mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	We would create a phi node with a zero initialized operand instead of undef in the case where no value was originally available. This was problematic for x86_mmx which has no null value. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@241143 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			422 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements some loop unrolling utilities for loops with run-time
 | 
						|
// trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
 | 
						|
// trip counts.
 | 
						|
//
 | 
						|
// The functions in this file are used to generate extra code when the
 | 
						|
// run-time trip count modulo the unroll factor is not 0.  When this is the
 | 
						|
// case, we need to generate code to execute these 'left over' iterations.
 | 
						|
//
 | 
						|
// The current strategy generates an if-then-else sequence prior to the
 | 
						|
// unrolled loop to execute the 'left over' iterations.  Other strategies
 | 
						|
// include generate a loop before or after the unrolled loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-unroll"
 | 
						|
 | 
						|
STATISTIC(NumRuntimeUnrolled,
 | 
						|
          "Number of loops unrolled with run-time trip counts");
 | 
						|
 | 
						|
/// Connect the unrolling prolog code to the original loop.
 | 
						|
/// The unrolling prolog code contains code to execute the
 | 
						|
/// 'extra' iterations if the run-time trip count modulo the
 | 
						|
/// unroll count is non-zero.
 | 
						|
///
 | 
						|
/// This function performs the following:
 | 
						|
/// - Create PHI nodes at prolog end block to combine values
 | 
						|
///   that exit the prolog code and jump around the prolog.
 | 
						|
/// - Add a PHI operand to a PHI node at the loop exit block
 | 
						|
///   for values that exit the prolog and go around the loop.
 | 
						|
/// - Branch around the original loop if the trip count is less
 | 
						|
///   than the unroll factor.
 | 
						|
///
 | 
						|
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
 | 
						|
                          BasicBlock *LastPrologBB, BasicBlock *PrologEnd,
 | 
						|
                          BasicBlock *OrigPH, BasicBlock *NewPH,
 | 
						|
                          ValueToValueMapTy &VMap, AliasAnalysis *AA,
 | 
						|
                          DominatorTree *DT, LoopInfo *LI, Pass *P) {
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  assert(Latch && "Loop must have a latch");
 | 
						|
 | 
						|
  // Create a PHI node for each outgoing value from the original loop
 | 
						|
  // (which means it is an outgoing value from the prolog code too).
 | 
						|
  // The new PHI node is inserted in the prolog end basic block.
 | 
						|
  // The new PHI name is added as an operand of a PHI node in either
 | 
						|
  // the loop header or the loop exit block.
 | 
						|
  for (succ_iterator SBI = succ_begin(Latch), SBE = succ_end(Latch);
 | 
						|
       SBI != SBE; ++SBI) {
 | 
						|
    for (BasicBlock::iterator BBI = (*SBI)->begin();
 | 
						|
         PHINode *PN = dyn_cast<PHINode>(BBI); ++BBI) {
 | 
						|
 | 
						|
      // Add a new PHI node to the prolog end block and add the
 | 
						|
      // appropriate incoming values.
 | 
						|
      PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName()+".unr",
 | 
						|
                                       PrologEnd->getTerminator());
 | 
						|
      // Adding a value to the new PHI node from the original loop preheader.
 | 
						|
      // This is the value that skips all the prolog code.
 | 
						|
      if (L->contains(PN)) {
 | 
						|
        NewPN->addIncoming(PN->getIncomingValueForBlock(NewPH), OrigPH);
 | 
						|
      } else {
 | 
						|
        NewPN->addIncoming(UndefValue::get(PN->getType()), OrigPH);
 | 
						|
      }
 | 
						|
 | 
						|
      Value *V = PN->getIncomingValueForBlock(Latch);
 | 
						|
      if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
        if (L->contains(I)) {
 | 
						|
          V = VMap[I];
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Adding a value to the new PHI node from the last prolog block
 | 
						|
      // that was created.
 | 
						|
      NewPN->addIncoming(V, LastPrologBB);
 | 
						|
 | 
						|
      // Update the existing PHI node operand with the value from the
 | 
						|
      // new PHI node.  How this is done depends on if the existing
 | 
						|
      // PHI node is in the original loop block, or the exit block.
 | 
						|
      if (L->contains(PN)) {
 | 
						|
        PN->setIncomingValue(PN->getBasicBlockIndex(NewPH), NewPN);
 | 
						|
      } else {
 | 
						|
        PN->addIncoming(NewPN, PrologEnd);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a branch around the orignal loop, which is taken if there are no
 | 
						|
  // iterations remaining to be executed after running the prologue.
 | 
						|
  Instruction *InsertPt = PrologEnd->getTerminator();
 | 
						|
  IRBuilder<> B(InsertPt);
 | 
						|
 | 
						|
  assert(Count != 0 && "nonsensical Count!");
 | 
						|
 | 
						|
  // If BECount <u (Count - 1) then (BECount + 1) & (Count - 1) == (BECount + 1)
 | 
						|
  // (since Count is a power of 2).  This means %xtraiter is (BECount + 1) and
 | 
						|
  // and all of the iterations of this loop were executed by the prologue.  Note
 | 
						|
  // that if BECount <u (Count - 1) then (BECount + 1) cannot unsigned-overflow.
 | 
						|
  Value *BrLoopExit =
 | 
						|
      B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
 | 
						|
  BasicBlock *Exit = L->getUniqueExitBlock();
 | 
						|
  assert(Exit && "Loop must have a single exit block only");
 | 
						|
  // Split the exit to maintain loop canonicalization guarantees
 | 
						|
  SmallVector<BasicBlock*, 4> Preds(pred_begin(Exit), pred_end(Exit));
 | 
						|
  SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", AA, DT, LI,
 | 
						|
                         P->mustPreserveAnalysisID(LCSSAID));
 | 
						|
  // Add the branch to the exit block (around the unrolled loop)
 | 
						|
  B.CreateCondBr(BrLoopExit, Exit, NewPH);
 | 
						|
  InsertPt->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Create a clone of the blocks in a loop and connect them together.
 | 
						|
/// If UnrollProlog is true, loop structure will not be cloned, otherwise a new
 | 
						|
/// loop will be created including all cloned blocks, and the iterator of it
 | 
						|
/// switches to count NewIter down to 0.
 | 
						|
///
 | 
						|
static void CloneLoopBlocks(Loop *L, Value *NewIter, const bool UnrollProlog,
 | 
						|
                            BasicBlock *InsertTop, BasicBlock *InsertBot,
 | 
						|
                            std::vector<BasicBlock *> &NewBlocks,
 | 
						|
                            LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
 | 
						|
                            LoopInfo *LI) {
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
 | 
						|
  LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
 | 
						|
  Loop *NewLoop = 0;
 | 
						|
  Loop *ParentLoop = L->getParentLoop();
 | 
						|
  if (!UnrollProlog) {
 | 
						|
    NewLoop = new Loop();
 | 
						|
    if (ParentLoop)
 | 
						|
      ParentLoop->addChildLoop(NewLoop);
 | 
						|
    else
 | 
						|
      LI->addTopLevelLoop(NewLoop);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each block in the original loop, create a new copy,
 | 
						|
  // and update the value map with the newly created values.
 | 
						|
  for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
 | 
						|
    BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".prol", F);
 | 
						|
    NewBlocks.push_back(NewBB);
 | 
						|
 | 
						|
    if (NewLoop)
 | 
						|
      NewLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
    else if (ParentLoop)
 | 
						|
      ParentLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
 | 
						|
    VMap[*BB] = NewBB;
 | 
						|
    if (Header == *BB) {
 | 
						|
      // For the first block, add a CFG connection to this newly
 | 
						|
      // created block.
 | 
						|
      InsertTop->getTerminator()->setSuccessor(0, NewBB);
 | 
						|
 | 
						|
    }
 | 
						|
    if (Latch == *BB) {
 | 
						|
      // For the last block, if UnrollProlog is true, create a direct jump to
 | 
						|
      // InsertBot. If not, create a loop back to cloned head.
 | 
						|
      VMap.erase((*BB)->getTerminator());
 | 
						|
      BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
 | 
						|
      BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
 | 
						|
      IRBuilder<> Builder(LatchBR);
 | 
						|
      if (UnrollProlog) {
 | 
						|
        Builder.CreateBr(InsertBot);
 | 
						|
      } else {
 | 
						|
        PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2, "prol.iter",
 | 
						|
                                          FirstLoopBB->getFirstNonPHI());
 | 
						|
        Value *IdxSub =
 | 
						|
            Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
 | 
						|
                              NewIdx->getName() + ".sub");
 | 
						|
        Value *IdxCmp =
 | 
						|
            Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
 | 
						|
        Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
 | 
						|
        NewIdx->addIncoming(NewIter, InsertTop);
 | 
						|
        NewIdx->addIncoming(IdxSub, NewBB);
 | 
						|
      }
 | 
						|
      LatchBR->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the incoming values to the ones defined in the preheader or
 | 
						|
  // cloned loop.
 | 
						|
  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *NewPHI = cast<PHINode>(VMap[I]);
 | 
						|
    if (UnrollProlog) {
 | 
						|
      VMap[I] = NewPHI->getIncomingValueForBlock(Preheader);
 | 
						|
      cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
 | 
						|
    } else {
 | 
						|
      unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
 | 
						|
      NewPHI->setIncomingBlock(idx, InsertTop);
 | 
						|
      BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
 | 
						|
      idx = NewPHI->getBasicBlockIndex(Latch);
 | 
						|
      Value *InVal = NewPHI->getIncomingValue(idx);
 | 
						|
      NewPHI->setIncomingBlock(idx, NewLatch);
 | 
						|
      if (VMap[InVal])
 | 
						|
        NewPHI->setIncomingValue(idx, VMap[InVal]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NewLoop) {
 | 
						|
    // Add unroll disable metadata to disable future unrolling for this loop.
 | 
						|
    SmallVector<Metadata *, 4> MDs;
 | 
						|
    // Reserve first location for self reference to the LoopID metadata node.
 | 
						|
    MDs.push_back(nullptr);
 | 
						|
    MDNode *LoopID = NewLoop->getLoopID();
 | 
						|
    if (LoopID) {
 | 
						|
      // First remove any existing loop unrolling metadata.
 | 
						|
      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | 
						|
        bool IsUnrollMetadata = false;
 | 
						|
        MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | 
						|
        if (MD) {
 | 
						|
          const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | 
						|
          IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
 | 
						|
        }
 | 
						|
        if (!IsUnrollMetadata)
 | 
						|
          MDs.push_back(LoopID->getOperand(i));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    LLVMContext &Context = NewLoop->getHeader()->getContext();
 | 
						|
    SmallVector<Metadata *, 1> DisableOperands;
 | 
						|
    DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
 | 
						|
    MDNode *DisableNode = MDNode::get(Context, DisableOperands);
 | 
						|
    MDs.push_back(DisableNode);
 | 
						|
 | 
						|
    MDNode *NewLoopID = MDNode::get(Context, MDs);
 | 
						|
    // Set operand 0 to refer to the loop id itself.
 | 
						|
    NewLoopID->replaceOperandWith(0, NewLoopID);
 | 
						|
    NewLoop->setLoopID(NewLoopID);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert code in the prolog code when unrolling a loop with a
 | 
						|
/// run-time trip-count.
 | 
						|
///
 | 
						|
/// This method assumes that the loop unroll factor is total number
 | 
						|
/// of loop bodes in the loop after unrolling. (Some folks refer
 | 
						|
/// to the unroll factor as the number of *extra* copies added).
 | 
						|
/// We assume also that the loop unroll factor is a power-of-two. So, after
 | 
						|
/// unrolling the loop, the number of loop bodies executed is 2,
 | 
						|
/// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
 | 
						|
/// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
 | 
						|
/// the switch instruction is generated.
 | 
						|
///
 | 
						|
///        extraiters = tripcount % loopfactor
 | 
						|
///        if (extraiters == 0) jump Loop:
 | 
						|
///        else jump Prol
 | 
						|
/// Prol:  LoopBody;
 | 
						|
///        extraiters -= 1                 // Omitted if unroll factor is 2.
 | 
						|
///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
 | 
						|
///        if (tripcount < loopfactor) jump End
 | 
						|
/// Loop:
 | 
						|
/// ...
 | 
						|
/// End:
 | 
						|
///
 | 
						|
bool llvm::UnrollRuntimeLoopProlog(Loop *L, unsigned Count,
 | 
						|
                                   bool AllowExpensiveTripCount, LoopInfo *LI,
 | 
						|
                                   LPPassManager *LPM) {
 | 
						|
  // for now, only unroll loops that contain a single exit
 | 
						|
  if (!L->getExitingBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure the loop is in canonical form, and there is a single
 | 
						|
  // exit block only.
 | 
						|
  if (!L->isLoopSimplifyForm() || !L->getUniqueExitBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use Scalar Evolution to compute the trip count.  This allows more
 | 
						|
  // loops to be unrolled than relying on induction var simplification
 | 
						|
  if (!LPM)
 | 
						|
    return false;
 | 
						|
  ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
 | 
						|
  if (!SE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only unroll loops with a computable trip count and the trip count needs
 | 
						|
  // to be an int value (allowing a pointer type is a TODO item)
 | 
						|
  const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
 | 
						|
  if (isa<SCEVCouldNotCompute>(BECountSC) ||
 | 
						|
      !BECountSC->getType()->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
 | 
						|
 | 
						|
  // Add 1 since the backedge count doesn't include the first loop iteration
 | 
						|
  const SCEV *TripCountSC =
 | 
						|
    SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
 | 
						|
  if (isa<SCEVCouldNotCompute>(TripCountSC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *Header = L->getHeader();
 | 
						|
  const DataLayout &DL = Header->getModule()->getDataLayout();
 | 
						|
  SCEVExpander Expander(*SE, DL, "loop-unroll");
 | 
						|
  if (!AllowExpensiveTripCount && Expander.isHighCostExpansion(TripCountSC, L))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We only handle cases when the unroll factor is a power of 2.
 | 
						|
  // Count is the loop unroll factor, the number of extra copies added + 1.
 | 
						|
  if (!isPowerOf2_32(Count))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This constraint lets us deal with an overflowing trip count easily; see the
 | 
						|
  // comment on ModVal below.
 | 
						|
  if (Log2_32(Count) > BEWidth)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this loop is nested, then the loop unroller changes the code in
 | 
						|
  // parent loop, so the Scalar Evolution pass needs to be run again
 | 
						|
  if (Loop *ParentLoop = L->getParentLoop())
 | 
						|
    SE->forgetLoop(ParentLoop);
 | 
						|
 | 
						|
  // Grab analyses that we preserve.
 | 
						|
  auto *DTWP = LPM->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
  auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
 | 
						|
  BasicBlock *PH = L->getLoopPreheader();
 | 
						|
  BasicBlock *Latch = L->getLoopLatch();
 | 
						|
  // It helps to splits the original preheader twice, one for the end of the
 | 
						|
  // prolog code and one for a new loop preheader
 | 
						|
  BasicBlock *PEnd = SplitEdge(PH, Header, DT, LI);
 | 
						|
  BasicBlock *NewPH = SplitBlock(PEnd, PEnd->getTerminator(), DT, LI);
 | 
						|
  BranchInst *PreHeaderBR = cast<BranchInst>(PH->getTerminator());
 | 
						|
 | 
						|
  // Compute the number of extra iterations required, which is:
 | 
						|
  //  extra iterations = run-time trip count % (loop unroll factor + 1)
 | 
						|
  Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
 | 
						|
                                            PreHeaderBR);
 | 
						|
  Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
 | 
						|
                                          PreHeaderBR);
 | 
						|
 | 
						|
  IRBuilder<> B(PreHeaderBR);
 | 
						|
  Value *ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
 | 
						|
 | 
						|
  // If ModVal is zero, we know that either
 | 
						|
  //  1. there are no iteration to be run in the prologue loop
 | 
						|
  // OR
 | 
						|
  //  2. the addition computing TripCount overflowed
 | 
						|
  //
 | 
						|
  // If (2) is true, we know that TripCount really is (1 << BEWidth) and so the
 | 
						|
  // number of iterations that remain to be run in the original loop is a
 | 
						|
  // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
 | 
						|
  // explicitly check this above).
 | 
						|
 | 
						|
  Value *BranchVal = B.CreateIsNotNull(ModVal, "lcmp.mod");
 | 
						|
 | 
						|
  // Branch to either the extra iterations or the cloned/unrolled loop
 | 
						|
  // We will fix up the true branch label when adding loop body copies
 | 
						|
  B.CreateCondBr(BranchVal, PEnd, PEnd);
 | 
						|
  assert(PreHeaderBR->isUnconditional() &&
 | 
						|
         PreHeaderBR->getSuccessor(0) == PEnd &&
 | 
						|
         "CFG edges in Preheader are not correct");
 | 
						|
  PreHeaderBR->eraseFromParent();
 | 
						|
  Function *F = Header->getParent();
 | 
						|
  // Get an ordered list of blocks in the loop to help with the ordering of the
 | 
						|
  // cloned blocks in the prolog code
 | 
						|
  LoopBlocksDFS LoopBlocks(L);
 | 
						|
  LoopBlocks.perform(LI);
 | 
						|
 | 
						|
  //
 | 
						|
  // For each extra loop iteration, create a copy of the loop's basic blocks
 | 
						|
  // and generate a condition that branches to the copy depending on the
 | 
						|
  // number of 'left over' iterations.
 | 
						|
  //
 | 
						|
  std::vector<BasicBlock *> NewBlocks;
 | 
						|
  ValueToValueMapTy VMap;
 | 
						|
 | 
						|
  bool UnrollPrologue = Count == 2;
 | 
						|
 | 
						|
  // Clone all the basic blocks in the loop. If Count is 2, we don't clone
 | 
						|
  // the loop, otherwise we create a cloned loop to execute the extra
 | 
						|
  // iterations. This function adds the appropriate CFG connections.
 | 
						|
  CloneLoopBlocks(L, ModVal, UnrollPrologue, PH, PEnd, NewBlocks, LoopBlocks,
 | 
						|
                  VMap, LI);
 | 
						|
 | 
						|
  // Insert the cloned blocks into function just before the original loop
 | 
						|
  F->getBasicBlockList().splice(PEnd, F->getBasicBlockList(), NewBlocks[0],
 | 
						|
                                F->end());
 | 
						|
 | 
						|
  // Rewrite the cloned instruction operands to use the values
 | 
						|
  // created when the clone is created.
 | 
						|
  for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
 | 
						|
    for (BasicBlock::iterator I = NewBlocks[i]->begin(),
 | 
						|
                              E = NewBlocks[i]->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      RemapInstruction(I, VMap,
 | 
						|
                       RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Connect the prolog code to the original loop and update the
 | 
						|
  // PHI functions.
 | 
						|
  BasicBlock *LastLoopBB = cast<BasicBlock>(VMap[Latch]);
 | 
						|
  ConnectProlog(L, BECount, Count, LastLoopBB, PEnd, PH, NewPH, VMap,
 | 
						|
                /*AliasAnalysis*/ nullptr, DT, LI, LPM->getAsPass());
 | 
						|
  NumRuntimeUnrolled++;
 | 
						|
  return true;
 | 
						|
}
 |