 | |
| STATISTIC(NumReused  , "Number of values reused");
 | |
| STATISTIC(NumDCE     , "Number of copies elided");
 | |
| STATISTIC(NumSUnfold , "Number of stores unfolded");
 | |
| STATISTIC(NumModRefUnfold, "Number of modref unfolded");
 | |
| 
 | |
| namespace {
 | |
|   enum RewriterName { local, trivial };
 | |
| }
 | |
| 
 | |
| static cl::opt<RewriterName>
 | |
| RewriterOpt("rewriter",
 | |
|             cl::desc("Rewriter to use (default=local)"),
 | |
|             cl::Prefix,
 | |
|             cl::values(clEnumVal(local,   "local rewriter"),
 | |
|                        clEnumVal(trivial, "trivial rewriter"),
 | |
|                        clEnumValEnd),
 | |
|             cl::init(local));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ScheduleSpills("schedule-spills",
 | |
|                cl::desc("Schedule spill code"),
 | |
|                cl::init(false));
 | |
| 
 | |
| VirtRegRewriter::~VirtRegRewriter() {}
 | |
| 
 | |
| /// substitutePhysReg - Replace virtual register in MachineOperand with a
 | |
| /// physical register. Do the right thing with the sub-register index.
 | |
| /// Note that operands may be added, so the MO reference is no longer valid.
 | |
| static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
 | |
|                               const TargetRegisterInfo &TRI) {
 | |
|   if (unsigned SubIdx = MO.getSubReg()) {
 | |
|     // Insert the physical subreg and reset the subreg field.
 | |
|     MO.setReg(TRI.getSubReg(Reg, SubIdx));
 | |
|     MO.setSubReg(0);
 | |
| 
 | |
|     // Any def, dead, and kill flags apply to the full virtual register, so they
 | |
|     // also apply to the full physical register. Add imp-def/dead and imp-kill
 | |
|     // as needed.
 | |
|     MachineInstr &MI = *MO.getParent();
 | |
|     if (MO.isDef())
 | |
|       if (MO.isDead())
 | |
|         MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
 | |
|       else
 | |
|         MI.addRegisterDefined(Reg, &TRI);
 | |
|     else if (!MO.isUndef() &&
 | |
|              (MO.isKill() ||
 | |
|               MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
 | |
|       MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
 | |
|   } else {
 | |
|     MO.setReg(Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// This class is intended for use with the new spilling framework only. It
 | |
| /// rewrites vreg def/uses to use the assigned preg, but does not insert any
 | |
| /// spill code.
 | |
| struct TrivialRewriter : public VirtRegRewriter {
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
 | |
|                             LiveIntervals* LIs) {
 | |
|     DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
 | |
|     DEBUG(dbgs() << "********** Function: "
 | |
|           << MF.getFunction()->getName() << '\n');
 | |
|     DEBUG(dbgs() << "**** Machine Instrs"
 | |
|           << "(NOTE! Does not include spills and reloads!) ****\n");
 | |
|     DEBUG(MF.dump());
 | |
| 
 | |
|     MachineRegisterInfo *mri = &MF.getRegInfo();
 | |
|     const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
 | |
| 
 | |
|     bool changed = false;
 | |
| 
 | |
|     for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
 | |
|          liItr != liEnd; ++liItr) {
 | |
| 
 | |
|       const LiveInterval *li = liItr->second;
 | |
|       unsigned reg = li->reg;
 | |
| 
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(reg)) {
 | |
|         if (!li->empty())
 | |
|           mri->setPhysRegUsed(reg);
 | |
|       }
 | |
|       else {
 | |
|         if (!VRM.hasPhys(reg))
 | |
|           continue;
 | |
|         unsigned pReg = VRM.getPhys(reg);
 | |
|         mri->setPhysRegUsed(pReg);
 | |
|         // Copy the register use-list before traversing it.
 | |
|         SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
 | |
|         for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
 | |
|                E = mri->reg_end(); I != E; ++I)
 | |
|           reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
 | |
|         for (unsigned N=0; N != reglist.size(); ++N)
 | |
|           substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
 | |
|                             pReg, *tri);
 | |
|         changed |= !reglist.empty();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
 | |
|     DEBUG(MF.dump());
 | |
| 
 | |
|     return changed;
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| // ************************************************************************ //
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
 | |
| /// from top down, keep track of which spill slots or remat are available in
 | |
| /// each register.
 | |
| ///
 | |
| /// Note that not all physregs are created equal here.  In particular, some
 | |
| /// physregs are reloads that we are allowed to clobber or ignore at any time.
 | |
| /// Other physregs are values that the register allocated program is using
 | |
| /// that we cannot CHANGE, but we can read if we like.  We keep track of this
 | |
| /// on a per-stack-slot / remat id basis as the low bit in the value of the
 | |
| /// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
 | |
| /// this bit and addAvailable sets it if.
 | |
| class AvailableSpills {
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   const TargetInstrInfo *TII;
 | |
| 
 | |
|   // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
 | |
|   // or remat'ed virtual register values that are still available, due to
 | |
|   // being loaded or stored to, but not invalidated yet.
 | |
|   std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
 | |
| 
 | |
|   // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
 | |
|   // indicating which stack slot values are currently held by a physreg.  This
 | |
|   // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
 | |
|   // physreg is modified.
 | |
|   std::multimap<unsigned, int> PhysRegsAvailable;
 | |
| 
 | |
|   void disallowClobberPhysRegOnly(unsigned PhysReg);
 | |
| 
 | |
|   void ClobberPhysRegOnly(unsigned PhysReg);
 | |
| public:
 | |
|   AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
 | |
|     : TRI(tri), TII(tii) {
 | |
|   }
 | |
| 
 | |
|   /// clear - Reset the state.
 | |
|   void clear() {
 | |
|     SpillSlotsOrReMatsAvailable.clear();
 | |
|     PhysRegsAvailable.clear();
 | |
|   }
 | |
| 
 | |
|   const TargetRegisterInfo *getRegInfo() const { return TRI; }
 | |
| 
 | |
|   /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
 | |
|   /// available in a physical register, return that PhysReg, otherwise
 | |
|   /// return 0.
 | |
|   unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
 | |
|     std::map<int, unsigned>::const_iterator I =
 | |
|       SpillSlotsOrReMatsAvailable.find(Slot);
 | |
|     if (I != SpillSlotsOrReMatsAvailable.end()) {
 | |
|       return I->second >> 1;  // Remove the CanClobber bit.
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// addAvailable - Mark that the specified stack slot / remat is available
 | |
|   /// in the specified physreg.  If CanClobber is true, the physreg can be
 | |
|   /// modified at any time without changing the semantics of the program.
 | |
|   void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
 | |
|     // If this stack slot is thought to be available in some other physreg,
 | |
|     // remove its record.
 | |
|     ModifyStackSlotOrReMat(SlotOrReMat);
 | |
| 
 | |
|     PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
 | |
|     SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
 | |
|                                               (unsigned)CanClobber;
 | |
| 
 | |
|     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | |
|       DEBUG(dbgs() << "Remembering RM#"
 | |
|                    << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
 | |
|     else
 | |
|       DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
 | |
|     DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
 | |
|   }
 | |
| 
 | |
|   /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
 | |
|   /// the value of the specified stackslot register if it desires. The
 | |
|   /// specified stack slot must be available in a physreg for this query to
 | |
|   /// make sense.
 | |
|   bool canClobberPhysRegForSS(int SlotOrReMat) const {
 | |
|     assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
 | |
|            "Value not available!");
 | |
|     return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
 | |
|   }
 | |
| 
 | |
|   /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
 | |
|   /// physical register where values for some stack slot(s) might be
 | |
|   /// available.
 | |
|   bool canClobberPhysReg(unsigned PhysReg) const {
 | |
|     std::multimap<unsigned, int>::const_iterator I =
 | |
|       PhysRegsAvailable.lower_bound(PhysReg);
 | |
|     while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | |
|       int SlotOrReMat = I->second;
 | |
|       I++;
 | |
|       if (!canClobberPhysRegForSS(SlotOrReMat))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | |
|   /// stackslot register. The register is still available but is no longer
 | |
|   /// allowed to be modifed.
 | |
|   void disallowClobberPhysReg(unsigned PhysReg);
 | |
| 
 | |
|   /// ClobberPhysReg - This is called when the specified physreg changes
 | |
|   /// value.  We use this to invalidate any info about stuff that lives in
 | |
|   /// it and any of its aliases.
 | |
|   void ClobberPhysReg(unsigned PhysReg);
 | |
| 
 | |
|   /// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | |
|   /// slot changes.  This removes information about which register the
 | |
|   /// previous value for this slot lives in (as the previous value is dead
 | |
|   /// now).
 | |
|   void ModifyStackSlotOrReMat(int SlotOrReMat);
 | |
| 
 | |
|   /// AddAvailableRegsToLiveIn - Availability information is being kept coming
 | |
|   /// into the specified MBB. Add available physical registers as potential
 | |
|   /// live-in's. If they are reused in the MBB, they will be added to the
 | |
|   /// live-in set to make register scavenger and post-allocation scheduler.
 | |
|   void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
 | |
|                                 std::vector<MachineOperand*> &KillOps);
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| // ************************************************************************ //
 | |
| 
 | |
| // Given a location where a reload of a spilled register or a remat of
 | |
| // a constant is to be inserted, attempt to find a safe location to
 | |
| // insert the load at an earlier point in the basic-block, to hide
 | |
| // latency of the load and to avoid address-generation interlock
 | |
| // issues.
 | |
| static MachineBasicBlock::iterator
 | |
| ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
 | |
|                  MachineBasicBlock::iterator const Begin,
 | |
|                  unsigned PhysReg,
 | |
|                  const TargetRegisterInfo *TRI,
 | |
|                  bool DoReMat,
 | |
|                  int SSorRMId,
 | |
|                  const TargetInstrInfo *TII,
 | |
|                  const MachineFunction &MF)
 | |
| {
 | |
|   if (!ScheduleSpills)
 | |
|     return InsertLoc;
 | |
| 
 | |
|   // Spill backscheduling is of primary interest to addresses, so
 | |
|   // don't do anything if the register isn't in the register class
 | |
|   // used for pointers.
 | |
| 
 | |
|   const TargetLowering *TL = MF.getTarget().getTargetLowering();
 | |
| 
 | |
|   if (!TL->isTypeLegal(TL->getPointerTy()))
 | |
|     // Believe it or not, this is true on PIC16.
 | |
|     return InsertLoc;
 | |
| 
 | |
|   const TargetRegisterClass *ptrRegClass =
 | |
|     TL->getRegClassFor(TL->getPointerTy());
 | |
|   if (!ptrRegClass->contains(PhysReg))
 | |
|     return InsertLoc;
 | |
| 
 | |
|   // Scan upwards through the preceding instructions. If an instruction doesn't
 | |
|   // reference the stack slot or the register we're loading, we can
 | |
|   // backschedule the reload up past it.
 | |
|   MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
 | |
|   while (NewInsertLoc != Begin) {
 | |
|     MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
 | |
|     for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
 | |
|       MachineOperand &Op = Prev->getOperand(i);
 | |
|       if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
 | |
|         goto stop;
 | |
|     }
 | |
|     if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
 | |
|         Prev->findRegisterDefOperand(PhysReg))
 | |
|       goto stop;
 | |
|     for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
 | |
|       if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
 | |
|           Prev->findRegisterDefOperand(*Alias))
 | |
|         goto stop;
 | |
|     NewInsertLoc = Prev;
 | |
|   }
 | |
| stop:;
 | |
| 
 | |
|   // If we made it to the beginning of the block, turn around and move back
 | |
|   // down just past any existing reloads. They're likely to be reloads/remats
 | |
|   // for instructions earlier than what our current reload/remat is for, so
 | |
|   // they should be scheduled earlier.
 | |
|   if (NewInsertLoc == Begin) {
 | |
|     int FrameIdx;
 | |
|     while (InsertLoc != NewInsertLoc &&
 | |
|            (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
 | |
|             TII->isTriviallyReMaterializable(NewInsertLoc)))
 | |
|       ++NewInsertLoc;
 | |
|   }
 | |
| 
 | |
|   return NewInsertLoc;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // ReusedOp - For each reused operand, we keep track of a bit of information,
 | |
| // in case we need to rollback upon processing a new operand.  See comments
 | |
| // below.
 | |
| struct ReusedOp {
 | |
|   // The MachineInstr operand that reused an available value.
 | |
|   unsigned Operand;
 | |
| 
 | |
|   // StackSlotOrReMat - The spill slot or remat id of the value being reused.
 | |
|   unsigned StackSlotOrReMat;
 | |
| 
 | |
|   // PhysRegReused - The physical register the value was available in.
 | |
|   unsigned PhysRegReused;
 | |
| 
 | |
|   // AssignedPhysReg - The physreg that was assigned for use by the reload.
 | |
|   unsigned AssignedPhysReg;
 | |
| 
 | |
|   // VirtReg - The virtual register itself.
 | |
|   unsigned VirtReg;
 | |
| 
 | |
|   ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
 | |
|            unsigned vreg)
 | |
|     : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
 | |
|       AssignedPhysReg(apr), VirtReg(vreg) {}
 | |
| };
 | |
| 
 | |
| /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
 | |
| /// is reused instead of reloaded.
 | |
| class ReuseInfo {
 | |
|   MachineInstr &MI;
 | |
|   std::vector<ReusedOp> Reuses;
 | |
|   BitVector PhysRegsClobbered;
 | |
| public:
 | |
|   ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
 | |
|     PhysRegsClobbered.resize(tri->getNumRegs());
 | |
|   }
 | |
| 
 | |
|   bool hasReuses() const {
 | |
|     return !Reuses.empty();
 | |
|   }
 | |
| 
 | |
|   /// addReuse - If we choose to reuse a virtual register that is already
 | |
|   /// available instead of reloading it, remember that we did so.
 | |
|   void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
 | |
|                 unsigned PhysRegReused, unsigned AssignedPhysReg,
 | |
|                 unsigned VirtReg) {
 | |
|     // If the reload is to the assigned register anyway, no undo will be
 | |
|     // required.
 | |
|     if (PhysRegReused == AssignedPhysReg) return;
 | |
| 
 | |
|     // Otherwise, remember this.
 | |
|     Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
 | |
|                               AssignedPhysReg, VirtReg));
 | |
|   }
 | |
| 
 | |
|   void markClobbered(unsigned PhysReg) {
 | |
|     PhysRegsClobbered.set(PhysReg);
 | |
|   }
 | |
| 
 | |
|   bool isClobbered(unsigned PhysReg) const {
 | |
|     return PhysRegsClobbered.test(PhysReg);
 | |
|   }
 | |
| 
 | |
|   /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
 | |
|   /// is some other operand that is using the specified register, either pick
 | |
|   /// a new register to use, or evict the previous reload and use this reg.
 | |
|   unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
 | |
|                            MachineFunction &MF, MachineInstr *MI,
 | |
|                            AvailableSpills &Spills,
 | |
|                            std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                            SmallSet<unsigned, 8> &Rejected,
 | |
|                            BitVector &RegKills,
 | |
|                            std::vector<MachineOperand*> &KillOps,
 | |
|                            VirtRegMap &VRM);
 | |
| 
 | |
|   /// GetRegForReload - Helper for the above GetRegForReload(). Add a
 | |
|   /// 'Rejected' set to remember which registers have been considered and
 | |
|   /// rejected for the reload. This avoids infinite looping in case like
 | |
|   /// this:
 | |
|   /// t1 := op t2, t3
 | |
|   /// t2 <- assigned r0 for use by the reload but ended up reuse r1
 | |
|   /// t3 <- assigned r1 for use by the reload but ended up reuse r0
 | |
|   /// t1 <- desires r1
 | |
|   ///       sees r1 is taken by t2, tries t2's reload register r0
 | |
|   ///       sees r0 is taken by t3, tries t3's reload register r1
 | |
|   ///       sees r1 is taken by t2, tries t2's reload register r0 ...
 | |
|   unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
 | |
|                            AvailableSpills &Spills,
 | |
|                            std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                            BitVector &RegKills,
 | |
|                            std::vector<MachineOperand*> &KillOps,
 | |
|                            VirtRegMap &VRM) {
 | |
|     SmallSet<unsigned, 8> Rejected;
 | |
|     MachineFunction &MF = *MI->getParent()->getParent();
 | |
|     const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
 | |
|     return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
 | |
|                            Rejected, RegKills, KillOps, VRM);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| // ****************** //
 | |
| // Utility Functions  //
 | |
| // ****************** //
 | |
| 
 | |
| /// findSinglePredSuccessor - Return via reference a vector of machine basic
 | |
| /// blocks each of which is a successor of the specified BB and has no other
 | |
| /// predecessor.
 | |
| static void findSinglePredSuccessor(MachineBasicBlock *MBB,
 | |
|                                    SmallVectorImpl<MachineBasicBlock *> &Succs){
 | |
|   for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|          SE = MBB->succ_end(); SI != SE; ++SI) {
 | |
|     MachineBasicBlock *SuccMBB = *SI;
 | |
|     if (SuccMBB->pred_size() == 1)
 | |
|       Succs.push_back(SuccMBB);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InvalidateKill - Invalidate register kill information for a specific
 | |
| /// register. This also unsets the kills marker on the last kill operand.
 | |
| static void InvalidateKill(unsigned Reg,
 | |
|                            const TargetRegisterInfo* TRI,
 | |
|                            BitVector &RegKills,
 | |
|                            std::vector<MachineOperand*> &KillOps) {
 | |
|   if (RegKills[Reg]) {
 | |
|     KillOps[Reg]->setIsKill(false);
 | |
|     // KillOps[Reg] might be a def of a super-register.
 | |
|     unsigned KReg = KillOps[Reg]->getReg();
 | |
|     KillOps[KReg] = NULL;
 | |
|     RegKills.reset(KReg);
 | |
|     for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
 | |
|       if (RegKills[*SR]) {
 | |
|         KillOps[*SR]->setIsKill(false);
 | |
|         KillOps[*SR] = NULL;
 | |
|         RegKills.reset(*SR);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InvalidateKills - MI is going to be deleted. If any of its operands are
 | |
| /// marked kill, then invalidate the information.
 | |
| static void InvalidateKills(MachineInstr &MI,
 | |
|                             const TargetRegisterInfo* TRI,
 | |
|                             BitVector &RegKills,
 | |
|                             std::vector<MachineOperand*> &KillOps,
 | |
|                             SmallVector<unsigned, 2> *KillRegs = NULL) {
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     if (KillRegs)
 | |
|       KillRegs->push_back(Reg);
 | |
|     assert(Reg < KillOps.size());
 | |
|     if (KillOps[Reg] == &MO) {
 | |
|       KillOps[Reg] = NULL;
 | |
|       RegKills.reset(Reg);
 | |
|       for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
 | |
|         if (RegKills[*SR]) {
 | |
|           KillOps[*SR] = NULL;
 | |
|           RegKills.reset(*SR);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InvalidateRegDef - If the def operand of the specified def MI is now dead
 | |
| /// (since its spill instruction is removed), mark it isDead. Also checks if
 | |
| /// the def MI has other definition operands that are not dead. Returns it by
 | |
| /// reference.
 | |
| static bool InvalidateRegDef(MachineBasicBlock::iterator I,
 | |
|                              MachineInstr &NewDef, unsigned Reg,
 | |
|                              bool &HasLiveDef,
 | |
|                              const TargetRegisterInfo *TRI) {
 | |
|   // Due to remat, it's possible this reg isn't being reused. That is,
 | |
|   // the def of this reg (by prev MI) is now dead.
 | |
|   MachineInstr *DefMI = I;
 | |
|   MachineOperand *DefOp = NULL;
 | |
|   for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = DefMI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
 | |
|       continue;
 | |
|     if (MO.getReg() == Reg)
 | |
|       DefOp = &MO;
 | |
|     else if (!MO.isDead())
 | |
|       HasLiveDef = true;
 | |
|   }
 | |
|   if (!DefOp)
 | |
|     return false;
 | |
| 
 | |
|   bool FoundUse = false, Done = false;
 | |
|   MachineBasicBlock::iterator E = &NewDef;
 | |
|   ++I; ++E;
 | |
|   for (; !Done && I != E; ++I) {
 | |
|     MachineInstr *NMI = I;
 | |
|     for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
 | |
|       MachineOperand &MO = NMI->getOperand(j);
 | |
|       if (!MO.isReg() || MO.getReg() == 0 ||
 | |
|           (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
 | |
|         continue;
 | |
|       if (MO.isUse())
 | |
|         FoundUse = true;
 | |
|       Done = true; // Stop after scanning all the operands of this MI.
 | |
|     }
 | |
|   }
 | |
|   if (!FoundUse) {
 | |
|     // Def is dead!
 | |
|     DefOp->setIsDead();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// UpdateKills - Track and update kill info. If a MI reads a register that is
 | |
| /// marked kill, then it must be due to register reuse. Transfer the kill info
 | |
| /// over.
 | |
| static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
 | |
|                         BitVector &RegKills,
 | |
|                         std::vector<MachineOperand*> &KillOps) {
 | |
|   // These do not affect kill info at all.
 | |
|   if (MI.isDebugValue())
 | |
|     return;
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
| 
 | |
|     if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
 | |
|       // That can't be right. Register is killed but not re-defined and it's
 | |
|       // being reused. Let's fix that.
 | |
|       KillOps[Reg]->setIsKill(false);
 | |
|       // KillOps[Reg] might be a def of a super-register.
 | |
|       unsigned KReg = KillOps[Reg]->getReg();
 | |
|       KillOps[KReg] = NULL;
 | |
|       RegKills.reset(KReg);
 | |
| 
 | |
|       // Must be a def of a super-register. Its other sub-regsters are no
 | |
|       // longer killed as well.
 | |
|       for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
 | |
|         KillOps[*SR] = NULL;
 | |
|         RegKills.reset(*SR);
 | |
|       }
 | |
|     } else {
 | |
|       // Check for subreg kills as well.
 | |
|       // d4 =
 | |
|       // store d4, fi#0
 | |
|       // ...
 | |
|       //    = s8<kill>
 | |
|       // ...
 | |
|       //    = d4  <avoiding reload>
 | |
|       for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
 | |
|         unsigned SReg = *SR;
 | |
|         if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
 | |
|           KillOps[SReg]->setIsKill(false);
 | |
|           unsigned KReg = KillOps[SReg]->getReg();
 | |
|           KillOps[KReg] = NULL;
 | |
|           RegKills.reset(KReg);
 | |
| 
 | |
|           for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
 | |
|             KillOps[*SSR] = NULL;
 | |
|             RegKills.reset(*SSR);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (MO.isKill()) {
 | |
|       RegKills.set(Reg);
 | |
|       KillOps[Reg] = &MO;
 | |
|       for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
 | |
|         RegKills.set(*SR);
 | |
|         KillOps[*SR] = &MO;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.getReg() || !MO.isDef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     RegKills.reset(Reg);
 | |
|     KillOps[Reg] = NULL;
 | |
|     // It also defines (or partially define) aliases.
 | |
|     for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
 | |
|       RegKills.reset(*SR);
 | |
|       KillOps[*SR] = NULL;
 | |
|     }
 | |
|     for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
 | |
|       RegKills.reset(*SR);
 | |
|       KillOps[*SR] = NULL;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
 | |
| ///
 | |
| static void ReMaterialize(MachineBasicBlock &MBB,
 | |
|                           MachineBasicBlock::iterator &MII,
 | |
|                           unsigned DestReg, unsigned Reg,
 | |
|                           const TargetInstrInfo *TII,
 | |
|                           const TargetRegisterInfo *TRI,
 | |
|                           VirtRegMap &VRM) {
 | |
|   MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
 | |
| #ifndef NDEBUG
 | |
|   const TargetInstrDesc &TID = ReMatDefMI->getDesc();
 | |
|   assert(TID.getNumDefs() == 1 &&
 | |
|          "Don't know how to remat instructions that define > 1 values!");
 | |
| #endif
 | |
|   TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
 | |
|   MachineInstr *NewMI = prior(MII);
 | |
|   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = NewMI->getOperand(i);
 | |
|     if (!MO.isReg() || MO.getReg() == 0)
 | |
|       continue;
 | |
|     unsigned VirtReg = MO.getReg();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
 | |
|       continue;
 | |
|     assert(MO.isUse());
 | |
|     unsigned Phys = VRM.getPhys(VirtReg);
 | |
|     assert(Phys && "Virtual register is not assigned a register?");
 | |
|     substitutePhysReg(MO, Phys, *TRI);
 | |
|   }
 | |
|   ++NumReMats;
 | |
| }
 | |
| 
 | |
| /// findSuperReg - Find the SubReg's super-register of given register class
 | |
| /// where its SubIdx sub-register is SubReg.
 | |
| static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
 | |
|                              unsigned SubIdx, const TargetRegisterInfo *TRI) {
 | |
|   for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
 | |
|        I != E; ++I) {
 | |
|     unsigned Reg = *I;
 | |
|     if (TRI->getSubReg(Reg, SubIdx) == SubReg)
 | |
|       return Reg;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // ******************************** //
 | |
| // Available Spills Implementation  //
 | |
| // ******************************** //
 | |
| 
 | |
| /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
 | |
| /// stackslot register. The register is still available but is no longer
 | |
| /// allowed to be modifed.
 | |
| void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
 | |
|   std::multimap<unsigned, int>::iterator I =
 | |
|     PhysRegsAvailable.lower_bound(PhysReg);
 | |
|   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | |
|     int SlotOrReMat = I->second;
 | |
|     I++;
 | |
|     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | |
|            "Bidirectional map mismatch!");
 | |
|     SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
 | |
|     DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
 | |
|          << " copied, it is available for use but can no longer be modified\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | |
| /// stackslot register and its aliases. The register and its aliases may
 | |
| /// still available but is no longer allowed to be modifed.
 | |
| void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
 | |
|   for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
 | |
|     disallowClobberPhysRegOnly(*AS);
 | |
|   disallowClobberPhysRegOnly(PhysReg);
 | |
| }
 | |
| 
 | |
| /// ClobberPhysRegOnly - This is called when the specified physreg changes
 | |
| /// value.  We use this to invalidate any info about stuff we thing lives in it.
 | |
| void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
 | |
|   std::multimap<unsigned, int>::iterator I =
 | |
|     PhysRegsAvailable.lower_bound(PhysReg);
 | |
|   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | |
|     int SlotOrReMat = I->second;
 | |
|     PhysRegsAvailable.erase(I++);
 | |
|     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | |
|            "Bidirectional map mismatch!");
 | |
|     SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
 | |
|     DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
 | |
|           << " clobbered, invalidating ");
 | |
|     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | |
|       DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
 | |
|     else
 | |
|       DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ClobberPhysReg - This is called when the specified physreg changes
 | |
| /// value.  We use this to invalidate any info about stuff we thing lives in
 | |
| /// it and any of its aliases.
 | |
| void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
 | |
|   for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
 | |
|     ClobberPhysRegOnly(*AS);
 | |
|   ClobberPhysRegOnly(PhysReg);
 | |
| }
 | |
| 
 | |
| /// AddAvailableRegsToLiveIn - Availability information is being kept coming
 | |
| /// into the specified MBB. Add available physical registers as potential
 | |
| /// live-in's. If they are reused in the MBB, they will be added to the
 | |
| /// live-in set to make register scavenger and post-allocation scheduler.
 | |
| void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
 | |
|                                         BitVector &RegKills,
 | |
|                                         std::vector<MachineOperand*> &KillOps) {
 | |
|   std::set<unsigned> NotAvailable;
 | |
|   for (std::multimap<unsigned, int>::iterator
 | |
|          I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned Reg = I->first;
 | |
|     const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
 | |
|     // FIXME: A temporary workaround. We can't reuse available value if it's
 | |
|     // not safe to move the def of the virtual register's class. e.g.
 | |
|     // X86::RFP* register classes. Do not add it as a live-in.
 | |
|     if (!TII->isSafeToMoveRegClassDefs(RC))
 | |
|       // This is no longer available.
 | |
|       NotAvailable.insert(Reg);
 | |
|     else {
 | |
|       MBB.addLiveIn(Reg);
 | |
|       InvalidateKill(Reg, TRI, RegKills, KillOps);
 | |
|     }
 | |
| 
 | |
|     // Skip over the same register.
 | |
|     std::multimap<unsigned, int>::iterator NI = llvm::next(I);
 | |
|     while (NI != E && NI->first == Reg) {
 | |
|       ++I;
 | |
|       ++NI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (std::set<unsigned>::iterator I = NotAvailable.begin(),
 | |
|          E = NotAvailable.end(); I != E; ++I) {
 | |
|     ClobberPhysReg(*I);
 | |
|     for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
 | |
|        *SubRegs; ++SubRegs)
 | |
|       ClobberPhysReg(*SubRegs);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | |
| /// slot changes.  This removes information about which register the previous
 | |
| /// value for this slot lives in (as the previous value is dead now).
 | |
| void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
 | |
|   std::map<int, unsigned>::iterator It =
 | |
|     SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
 | |
|   if (It == SpillSlotsOrReMatsAvailable.end()) return;
 | |
|   unsigned Reg = It->second >> 1;
 | |
|   SpillSlotsOrReMatsAvailable.erase(It);
 | |
| 
 | |
|   // This register may hold the value of multiple stack slots, only remove this
 | |
|   // stack slot from the set of values the register contains.
 | |
|   std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
 | |
|   for (; ; ++I) {
 | |
|     assert(I != PhysRegsAvailable.end() && I->first == Reg &&
 | |
|            "Map inverse broken!");
 | |
|     if (I->second == SlotOrReMat) break;
 | |
|   }
 | |
|   PhysRegsAvailable.erase(I);
 | |
| }
 | |
| 
 | |
| // ************************** //
 | |
| // Reuse Info Implementation  //
 | |
| // ************************** //
 | |
| 
 | |
| /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
 | |
| /// is some other operand that is using the specified register, either pick
 | |
| /// a new register to use, or evict the previous reload and use this reg.
 | |
| unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
 | |
|                          unsigned PhysReg,
 | |
|                          MachineFunction &MF,
 | |
|                          MachineInstr *MI, AvailableSpills &Spills,
 | |
|                          std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                          SmallSet<unsigned, 8> &Rejected,
 | |
|                          BitVector &RegKills,
 | |
|                          std::vector<MachineOperand*> &KillOps,
 | |
|                          VirtRegMap &VRM) {
 | |
|   const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
 | |
|   const TargetRegisterInfo *TRI = Spills.getRegInfo();
 | |
| 
 | |
|   if (Reuses.empty()) return PhysReg;  // This is most often empty.
 | |
| 
 | |
|   for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
 | |
|     ReusedOp &Op = Reuses[ro];
 | |
|     // If we find some other reuse that was supposed to use this register
 | |
|     // exactly for its reload, we can change this reload to use ITS reload
 | |
|     // register. That is, unless its reload register has already been
 | |
|     // considered and subsequently rejected because it has also been reused
 | |
|     // by another operand.
 | |
|     if (Op.PhysRegReused == PhysReg &&
 | |
|         Rejected.count(Op.AssignedPhysReg) == 0 &&
 | |
|         RC->contains(Op.AssignedPhysReg)) {
 | |
|       // Yup, use the reload register that we didn't use before.
 | |
|       unsigned NewReg = Op.AssignedPhysReg;
 | |
|       Rejected.insert(PhysReg);
 | |
|       return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
 | |
|                              Rejected, RegKills, KillOps, VRM);
 | |
|     } else {
 | |
|       // Otherwise, we might also have a problem if a previously reused
 | |
|       // value aliases the new register. If so, codegen the previous reload
 | |
|       // and use this one.
 | |
|       unsigned PRRU = Op.PhysRegReused;
 | |
|       if (TRI->regsOverlap(PRRU, PhysReg)) {
 | |
|         // Okay, we found out that an alias of a reused register
 | |
|         // was used.  This isn't good because it means we have
 | |
|         // to undo a previous reuse.
 | |
|         MachineBasicBlock *MBB = MI->getParent();
 | |
|         const TargetRegisterClass *AliasRC =
 | |
|           MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
 | |
| 
 | |
|         // Copy Op out of the vector and remove it, we're going to insert an
 | |
|         // explicit load for it.
 | |
|         ReusedOp NewOp = Op;
 | |
|         Reuses.erase(Reuses.begin()+ro);
 | |
| 
 | |
|         // MI may be using only a sub-register of PhysRegUsed.
 | |
|         unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
 | |
|         unsigned SubIdx = 0;
 | |
|         assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
 | |
|                "A reuse cannot be a virtual register");
 | |
|         if (PRRU != RealPhysRegUsed) {
 | |
|           // What was the sub-register index?
 | |
|           SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
 | |
|           assert(SubIdx &&
 | |
|                  "Operand physreg is not a sub-register of PhysRegUsed");
 | |
|         }
 | |
| 
 | |
|         // Ok, we're going to try to reload the assigned physreg into the
 | |
|         // slot that we were supposed to in the first place.  However, that
 | |
|         // register could hold a reuse.  Check to see if it conflicts or
 | |
|         // would prefer us to use a different register.
 | |
|         unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
 | |
|                                               MF, MI, Spills, MaybeDeadStores,
 | |
|                                               Rejected, RegKills, KillOps, VRM);
 | |
| 
 | |
|         bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
 | |
|         int SSorRMId = DoReMat
 | |
|           ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
 | |
| 
 | |
|         // Back-schedule reloads and remats.
 | |
|         MachineBasicBlock::iterator InsertLoc =
 | |
|           ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
 | |
|                            DoReMat, SSorRMId, TII, MF);
 | |
| 
 | |
|         if (DoReMat) {
 | |
|           ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
 | |
|                         TRI, VRM);
 | |
|         } else {
 | |
|           TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
 | |
|                                     NewOp.StackSlotOrReMat, AliasRC, TRI);
 | |
|           MachineInstr *LoadMI = prior(InsertLoc);
 | |
|           VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
 | |
|           // Any stores to this stack slot are not dead anymore.
 | |
|           MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
 | |
|           ++NumLoads;
 | |
|         }
 | |
|         Spills.ClobberPhysReg(NewPhysReg);
 | |
|         Spills.ClobberPhysReg(NewOp.PhysRegReused);
 | |
| 
 | |
|         unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
 | |
|         MI->getOperand(NewOp.Operand).setReg(RReg);
 | |
|         MI->getOperand(NewOp.Operand).setSubReg(0);
 | |
| 
 | |
|         Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
 | |
|         UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
 | |
|         DEBUG(dbgs() << '\t' << *prior(InsertLoc));
 | |
| 
 | |
|         DEBUG(dbgs() << "Reuse undone!\n");
 | |
|         --NumReused;
 | |
| 
 | |
|         // Finally, PhysReg is now available, go ahead and use it.
 | |
|         return PhysReg;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return PhysReg;
 | |
| }
 | |
| 
 | |
| // ************************************************************************ //
 | |
| 
 | |
| /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
 | |
| /// stack slot mod/ref. It also checks if it's possible to unfold the
 | |
| /// instruction by having it define a specified physical register instead.
 | |
| static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
 | |
|                                  const TargetInstrInfo *TII,
 | |
|                                  const TargetRegisterInfo *TRI,
 | |
|                                  VirtRegMap &VRM) {
 | |
|   if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
 | |
|     return false;
 | |
| 
 | |
|   bool Found = false;
 | |
|   VirtRegMap::MI2VirtMapTy::const_iterator I, End;
 | |
|   for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
 | |
|     unsigned VirtReg = I->second.first;
 | |
|     VirtRegMap::ModRef MR = I->second.second;
 | |
|     if (MR & VirtRegMap::isModRef)
 | |
|       if (VRM.getStackSlot(VirtReg) == SS) {
 | |
|         Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   if (!Found)
 | |
|     return false;
 | |
| 
 | |
|   // Does the instruction uses a register that overlaps the scratch register?
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || MO.getReg() == 0)
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|       if (!VRM.hasPhys(Reg))
 | |
|         continue;
 | |
|       Reg = VRM.getPhys(Reg);
 | |
|     }
 | |
|     if (TRI->regsOverlap(PhysReg, Reg))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindFreeRegister - Find a free register of a given register class by looking
 | |
| /// at (at most) the last two machine instructions.
 | |
| static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
 | |
|                                  MachineBasicBlock &MBB,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  const TargetRegisterInfo *TRI,
 | |
|                                  BitVector &AllocatableRegs) {
 | |
|   BitVector Defs(TRI->getNumRegs());
 | |
|   BitVector Uses(TRI->getNumRegs());
 | |
|   SmallVector<unsigned, 4> LocalUses;
 | |
|   SmallVector<unsigned, 4> Kills;
 | |
| 
 | |
|   // Take a look at 2 instructions at most.
 | |
|   unsigned Count = 0;
 | |
|   while (Count < 2) {
 | |
|     if (MII == MBB.begin())
 | |
|       break;
 | |
|     MachineInstr *PrevMI = prior(MII);
 | |
|     MII = PrevMI;
 | |
| 
 | |
|     if (PrevMI->isDebugValue())
 | |
|       continue; // Skip over dbg_value instructions.
 | |
|     ++Count;
 | |
| 
 | |
|     for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = PrevMI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.getReg() == 0)
 | |
|         continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (MO.isDef()) {
 | |
|         Defs.set(Reg);
 | |
|         for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
 | |
|           Defs.set(*AS);
 | |
|       } else  {
 | |
|         LocalUses.push_back(Reg);
 | |
|         if (MO.isKill() && AllocatableRegs[Reg])
 | |
|           Kills.push_back(Reg);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
 | |
|       unsigned Kill = Kills[i];
 | |
|       if (!Defs[Kill] && !Uses[Kill] &&
 | |
|           RC->contains(Kill))
 | |
|         return Kill;
 | |
|     }
 | |
|     for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
 | |
|       unsigned Reg = LocalUses[i];
 | |
|       Uses.set(Reg);
 | |
|       for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
 | |
|         Uses.set(*AS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static
 | |
| void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
 | |
|                          const TargetRegisterInfo &TRI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.getReg() == VirtReg)
 | |
|       substitutePhysReg(MO, PhysReg, TRI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct RefSorter {
 | |
|   bool operator()(const std::pair<MachineInstr*, int> &A,
 | |
|                   const std::pair<MachineInstr*, int> &B) {
 | |
|     return A.second < B.second;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // ***************************** //
 | |
| // Local Spiller Implementation  //
 | |
| // ***************************** //
 | |
| 
 | |
| class LocalRewriter : public VirtRegRewriter {
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   const TargetInstrInfo *TII;
 | |
|   VirtRegMap *VRM;
 | |
|   BitVector AllocatableRegs;
 | |
|   DenseMap<MachineInstr*, unsigned> DistanceMap;
 | |
|   DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
 | |
| 
 | |
|   MachineBasicBlock *MBB;       // Basic block currently being processed.
 | |
| 
 | |
| public:
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
 | |
|                             LiveIntervals* LIs);
 | |
| 
 | |
| private:
 | |
| 
 | |
|   bool OptimizeByUnfold2(unsigned VirtReg, int SS,
 | |
|                          MachineBasicBlock::iterator &MII,
 | |
|                          std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                          AvailableSpills &Spills,
 | |
|                          BitVector &RegKills,
 | |
|                          std::vector<MachineOperand*> &KillOps);
 | |
| 
 | |
|   bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
 | |
|                         std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                         AvailableSpills &Spills,
 | |
|                         BitVector &RegKills,
 | |
|                         std::vector<MachineOperand*> &KillOps);
 | |
| 
 | |
|   bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
 | |
|                            unsigned VirtReg, unsigned SrcReg, int SS,
 | |
|                            AvailableSpills &Spills,
 | |
|                            BitVector &RegKills,
 | |
|                            std::vector<MachineOperand*> &KillOps,
 | |
|                            const TargetRegisterInfo *TRI);
 | |
| 
 | |
|   void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
 | |
|                            int Idx, unsigned PhysReg, int StackSlot,
 | |
|                            const TargetRegisterClass *RC,
 | |
|                            bool isAvailable, MachineInstr *&LastStore,
 | |
|                            AvailableSpills &Spills,
 | |
|                            SmallSet<MachineInstr*, 4> &ReMatDefs,
 | |
|                            BitVector &RegKills,
 | |
|                            std::vector<MachineOperand*> &KillOps);
 | |
| 
 | |
|   void TransferDeadness(unsigned Reg, BitVector &RegKills,
 | |
|                         std::vector<MachineOperand*> &KillOps);
 | |
| 
 | |
|   bool InsertEmergencySpills(MachineInstr *MI);
 | |
| 
 | |
|   bool InsertRestores(MachineInstr *MI,
 | |
|                       AvailableSpills &Spills,
 | |
|                       BitVector &RegKills,
 | |
|                       std::vector<MachineOperand*> &KillOps);
 | |
| 
 | |
|   bool InsertSpills(MachineInstr *MI);
 | |
| 
 | |
|   void RewriteMBB(LiveIntervals *LIs,
 | |
|                   AvailableSpills &Spills, BitVector &RegKills,
 | |
|                   std::vector<MachineOperand*> &KillOps);
 | |
| };
 | |
| }
 | |
| 
 | |
| bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
 | |
|                                          LiveIntervals* LIs) {
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TRI = MF.getTarget().getRegisterInfo();
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
|   VRM = &vrm;
 | |
|   AllocatableRegs = TRI->getAllocatableSet(MF);
 | |
|   DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
 | |
|         << MF.getFunction()->getName() << "':\n");
 | |
|   DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
 | |
|         " reloads!) ****\n");
 | |
|   DEBUG(MF.dump());
 | |
| 
 | |
|   // Spills - Keep track of which spilled values are available in physregs
 | |
|   // so that we can choose to reuse the physregs instead of emitting
 | |
|   // reloads. This is usually refreshed per basic block.
 | |
|   AvailableSpills Spills(TRI, TII);
 | |
| 
 | |
|   // Keep track of kill information.
 | |
|   BitVector RegKills(TRI->getNumRegs());
 | |
|   std::vector<MachineOperand*> KillOps;
 | |
|   KillOps.resize(TRI->getNumRegs(), NULL);
 | |
| 
 | |
|   // SingleEntrySuccs - Successor blocks which have a single predecessor.
 | |
|   SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
 | |
|   SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
 | |
| 
 | |
|   // Traverse the basic blocks depth first.
 | |
|   MachineBasicBlock *Entry = MF.begin();
 | |
|   SmallPtrSet<MachineBasicBlock*,16> Visited;
 | |
|   for (df_ext_iterator<MachineBasicBlock*,
 | |
|          SmallPtrSet<MachineBasicBlock*,16> >
 | |
|          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
 | |
|        DFI != E; ++DFI) {
 | |
|     MBB = *DFI;
 | |
|     if (!EarlyVisited.count(MBB))
 | |
|       RewriteMBB(LIs, Spills, RegKills, KillOps);
 | |
| 
 | |
|     // If this MBB is the only predecessor of a successor. Keep the
 | |
|     // availability information and visit it next.
 | |
|     do {
 | |
|       // Keep visiting single predecessor successor as long as possible.
 | |
|       SinglePredSuccs.clear();
 | |
|       findSinglePredSuccessor(MBB, SinglePredSuccs);
 | |
|       if (SinglePredSuccs.empty())
 | |
|         MBB = 0;
 | |
|       else {
 | |
|         // FIXME: More than one successors, each of which has MBB has
 | |
|         // the only predecessor.
 | |
|         MBB = SinglePredSuccs[0];
 | |
|         if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
 | |
|           Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
 | |
|           RewriteMBB(LIs, Spills, RegKills, KillOps);
 | |
|         }
 | |
|       }
 | |
|     } while (MBB);
 | |
| 
 | |
|     // Clear the availability info.
 | |
|     Spills.clear();
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
 | |
|   DEBUG(MF.dump());
 | |
| 
 | |
|   // Mark unused spill slots.
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   int SS = VRM->getLowSpillSlot();
 | |
|   if (SS != VirtRegMap::NO_STACK_SLOT) {
 | |
|     for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
 | |
|       SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
 | |
|       if (!VRM->isSpillSlotUsed(SS)) {
 | |
|         MFI->RemoveStackObject(SS);
 | |
|         for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
 | |
|           MachineInstr *DVMI = DbgValues[j];
 | |
|           MachineBasicBlock *DVMBB = DVMI->getParent();
 | |
|           DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
 | |
|           VRM->RemoveMachineInstrFromMaps(DVMI);
 | |
|           DVMBB->erase(DVMI);
 | |
|         }
 | |
|         ++NumDSS;
 | |
|       }
 | |
|       DbgValues.clear();
 | |
|     }
 | |
|   }
 | |
|   Slot2DbgValues.clear();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
 | |
| /// a scratch register is available.
 | |
| ///     xorq  %r12<kill>, %r13
 | |
| ///     addq  %rax, -184(%rbp)
 | |
| ///     addq  %r13, -184(%rbp)
 | |
| /// ==>
 | |
| ///     xorq  %r12<kill>, %r13
 | |
| ///     movq  -184(%rbp), %r12
 | |
| ///     addq  %rax, %r12
 | |
| ///     addq  %r13, %r12
 | |
| ///     movq  %r12, -184(%rbp)
 | |
| bool LocalRewriter::
 | |
| OptimizeByUnfold2(unsigned VirtReg, int SS,
 | |
|                   MachineBasicBlock::iterator &MII,
 | |
|                   std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                   AvailableSpills &Spills,
 | |
|                   BitVector &RegKills,
 | |
|                   std::vector<MachineOperand*> &KillOps) {
 | |
| 
 | |
|   MachineBasicBlock::iterator NextMII = llvm::next(MII);
 | |
|   // Skip over dbg_value instructions.
 | |
|   while (NextMII != MBB->end() && NextMII->isDebugValue())
 | |
|     NextMII = llvm::next(NextMII);
 | |
|   if (NextMII == MBB->end())
 | |
|     return false;
 | |
| 
 | |
|   if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Now let's see if the last couple of instructions happens to have freed up
 | |
|   // a register.
 | |
|   const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
 | |
|   unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
 | |
|   if (!PhysReg)
 | |
|     return false;
 | |
| 
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   TRI = MF.getTarget().getRegisterInfo();
 | |
|   MachineInstr &MI = *MII;
 | |
|   if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
 | |
|     return false;
 | |
| 
 | |
|   // If the next instruction also folds the same SS modref and can be unfoled,
 | |
|   // then it's worthwhile to issue a load from SS into the free register and
 | |
|   // then unfold these instructions.
 | |
|   if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
 | |
|     return false;
 | |
| 
 | |
|   // Back-schedule reloads and remats.
 | |
|   ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
 | |
| 
 | |
|   // Load from SS to the spare physical register.
 | |
|   TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
 | |
|   // This invalidates Phys.
 | |
|   Spills.ClobberPhysReg(PhysReg);
 | |
|   // Remember it's available.
 | |
|   Spills.addAvailable(SS, PhysReg);
 | |
|   MaybeDeadStores[SS] = NULL;
 | |
| 
 | |
|   // Unfold current MI.
 | |
|   SmallVector<MachineInstr*, 4> NewMIs;
 | |
|   if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
 | |
|     llvm_unreachable("Unable unfold the load / store folding instruction!");
 | |
|   assert(NewMIs.size() == 1);
 | |
|   AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
 | |
|   VRM->transferRestorePts(&MI, NewMIs[0]);
 | |
|   MII = MBB->insert(MII, NewMIs[0]);
 | |
|   InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|   VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|   MBB->erase(&MI);
 | |
|   ++NumModRefUnfold;
 | |
| 
 | |
|   // Unfold next instructions that fold the same SS.
 | |
|   do {
 | |
|     MachineInstr &NextMI = *NextMII;
 | |
|     NextMII = llvm::next(NextMII);
 | |
|     NewMIs.clear();
 | |
|     if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
 | |
|       llvm_unreachable("Unable unfold the load / store folding instruction!");
 | |
|     assert(NewMIs.size() == 1);
 | |
|     AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
 | |
|     VRM->transferRestorePts(&NextMI, NewMIs[0]);
 | |
|     MBB->insert(NextMII, NewMIs[0]);
 | |
|     InvalidateKills(NextMI, TRI, RegKills, KillOps);
 | |
|     VRM->RemoveMachineInstrFromMaps(&NextMI);
 | |
|     MBB->erase(&NextMI);
 | |
|     ++NumModRefUnfold;
 | |
|     // Skip over dbg_value instructions.
 | |
|     while (NextMII != MBB->end() && NextMII->isDebugValue())
 | |
|       NextMII = llvm::next(NextMII);
 | |
|     if (NextMII == MBB->end())
 | |
|       break;
 | |
|   } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
 | |
| 
 | |
|   // Store the value back into SS.
 | |
|   TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
 | |
|   MachineInstr *StoreMI = prior(NextMII);
 | |
|   VRM->addSpillSlotUse(SS, StoreMI);
 | |
|   VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// OptimizeByUnfold - Turn a store folding instruction into a load folding
 | |
| /// instruction. e.g.
 | |
| ///     xorl  %edi, %eax
 | |
| ///     movl  %eax, -32(%ebp)
 | |
| ///     movl  -36(%ebp), %eax
 | |
| ///     orl   %eax, -32(%ebp)
 | |
| /// ==>
 | |
| ///     xorl  %edi, %eax
 | |
| ///     orl   -36(%ebp), %eax
 | |
| ///     mov   %eax, -32(%ebp)
 | |
| /// This enables unfolding optimization for a subsequent instruction which will
 | |
| /// also eliminate the newly introduced store instruction.
 | |
| bool LocalRewriter::
 | |
| OptimizeByUnfold(MachineBasicBlock::iterator &MII,
 | |
|                  std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                  AvailableSpills &Spills,
 | |
|                  BitVector &RegKills,
 | |
|                  std::vector<MachineOperand*> &KillOps) {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineInstr &MI = *MII;
 | |
|   unsigned UnfoldedOpc = 0;
 | |
|   unsigned UnfoldPR = 0;
 | |
|   unsigned UnfoldVR = 0;
 | |
|   int FoldedSS = VirtRegMap::NO_STACK_SLOT;
 | |
|   VirtRegMap::MI2VirtMapTy::const_iterator I, End;
 | |
|   for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
 | |
|     // Only transform a MI that folds a single register.
 | |
|     if (UnfoldedOpc)
 | |
|       return false;
 | |
|     UnfoldVR = I->second.first;
 | |
|     VirtRegMap::ModRef MR = I->second.second;
 | |
|     // MI2VirtMap be can updated which invalidate the iterator.
 | |
|     // Increment the iterator first.
 | |
|     ++I;
 | |
|     if (VRM->isAssignedReg(UnfoldVR))
 | |
|       continue;
 | |
|     // If this reference is not a use, any previous store is now dead.
 | |
|     // Otherwise, the store to this stack slot is not dead anymore.
 | |
|     FoldedSS = VRM->getStackSlot(UnfoldVR);
 | |
|     MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
 | |
|     if (DeadStore && (MR & VirtRegMap::isModRef)) {
 | |
|       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
 | |
|       if (!PhysReg || !DeadStore->readsRegister(PhysReg))
 | |
|         continue;
 | |
|       UnfoldPR = PhysReg;
 | |
|       UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
 | |
|                                                     false, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!UnfoldedOpc) {
 | |
|     if (!UnfoldVR)
 | |
|       return false;
 | |
| 
 | |
|     // Look for other unfolding opportunities.
 | |
|     return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
 | |
|                              RegKills, KillOps);
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned VirtReg = MO.getReg();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
 | |
|       continue;
 | |
|     if (VRM->isAssignedReg(VirtReg)) {
 | |
|       unsigned PhysReg = VRM->getPhys(VirtReg);
 | |
|       if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
 | |
|         return false;
 | |
|     } else if (VRM->isReMaterialized(VirtReg))
 | |
|       continue;
 | |
|     int SS = VRM->getStackSlot(VirtReg);
 | |
|     unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | |
|     if (PhysReg) {
 | |
|       if (TRI->regsOverlap(PhysReg, UnfoldPR))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     if (VRM->hasPhys(VirtReg)) {
 | |
|       PhysReg = VRM->getPhys(VirtReg);
 | |
|       if (!TRI->regsOverlap(PhysReg, UnfoldPR))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Ok, we'll need to reload the value into a register which makes
 | |
|     // it impossible to perform the store unfolding optimization later.
 | |
|     // Let's see if it is possible to fold the load if the store is
 | |
|     // unfolded. This allows us to perform the store unfolding
 | |
|     // optimization.
 | |
|     SmallVector<MachineInstr*, 4> NewMIs;
 | |
|     if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
 | |
|       assert(NewMIs.size() == 1);
 | |
|       MachineInstr *NewMI = NewMIs.back();
 | |
|       MBB->insert(MII, NewMI);
 | |
|       NewMIs.clear();
 | |
|       int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
 | |
|       assert(Idx != -1);
 | |
|       SmallVector<unsigned, 1> Ops;
 | |
|       Ops.push_back(Idx);
 | |
|       MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
 | |
|       NewMI->eraseFromParent();
 | |
|       if (FoldedMI) {
 | |
|         VRM->addSpillSlotUse(SS, FoldedMI);
 | |
|         if (!VRM->hasPhys(UnfoldVR))
 | |
|           VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
 | |
|         VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
 | |
|         MII = FoldedMI;
 | |
|         InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|         VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|         MBB->erase(&MI);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
 | |
| /// where SrcReg is r1 and it is tied to r0. Return true if after
 | |
| /// commuting this instruction it will be r0 = op r2, r1.
 | |
| static bool CommuteChangesDestination(MachineInstr *DefMI,
 | |
|                                       const TargetInstrDesc &TID,
 | |
|                                       unsigned SrcReg,
 | |
|                                       const TargetInstrInfo *TII,
 | |
|                                       unsigned &DstIdx) {
 | |
|   if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
 | |
|     return false;
 | |
|   if (!DefMI->getOperand(1).isReg() ||
 | |
|       DefMI->getOperand(1).getReg() != SrcReg)
 | |
|     return false;
 | |
|   unsigned DefIdx;
 | |
|   if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
 | |
|     return false;
 | |
|   unsigned SrcIdx1, SrcIdx2;
 | |
|   if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
 | |
|     return false;
 | |
|   if (SrcIdx1 == 1 && SrcIdx2 == 2) {
 | |
|     DstIdx = 2;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CommuteToFoldReload -
 | |
| /// Look for
 | |
| /// r1 = load fi#1
 | |
| /// r1 = op r1, r2<kill>
 | |
| /// store r1, fi#1
 | |
| ///
 | |
| /// If op is commutable and r2 is killed, then we can xform these to
 | |
| /// r2 = op r2, fi#1
 | |
| /// store r2, fi#1
 | |
| bool LocalRewriter::
 | |
| CommuteToFoldReload(MachineBasicBlock::iterator &MII,
 | |
|                     unsigned VirtReg, unsigned SrcReg, int SS,
 | |
|                     AvailableSpills &Spills,
 | |
|                     BitVector &RegKills,
 | |
|                     std::vector<MachineOperand*> &KillOps,
 | |
|                     const TargetRegisterInfo *TRI) {
 | |
|   if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr &MI = *MII;
 | |
|   MachineBasicBlock::iterator DefMII = prior(MII);
 | |
|   MachineInstr *DefMI = DefMII;
 | |
|   const TargetInstrDesc &TID = DefMI->getDesc();
 | |
|   unsigned NewDstIdx;
 | |
|   if (DefMII != MBB->begin() &&
 | |
|       TID.isCommutable() &&
 | |
|       CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
 | |
|     MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
 | |
|     unsigned NewReg = NewDstMO.getReg();
 | |
|     if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
 | |
|       return false;
 | |
|     MachineInstr *ReloadMI = prior(DefMII);
 | |
|     int FrameIdx;
 | |
|     unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
 | |
|     if (DestReg != SrcReg || FrameIdx != SS)
 | |
|       return false;
 | |
|     int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
 | |
|     if (UseIdx == -1)
 | |
|       return false;
 | |
|     unsigned DefIdx;
 | |
|     if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
 | |
|       return false;
 | |
|     assert(DefMI->getOperand(DefIdx).isReg() &&
 | |
|            DefMI->getOperand(DefIdx).getReg() == SrcReg);
 | |
| 
 | |
|     // Now commute def instruction.
 | |
|     MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
 | |
|     if (!CommutedMI)
 | |
|       return false;
 | |
|     MBB->insert(MII, CommutedMI);
 | |
|     SmallVector<unsigned, 1> Ops;
 | |
|     Ops.push_back(NewDstIdx);
 | |
|     MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
 | |
|     // Not needed since foldMemoryOperand returns new MI.
 | |
|     CommutedMI->eraseFromParent();
 | |
|     if (!FoldedMI)
 | |
|       return false;
 | |
| 
 | |
|     VRM->addSpillSlotUse(SS, FoldedMI);
 | |
|     VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
 | |
|     // Insert new def MI and spill MI.
 | |
|     const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
 | |
|     TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
 | |
|     MII = prior(MII);
 | |
|     MachineInstr *StoreMI = MII;
 | |
|     VRM->addSpillSlotUse(SS, StoreMI);
 | |
|     VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
 | |
|     MII = FoldedMI;  // Update MII to backtrack.
 | |
| 
 | |
|     // Delete all 3 old instructions.
 | |
|     InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
 | |
|     VRM->RemoveMachineInstrFromMaps(ReloadMI);
 | |
|     MBB->erase(ReloadMI);
 | |
|     InvalidateKills(*DefMI, TRI, RegKills, KillOps);
 | |
|     VRM->RemoveMachineInstrFromMaps(DefMI);
 | |
|     MBB->erase(DefMI);
 | |
|     InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|     VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|     MBB->erase(&MI);
 | |
| 
 | |
|     // If NewReg was previously holding value of some SS, it's now clobbered.
 | |
|     // This has to be done now because it's a physical register. When this
 | |
|     // instruction is re-visited, it's ignored.
 | |
|     Spills.ClobberPhysReg(NewReg);
 | |
| 
 | |
|     ++NumCommutes;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
 | |
| /// the last store to the same slot is now dead. If so, remove the last store.
 | |
| void LocalRewriter::
 | |
| SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
 | |
|                     int Idx, unsigned PhysReg, int StackSlot,
 | |
|                     const TargetRegisterClass *RC,
 | |
|                     bool isAvailable, MachineInstr *&LastStore,
 | |
|                     AvailableSpills &Spills,
 | |
|                     SmallSet<MachineInstr*, 4> &ReMatDefs,
 | |
|                     BitVector &RegKills,
 | |
|                     std::vector<MachineOperand*> &KillOps) {
 | |
| 
 | |
|   MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
 | |
|   TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
 | |
|                            TRI);
 | |
|   MachineInstr *StoreMI = prior(oldNextMII);
 | |
|   VRM->addSpillSlotUse(StackSlot, StoreMI);
 | |
|   DEBUG(dbgs() << "Store:\t" << *StoreMI);
 | |
| 
 | |
|   // If there is a dead store to this stack slot, nuke it now.
 | |
|   if (LastStore) {
 | |
|     DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
 | |
|     ++NumDSE;
 | |
|     SmallVector<unsigned, 2> KillRegs;
 | |
|     InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
 | |
|     MachineBasicBlock::iterator PrevMII = LastStore;
 | |
|     bool CheckDef = PrevMII != MBB->begin();
 | |
|     if (CheckDef)
 | |
|       --PrevMII;
 | |
|     VRM->RemoveMachineInstrFromMaps(LastStore);
 | |
|     MBB->erase(LastStore);
 | |
|     if (CheckDef) {
 | |
|       // Look at defs of killed registers on the store. Mark the defs
 | |
|       // as dead since the store has been deleted and they aren't
 | |
|       // being reused.
 | |
|       for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
 | |
|         bool HasOtherDef = false;
 | |
|         if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
 | |
|           MachineInstr *DeadDef = PrevMII;
 | |
|           if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
 | |
|             // FIXME: This assumes a remat def does not have side effects.
 | |
|             VRM->RemoveMachineInstrFromMaps(DeadDef);
 | |
|             MBB->erase(DeadDef);
 | |
|             ++NumDRM;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Allow for multi-instruction spill sequences, as on PPC Altivec.  Presume
 | |
|   // the last of multiple instructions is the actual store.
 | |
|   LastStore = prior(oldNextMII);
 | |
| 
 | |
|   // If the stack slot value was previously available in some other
 | |
|   // register, change it now.  Otherwise, make the register available,
 | |
|   // in PhysReg.
 | |
|   Spills.ModifyStackSlotOrReMat(StackSlot);
 | |
|   Spills.ClobberPhysReg(PhysReg);
 | |
|   Spills.addAvailable(StackSlot, PhysReg, isAvailable);
 | |
|   ++NumStores;
 | |
| }
 | |
| 
 | |
| /// isSafeToDelete - Return true if this instruction doesn't produce any side
 | |
| /// effect and all of its defs are dead.
 | |
| static bool isSafeToDelete(MachineInstr &MI) {
 | |
|   const TargetInstrDesc &TID = MI.getDesc();
 | |
|   if (TID.mayLoad() || TID.mayStore() || TID.isCall() || TID.isTerminator() ||
 | |
|       TID.isCall() || TID.isBarrier() || TID.isReturn() ||
 | |
|       TID.hasUnmodeledSideEffects())
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.getReg())
 | |
|       continue;
 | |
|     if (MO.isDef() && !MO.isDead())
 | |
|       return false;
 | |
|     if (MO.isUse() && MO.isKill())
 | |
|       // FIXME: We can't remove kill markers or else the scavenger will assert.
 | |
|       // An alternative is to add a ADD pseudo instruction to replace kill
 | |
|       // markers.
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// TransferDeadness - A identity copy definition is dead and it's being
 | |
| /// removed. Find the last def or use and mark it as dead / kill.
 | |
| void LocalRewriter::
 | |
| TransferDeadness(unsigned Reg, BitVector &RegKills,
 | |
|                  std::vector<MachineOperand*> &KillOps) {
 | |
|   SmallPtrSet<MachineInstr*, 4> Seens;
 | |
|   SmallVector<std::pair<MachineInstr*, int>,8> Refs;
 | |
|   for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
 | |
|          RE = MRI->reg_end(); RI != RE; ++RI) {
 | |
|     MachineInstr *UDMI = &*RI;
 | |
|     if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
 | |
|       continue;
 | |
|     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
 | |
|     if (DI == DistanceMap.end())
 | |
|       continue;
 | |
|     if (Seens.insert(UDMI))
 | |
|       Refs.push_back(std::make_pair(UDMI, DI->second));
 | |
|   }
 | |
| 
 | |
|   if (Refs.empty())
 | |
|     return;
 | |
|   std::sort(Refs.begin(), Refs.end(), RefSorter());
 | |
| 
 | |
|   while (!Refs.empty()) {
 | |
|     MachineInstr *LastUDMI = Refs.back().first;
 | |
|     Refs.pop_back();
 | |
| 
 | |
|     MachineOperand *LastUD = NULL;
 | |
|     for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = LastUDMI->getOperand(i);
 | |
|       if (!MO.isReg() || MO.getReg() != Reg)
 | |
|         continue;
 | |
|       if (!LastUD || (LastUD->isUse() && MO.isDef()))
 | |
|         LastUD = &MO;
 | |
|       if (LastUDMI->isRegTiedToDefOperand(i))
 | |
|         break;
 | |
|     }
 | |
|     if (LastUD->isDef()) {
 | |
|       // If the instruction has no side effect, delete it and propagate
 | |
|       // backward further. Otherwise, mark is dead and we are done.
 | |
|       if (!isSafeToDelete(*LastUDMI)) {
 | |
|         LastUD->setIsDead();
 | |
|         break;
 | |
|       }
 | |
|       VRM->RemoveMachineInstrFromMaps(LastUDMI);
 | |
|       MBB->erase(LastUDMI);
 | |
|     } else {
 | |
|       LastUD->setIsKill();
 | |
|       RegKills.set(Reg);
 | |
|       KillOps[Reg] = LastUD;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InsertEmergencySpills - Insert emergency spills before MI if requested by
 | |
| /// VRM. Return true if spills were inserted.
 | |
| bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
 | |
|   if (!VRM->hasEmergencySpills(MI))
 | |
|     return false;
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   SmallSet<int, 4> UsedSS;
 | |
|   std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
 | |
|   for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
 | |
|     unsigned PhysReg = EmSpills[i];
 | |
|     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
 | |
|     assert(RC && "Unable to determine register class!");
 | |
|     int SS = VRM->getEmergencySpillSlot(RC);
 | |
|     if (UsedSS.count(SS))
 | |
|       llvm_unreachable("Need to spill more than one physical registers!");
 | |
|     UsedSS.insert(SS);
 | |
|     TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
 | |
|     MachineInstr *StoreMI = prior(MII);
 | |
|     VRM->addSpillSlotUse(SS, StoreMI);
 | |
| 
 | |
|     // Back-schedule reloads and remats.
 | |
|     MachineBasicBlock::iterator InsertLoc =
 | |
|       ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
 | |
|                        TII, *MBB->getParent());
 | |
| 
 | |
|     TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
 | |
| 
 | |
|     MachineInstr *LoadMI = prior(InsertLoc);
 | |
|     VRM->addSpillSlotUse(SS, LoadMI);
 | |
|     ++NumPSpills;
 | |
|     DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InsertRestores - Restore registers before MI is requested by VRM. Return
 | |
| /// true is any instructions were inserted.
 | |
| bool LocalRewriter::InsertRestores(MachineInstr *MI,
 | |
|                                    AvailableSpills &Spills,
 | |
|                                    BitVector &RegKills,
 | |
|                                    std::vector<MachineOperand*> &KillOps) {
 | |
|   if (!VRM->isRestorePt(MI))
 | |
|     return false;
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
 | |
|   for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
 | |
|     unsigned VirtReg = RestoreRegs[e-i-1];  // Reverse order.
 | |
|     if (!VRM->getPreSplitReg(VirtReg))
 | |
|       continue; // Split interval spilled again.
 | |
|     unsigned Phys = VRM->getPhys(VirtReg);
 | |
|     MRI->setPhysRegUsed(Phys);
 | |
| 
 | |
|     // Check if the value being restored if available. If so, it must be
 | |
|     // from a predecessor BB that fallthrough into this BB. We do not
 | |
|     // expect:
 | |
|     // BB1:
 | |
|     // r1 = load fi#1
 | |
|     // ...
 | |
|     //    = r1<kill>
 | |
|     // ... # r1 not clobbered
 | |
|     // ...
 | |
|     //    = load fi#1
 | |
|     bool DoReMat = VRM->isReMaterialized(VirtReg);
 | |
|     int SSorRMId = DoReMat
 | |
|       ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
 | |
|     unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
 | |
|     if (InReg == Phys) {
 | |
|       // If the value is already available in the expected register, save
 | |
|       // a reload / remat.
 | |
|       if (SSorRMId)
 | |
|         DEBUG(dbgs() << "Reusing RM#"
 | |
|                      << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
 | |
|       else
 | |
|         DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
 | |
|       DEBUG(dbgs() << " from physreg "
 | |
|                    << TRI->getName(InReg) << " for vreg"
 | |
|                    << VirtReg <<" instead of reloading into physreg "
 | |
|                    << TRI->getName(Phys) << '\n');
 | |
|       ++NumOmitted;
 | |
|       continue;
 | |
|     } else if (InReg && InReg != Phys) {
 | |
|       if (SSorRMId)
 | |
|         DEBUG(dbgs() << "Reusing RM#"
 | |
|                      << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
 | |
|       else
 | |
|         DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
 | |
|       DEBUG(dbgs() << " from physreg "
 | |
|                    << TRI->getName(InReg) << " for vreg"
 | |
|                    << VirtReg <<" by copying it into physreg "
 | |
|                    << TRI->getName(Phys) << '\n');
 | |
| 
 | |
|       // If the reloaded / remat value is available in another register,
 | |
|       // copy it to the desired register.
 | |
| 
 | |
|       // Back-schedule reloads and remats.
 | |
|       MachineBasicBlock::iterator InsertLoc =
 | |
|         ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
 | |
|                          *MBB->getParent());
 | |
|       MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
 | |
|                                      TII->get(TargetOpcode::COPY), Phys)
 | |
|                                .addReg(InReg, RegState::Kill);
 | |
| 
 | |
|       // This invalidates Phys.
 | |
|       Spills.ClobberPhysReg(Phys);
 | |
|       // Remember it's available.
 | |
|       Spills.addAvailable(SSorRMId, Phys);
 | |
| 
 | |
|       CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
 | |
|       UpdateKills(*CopyMI, TRI, RegKills, KillOps);
 | |
| 
 | |
|       DEBUG(dbgs() << '\t' << *CopyMI);
 | |
|       ++NumCopified;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Back-schedule reloads and remats.
 | |
|     MachineBasicBlock::iterator InsertLoc =
 | |
|       ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
 | |
|                        *MBB->getParent());
 | |
| 
 | |
|     if (VRM->isReMaterialized(VirtReg)) {
 | |
|       ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
 | |
|     } else {
 | |
|       const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
 | |
|       TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
 | |
|       MachineInstr *LoadMI = prior(InsertLoc);
 | |
|       VRM->addSpillSlotUse(SSorRMId, LoadMI);
 | |
|       ++NumLoads;
 | |
|       DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
 | |
|     }
 | |
| 
 | |
|     // This invalidates Phys.
 | |
|     Spills.ClobberPhysReg(Phys);
 | |
|     // Remember it's available.
 | |
|     Spills.addAvailable(SSorRMId, Phys);
 | |
| 
 | |
|     UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
 | |
|     DEBUG(dbgs() << '\t' << *prior(MII));
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// InsertEmergencySpills - Insert spills after MI if requested by VRM. Return
 | |
| /// true if spills were inserted.
 | |
| bool LocalRewriter::InsertSpills(MachineInstr *MI) {
 | |
|   if (!VRM->isSpillPt(MI))
 | |
|     return false;
 | |
|   MachineBasicBlock::iterator MII = MI;
 | |
|   std::vector<std::pair<unsigned,bool> > &SpillRegs =
 | |
|     VRM->getSpillPtSpills(MI);
 | |
|   for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
 | |
|     unsigned VirtReg = SpillRegs[i].first;
 | |
|     bool isKill = SpillRegs[i].second;
 | |
|     if (!VRM->getPreSplitReg(VirtReg))
 | |
|       continue; // Split interval spilled again.
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
 | |
|     unsigned Phys = VRM->getPhys(VirtReg);
 | |
|     int StackSlot = VRM->getStackSlot(VirtReg);
 | |
|     MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
 | |
|     TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
 | |
|                              RC, TRI);
 | |
|     MachineInstr *StoreMI = prior(oldNextMII);
 | |
|     VRM->addSpillSlotUse(StackSlot, StoreMI);
 | |
|     DEBUG(dbgs() << "Store:\t" << *StoreMI);
 | |
|     VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// rewriteMBB - Keep track of which spills are available even after the
 | |
| /// register allocator is done with them.  If possible, avoid reloading vregs.
 | |
| void
 | |
| LocalRewriter::RewriteMBB(LiveIntervals *LIs,
 | |
|                           AvailableSpills &Spills, BitVector &RegKills,
 | |
|                           std::vector<MachineOperand*> &KillOps) {
 | |
| 
 | |
|   DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
 | |
|                << MBB->getName() << "':\n");
 | |
| 
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
| 
 | |
|   // MaybeDeadStores - When we need to write a value back into a stack slot,
 | |
|   // keep track of the inserted store.  If the stack slot value is never read
 | |
|   // (because the value was used from some available register, for example), and
 | |
|   // subsequently stored to, the original store is dead.  This map keeps track
 | |
|   // of inserted stores that are not used.  If we see a subsequent store to the
 | |
|   // same stack slot, the original store is deleted.
 | |
|   std::vector<MachineInstr*> MaybeDeadStores;
 | |
|   MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
 | |
| 
 | |
|   // ReMatDefs - These are rematerializable def MIs which are not deleted.
 | |
|   SmallSet<MachineInstr*, 4> ReMatDefs;
 | |
| 
 | |
|   // Clear kill info.
 | |
|   SmallSet<unsigned, 2> KilledMIRegs;
 | |
| 
 | |
|   // Keep track of the registers we have already spilled in case there are
 | |
|   // multiple defs of the same register in MI.
 | |
|   SmallSet<unsigned, 8> SpilledMIRegs;
 | |
| 
 | |
|   RegKills.reset();
 | |
|   KillOps.clear();
 | |
|   KillOps.resize(TRI->getNumRegs(), NULL);
 | |
| 
 | |
|   DistanceMap.clear();
 | |
|   for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
 | |
|        MII != E; ) {
 | |
|     MachineBasicBlock::iterator NextMII = llvm::next(MII);
 | |
| 
 | |
|     if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
 | |
|       NextMII = llvm::next(MII);
 | |
| 
 | |
|     if (InsertEmergencySpills(MII))
 | |
|       NextMII = llvm::next(MII);
 | |
| 
 | |
|     InsertRestores(MII, Spills, RegKills, KillOps);
 | |
| 
 | |
|     if (InsertSpills(MII))
 | |
|       NextMII = llvm::next(MII);
 | |
| 
 | |
|     bool Erased = false;
 | |
|     bool BackTracked = false;
 | |
|     MachineInstr &MI = *MII;
 | |
| 
 | |
|     // Remember DbgValue's which reference stack slots.
 | |
|     if (MI.isDebugValue() && MI.getOperand(0).isFI())
 | |
|       Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
 | |
| 
 | |
|     /// ReusedOperands - Keep track of operand reuse in case we need to undo
 | |
|     /// reuse.
 | |
|     ReuseInfo ReusedOperands(MI, TRI);
 | |
|     SmallVector<unsigned, 4> VirtUseOps;
 | |
|     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!MO.isReg() || MO.getReg() == 0)
 | |
|         continue;   // Ignore non-register operands.
 | |
| 
 | |
|       unsigned VirtReg = MO.getReg();
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
 | |
|         // Ignore physregs for spilling, but remember that it is used by this
 | |
|         // function.
 | |
|         MRI->setPhysRegUsed(VirtReg);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We want to process implicit virtual register uses first.
 | |
|       if (MO.isImplicit())
 | |
|         // If the virtual register is implicitly defined, emit a implicit_def
 | |
|         // before so scavenger knows it's "defined".
 | |
|         // FIXME: This is a horrible hack done the by register allocator to
 | |
|         // remat a definition with virtual register operand.
 | |
|         VirtUseOps.insert(VirtUseOps.begin(), i);
 | |
|       else
 | |
|         VirtUseOps.push_back(i);
 | |
|     }
 | |
| 
 | |
|     // Process all of the spilled uses and all non spilled reg references.
 | |
|     SmallVector<int, 2> PotentialDeadStoreSlots;
 | |
|     KilledMIRegs.clear();
 | |
|     for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
 | |
|       unsigned i = VirtUseOps[j];
 | |
|       unsigned VirtReg = MI.getOperand(i).getReg();
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
 | |
|              "Not a virtual register?");
 | |
| 
 | |
|       unsigned SubIdx = MI.getOperand(i).getSubReg();
 | |
|       if (VRM->isAssignedReg(VirtReg)) {
 | |
|         // This virtual register was assigned a physreg!
 | |
|         unsigned Phys = VRM->getPhys(VirtReg);
 | |
|         MRI->setPhysRegUsed(Phys);
 | |
|         if (MI.getOperand(i).isDef())
 | |
|           ReusedOperands.markClobbered(Phys);
 | |
|         substitutePhysReg(MI.getOperand(i), Phys, *TRI);
 | |
|         if (VRM->isImplicitlyDefined(VirtReg))
 | |
|           // FIXME: Is this needed?
 | |
|           BuildMI(*MBB, &MI, MI.getDebugLoc(),
 | |
|                   TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // This virtual register is now known to be a spilled value.
 | |
|       if (!MI.getOperand(i).isUse())
 | |
|         continue;  // Handle defs in the loop below (handle use&def here though)
 | |
| 
 | |
|       bool AvoidReload = MI.getOperand(i).isUndef();
 | |
|       // Check if it is defined by an implicit def. It should not be spilled.
 | |
|       // Note, this is for correctness reason. e.g.
 | |
|       // 8   %reg1024<def> = IMPLICIT_DEF
 | |
|       // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
 | |
|       // The live range [12, 14) are not part of the r1024 live interval since
 | |
|       // it's defined by an implicit def. It will not conflicts with live
 | |
|       // interval of r1025. Now suppose both registers are spilled, you can
 | |
|       // easily see a situation where both registers are reloaded before
 | |
|       // the INSERT_SUBREG and both target registers that would overlap.
 | |
|       bool DoReMat = VRM->isReMaterialized(VirtReg);
 | |
|       int SSorRMId = DoReMat
 | |
|         ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
 | |
|       int ReuseSlot = SSorRMId;
 | |
| 
 | |
|       // Check to see if this stack slot is available.
 | |
|       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
 | |
| 
 | |
|       // If this is a sub-register use, make sure the reuse register is in the
 | |
|       // right register class. For example, for x86 not all of the 32-bit
 | |
|       // registers have accessible sub-registers.
 | |
|       // Similarly so for EXTRACT_SUBREG. Consider this:
 | |
|       // EDI = op
 | |
|       // MOV32_mr fi#1, EDI
 | |
|       // ...
 | |
|       //       = EXTRACT_SUBREG fi#1
 | |
|       // fi#1 is available in EDI, but it cannot be reused because it's not in
 | |
|       // the right register file.
 | |
|       if (PhysReg && !AvoidReload && SubIdx) {
 | |
|         const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
 | |
|         if (!RC->contains(PhysReg))
 | |
|           PhysReg = 0;
 | |
|       }
 | |
| 
 | |
|       if (PhysReg && !AvoidReload) {
 | |
|         // This spilled operand might be part of a two-address operand.  If this
 | |
|         // is the case, then changing it will necessarily require changing the
 | |
|         // def part of the instruction as well.  However, in some cases, we
 | |
|         // aren't allowed to modify the reused register.  If none of these cases
 | |
|         // apply, reuse it.
 | |
|         bool CanReuse = true;
 | |
|         bool isTied = MI.isRegTiedToDefOperand(i);
 | |
|         if (isTied) {
 | |
|           // Okay, we have a two address operand.  We can reuse this physreg as
 | |
|           // long as we are allowed to clobber the value and there isn't an
 | |
|           // earlier def that has already clobbered the physreg.
 | |
|           CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
 | |
|             Spills.canClobberPhysReg(PhysReg);
 | |
|         }
 | |
|         // If this is an asm, and PhysReg is used elsewhere as an earlyclobber
 | |
|         // operand, we can't also use it as an input.  (Outputs always come
 | |
|         // before inputs, so we can stop looking at i.)
 | |
|         if (MI.isInlineAsm()) {
 | |
|           for (unsigned k=0; k<i; ++k) {
 | |
|             MachineOperand &MOk = MI.getOperand(k);
 | |
|             if (MOk.isReg() && MOk.getReg()==PhysReg && MOk.isEarlyClobber()) {
 | |
|               CanReuse = false;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (CanReuse) {
 | |
|           // If this stack slot value is already available, reuse it!
 | |
|           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | |
|             DEBUG(dbgs() << "Reusing RM#"
 | |
|                   << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
 | |
|           else
 | |
|             DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
 | |
|           DEBUG(dbgs() << " from physreg "
 | |
|                 << TRI->getName(PhysReg) << " for vreg"
 | |
|                 << VirtReg <<" instead of reloading into physreg "
 | |
|                 << TRI->getName(VRM->getPhys(VirtReg)) << '\n');
 | |
|           unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|           MI.getOperand(i).setReg(RReg);
 | |
|           MI.getOperand(i).setSubReg(0);
 | |
| 
 | |
|           // The only technical detail we have is that we don't know that
 | |
|           // PhysReg won't be clobbered by a reloaded stack slot that occurs
 | |
|           // later in the instruction.  In particular, consider 'op V1, V2'.
 | |
|           // If V1 is available in physreg R0, we would choose to reuse it
 | |
|           // here, instead of reloading it into the register the allocator
 | |
|           // indicated (say R1).  However, V2 might have to be reloaded
 | |
|           // later, and it might indicate that it needs to live in R0.  When
 | |
|           // this occurs, we need to have information available that
 | |
|           // indicates it is safe to use R1 for the reload instead of R0.
 | |
|           //
 | |
|           // To further complicate matters, we might conflict with an alias,
 | |
|           // or R0 and R1 might not be compatible with each other.  In this
 | |
|           // case, we actually insert a reload for V1 in R1, ensuring that
 | |
|           // we can get at R0 or its alias.
 | |
|           ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
 | |
|                                   VRM->getPhys(VirtReg), VirtReg);
 | |
|           if (isTied)
 | |
|             // Only mark it clobbered if this is a use&def operand.
 | |
|             ReusedOperands.markClobbered(PhysReg);
 | |
|           ++NumReused;
 | |
| 
 | |
|           if (MI.getOperand(i).isKill() &&
 | |
|               ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
 | |
| 
 | |
|             // The store of this spilled value is potentially dead, but we
 | |
|             // won't know for certain until we've confirmed that the re-use
 | |
|             // above is valid, which means waiting until the other operands
 | |
|             // are processed. For now we just track the spill slot, we'll
 | |
|             // remove it after the other operands are processed if valid.
 | |
| 
 | |
|             PotentialDeadStoreSlots.push_back(ReuseSlot);
 | |
|           }
 | |
| 
 | |
|           // Mark is isKill if it's there no other uses of the same virtual
 | |
|           // register and it's not a two-address operand. IsKill will be
 | |
|           // unset if reg is reused.
 | |
|           if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
 | |
|             MI.getOperand(i).setIsKill();
 | |
|             KilledMIRegs.insert(VirtReg);
 | |
|           }
 | |
| 
 | |
|           continue;
 | |
|         }  // CanReuse
 | |
| 
 | |
|         // Otherwise we have a situation where we have a two-address instruction
 | |
|         // whose mod/ref operand needs to be reloaded.  This reload is already
 | |
|         // available in some register "PhysReg", but if we used PhysReg as the
 | |
|         // operand to our 2-addr instruction, the instruction would modify
 | |
|         // PhysReg.  This isn't cool if something later uses PhysReg and expects
 | |
|         // to get its initial value.
 | |
|         //
 | |
|         // To avoid this problem, and to avoid doing a load right after a store,
 | |
|         // we emit a copy from PhysReg into the designated register for this
 | |
|         // operand.
 | |
|         //
 | |
|         // This case also applies to an earlyclobber'd PhysReg.
 | |
|         unsigned DesignatedReg = VRM->getPhys(VirtReg);
 | |
|         assert(DesignatedReg && "Must map virtreg to physreg!");
 | |
| 
 | |
|         // Note that, if we reused a register for a previous operand, the
 | |
|         // register we want to reload into might not actually be
 | |
|         // available.  If this occurs, use the register indicated by the
 | |
|         // reuser.
 | |
|         if (ReusedOperands.hasReuses())
 | |
|           DesignatedReg = ReusedOperands.
 | |
|             GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
 | |
|                             MaybeDeadStores, RegKills, KillOps, *VRM);
 | |
| 
 | |
|         // If the mapped designated register is actually the physreg we have
 | |
|         // incoming, we don't need to inserted a dead copy.
 | |
|         if (DesignatedReg == PhysReg) {
 | |
|           // If this stack slot value is already available, reuse it!
 | |
|           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | |
|             DEBUG(dbgs() << "Reusing RM#"
 | |
|                   << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
 | |
|           else
 | |
|             DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
 | |
|           DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
 | |
|                 << " for vreg" << VirtReg
 | |
|                 << " instead of reloading into same physreg.\n");
 | |
|           unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|           MI.getOperand(i).setReg(RReg);
 | |
|           MI.getOperand(i).setSubReg(0);
 | |
|           ReusedOperands.markClobbered(RReg);
 | |
|           ++NumReused;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         MRI->setPhysRegUsed(DesignatedReg);
 | |
|         ReusedOperands.markClobbered(DesignatedReg);
 | |
| 
 | |
|         // Back-schedule reloads and remats.
 | |
|         MachineBasicBlock::iterator InsertLoc =
 | |
|           ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
 | |
|                            SSorRMId, TII, MF);
 | |
|         MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
 | |
|                                        TII->get(TargetOpcode::COPY),
 | |
|                                        DesignatedReg).addReg(PhysReg);
 | |
|         CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
 | |
|         UpdateKills(*CopyMI, TRI, RegKills, KillOps);
 | |
| 
 | |
|         // This invalidates DesignatedReg.
 | |
|         Spills.ClobberPhysReg(DesignatedReg);
 | |
| 
 | |
|         Spills.addAvailable(ReuseSlot, DesignatedReg);
 | |
|         unsigned RReg =
 | |
|           SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
 | |
|         MI.getOperand(i).setReg(RReg);
 | |
|         MI.getOperand(i).setSubReg(0);
 | |
|         DEBUG(dbgs() << '\t' << *prior(MII));
 | |
|         ++NumReused;
 | |
|         continue;
 | |
|       } // if (PhysReg)
 | |
| 
 | |
|         // Otherwise, reload it and remember that we have it.
 | |
|       PhysReg = VRM->getPhys(VirtReg);
 | |
|       assert(PhysReg && "Must map virtreg to physreg!");
 | |
| 
 | |
|       // Note that, if we reused a register for a previous operand, the
 | |
|       // register we want to reload into might not actually be
 | |
|       // available.  If this occurs, use the register indicated by the
 | |
|       // reuser.
 | |
|       if (ReusedOperands.hasReuses())
 | |
|         PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
 | |
|                     Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
 | |
| 
 | |
|       MRI->setPhysRegUsed(PhysReg);
 | |
|       ReusedOperands.markClobbered(PhysReg);
 | |
|       if (AvoidReload)
 | |
|         ++NumAvoided;
 | |
|       else {
 | |
|         // Back-schedule reloads and remats.
 | |
|         MachineBasicBlock::iterator InsertLoc =
 | |
|           ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, DoReMat,
 | |
|                            SSorRMId, TII, MF);
 | |
| 
 | |
|         if (DoReMat) {
 | |
|           ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
 | |
|         } else {
 | |
|           const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
 | |
|           TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
 | |
|           MachineInstr *LoadMI = prior(InsertLoc);
 | |
|           VRM->addSpillSlotUse(SSorRMId, LoadMI);
 | |
|           ++NumLoads;
 | |
|           DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
 | |
|         }
 | |
|         // This invalidates PhysReg.
 | |
|         Spills.ClobberPhysReg(PhysReg);
 | |
| 
 | |
|         // Any stores to this stack slot are not dead anymore.
 | |
|         if (!DoReMat)
 | |
|           MaybeDeadStores[SSorRMId] = NULL;
 | |
|         Spills.addAvailable(SSorRMId, PhysReg);
 | |
|         // Assumes this is the last use. IsKill will be unset if reg is reused
 | |
|         // unless it's a two-address operand.
 | |
|         if (!MI.isRegTiedToDefOperand(i) &&
 | |
|             KilledMIRegs.count(VirtReg) == 0) {
 | |
|           MI.getOperand(i).setIsKill();
 | |
|           KilledMIRegs.insert(VirtReg);
 | |
|         }
 | |
| 
 | |
|         UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
 | |
|         DEBUG(dbgs() << '\t' << *prior(InsertLoc));
 | |
|       }
 | |
|       unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|       MI.getOperand(i).setReg(RReg);
 | |
|       MI.getOperand(i).setSubReg(0);
 | |
|     }
 | |
| 
 | |
|     // Ok - now we can remove stores that have been confirmed dead.
 | |
|     for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
 | |
|       // This was the last use and the spilled value is still available
 | |
|       // for reuse. That means the spill was unnecessary!
 | |
|       int PDSSlot = PotentialDeadStoreSlots[j];
 | |
|       MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
 | |
|       if (DeadStore) {
 | |
|         DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
 | |
|         InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
 | |
|         VRM->RemoveMachineInstrFromMaps(DeadStore);
 | |
|         MBB->erase(DeadStore);
 | |
|         MaybeDeadStores[PDSSlot] = NULL;
 | |
|         ++NumDSE;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|     DEBUG(dbgs() << '\t' << MI);
 | |
| 
 | |
| 
 | |
|     // If we have folded references to memory operands, make sure we clear all
 | |
|     // physical registers that may contain the value of the spilled virtual
 | |
|     // register
 | |
| 
 | |
|     // Copy the folded virts to a small vector, we may change MI2VirtMap.
 | |
|     SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
 | |
|     // C++0x FTW!
 | |
|     for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
 | |
|                    VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
 | |
|            VRM->getFoldedVirts(&MI);
 | |
|          FVRange.first != FVRange.second; ++FVRange.first)
 | |
|       FoldedVirts.push_back(FVRange.first->second);
 | |
| 
 | |
|     SmallSet<int, 2> FoldedSS;
 | |
|     for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
 | |
|       unsigned VirtReg = FoldedVirts[FVI].first;
 | |
|       VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
 | |
|       DEBUG(dbgs() << "Folded vreg: " << VirtReg << "  MR: " << MR);
 | |
| 
 | |
|       int SS = VRM->getStackSlot(VirtReg);
 | |
|       if (SS == VirtRegMap::NO_STACK_SLOT)
 | |
|         continue;
 | |
|       FoldedSS.insert(SS);
 | |
|       DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
 | |
| 
 | |
|       // If this folded instruction is just a use, check to see if it's a
 | |
|       // straight load from the virt reg slot.
 | |
|       if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
 | |
|         int FrameIdx;
 | |
|         unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
 | |
|         if (DestReg && FrameIdx == SS) {
 | |
|           // If this spill slot is available, turn it into a copy (or nothing)
 | |
|           // instead of leaving it as a load!
 | |
|           if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
 | |
|             DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
 | |
|             if (DestReg != InReg) {
 | |
|               MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
 | |
|               MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
 | |
|                                              TII->get(TargetOpcode::COPY))
 | |
|                 .addReg(DestReg, RegState::Define, DefMO->getSubReg())
 | |
|                 .addReg(InReg, RegState::Kill);
 | |
|               // Revisit the copy so we make sure to notice the effects of the
 | |
|               // operation on the destreg (either needing to RA it if it's
 | |
|               // virtual or needing to clobber any values if it's physical).
 | |
|               NextMII = CopyMI;
 | |
|               NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
 | |
|               BackTracked = true;
 | |
|             } else {
 | |
|               DEBUG(dbgs() << "Removing now-noop copy: " << MI);
 | |
|               // Unset last kill since it's being reused.
 | |
|               InvalidateKill(InReg, TRI, RegKills, KillOps);
 | |
|               Spills.disallowClobberPhysReg(InReg);
 | |
|             }
 | |
| 
 | |
|             InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|             VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|             MBB->erase(&MI);
 | |
|             Erased = true;
 | |
|             goto ProcessNextInst;
 | |
|           }
 | |
|         } else {
 | |
|           unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | |
|           SmallVector<MachineInstr*, 4> NewMIs;
 | |
|           if (PhysReg &&
 | |
|               TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
 | |
|             MBB->insert(MII, NewMIs[0]);
 | |
|             InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|             VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|             MBB->erase(&MI);
 | |
|             Erased = true;
 | |
|             --NextMII;  // backtrack to the unfolded instruction.
 | |
|             BackTracked = true;
 | |
|             goto ProcessNextInst;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this reference is not a use, any previous store is now dead.
 | |
|       // Otherwise, the store to this stack slot is not dead anymore.
 | |
|       MachineInstr* DeadStore = MaybeDeadStores[SS];
 | |
|       if (DeadStore) {
 | |
|         bool isDead = !(MR & VirtRegMap::isRef);
 | |
|         MachineInstr *NewStore = NULL;
 | |
|         if (MR & VirtRegMap::isModRef) {
 | |
|           unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
 | |
|           SmallVector<MachineInstr*, 4> NewMIs;
 | |
|           // We can reuse this physreg as long as we are allowed to clobber
 | |
|           // the value and there isn't an earlier def that has already clobbered
 | |
|           // the physreg.
 | |
|           if (PhysReg &&
 | |
|               !ReusedOperands.isClobbered(PhysReg) &&
 | |
|               Spills.canClobberPhysReg(PhysReg) &&
 | |
|               !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
 | |
|             MachineOperand *KillOpnd =
 | |
|               DeadStore->findRegisterUseOperand(PhysReg, true);
 | |
|             // Note, if the store is storing a sub-register, it's possible the
 | |
|             // super-register is needed below.
 | |
|             if (KillOpnd && !KillOpnd->getSubReg() &&
 | |
|                 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
 | |
|               MBB->insert(MII, NewMIs[0]);
 | |
|               NewStore = NewMIs[1];
 | |
|               MBB->insert(MII, NewStore);
 | |
|               VRM->addSpillSlotUse(SS, NewStore);
 | |
|               InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|               VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|               MBB->erase(&MI);
 | |
|               Erased = true;
 | |
|               --NextMII;
 | |
|               --NextMII;  // backtrack to the unfolded instruction.
 | |
|               BackTracked = true;
 | |
|               isDead = true;
 | |
|               ++NumSUnfold;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (isDead) {  // Previous store is dead.
 | |
|           // If we get here, the store is dead, nuke it now.
 | |
|           DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
 | |
|           InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
 | |
|           VRM->RemoveMachineInstrFromMaps(DeadStore);
 | |
|           MBB->erase(DeadStore);
 | |
|           if (!NewStore)
 | |
|             ++NumDSE;
 | |
|         }
 | |
| 
 | |
|         MaybeDeadStores[SS] = NULL;
 | |
|         if (NewStore) {
 | |
|           // Treat this store as a spill merged into a copy. That makes the
 | |
|           // stack slot value available.
 | |
|           VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
 | |
|           goto ProcessNextInst;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the spill slot value is available, and this is a new definition of
 | |
|       // the value, the value is not available anymore.
 | |
|       if (MR & VirtRegMap::isMod) {
 | |
|         // Notice that the value in this stack slot has been modified.
 | |
|         Spills.ModifyStackSlotOrReMat(SS);
 | |
| 
 | |
|         // If this is *just* a mod of the value, check to see if this is just a
 | |
|         // store to the spill slot (i.e. the spill got merged into the copy). If
 | |
|         // so, realize that the vreg is available now, and add the store to the
 | |
|         // MaybeDeadStore info.
 | |
|         int StackSlot;
 | |
|         if (!(MR & VirtRegMap::isRef)) {
 | |
|           if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
 | |
|             assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
 | |
|                    "Src hasn't been allocated yet?");
 | |
| 
 | |
|             if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
 | |
|                                     Spills, RegKills, KillOps, TRI)) {
 | |
|               NextMII = llvm::next(MII);
 | |
|               BackTracked = true;
 | |
|               goto ProcessNextInst;
 | |
|             }
 | |
| 
 | |
|             // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
 | |
|             // this as a potentially dead store in case there is a subsequent
 | |
|             // store into the stack slot without a read from it.
 | |
|             MaybeDeadStores[StackSlot] = &MI;
 | |
| 
 | |
|             // If the stack slot value was previously available in some other
 | |
|             // register, change it now.  Otherwise, make the register
 | |
|             // available in PhysReg.
 | |
|             Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Process all of the spilled defs.
 | |
|     SpilledMIRegs.clear();
 | |
|     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!(MO.isReg() && MO.getReg() && MO.isDef()))
 | |
|         continue;
 | |
| 
 | |
|       unsigned VirtReg = MO.getReg();
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
 | |
|         // Check to see if this is a noop copy.  If so, eliminate the
 | |
|         // instruction before considering the dest reg to be changed.
 | |
|         // Also check if it's copying from an "undef", if so, we can't
 | |
|         // eliminate this or else the undef marker is lost and it will
 | |
|         // confuses the scavenger. This is extremely rare.
 | |
|         if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
 | |
|             MI.getNumOperands() == 2) {
 | |
|           ++NumDCE;
 | |
|           DEBUG(dbgs() << "Removing now-noop copy: " << MI);
 | |
|           SmallVector<unsigned, 2> KillRegs;
 | |
|           InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
 | |
|           if (MO.isDead() && !KillRegs.empty()) {
 | |
|             // Source register or an implicit super/sub-register use is killed.
 | |
|             assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
 | |
|             // Last def is now dead.
 | |
|             TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
 | |
|           }
 | |
|           VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|           MBB->erase(&MI);
 | |
|           Erased = true;
 | |
|           Spills.disallowClobberPhysReg(VirtReg);
 | |
|           goto ProcessNextInst;
 | |
|         }
 | |
| 
 | |
|         // If it's not a no-op copy, it clobbers the value in the destreg.
 | |
|         Spills.ClobberPhysReg(VirtReg);
 | |
|         ReusedOperands.markClobbered(VirtReg);
 | |
| 
 | |
|         // Check to see if this instruction is a load from a stack slot into
 | |
|         // a register.  If so, this provides the stack slot value in the reg.
 | |
|         int FrameIdx;
 | |
|         if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
 | |
|           assert(DestReg == VirtReg && "Unknown load situation!");
 | |
| 
 | |
|           // If it is a folded reference, then it's not safe to clobber.
 | |
|           bool Folded = FoldedSS.count(FrameIdx);
 | |
|           // Otherwise, if it wasn't available, remember that it is now!
 | |
|           Spills.addAvailable(FrameIdx, DestReg, !Folded);
 | |
|           goto ProcessNextInst;
 | |
|         }
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       unsigned SubIdx = MO.getSubReg();
 | |
|       bool DoReMat = VRM->isReMaterialized(VirtReg);
 | |
|       if (DoReMat)
 | |
|         ReMatDefs.insert(&MI);
 | |
| 
 | |
|       // The only vregs left are stack slot definitions.
 | |
|       int StackSlot = VRM->getStackSlot(VirtReg);
 | |
|       const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
 | |
| 
 | |
|       // If this def is part of a two-address operand, make sure to execute
 | |
|       // the store from the correct physical register.
 | |
|       unsigned PhysReg;
 | |
|       unsigned TiedOp;
 | |
|       if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
 | |
|         PhysReg = MI.getOperand(TiedOp).getReg();
 | |
|         if (SubIdx) {
 | |
|           unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
 | |
|           assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
 | |
|                  "Can't find corresponding super-register!");
 | |
|           PhysReg = SuperReg;
 | |
|         }
 | |
|       } else {
 | |
|         PhysReg = VRM->getPhys(VirtReg);
 | |
|         if (ReusedOperands.isClobbered(PhysReg)) {
 | |
|           // Another def has taken the assigned physreg. It must have been a
 | |
|           // use&def which got it due to reuse. Undo the reuse!
 | |
|           PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
 | |
|                       Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       assert(PhysReg && "VR not assigned a physical register?");
 | |
|       MRI->setPhysRegUsed(PhysReg);
 | |
|       unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
 | |
|       ReusedOperands.markClobbered(RReg);
 | |
|       MI.getOperand(i).setReg(RReg);
 | |
|       MI.getOperand(i).setSubReg(0);
 | |
| 
 | |
|       if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
 | |
|         MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
 | |
|         SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
 | |
|           LastStore, Spills, ReMatDefs, RegKills, KillOps);
 | |
|         NextMII = llvm::next(MII);
 | |
| 
 | |
|         // Check to see if this is a noop copy.  If so, eliminate the
 | |
|         // instruction before considering the dest reg to be changed.
 | |
|         if (MI.isIdentityCopy()) {
 | |
|           ++NumDCE;
 | |
|           DEBUG(dbgs() << "Removing now-noop copy: " << MI);
 | |
|           InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|           VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|           MBB->erase(&MI);
 | |
|           Erased = true;
 | |
|           UpdateKills(*LastStore, TRI, RegKills, KillOps);
 | |
|           goto ProcessNextInst;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     ProcessNextInst:
 | |
|     // Delete dead instructions without side effects.
 | |
|     if (!Erased && !BackTracked && isSafeToDelete(MI)) {
 | |
|       InvalidateKills(MI, TRI, RegKills, KillOps);
 | |
|       VRM->RemoveMachineInstrFromMaps(&MI);
 | |
|       MBB->erase(&MI);
 | |
|       Erased = true;
 | |
|     }
 | |
|     if (!Erased)
 | |
|       DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
 | |
|     if (!Erased && !BackTracked) {
 | |
|       for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
 | |
|         UpdateKills(*II, TRI, RegKills, KillOps);
 | |
|     }
 | |
|     MII = NextMII;
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
 | |
|   switch (RewriterOpt) {
 | |
|   default: llvm_unreachable("Unreachable!");
 | |
|   case local:
 | |
|     return new LocalRewriter();
 | |
|   case trivial:
 | |
|     return new TrivialRewriter();
 | |
|   }
 | |
| }
 |