mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241392 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1271 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1271 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/MC/MCAssembler.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/MC/MCAsmBackend.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCAsmLayout.h"
 | 
						|
#include "llvm/MC/MCCodeEmitter.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/MC/MCDwarf.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCFixupKindInfo.h"
 | 
						|
#include "llvm/MC/MCObjectWriter.h"
 | 
						|
#include "llvm/MC/MCSection.h"
 | 
						|
#include "llvm/MC/MCSectionELF.h"
 | 
						|
#include "llvm/MC/MCSymbol.h"
 | 
						|
#include "llvm/MC/MCValue.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/LEB128.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <tuple>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "assembler"
 | 
						|
 | 
						|
namespace {
 | 
						|
namespace stats {
 | 
						|
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
 | 
						|
STATISTIC(EmittedRelaxableFragments,
 | 
						|
          "Number of emitted assembler fragments - relaxable");
 | 
						|
STATISTIC(EmittedDataFragments,
 | 
						|
          "Number of emitted assembler fragments - data");
 | 
						|
STATISTIC(EmittedCompactEncodedInstFragments,
 | 
						|
          "Number of emitted assembler fragments - compact encoded inst");
 | 
						|
STATISTIC(EmittedAlignFragments,
 | 
						|
          "Number of emitted assembler fragments - align");
 | 
						|
STATISTIC(EmittedFillFragments,
 | 
						|
          "Number of emitted assembler fragments - fill");
 | 
						|
STATISTIC(EmittedOrgFragments,
 | 
						|
          "Number of emitted assembler fragments - org");
 | 
						|
STATISTIC(evaluateFixup, "Number of evaluated fixups");
 | 
						|
STATISTIC(FragmentLayouts, "Number of fragment layouts");
 | 
						|
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
 | 
						|
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
 | 
						|
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
// FIXME FIXME FIXME: There are number of places in this file where we convert
 | 
						|
// what is a 64-bit assembler value used for computation into a value in the
 | 
						|
// object file, which may truncate it. We should detect that truncation where
 | 
						|
// invalid and report errors back.
 | 
						|
 | 
						|
/* *** */
 | 
						|
 | 
						|
MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
 | 
						|
  : Assembler(Asm), LastValidFragment()
 | 
						|
 {
 | 
						|
  // Compute the section layout order. Virtual sections must go last.
 | 
						|
  for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
 | 
						|
    if (!it->isVirtualSection())
 | 
						|
      SectionOrder.push_back(&*it);
 | 
						|
  for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
 | 
						|
    if (it->isVirtualSection())
 | 
						|
      SectionOrder.push_back(&*it);
 | 
						|
}
 | 
						|
 | 
						|
bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
 | 
						|
  const MCSection *Sec = F->getParent();
 | 
						|
  const MCFragment *LastValid = LastValidFragment.lookup(Sec);
 | 
						|
  if (!LastValid)
 | 
						|
    return false;
 | 
						|
  assert(LastValid->getParent() == Sec);
 | 
						|
  return F->getLayoutOrder() <= LastValid->getLayoutOrder();
 | 
						|
}
 | 
						|
 | 
						|
void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
 | 
						|
  // If this fragment wasn't already valid, we don't need to do anything.
 | 
						|
  if (!isFragmentValid(F))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Otherwise, reset the last valid fragment to the previous fragment
 | 
						|
  // (if this is the first fragment, it will be NULL).
 | 
						|
  LastValidFragment[F->getParent()] = F->getPrevNode();
 | 
						|
}
 | 
						|
 | 
						|
void MCAsmLayout::ensureValid(const MCFragment *F) const {
 | 
						|
  MCSection *Sec = F->getParent();
 | 
						|
  MCFragment *Cur = LastValidFragment[Sec];
 | 
						|
  if (!Cur)
 | 
						|
    Cur = Sec->begin();
 | 
						|
  else
 | 
						|
    Cur = Cur->getNextNode();
 | 
						|
 | 
						|
  // Advance the layout position until the fragment is valid.
 | 
						|
  while (!isFragmentValid(F)) {
 | 
						|
    assert(Cur && "Layout bookkeeping error");
 | 
						|
    const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
 | 
						|
    Cur = Cur->getNextNode();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
 | 
						|
  ensureValid(F);
 | 
						|
  assert(F->Offset != ~UINT64_C(0) && "Address not set!");
 | 
						|
  return F->Offset;
 | 
						|
}
 | 
						|
 | 
						|
// Simple getSymbolOffset helper for the non-varibale case.
 | 
						|
static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbol &S,
 | 
						|
                           bool ReportError, uint64_t &Val) {
 | 
						|
  if (!S.getFragment()) {
 | 
						|
    if (ReportError)
 | 
						|
      report_fatal_error("unable to evaluate offset to undefined symbol '" +
 | 
						|
                         S.getName() + "'");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  Val = Layout.getFragmentOffset(S.getFragment()) + S.getOffset();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool getSymbolOffsetImpl(const MCAsmLayout &Layout, const MCSymbol &S,
 | 
						|
                                bool ReportError, uint64_t &Val) {
 | 
						|
  if (!S.isVariable())
 | 
						|
    return getLabelOffset(Layout, S, ReportError, Val);
 | 
						|
 | 
						|
  // If SD is a variable, evaluate it.
 | 
						|
  MCValue Target;
 | 
						|
  if (!S.getVariableValue()->evaluateAsRelocatable(Target, &Layout, nullptr))
 | 
						|
    report_fatal_error("unable to evaluate offset for variable '" +
 | 
						|
                       S.getName() + "'");
 | 
						|
 | 
						|
  uint64_t Offset = Target.getConstant();
 | 
						|
 | 
						|
  const MCSymbolRefExpr *A = Target.getSymA();
 | 
						|
  if (A) {
 | 
						|
    uint64_t ValA;
 | 
						|
    if (!getLabelOffset(Layout, A->getSymbol(), ReportError, ValA))
 | 
						|
      return false;
 | 
						|
    Offset += ValA;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCSymbolRefExpr *B = Target.getSymB();
 | 
						|
  if (B) {
 | 
						|
    uint64_t ValB;
 | 
						|
    if (!getLabelOffset(Layout, B->getSymbol(), ReportError, ValB))
 | 
						|
      return false;
 | 
						|
    Offset -= ValB;
 | 
						|
  }
 | 
						|
 | 
						|
  Val = Offset;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MCAsmLayout::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
 | 
						|
  return getSymbolOffsetImpl(*this, S, false, Val);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t MCAsmLayout::getSymbolOffset(const MCSymbol &S) const {
 | 
						|
  uint64_t Val;
 | 
						|
  getSymbolOffsetImpl(*this, S, true, Val);
 | 
						|
  return Val;
 | 
						|
}
 | 
						|
 | 
						|
const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
 | 
						|
  if (!Symbol.isVariable())
 | 
						|
    return &Symbol;
 | 
						|
 | 
						|
  const MCExpr *Expr = Symbol.getVariableValue();
 | 
						|
  MCValue Value;
 | 
						|
  if (!Expr->evaluateAsValue(Value, *this))
 | 
						|
    llvm_unreachable("Invalid Expression");
 | 
						|
 | 
						|
  const MCSymbolRefExpr *RefB = Value.getSymB();
 | 
						|
  if (RefB)
 | 
						|
    Assembler.getContext().reportFatalError(
 | 
						|
        SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
 | 
						|
                     "' could not be evaluated in a subtraction expression");
 | 
						|
 | 
						|
  const MCSymbolRefExpr *A = Value.getSymA();
 | 
						|
  if (!A)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  const MCSymbol &ASym = A->getSymbol();
 | 
						|
  const MCAssembler &Asm = getAssembler();
 | 
						|
  if (ASym.isCommon()) {
 | 
						|
    // FIXME: we should probably add a SMLoc to MCExpr.
 | 
						|
    Asm.getContext().reportFatalError(SMLoc(),
 | 
						|
                                "Common symbol " + ASym.getName() +
 | 
						|
                                    " cannot be used in assignment expr");
 | 
						|
  }
 | 
						|
 | 
						|
  return &ASym;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t MCAsmLayout::getSectionAddressSize(const MCSection *Sec) const {
 | 
						|
  // The size is the last fragment's end offset.
 | 
						|
  const MCFragment &F = Sec->getFragmentList().back();
 | 
						|
  return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t MCAsmLayout::getSectionFileSize(const MCSection *Sec) const {
 | 
						|
  // Virtual sections have no file size.
 | 
						|
  if (Sec->isVirtualSection())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Otherwise, the file size is the same as the address space size.
 | 
						|
  return getSectionAddressSize(Sec);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t llvm::computeBundlePadding(const MCAssembler &Assembler,
 | 
						|
                                    const MCFragment *F,
 | 
						|
                                    uint64_t FOffset, uint64_t FSize) {
 | 
						|
  uint64_t BundleSize = Assembler.getBundleAlignSize();
 | 
						|
  assert(BundleSize > 0 &&
 | 
						|
         "computeBundlePadding should only be called if bundling is enabled");
 | 
						|
  uint64_t BundleMask = BundleSize - 1;
 | 
						|
  uint64_t OffsetInBundle = FOffset & BundleMask;
 | 
						|
  uint64_t EndOfFragment = OffsetInBundle + FSize;
 | 
						|
 | 
						|
  // There are two kinds of bundling restrictions:
 | 
						|
  //
 | 
						|
  // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
 | 
						|
  //    *end* on a bundle boundary.
 | 
						|
  // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
 | 
						|
  //    would, add padding until the end of the bundle so that the fragment
 | 
						|
  //    will start in a new one.
 | 
						|
  if (F->alignToBundleEnd()) {
 | 
						|
    // Three possibilities here:
 | 
						|
    //
 | 
						|
    // A) The fragment just happens to end at a bundle boundary, so we're good.
 | 
						|
    // B) The fragment ends before the current bundle boundary: pad it just
 | 
						|
    //    enough to reach the boundary.
 | 
						|
    // C) The fragment ends after the current bundle boundary: pad it until it
 | 
						|
    //    reaches the end of the next bundle boundary.
 | 
						|
    //
 | 
						|
    // Note: this code could be made shorter with some modulo trickery, but it's
 | 
						|
    // intentionally kept in its more explicit form for simplicity.
 | 
						|
    if (EndOfFragment == BundleSize)
 | 
						|
      return 0;
 | 
						|
    else if (EndOfFragment < BundleSize)
 | 
						|
      return BundleSize - EndOfFragment;
 | 
						|
    else { // EndOfFragment > BundleSize
 | 
						|
      return 2 * BundleSize - EndOfFragment;
 | 
						|
    }
 | 
						|
  } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
 | 
						|
    return BundleSize - OffsetInBundle;
 | 
						|
  else
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* *** */
 | 
						|
 | 
						|
void ilist_node_traits<MCFragment>::deleteNode(MCFragment *V) {
 | 
						|
  V->destroy();
 | 
						|
}
 | 
						|
 | 
						|
MCFragment::MCFragment() : Kind(FragmentType(~0)), HasInstructions(false),
 | 
						|
                           AlignToBundleEnd(false), BundlePadding(0) {
 | 
						|
}
 | 
						|
 | 
						|
MCFragment::~MCFragment() { }
 | 
						|
 | 
						|
MCFragment::MCFragment(FragmentType Kind, bool HasInstructions,
 | 
						|
                       uint8_t BundlePadding, MCSection *Parent)
 | 
						|
    : Kind(Kind), HasInstructions(HasInstructions), AlignToBundleEnd(false),
 | 
						|
      BundlePadding(BundlePadding), Parent(Parent), Atom(nullptr),
 | 
						|
      Offset(~UINT64_C(0)) {
 | 
						|
  if (Parent)
 | 
						|
    Parent->getFragmentList().push_back(this);
 | 
						|
}
 | 
						|
 | 
						|
void MCFragment::destroy() {
 | 
						|
  // First check if we are the sentinal.
 | 
						|
  if (Kind == FragmentType(~0)) {
 | 
						|
    delete this;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Kind) {
 | 
						|
    case FT_Align:
 | 
						|
      delete cast<MCAlignFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_Data:
 | 
						|
      delete cast<MCDataFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_CompactEncodedInst:
 | 
						|
      delete cast<MCCompactEncodedInstFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_Fill:
 | 
						|
      delete cast<MCFillFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_Relaxable:
 | 
						|
      delete cast<MCRelaxableFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_Org:
 | 
						|
      delete cast<MCOrgFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_Dwarf:
 | 
						|
      delete cast<MCDwarfLineAddrFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_DwarfFrame:
 | 
						|
      delete cast<MCDwarfCallFrameFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_LEB:
 | 
						|
      delete cast<MCLEBFragment>(this);
 | 
						|
      return;
 | 
						|
    case FT_SafeSEH:
 | 
						|
      delete cast<MCSafeSEHFragment>(this);
 | 
						|
      return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* *** */
 | 
						|
 | 
						|
MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
 | 
						|
                         MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
 | 
						|
                         raw_ostream &OS_)
 | 
						|
    : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
 | 
						|
      OS(OS_), BundleAlignSize(0), RelaxAll(false),
 | 
						|
      SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
 | 
						|
  VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
 | 
						|
}
 | 
						|
 | 
						|
MCAssembler::~MCAssembler() {
 | 
						|
}
 | 
						|
 | 
						|
void MCAssembler::reset() {
 | 
						|
  Sections.clear();
 | 
						|
  Symbols.clear();
 | 
						|
  IndirectSymbols.clear();
 | 
						|
  DataRegions.clear();
 | 
						|
  LinkerOptions.clear();
 | 
						|
  FileNames.clear();
 | 
						|
  ThumbFuncs.clear();
 | 
						|
  BundleAlignSize = 0;
 | 
						|
  RelaxAll = false;
 | 
						|
  SubsectionsViaSymbols = false;
 | 
						|
  ELFHeaderEFlags = 0;
 | 
						|
  LOHContainer.reset();
 | 
						|
  VersionMinInfo.Major = 0;
 | 
						|
 | 
						|
  // reset objects owned by us
 | 
						|
  getBackend().reset();
 | 
						|
  getEmitter().reset();
 | 
						|
  getWriter().reset();
 | 
						|
  getLOHContainer().reset();
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
 | 
						|
  if (ThumbFuncs.count(Symbol))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!Symbol->isVariable())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: It looks like gas supports some cases of the form "foo + 2". It
 | 
						|
  // is not clear if that is a bug or a feature.
 | 
						|
  const MCExpr *Expr = Symbol->getVariableValue();
 | 
						|
  const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
 | 
						|
  if (!Ref)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Ref->getKind() != MCSymbolRefExpr::VK_None)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MCSymbol &Sym = Ref->getSymbol();
 | 
						|
  if (!isThumbFunc(&Sym))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ThumbFuncs.insert(Symbol); // Cache it.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
 | 
						|
  // Non-temporary labels should always be visible to the linker.
 | 
						|
  if (!Symbol.isTemporary())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Absolute temporary labels are never visible.
 | 
						|
  if (!Symbol.isInSection())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Symbol.isUsedInReloc())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
 | 
						|
  // Linker visible symbols define atoms.
 | 
						|
  if (isSymbolLinkerVisible(S))
 | 
						|
    return &S;
 | 
						|
 | 
						|
  // Absolute and undefined symbols have no defining atom.
 | 
						|
  if (!S.getFragment())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Non-linker visible symbols in sections which can't be atomized have no
 | 
						|
  // defining atom.
 | 
						|
  if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
 | 
						|
          *S.getFragment()->getParent()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Otherwise, return the atom for the containing fragment.
 | 
						|
  return S.getFragment()->getAtom();
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
 | 
						|
                                const MCFixup &Fixup, const MCFragment *DF,
 | 
						|
                                MCValue &Target, uint64_t &Value) const {
 | 
						|
  ++stats::evaluateFixup;
 | 
						|
 | 
						|
  // FIXME: This code has some duplication with recordRelocation. We should
 | 
						|
  // probably merge the two into a single callback that tries to evaluate a
 | 
						|
  // fixup and records a relocation if one is needed.
 | 
						|
  const MCExpr *Expr = Fixup.getValue();
 | 
						|
  if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup))
 | 
						|
    getContext().reportFatalError(Fixup.getLoc(), "expected relocatable expression");
 | 
						|
 | 
						|
  bool IsPCRel = Backend.getFixupKindInfo(
 | 
						|
    Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
 | 
						|
 | 
						|
  bool IsResolved;
 | 
						|
  if (IsPCRel) {
 | 
						|
    if (Target.getSymB()) {
 | 
						|
      IsResolved = false;
 | 
						|
    } else if (!Target.getSymA()) {
 | 
						|
      IsResolved = false;
 | 
						|
    } else {
 | 
						|
      const MCSymbolRefExpr *A = Target.getSymA();
 | 
						|
      const MCSymbol &SA = A->getSymbol();
 | 
						|
      if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
 | 
						|
        IsResolved = false;
 | 
						|
      } else {
 | 
						|
        IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl(
 | 
						|
            *this, SA, *DF, false, true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    IsResolved = Target.isAbsolute();
 | 
						|
  }
 | 
						|
 | 
						|
  Value = Target.getConstant();
 | 
						|
 | 
						|
  if (const MCSymbolRefExpr *A = Target.getSymA()) {
 | 
						|
    const MCSymbol &Sym = A->getSymbol();
 | 
						|
    if (Sym.isDefined())
 | 
						|
      Value += Layout.getSymbolOffset(Sym);
 | 
						|
  }
 | 
						|
  if (const MCSymbolRefExpr *B = Target.getSymB()) {
 | 
						|
    const MCSymbol &Sym = B->getSymbol();
 | 
						|
    if (Sym.isDefined())
 | 
						|
      Value -= Layout.getSymbolOffset(Sym);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
 | 
						|
                         MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
 | 
						|
  assert((ShouldAlignPC ? IsPCRel : true) &&
 | 
						|
    "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
 | 
						|
 | 
						|
  if (IsPCRel) {
 | 
						|
    uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
 | 
						|
 | 
						|
    // A number of ARM fixups in Thumb mode require that the effective PC
 | 
						|
    // address be determined as the 32-bit aligned version of the actual offset.
 | 
						|
    if (ShouldAlignPC) Offset &= ~0x3;
 | 
						|
    Value -= Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  // Let the backend adjust the fixup value if necessary, including whether
 | 
						|
  // we need a relocation.
 | 
						|
  Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
 | 
						|
                            IsResolved);
 | 
						|
 | 
						|
  return IsResolved;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
 | 
						|
                                          const MCFragment &F) const {
 | 
						|
  switch (F.getKind()) {
 | 
						|
  case MCFragment::FT_Data:
 | 
						|
    return cast<MCDataFragment>(F).getContents().size();
 | 
						|
  case MCFragment::FT_Relaxable:
 | 
						|
    return cast<MCRelaxableFragment>(F).getContents().size();
 | 
						|
  case MCFragment::FT_CompactEncodedInst:
 | 
						|
    return cast<MCCompactEncodedInstFragment>(F).getContents().size();
 | 
						|
  case MCFragment::FT_Fill:
 | 
						|
    return cast<MCFillFragment>(F).getSize();
 | 
						|
 | 
						|
  case MCFragment::FT_LEB:
 | 
						|
    return cast<MCLEBFragment>(F).getContents().size();
 | 
						|
 | 
						|
  case MCFragment::FT_SafeSEH:
 | 
						|
    return 4;
 | 
						|
 | 
						|
  case MCFragment::FT_Align: {
 | 
						|
    const MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | 
						|
    unsigned Offset = Layout.getFragmentOffset(&AF);
 | 
						|
    unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
 | 
						|
    // If we are padding with nops, force the padding to be larger than the
 | 
						|
    // minimum nop size.
 | 
						|
    if (Size > 0 && AF.hasEmitNops()) {
 | 
						|
      while (Size % getBackend().getMinimumNopSize())
 | 
						|
        Size += AF.getAlignment();
 | 
						|
    }
 | 
						|
    if (Size > AF.getMaxBytesToEmit())
 | 
						|
      return 0;
 | 
						|
    return Size;
 | 
						|
  }
 | 
						|
 | 
						|
  case MCFragment::FT_Org: {
 | 
						|
    const MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | 
						|
    int64_t TargetLocation;
 | 
						|
    if (!OF.getOffset().evaluateAsAbsolute(TargetLocation, Layout))
 | 
						|
      report_fatal_error("expected assembly-time absolute expression");
 | 
						|
 | 
						|
    // FIXME: We need a way to communicate this error.
 | 
						|
    uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
 | 
						|
    int64_t Size = TargetLocation - FragmentOffset;
 | 
						|
    if (Size < 0 || Size >= 0x40000000)
 | 
						|
      report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
 | 
						|
                         "' (at offset '" + Twine(FragmentOffset) + "')");
 | 
						|
    return Size;
 | 
						|
  }
 | 
						|
 | 
						|
  case MCFragment::FT_Dwarf:
 | 
						|
    return cast<MCDwarfLineAddrFragment>(F).getContents().size();
 | 
						|
  case MCFragment::FT_DwarfFrame:
 | 
						|
    return cast<MCDwarfCallFrameFragment>(F).getContents().size();
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("invalid fragment kind");
 | 
						|
}
 | 
						|
 | 
						|
void MCAsmLayout::layoutFragment(MCFragment *F) {
 | 
						|
  MCFragment *Prev = F->getPrevNode();
 | 
						|
 | 
						|
  // We should never try to recompute something which is valid.
 | 
						|
  assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
 | 
						|
  // We should never try to compute the fragment layout if its predecessor
 | 
						|
  // isn't valid.
 | 
						|
  assert((!Prev || isFragmentValid(Prev)) &&
 | 
						|
         "Attempt to compute fragment before its predecessor!");
 | 
						|
 | 
						|
  ++stats::FragmentLayouts;
 | 
						|
 | 
						|
  // Compute fragment offset and size.
 | 
						|
  if (Prev)
 | 
						|
    F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
 | 
						|
  else
 | 
						|
    F->Offset = 0;
 | 
						|
  LastValidFragment[F->getParent()] = F;
 | 
						|
 | 
						|
  // If bundling is enabled and this fragment has instructions in it, it has to
 | 
						|
  // obey the bundling restrictions. With padding, we'll have:
 | 
						|
  //
 | 
						|
  //
 | 
						|
  //        BundlePadding
 | 
						|
  //             |||
 | 
						|
  // -------------------------------------
 | 
						|
  //   Prev  |##########|       F        |
 | 
						|
  // -------------------------------------
 | 
						|
  //                    ^
 | 
						|
  //                    |
 | 
						|
  //                    F->Offset
 | 
						|
  //
 | 
						|
  // The fragment's offset will point to after the padding, and its computed
 | 
						|
  // size won't include the padding.
 | 
						|
  //
 | 
						|
  // When the -mc-relax-all flag is used, we optimize bundling by writting the
 | 
						|
  // padding directly into fragments when the instructions are emitted inside
 | 
						|
  // the streamer. When the fragment is larger than the bundle size, we need to
 | 
						|
  // ensure that it's bundle aligned. This means that if we end up with
 | 
						|
  // multiple fragments, we must emit bundle padding between fragments.
 | 
						|
  //
 | 
						|
  // ".align N" is an example of a directive that introduces multiple
 | 
						|
  // fragments. We could add a special case to handle ".align N" by emitting
 | 
						|
  // within-fragment padding (which would produce less padding when N is less
 | 
						|
  // than the bundle size), but for now we don't.
 | 
						|
  //
 | 
						|
  if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
 | 
						|
    assert(isa<MCEncodedFragment>(F) &&
 | 
						|
           "Only MCEncodedFragment implementations have instructions");
 | 
						|
    uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
 | 
						|
 | 
						|
    if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
 | 
						|
      report_fatal_error("Fragment can't be larger than a bundle size");
 | 
						|
 | 
						|
    uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
 | 
						|
                                                          F->Offset, FSize);
 | 
						|
    if (RequiredBundlePadding > UINT8_MAX)
 | 
						|
      report_fatal_error("Padding cannot exceed 255 bytes");
 | 
						|
    F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
 | 
						|
    F->Offset += RequiredBundlePadding;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
 | 
						|
  bool New = !Symbol.isRegistered();
 | 
						|
  if (Created)
 | 
						|
    *Created = New;
 | 
						|
  if (New) {
 | 
						|
    Symbol.setIsRegistered(true);
 | 
						|
    Symbols.push_back(&Symbol);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
 | 
						|
                                       MCObjectWriter *OW) const {
 | 
						|
  // Should NOP padding be written out before this fragment?
 | 
						|
  unsigned BundlePadding = F.getBundlePadding();
 | 
						|
  if (BundlePadding > 0) {
 | 
						|
    assert(isBundlingEnabled() &&
 | 
						|
           "Writing bundle padding with disabled bundling");
 | 
						|
    assert(F.hasInstructions() &&
 | 
						|
           "Writing bundle padding for a fragment without instructions");
 | 
						|
 | 
						|
    unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
 | 
						|
    if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
 | 
						|
      // If the padding itself crosses a bundle boundary, it must be emitted
 | 
						|
      // in 2 pieces, since even nop instructions must not cross boundaries.
 | 
						|
      //             v--------------v   <- BundleAlignSize
 | 
						|
      //        v---------v             <- BundlePadding
 | 
						|
      // ----------------------------
 | 
						|
      // | Prev |####|####|    F    |
 | 
						|
      // ----------------------------
 | 
						|
      //        ^-------------------^   <- TotalLength
 | 
						|
      unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
 | 
						|
      if (!getBackend().writeNopData(DistanceToBoundary, OW))
 | 
						|
          report_fatal_error("unable to write NOP sequence of " +
 | 
						|
                             Twine(DistanceToBoundary) + " bytes");
 | 
						|
      BundlePadding -= DistanceToBoundary;
 | 
						|
    }
 | 
						|
    if (!getBackend().writeNopData(BundlePadding, OW))
 | 
						|
      report_fatal_error("unable to write NOP sequence of " +
 | 
						|
                         Twine(BundlePadding) + " bytes");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Write the fragment \p F to the output file.
 | 
						|
static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
 | 
						|
                          const MCFragment &F) {
 | 
						|
  MCObjectWriter *OW = &Asm.getWriter();
 | 
						|
 | 
						|
  // FIXME: Embed in fragments instead?
 | 
						|
  uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
 | 
						|
 | 
						|
  Asm.writeFragmentPadding(F, FragmentSize, OW);
 | 
						|
 | 
						|
  // This variable (and its dummy usage) is to participate in the assert at
 | 
						|
  // the end of the function.
 | 
						|
  uint64_t Start = OW->getStream().tell();
 | 
						|
  (void) Start;
 | 
						|
 | 
						|
  ++stats::EmittedFragments;
 | 
						|
 | 
						|
  switch (F.getKind()) {
 | 
						|
  case MCFragment::FT_Align: {
 | 
						|
    ++stats::EmittedAlignFragments;
 | 
						|
    const MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | 
						|
    assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
 | 
						|
 | 
						|
    uint64_t Count = FragmentSize / AF.getValueSize();
 | 
						|
 | 
						|
    // FIXME: This error shouldn't actually occur (the front end should emit
 | 
						|
    // multiple .align directives to enforce the semantics it wants), but is
 | 
						|
    // severe enough that we want to report it. How to handle this?
 | 
						|
    if (Count * AF.getValueSize() != FragmentSize)
 | 
						|
      report_fatal_error("undefined .align directive, value size '" +
 | 
						|
                        Twine(AF.getValueSize()) +
 | 
						|
                        "' is not a divisor of padding size '" +
 | 
						|
                        Twine(FragmentSize) + "'");
 | 
						|
 | 
						|
    // See if we are aligning with nops, and if so do that first to try to fill
 | 
						|
    // the Count bytes.  Then if that did not fill any bytes or there are any
 | 
						|
    // bytes left to fill use the Value and ValueSize to fill the rest.
 | 
						|
    // If we are aligning with nops, ask that target to emit the right data.
 | 
						|
    if (AF.hasEmitNops()) {
 | 
						|
      if (!Asm.getBackend().writeNopData(Count, OW))
 | 
						|
        report_fatal_error("unable to write nop sequence of " +
 | 
						|
                          Twine(Count) + " bytes");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, write out in multiples of the value size.
 | 
						|
    for (uint64_t i = 0; i != Count; ++i) {
 | 
						|
      switch (AF.getValueSize()) {
 | 
						|
      default: llvm_unreachable("Invalid size!");
 | 
						|
      case 1: OW->write8 (uint8_t (AF.getValue())); break;
 | 
						|
      case 2: OW->write16(uint16_t(AF.getValue())); break;
 | 
						|
      case 4: OW->write32(uint32_t(AF.getValue())); break;
 | 
						|
      case 8: OW->write64(uint64_t(AF.getValue())); break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MCFragment::FT_Data: 
 | 
						|
    ++stats::EmittedDataFragments;
 | 
						|
    OW->writeBytes(cast<MCDataFragment>(F).getContents());
 | 
						|
    break;
 | 
						|
 | 
						|
  case MCFragment::FT_Relaxable:
 | 
						|
    ++stats::EmittedRelaxableFragments;
 | 
						|
    OW->writeBytes(cast<MCRelaxableFragment>(F).getContents());
 | 
						|
    break;
 | 
						|
 | 
						|
  case MCFragment::FT_CompactEncodedInst:
 | 
						|
    ++stats::EmittedCompactEncodedInstFragments;
 | 
						|
    OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents());
 | 
						|
    break;
 | 
						|
 | 
						|
  case MCFragment::FT_Fill: {
 | 
						|
    ++stats::EmittedFillFragments;
 | 
						|
    const MCFillFragment &FF = cast<MCFillFragment>(F);
 | 
						|
 | 
						|
    assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
 | 
						|
 | 
						|
    for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
 | 
						|
      switch (FF.getValueSize()) {
 | 
						|
      default: llvm_unreachable("Invalid size!");
 | 
						|
      case 1: OW->write8 (uint8_t (FF.getValue())); break;
 | 
						|
      case 2: OW->write16(uint16_t(FF.getValue())); break;
 | 
						|
      case 4: OW->write32(uint32_t(FF.getValue())); break;
 | 
						|
      case 8: OW->write64(uint64_t(FF.getValue())); break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MCFragment::FT_LEB: {
 | 
						|
    const MCLEBFragment &LF = cast<MCLEBFragment>(F);
 | 
						|
    OW->writeBytes(LF.getContents());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MCFragment::FT_SafeSEH: {
 | 
						|
    const MCSafeSEHFragment &SF = cast<MCSafeSEHFragment>(F);
 | 
						|
    OW->write32(SF.getSymbol()->getIndex());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MCFragment::FT_Org: {
 | 
						|
    ++stats::EmittedOrgFragments;
 | 
						|
    const MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | 
						|
 | 
						|
    for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
 | 
						|
      OW->write8(uint8_t(OF.getValue()));
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MCFragment::FT_Dwarf: {
 | 
						|
    const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
 | 
						|
    OW->writeBytes(OF.getContents());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_DwarfFrame: {
 | 
						|
    const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
 | 
						|
    OW->writeBytes(CF.getContents());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(OW->getStream().tell() - Start == FragmentSize &&
 | 
						|
         "The stream should advance by fragment size");
 | 
						|
}
 | 
						|
 | 
						|
void MCAssembler::writeSectionData(const MCSection *Sec,
 | 
						|
                                   const MCAsmLayout &Layout) const {
 | 
						|
  // Ignore virtual sections.
 | 
						|
  if (Sec->isVirtualSection()) {
 | 
						|
    assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
 | 
						|
 | 
						|
    // Check that contents are only things legal inside a virtual section.
 | 
						|
    for (MCSection::const_iterator it = Sec->begin(), ie = Sec->end(); it != ie;
 | 
						|
         ++it) {
 | 
						|
      switch (it->getKind()) {
 | 
						|
      default: llvm_unreachable("Invalid fragment in virtual section!");
 | 
						|
      case MCFragment::FT_Data: {
 | 
						|
        // Check that we aren't trying to write a non-zero contents (or fixups)
 | 
						|
        // into a virtual section. This is to support clients which use standard
 | 
						|
        // directives to fill the contents of virtual sections.
 | 
						|
        const MCDataFragment &DF = cast<MCDataFragment>(*it);
 | 
						|
        assert(DF.fixup_begin() == DF.fixup_end() &&
 | 
						|
               "Cannot have fixups in virtual section!");
 | 
						|
        for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
 | 
						|
          if (DF.getContents()[i]) {
 | 
						|
            if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
 | 
						|
              report_fatal_error("non-zero initializer found in section '" +
 | 
						|
                  ELFSec->getSectionName() + "'");
 | 
						|
            else
 | 
						|
              report_fatal_error("non-zero initializer found in virtual section");
 | 
						|
          }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case MCFragment::FT_Align:
 | 
						|
        // Check that we aren't trying to write a non-zero value into a virtual
 | 
						|
        // section.
 | 
						|
        assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
 | 
						|
                cast<MCAlignFragment>(it)->getValue() == 0) &&
 | 
						|
               "Invalid align in virtual section!");
 | 
						|
        break;
 | 
						|
      case MCFragment::FT_Fill:
 | 
						|
        assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
 | 
						|
                cast<MCFillFragment>(it)->getValue() == 0) &&
 | 
						|
               "Invalid fill in virtual section!");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t Start = getWriter().getStream().tell();
 | 
						|
  (void)Start;
 | 
						|
 | 
						|
  for (MCSection::const_iterator it = Sec->begin(), ie = Sec->end(); it != ie;
 | 
						|
       ++it)
 | 
						|
    writeFragment(*this, Layout, *it);
 | 
						|
 | 
						|
  assert(getWriter().getStream().tell() - Start ==
 | 
						|
         Layout.getSectionAddressSize(Sec));
 | 
						|
}
 | 
						|
 | 
						|
std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
 | 
						|
                                                   MCFragment &F,
 | 
						|
                                                   const MCFixup &Fixup) {
 | 
						|
  // Evaluate the fixup.
 | 
						|
  MCValue Target;
 | 
						|
  uint64_t FixedValue;
 | 
						|
  bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
 | 
						|
                 MCFixupKindInfo::FKF_IsPCRel;
 | 
						|
  if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
 | 
						|
    // The fixup was unresolved, we need a relocation. Inform the object
 | 
						|
    // writer of the relocation, and give it an opportunity to adjust the
 | 
						|
    // fixup value if need be.
 | 
						|
    getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
 | 
						|
                                 FixedValue);
 | 
						|
  }
 | 
						|
  return std::make_pair(FixedValue, IsPCRel);
 | 
						|
}
 | 
						|
 | 
						|
void MCAssembler::Finish() {
 | 
						|
  DEBUG_WITH_TYPE("mc-dump", {
 | 
						|
      llvm::errs() << "assembler backend - pre-layout\n--\n";
 | 
						|
      dump(); });
 | 
						|
 | 
						|
  // Create the layout object.
 | 
						|
  MCAsmLayout Layout(*this);
 | 
						|
 | 
						|
  // Create dummy fragments and assign section ordinals.
 | 
						|
  unsigned SectionIndex = 0;
 | 
						|
  for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
 | 
						|
    // Create dummy fragments to eliminate any empty sections, this simplifies
 | 
						|
    // layout.
 | 
						|
    if (it->getFragmentList().empty())
 | 
						|
      new MCDataFragment(&*it);
 | 
						|
 | 
						|
    it->setOrdinal(SectionIndex++);
 | 
						|
  }
 | 
						|
 | 
						|
  // Assign layout order indices to sections and fragments.
 | 
						|
  for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
 | 
						|
    MCSection *Sec = Layout.getSectionOrder()[i];
 | 
						|
    Sec->setLayoutOrder(i);
 | 
						|
 | 
						|
    unsigned FragmentIndex = 0;
 | 
						|
    for (MCSection::iterator iFrag = Sec->begin(), iFragEnd = Sec->end();
 | 
						|
         iFrag != iFragEnd; ++iFrag)
 | 
						|
      iFrag->setLayoutOrder(FragmentIndex++);
 | 
						|
  }
 | 
						|
 | 
						|
  // Layout until everything fits.
 | 
						|
  while (layoutOnce(Layout))
 | 
						|
    continue;
 | 
						|
 | 
						|
  DEBUG_WITH_TYPE("mc-dump", {
 | 
						|
      llvm::errs() << "assembler backend - post-relaxation\n--\n";
 | 
						|
      dump(); });
 | 
						|
 | 
						|
  // Finalize the layout, including fragment lowering.
 | 
						|
  finishLayout(Layout);
 | 
						|
 | 
						|
  DEBUG_WITH_TYPE("mc-dump", {
 | 
						|
      llvm::errs() << "assembler backend - final-layout\n--\n";
 | 
						|
      dump(); });
 | 
						|
 | 
						|
  uint64_t StartOffset = OS.tell();
 | 
						|
 | 
						|
  // Allow the object writer a chance to perform post-layout binding (for
 | 
						|
  // example, to set the index fields in the symbol data).
 | 
						|
  getWriter().executePostLayoutBinding(*this, Layout);
 | 
						|
 | 
						|
  // Evaluate and apply the fixups, generating relocation entries as necessary.
 | 
						|
  for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
 | 
						|
    for (MCSection::iterator it2 = it->begin(), ie2 = it->end(); it2 != ie2;
 | 
						|
         ++it2) {
 | 
						|
      MCEncodedFragment *F = dyn_cast<MCEncodedFragment>(it2);
 | 
						|
      // Data and relaxable fragments both have fixups.  So only process
 | 
						|
      // those here.
 | 
						|
      // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
 | 
						|
      // being templated makes this tricky.
 | 
						|
      if (!F || isa<MCCompactEncodedInstFragment>(F))
 | 
						|
        continue;
 | 
						|
      ArrayRef<MCFixup> Fixups;
 | 
						|
      MutableArrayRef<char> Contents;
 | 
						|
      if (auto *FragWithFixups = dyn_cast<MCDataFragment>(F)) {
 | 
						|
        Fixups = FragWithFixups->getFixups();
 | 
						|
        Contents = FragWithFixups->getContents();
 | 
						|
      } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(F)) {
 | 
						|
        Fixups = FragWithFixups->getFixups();
 | 
						|
        Contents = FragWithFixups->getContents();
 | 
						|
      } else
 | 
						|
        llvm_unreachable("Unknown fragment with fixups!");
 | 
						|
      for (const MCFixup &Fixup : Fixups) {
 | 
						|
        uint64_t FixedValue;
 | 
						|
        bool IsPCRel;
 | 
						|
        std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
 | 
						|
        getBackend().applyFixup(Fixup, Contents.data(),
 | 
						|
                                Contents.size(), FixedValue, IsPCRel);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Write the object file.
 | 
						|
  getWriter().writeObject(*this, Layout);
 | 
						|
 | 
						|
  stats::ObjectBytes += OS.tell() - StartOffset;
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
 | 
						|
                                       const MCRelaxableFragment *DF,
 | 
						|
                                       const MCAsmLayout &Layout) const {
 | 
						|
  MCValue Target;
 | 
						|
  uint64_t Value;
 | 
						|
  bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value);
 | 
						|
  return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
 | 
						|
                                                   Layout);
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
 | 
						|
                                          const MCAsmLayout &Layout) const {
 | 
						|
  // If this inst doesn't ever need relaxation, ignore it. This occurs when we
 | 
						|
  // are intentionally pushing out inst fragments, or because we relaxed a
 | 
						|
  // previous instruction to one that doesn't need relaxation.
 | 
						|
  if (!getBackend().mayNeedRelaxation(F->getInst()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
 | 
						|
       ie = F->fixup_end(); it != ie; ++it)
 | 
						|
    if (fixupNeedsRelaxation(*it, F, Layout))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
 | 
						|
                                   MCRelaxableFragment &F) {
 | 
						|
  if (!fragmentNeedsRelaxation(&F, Layout))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++stats::RelaxedInstructions;
 | 
						|
 | 
						|
  // FIXME-PERF: We could immediately lower out instructions if we can tell
 | 
						|
  // they are fully resolved, to avoid retesting on later passes.
 | 
						|
 | 
						|
  // Relax the fragment.
 | 
						|
 | 
						|
  MCInst Relaxed;
 | 
						|
  getBackend().relaxInstruction(F.getInst(), Relaxed);
 | 
						|
 | 
						|
  // Encode the new instruction.
 | 
						|
  //
 | 
						|
  // FIXME-PERF: If it matters, we could let the target do this. It can
 | 
						|
  // probably do so more efficiently in many cases.
 | 
						|
  SmallVector<MCFixup, 4> Fixups;
 | 
						|
  SmallString<256> Code;
 | 
						|
  raw_svector_ostream VecOS(Code);
 | 
						|
  getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
 | 
						|
  VecOS.flush();
 | 
						|
 | 
						|
  // Update the fragment.
 | 
						|
  F.setInst(Relaxed);
 | 
						|
  F.getContents() = Code;
 | 
						|
  F.getFixups() = Fixups;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
 | 
						|
  uint64_t OldSize = LF.getContents().size();
 | 
						|
  int64_t Value;
 | 
						|
  bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
 | 
						|
  if (!Abs)
 | 
						|
    report_fatal_error("sleb128 and uleb128 expressions must be absolute");
 | 
						|
  SmallString<8> &Data = LF.getContents();
 | 
						|
  Data.clear();
 | 
						|
  raw_svector_ostream OSE(Data);
 | 
						|
  if (LF.isSigned())
 | 
						|
    encodeSLEB128(Value, OSE);
 | 
						|
  else
 | 
						|
    encodeULEB128(Value, OSE);
 | 
						|
  OSE.flush();
 | 
						|
  return OldSize != LF.getContents().size();
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
 | 
						|
                                     MCDwarfLineAddrFragment &DF) {
 | 
						|
  MCContext &Context = Layout.getAssembler().getContext();
 | 
						|
  uint64_t OldSize = DF.getContents().size();
 | 
						|
  int64_t AddrDelta;
 | 
						|
  bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
 | 
						|
  assert(Abs && "We created a line delta with an invalid expression");
 | 
						|
  (void) Abs;
 | 
						|
  int64_t LineDelta;
 | 
						|
  LineDelta = DF.getLineDelta();
 | 
						|
  SmallString<8> &Data = DF.getContents();
 | 
						|
  Data.clear();
 | 
						|
  raw_svector_ostream OSE(Data);
 | 
						|
  MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
 | 
						|
  OSE.flush();
 | 
						|
  return OldSize != Data.size();
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
 | 
						|
                                              MCDwarfCallFrameFragment &DF) {
 | 
						|
  MCContext &Context = Layout.getAssembler().getContext();
 | 
						|
  uint64_t OldSize = DF.getContents().size();
 | 
						|
  int64_t AddrDelta;
 | 
						|
  bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
 | 
						|
  assert(Abs && "We created call frame with an invalid expression");
 | 
						|
  (void) Abs;
 | 
						|
  SmallString<8> &Data = DF.getContents();
 | 
						|
  Data.clear();
 | 
						|
  raw_svector_ostream OSE(Data);
 | 
						|
  MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
 | 
						|
  OSE.flush();
 | 
						|
  return OldSize != Data.size();
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
 | 
						|
  // Holds the first fragment which needed relaxing during this layout. It will
 | 
						|
  // remain NULL if none were relaxed.
 | 
						|
  // When a fragment is relaxed, all the fragments following it should get
 | 
						|
  // invalidated because their offset is going to change.
 | 
						|
  MCFragment *FirstRelaxedFragment = nullptr;
 | 
						|
 | 
						|
  // Attempt to relax all the fragments in the section.
 | 
						|
  for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
 | 
						|
    // Check if this is a fragment that needs relaxation.
 | 
						|
    bool RelaxedFrag = false;
 | 
						|
    switch(I->getKind()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case MCFragment::FT_Relaxable:
 | 
						|
      assert(!getRelaxAll() &&
 | 
						|
             "Did not expect a MCRelaxableFragment in RelaxAll mode");
 | 
						|
      RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
 | 
						|
      break;
 | 
						|
    case MCFragment::FT_Dwarf:
 | 
						|
      RelaxedFrag = relaxDwarfLineAddr(Layout,
 | 
						|
                                       *cast<MCDwarfLineAddrFragment>(I));
 | 
						|
      break;
 | 
						|
    case MCFragment::FT_DwarfFrame:
 | 
						|
      RelaxedFrag =
 | 
						|
        relaxDwarfCallFrameFragment(Layout,
 | 
						|
                                    *cast<MCDwarfCallFrameFragment>(I));
 | 
						|
      break;
 | 
						|
    case MCFragment::FT_LEB:
 | 
						|
      RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (RelaxedFrag && !FirstRelaxedFragment)
 | 
						|
      FirstRelaxedFragment = I;
 | 
						|
  }
 | 
						|
  if (FirstRelaxedFragment) {
 | 
						|
    Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
 | 
						|
  ++stats::RelaxationSteps;
 | 
						|
 | 
						|
  bool WasRelaxed = false;
 | 
						|
  for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | 
						|
    MCSection &Sec = *it;
 | 
						|
    while (layoutSectionOnce(Layout, Sec))
 | 
						|
      WasRelaxed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return WasRelaxed;
 | 
						|
}
 | 
						|
 | 
						|
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
 | 
						|
  // The layout is done. Mark every fragment as valid.
 | 
						|
  for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
 | 
						|
    Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Debugging methods
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
 | 
						|
  OS << "<MCFixup" << " Offset:" << AF.getOffset()
 | 
						|
     << " Value:" << *AF.getValue()
 | 
						|
     << " Kind:" << AF.getKind() << ">";
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void MCFragment::dump() {
 | 
						|
  raw_ostream &OS = llvm::errs();
 | 
						|
 | 
						|
  OS << "<";
 | 
						|
  switch (getKind()) {
 | 
						|
  case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
 | 
						|
  case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
 | 
						|
  case MCFragment::FT_CompactEncodedInst:
 | 
						|
    OS << "MCCompactEncodedInstFragment"; break;
 | 
						|
  case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
 | 
						|
  case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
 | 
						|
  case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
 | 
						|
  case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
 | 
						|
  case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
 | 
						|
  case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
 | 
						|
  case MCFragment::FT_SafeSEH:    OS << "MCSafeSEHFragment"; break;
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
 | 
						|
     << " Offset:" << Offset
 | 
						|
     << " HasInstructions:" << hasInstructions() 
 | 
						|
     << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
 | 
						|
 | 
						|
  switch (getKind()) {
 | 
						|
  case MCFragment::FT_Align: {
 | 
						|
    const MCAlignFragment *AF = cast<MCAlignFragment>(this);
 | 
						|
    if (AF->hasEmitNops())
 | 
						|
      OS << " (emit nops)";
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " Alignment:" << AF->getAlignment()
 | 
						|
       << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
 | 
						|
       << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_Data:  {
 | 
						|
    const MCDataFragment *DF = cast<MCDataFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " Contents:[";
 | 
						|
    const SmallVectorImpl<char> &Contents = DF->getContents();
 | 
						|
    for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
 | 
						|
      if (i) OS << ",";
 | 
						|
      OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
 | 
						|
    }
 | 
						|
    OS << "] (" << Contents.size() << " bytes)";
 | 
						|
 | 
						|
    if (DF->fixup_begin() != DF->fixup_end()) {
 | 
						|
      OS << ",\n       ";
 | 
						|
      OS << " Fixups:[";
 | 
						|
      for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
 | 
						|
             ie = DF->fixup_end(); it != ie; ++it) {
 | 
						|
        if (it != DF->fixup_begin()) OS << ",\n                ";
 | 
						|
        OS << *it;
 | 
						|
      }
 | 
						|
      OS << "]";
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_CompactEncodedInst: {
 | 
						|
    const MCCompactEncodedInstFragment *CEIF =
 | 
						|
      cast<MCCompactEncodedInstFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " Contents:[";
 | 
						|
    const SmallVectorImpl<char> &Contents = CEIF->getContents();
 | 
						|
    for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
 | 
						|
      if (i) OS << ",";
 | 
						|
      OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
 | 
						|
    }
 | 
						|
    OS << "] (" << Contents.size() << " bytes)";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_Fill:  {
 | 
						|
    const MCFillFragment *FF = cast<MCFillFragment>(this);
 | 
						|
    OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
 | 
						|
       << " Size:" << FF->getSize();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_Relaxable:  {
 | 
						|
    const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " Inst:";
 | 
						|
    F->getInst().dump_pretty(OS);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_Org:  {
 | 
						|
    const MCOrgFragment *OF = cast<MCOrgFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_Dwarf:  {
 | 
						|
    const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " AddrDelta:" << OF->getAddrDelta()
 | 
						|
       << " LineDelta:" << OF->getLineDelta();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_DwarfFrame:  {
 | 
						|
    const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " AddrDelta:" << CF->getAddrDelta();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_LEB: {
 | 
						|
    const MCLEBFragment *LF = cast<MCLEBFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MCFragment::FT_SafeSEH: {
 | 
						|
    const MCSafeSEHFragment *F = cast<MCSafeSEHFragment>(this);
 | 
						|
    OS << "\n       ";
 | 
						|
    OS << " Sym:" << F->getSymbol();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  OS << ">";
 | 
						|
}
 | 
						|
 | 
						|
void MCAssembler::dump() {
 | 
						|
  raw_ostream &OS = llvm::errs();
 | 
						|
 | 
						|
  OS << "<MCAssembler\n";
 | 
						|
  OS << "  Sections:[\n    ";
 | 
						|
  for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | 
						|
    if (it != begin()) OS << ",\n    ";
 | 
						|
    it->dump();
 | 
						|
  }
 | 
						|
  OS << "],\n";
 | 
						|
  OS << "  Symbols:[";
 | 
						|
 | 
						|
  for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
 | 
						|
    if (it != symbol_begin()) OS << ",\n           ";
 | 
						|
    OS << "(";
 | 
						|
    it->dump();
 | 
						|
    OS << ", Index:" << it->getIndex() << ", ";
 | 
						|
    OS << ")";
 | 
						|
  }
 | 
						|
  OS << "]>\n";
 | 
						|
}
 | 
						|
#endif
 |