mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242008 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			412 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			412 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines vectorizer utilities.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| 
 | |
| /// \brief Identify if the intrinsic is trivially vectorizable.
 | |
| /// This method returns true if the intrinsic's argument types are all
 | |
| /// scalars for the scalar form of the intrinsic and all vectors for
 | |
| /// the vector form of the intrinsic.
 | |
| bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
 | |
|   switch (ID) {
 | |
|   case Intrinsic::sqrt:
 | |
|   case Intrinsic::sin:
 | |
|   case Intrinsic::cos:
 | |
|   case Intrinsic::exp:
 | |
|   case Intrinsic::exp2:
 | |
|   case Intrinsic::log:
 | |
|   case Intrinsic::log10:
 | |
|   case Intrinsic::log2:
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::minnum:
 | |
|   case Intrinsic::maxnum:
 | |
|   case Intrinsic::copysign:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::rint:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::round:
 | |
|   case Intrinsic::bswap:
 | |
|   case Intrinsic::ctpop:
 | |
|   case Intrinsic::pow:
 | |
|   case Intrinsic::fma:
 | |
|   case Intrinsic::fmuladd:
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|   case Intrinsic::powi:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Identifies if the intrinsic has a scalar operand. It check for
 | |
| /// ctlz,cttz and powi special intrinsics whose argument is scalar.
 | |
| bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
 | |
|                                         unsigned ScalarOpdIdx) {
 | |
|   switch (ID) {
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|   case Intrinsic::powi:
 | |
|     return (ScalarOpdIdx == 1);
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Check call has a unary float signature
 | |
| /// It checks following:
 | |
| /// a) call should have a single argument
 | |
| /// b) argument type should be floating point type
 | |
| /// c) call instruction type and argument type should be same
 | |
| /// d) call should only reads memory.
 | |
| /// If all these condition is met then return ValidIntrinsicID
 | |
| /// else return not_intrinsic.
 | |
| llvm::Intrinsic::ID
 | |
| llvm::checkUnaryFloatSignature(const CallInst &I,
 | |
|                                Intrinsic::ID ValidIntrinsicID) {
 | |
|   if (I.getNumArgOperands() != 1 ||
 | |
|       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | |
|       I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory())
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   return ValidIntrinsicID;
 | |
| }
 | |
| 
 | |
| /// \brief Check call has a binary float signature
 | |
| /// It checks following:
 | |
| /// a) call should have 2 arguments.
 | |
| /// b) arguments type should be floating point type
 | |
| /// c) call instruction type and arguments type should be same
 | |
| /// d) call should only reads memory.
 | |
| /// If all these condition is met then return ValidIntrinsicID
 | |
| /// else return not_intrinsic.
 | |
| llvm::Intrinsic::ID
 | |
| llvm::checkBinaryFloatSignature(const CallInst &I,
 | |
|                                 Intrinsic::ID ValidIntrinsicID) {
 | |
|   if (I.getNumArgOperands() != 2 ||
 | |
|       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | |
|       !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
 | |
|       I.getType() != I.getArgOperand(0)->getType() ||
 | |
|       I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory())
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   return ValidIntrinsicID;
 | |
| }
 | |
| 
 | |
| /// \brief Returns intrinsic ID for call.
 | |
| /// For the input call instruction it finds mapping intrinsic and returns
 | |
| /// its ID, in case it does not found it return not_intrinsic.
 | |
| llvm::Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI,
 | |
|                                                 const TargetLibraryInfo *TLI) {
 | |
|   // If we have an intrinsic call, check if it is trivially vectorizable.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | |
|     Intrinsic::ID ID = II->getIntrinsicID();
 | |
|     if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
 | |
|         ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
 | |
|       return ID;
 | |
|     return Intrinsic::not_intrinsic;
 | |
|   }
 | |
| 
 | |
|   if (!TLI)
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   LibFunc::Func Func;
 | |
|   Function *F = CI->getCalledFunction();
 | |
|   // We're going to make assumptions on the semantics of the functions, check
 | |
|   // that the target knows that it's available in this environment and it does
 | |
|   // not have local linkage.
 | |
|   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   // Otherwise check if we have a call to a function that can be turned into a
 | |
|   // vector intrinsic.
 | |
|   switch (Func) {
 | |
|   default:
 | |
|     break;
 | |
|   case LibFunc::sin:
 | |
|   case LibFunc::sinf:
 | |
|   case LibFunc::sinl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::sin);
 | |
|   case LibFunc::cos:
 | |
|   case LibFunc::cosf:
 | |
|   case LibFunc::cosl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::cos);
 | |
|   case LibFunc::exp:
 | |
|   case LibFunc::expf:
 | |
|   case LibFunc::expl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::exp);
 | |
|   case LibFunc::exp2:
 | |
|   case LibFunc::exp2f:
 | |
|   case LibFunc::exp2l:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
 | |
|   case LibFunc::log:
 | |
|   case LibFunc::logf:
 | |
|   case LibFunc::logl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::log);
 | |
|   case LibFunc::log10:
 | |
|   case LibFunc::log10f:
 | |
|   case LibFunc::log10l:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::log10);
 | |
|   case LibFunc::log2:
 | |
|   case LibFunc::log2f:
 | |
|   case LibFunc::log2l:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::log2);
 | |
|   case LibFunc::fabs:
 | |
|   case LibFunc::fabsf:
 | |
|   case LibFunc::fabsl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
 | |
|   case LibFunc::fmin:
 | |
|   case LibFunc::fminf:
 | |
|   case LibFunc::fminl:
 | |
|     return checkBinaryFloatSignature(*CI, Intrinsic::minnum);
 | |
|   case LibFunc::fmax:
 | |
|   case LibFunc::fmaxf:
 | |
|   case LibFunc::fmaxl:
 | |
|     return checkBinaryFloatSignature(*CI, Intrinsic::maxnum);
 | |
|   case LibFunc::copysign:
 | |
|   case LibFunc::copysignf:
 | |
|   case LibFunc::copysignl:
 | |
|     return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
 | |
|   case LibFunc::floor:
 | |
|   case LibFunc::floorf:
 | |
|   case LibFunc::floorl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::floor);
 | |
|   case LibFunc::ceil:
 | |
|   case LibFunc::ceilf:
 | |
|   case LibFunc::ceill:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
 | |
|   case LibFunc::trunc:
 | |
|   case LibFunc::truncf:
 | |
|   case LibFunc::truncl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
 | |
|   case LibFunc::rint:
 | |
|   case LibFunc::rintf:
 | |
|   case LibFunc::rintl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::rint);
 | |
|   case LibFunc::nearbyint:
 | |
|   case LibFunc::nearbyintf:
 | |
|   case LibFunc::nearbyintl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
 | |
|   case LibFunc::round:
 | |
|   case LibFunc::roundf:
 | |
|   case LibFunc::roundl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::round);
 | |
|   case LibFunc::pow:
 | |
|   case LibFunc::powf:
 | |
|   case LibFunc::powl:
 | |
|     return checkBinaryFloatSignature(*CI, Intrinsic::pow);
 | |
|   }
 | |
| 
 | |
|   return Intrinsic::not_intrinsic;
 | |
| }
 | |
| 
 | |
| /// \brief Find the operand of the GEP that should be checked for consecutive
 | |
| /// stores. This ignores trailing indices that have no effect on the final
 | |
| /// pointer.
 | |
| unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
 | |
|   const DataLayout &DL = Gep->getModule()->getDataLayout();
 | |
|   unsigned LastOperand = Gep->getNumOperands() - 1;
 | |
|   unsigned GEPAllocSize = DL.getTypeAllocSize(
 | |
|       cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
 | |
| 
 | |
|   // Walk backwards and try to peel off zeros.
 | |
|   while (LastOperand > 1 &&
 | |
|          match(Gep->getOperand(LastOperand), llvm::PatternMatch::m_Zero())) {
 | |
|     // Find the type we're currently indexing into.
 | |
|     gep_type_iterator GEPTI = gep_type_begin(Gep);
 | |
|     std::advance(GEPTI, LastOperand - 1);
 | |
| 
 | |
|     // If it's a type with the same allocation size as the result of the GEP we
 | |
|     // can peel off the zero index.
 | |
|     if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize)
 | |
|       break;
 | |
|     --LastOperand;
 | |
|   }
 | |
| 
 | |
|   return LastOperand;
 | |
| }
 | |
| 
 | |
| /// \brief If the argument is a GEP, then returns the operand identified by
 | |
| /// getGEPInductionOperand. However, if there is some other non-loop-invariant
 | |
| /// operand, it returns that instead.
 | |
| llvm::Value *llvm::stripGetElementPtr(llvm::Value *Ptr, ScalarEvolution *SE,
 | |
|                                       Loop *Lp) {
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (!GEP)
 | |
|     return Ptr;
 | |
| 
 | |
|   unsigned InductionOperand = getGEPInductionOperand(GEP);
 | |
| 
 | |
|   // Check that all of the gep indices are uniform except for our induction
 | |
|   // operand.
 | |
|   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
 | |
|     if (i != InductionOperand &&
 | |
|         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
 | |
|       return Ptr;
 | |
|   return GEP->getOperand(InductionOperand);
 | |
| }
 | |
| 
 | |
| /// \brief If a value has only one user that is a CastInst, return it.
 | |
| llvm::Value *llvm::getUniqueCastUse(llvm::Value *Ptr, Loop *Lp, Type *Ty) {
 | |
|   llvm::Value *UniqueCast = nullptr;
 | |
|   for (User *U : Ptr->users()) {
 | |
|     CastInst *CI = dyn_cast<CastInst>(U);
 | |
|     if (CI && CI->getType() == Ty) {
 | |
|       if (!UniqueCast)
 | |
|         UniqueCast = CI;
 | |
|       else
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
|   return UniqueCast;
 | |
| }
 | |
| 
 | |
| /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
 | |
| /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
 | |
| llvm::Value *llvm::getStrideFromPointer(llvm::Value *Ptr, ScalarEvolution *SE,
 | |
|                                         Loop *Lp) {
 | |
|   const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | |
|   if (!PtrTy || PtrTy->isAggregateType())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Try to remove a gep instruction to make the pointer (actually index at this
 | |
|   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
 | |
|   // pointer, otherwise, we are analyzing the index.
 | |
|   llvm::Value *OrigPtr = Ptr;
 | |
| 
 | |
|   // The size of the pointer access.
 | |
|   int64_t PtrAccessSize = 1;
 | |
| 
 | |
|   Ptr = stripGetElementPtr(Ptr, SE, Lp);
 | |
|   const SCEV *V = SE->getSCEV(Ptr);
 | |
| 
 | |
|   if (Ptr != OrigPtr)
 | |
|     // Strip off casts.
 | |
|     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
 | |
|       V = C->getOperand();
 | |
| 
 | |
|   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
 | |
|   if (!S)
 | |
|     return nullptr;
 | |
| 
 | |
|   V = S->getStepRecurrence(*SE);
 | |
|   if (!V)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Strip off the size of access multiplication if we are still analyzing the
 | |
|   // pointer.
 | |
|   if (OrigPtr == Ptr) {
 | |
|     const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout();
 | |
|     DL.getTypeAllocSize(PtrTy->getElementType());
 | |
|     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
 | |
|       if (M->getOperand(0)->getSCEVType() != scConstant)
 | |
|         return nullptr;
 | |
| 
 | |
|       const APInt &APStepVal =
 | |
|           cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
 | |
| 
 | |
|       // Huge step value - give up.
 | |
|       if (APStepVal.getBitWidth() > 64)
 | |
|         return nullptr;
 | |
| 
 | |
|       int64_t StepVal = APStepVal.getSExtValue();
 | |
|       if (PtrAccessSize != StepVal)
 | |
|         return nullptr;
 | |
|       V = M->getOperand(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Strip off casts.
 | |
|   Type *StripedOffRecurrenceCast = nullptr;
 | |
|   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
 | |
|     StripedOffRecurrenceCast = C->getType();
 | |
|     V = C->getOperand();
 | |
|   }
 | |
| 
 | |
|   // Look for the loop invariant symbolic value.
 | |
|   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
 | |
|   if (!U)
 | |
|     return nullptr;
 | |
| 
 | |
|   llvm::Value *Stride = U->getValue();
 | |
|   if (!Lp->isLoopInvariant(Stride))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we have stripped off the recurrence cast we have to make sure that we
 | |
|   // return the value that is used in this loop so that we can replace it later.
 | |
|   if (StripedOffRecurrenceCast)
 | |
|     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
 | |
| 
 | |
|   return Stride;
 | |
| }
 | |
| 
 | |
| /// \brief Given a vector and an element number, see if the scalar value is
 | |
| /// already around as a register, for example if it were inserted then extracted
 | |
| /// from the vector.
 | |
| llvm::Value *llvm::findScalarElement(llvm::Value *V, unsigned EltNo) {
 | |
|   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | |
|   VectorType *VTy = cast<VectorType>(V->getType());
 | |
|   unsigned Width = VTy->getNumElements();
 | |
|   if (EltNo >= Width)  // Out of range access.
 | |
|     return UndefValue::get(VTy->getElementType());
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return C->getAggregateElement(EltNo);
 | |
| 
 | |
|   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert to a variable element, we don't know what it is.
 | |
|     if (!isa<ConstantInt>(III->getOperand(2)))
 | |
|       return nullptr;
 | |
|     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | |
| 
 | |
|     // If this is an insert to the element we are looking for, return the
 | |
|     // inserted value.
 | |
|     if (EltNo == IIElt)
 | |
|       return III->getOperand(1);
 | |
| 
 | |
|     // Otherwise, the insertelement doesn't modify the value, recurse on its
 | |
|     // vector input.
 | |
|     return findScalarElement(III->getOperand(0), EltNo);
 | |
|   }
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
|     int InEl = SVI->getMaskValue(EltNo);
 | |
|     if (InEl < 0)
 | |
|       return UndefValue::get(VTy->getElementType());
 | |
|     if (InEl < (int)LHSWidth)
 | |
|       return findScalarElement(SVI->getOperand(0), InEl);
 | |
|     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | |
|   }
 | |
| 
 | |
|   // Extract a value from a vector add operation with a constant zero.
 | |
|   Value *Val = nullptr; Constant *Con = nullptr;
 | |
|   if (match(V,
 | |
|             llvm::PatternMatch::m_Add(llvm::PatternMatch::m_Value(Val),
 | |
|                                       llvm::PatternMatch::m_Constant(Con)))) {
 | |
|     if (Con->getAggregateElement(EltNo)->isNullValue())
 | |
|       return findScalarElement(Val, EltNo);
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we don't know.
 | |
|   return nullptr;
 | |
| }
 |