mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80138 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1135 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1135 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| 
 | |
| <html>
 | |
| <head>
 | |
|   <title>Kaleidoscope: Adding JIT and Optimizer Support</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <link rel="stylesheet" href="../llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <div class="doc_title">Kaleidoscope: Adding JIT and Optimizer Support</div>
 | |
| 
 | |
| <ul>
 | |
| <li><a href="index.html">Up to Tutorial Index</a></li>
 | |
| <li>Chapter 4
 | |
|   <ol>
 | |
|     <li><a href="#intro">Chapter 4 Introduction</a></li>
 | |
|     <li><a href="#trivialconstfold">Trivial Constant Folding</a></li>
 | |
|     <li><a href="#optimizerpasses">LLVM Optimization Passes</a></li>
 | |
|     <li><a href="#jit">Adding a JIT Compiler</a></li>
 | |
|     <li><a href="#code">Full Code Listing</a></li>
 | |
|   </ol>
 | |
| </li>
 | |
| <li><a href="LangImpl5.html">Chapter 5</a>: Extending the Language: Control 
 | |
| Flow</li>
 | |
| </ul>
 | |
| 
 | |
| <div class="doc_author">
 | |
|   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="intro">Chapter 4 Introduction</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Welcome to Chapter 4 of the "<a href="index.html">Implementing a language
 | |
| with LLVM</a>" tutorial.  Chapters 1-3 described the implementation of a simple
 | |
| language and added support for generating LLVM IR.  This chapter describes
 | |
| two new techniques: adding optimizer support to your language, and adding JIT
 | |
| compiler support.  These additions will demonstrate how to get nice, efficient code 
 | |
| for the Kaleidoscope language.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="trivialconstfold">Trivial Constant
 | |
| Folding</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Our demonstration for Chapter 3 is elegant and easy to extend.  Unfortunately,
 | |
| it does not produce wonderful code.  The IRBuilder, however, does give us
 | |
| obvious optimizations when compiling simple code:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>def test(x) 1+2+x;</b>
 | |
| Read function definition:
 | |
| define double @test(double %x) {
 | |
| entry:
 | |
|         %addtmp = add double 3.000000e+00, %x
 | |
|         ret double %addtmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code is not a literal transcription of the AST built by parsing the 
 | |
| input. That would be:
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>def test(x) 1+2+x;</b>
 | |
| Read function definition:
 | |
| define double @test(double %x) {
 | |
| entry:
 | |
|         %addtmp = add double 2.000000e+00, 1.000000e+00
 | |
|         %addtmp1 = add double %addtmp, %x
 | |
|         ret double %addtmp1
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Constant folding, as seen above, in particular, is a very common and very
 | |
| important optimization: so much so that many language implementors implement
 | |
| constant folding support in their AST representation.</p>
 | |
| 
 | |
| <p>With LLVM, you don't need this support in the AST.  Since all calls to build 
 | |
| LLVM IR go through the LLVM IR builder, the builder itself checked to see if 
 | |
| there was a constant folding opportunity when you call it.  If so, it just does 
 | |
| the constant fold and return the constant instead of creating an instruction.
 | |
| 
 | |
| <p>Well, that was easy :).  In practice, we recommend always using
 | |
| <tt>IRBuilder</tt> when generating code like this.  It has no
 | |
| "syntactic overhead" for its use (you don't have to uglify your compiler with
 | |
| constant checks everywhere) and it can dramatically reduce the amount of
 | |
| LLVM IR that is generated in some cases (particular for languages with a macro
 | |
| preprocessor or that use a lot of constants).</p>
 | |
| 
 | |
| <p>On the other hand, the <tt>IRBuilder</tt> is limited by the fact
 | |
| that it does all of its analysis inline with the code as it is built.  If you
 | |
| take a slightly more complex example:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>def test(x) (1+2+x)*(x+(1+2));</b>
 | |
| ready> Read function definition:
 | |
| define double @test(double %x) {
 | |
| entry:
 | |
|         %addtmp = add double 3.000000e+00, %x
 | |
|         %addtmp1 = add double %x, 3.000000e+00
 | |
|         %multmp = mul double %addtmp, %addtmp1
 | |
|         ret double %multmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In this case, the LHS and RHS of the multiplication are the same value.  We'd
 | |
| really like to see this generate "<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
 | |
| of computing "<tt>x+3</tt>" twice.</p>
 | |
| 
 | |
| <p>Unfortunately, no amount of local analysis will be able to detect and correct
 | |
| this.  This requires two transformations: reassociation of expressions (to 
 | |
| make the add's lexically identical) and Common Subexpression Elimination (CSE)
 | |
| to  delete the redundant add instruction.  Fortunately, LLVM provides a broad
 | |
| range of optimizations that you can use, in the form of "passes".</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="optimizerpasses">LLVM Optimization
 | |
|  Passes</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>LLVM provides many optimization passes, which do many different sorts of
 | |
| things and have different tradeoffs.  Unlike other systems, LLVM doesn't hold
 | |
| to the mistaken notion that one set of optimizations is right for all languages
 | |
| and for all situations.  LLVM allows a compiler implementor to make complete
 | |
| decisions about what optimizations to use, in which order, and in what
 | |
| situation.</p>
 | |
| 
 | |
| <p>As a concrete example, LLVM supports both "whole module" passes, which look
 | |
| across as large of body of code as they can (often a whole file, but if run 
 | |
| at link time, this can be a substantial portion of the whole program).  It also
 | |
| supports and includes "per-function" passes which just operate on a single
 | |
| function at a time, without looking at other functions.  For more information
 | |
| on passes and how they are run, see the <a href="../WritingAnLLVMPass.html">How
 | |
| to Write a Pass</a> document and the <a href="../Passes.html">List of LLVM 
 | |
| Passes</a>.</p>
 | |
| 
 | |
| <p>For Kaleidoscope, we are currently generating functions on the fly, one at
 | |
| a time, as the user types them in.  We aren't shooting for the ultimate
 | |
| optimization experience in this setting, but we also want to catch the easy and
 | |
| quick stuff where possible.  As such, we will choose to run a few per-function
 | |
| optimizations as the user types the function in.  If we wanted to make a "static
 | |
| Kaleidoscope compiler", we would use exactly the code we have now, except that
 | |
| we would defer running the optimizer until the entire file has been parsed.</p>
 | |
| 
 | |
| <p>In order to get per-function optimizations going, we need to set up a
 | |
| <a href="../WritingAnLLVMPass.html#passmanager">FunctionPassManager</a> to hold and
 | |
| organize the LLVM optimizations that we want to run.  Once we have that, we can
 | |
| add a set of optimizations to run.  The code looks like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   ExistingModuleProvider *OurModuleProvider =
 | |
|       new ExistingModuleProvider(TheModule);
 | |
| 
 | |
|   FunctionPassManager OurFPM(OurModuleProvider);
 | |
| 
 | |
|   // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|   // target lays out data structures.
 | |
|   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | |
|   // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|   OurFPM.add(createInstructionCombiningPass());
 | |
|   // Reassociate expressions.
 | |
|   OurFPM.add(createReassociatePass());
 | |
|   // Eliminate Common SubExpressions.
 | |
|   OurFPM.add(createGVNPass());
 | |
|   // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|   OurFPM.add(createCFGSimplificationPass());
 | |
| 
 | |
|   // Set the global so the code gen can use this.
 | |
|   TheFPM = &OurFPM;
 | |
| 
 | |
|   // Run the main "interpreter loop" now.
 | |
|   MainLoop();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code defines two objects, an <tt>ExistingModuleProvider</tt> and a
 | |
| <tt>FunctionPassManager</tt>.  The former is basically a wrapper around our
 | |
| <tt>Module</tt> that the PassManager requires.  It provides certain flexibility
 | |
| that we're not going to take advantage of here, so I won't dive into any details 
 | |
| about it.</p>
 | |
| 
 | |
| <p>The meat of the matter here, is the definition of "<tt>OurFPM</tt>".  It
 | |
| requires a pointer to the <tt>Module</tt> (through the <tt>ModuleProvider</tt>)
 | |
| to construct itself.  Once it is set up, we use a series of "add" calls to add
 | |
| a bunch of LLVM passes.  The first pass is basically boilerplate, it adds a pass
 | |
| so that later optimizations know how the data structures in the program are
 | |
| layed out.  The "<tt>TheExecutionEngine</tt>" variable is related to the JIT,
 | |
| which we will get to in the next section.</p>
 | |
| 
 | |
| <p>In this case, we choose to add 4 optimization passes.  The passes we chose
 | |
| here are a pretty standard set of "cleanup" optimizations that are useful for
 | |
| a wide variety of code.  I won't delve into what they do but, believe me,
 | |
| they are a good starting place :).</p>
 | |
| 
 | |
| <p>Once the PassManager is set up, we need to make use of it.  We do this by
 | |
| running it after our newly created function is constructed (in 
 | |
| <tt>FunctionAST::Codegen</tt>), but before it is returned to the client:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   if (Value *RetVal = Body->Codegen()) {
 | |
|     // Finish off the function.
 | |
|     Builder.CreateRet(RetVal);
 | |
| 
 | |
|     // Validate the generated code, checking for consistency.
 | |
|     verifyFunction(*TheFunction);
 | |
| 
 | |
|     <b>// Optimize the function.
 | |
|     TheFPM->run(*TheFunction);</b>
 | |
|     
 | |
|     return TheFunction;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As you can see, this is pretty straightforward.  The 
 | |
| <tt>FunctionPassManager</tt> optimizes and updates the LLVM Function* in place,
 | |
| improving (hopefully) its body.  With this in place, we can try our test above
 | |
| again:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>def test(x) (1+2+x)*(x+(1+2));</b>
 | |
| ready> Read function definition:
 | |
| define double @test(double %x) {
 | |
| entry:
 | |
|         %addtmp = add double %x, 3.000000e+00
 | |
|         %multmp = mul double %addtmp, %addtmp
 | |
|         ret double %multmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As expected, we now get our nicely optimized code, saving a floating point
 | |
| add instruction from every execution of this function.</p>
 | |
| 
 | |
| <p>LLVM provides a wide variety of optimizations that can be used in certain
 | |
| circumstances.  Some <a href="../Passes.html">documentation about the various 
 | |
| passes</a> is available, but it isn't very complete.  Another good source of
 | |
| ideas can come from looking at the passes that <tt>llvm-gcc</tt> or
 | |
| <tt>llvm-ld</tt> run to get started.  The "<tt>opt</tt>" tool allows you to 
 | |
| experiment with passes from the command line, so you can see if they do
 | |
| anything.</p>
 | |
| 
 | |
| <p>Now that we have reasonable code coming out of our front-end, lets talk about
 | |
| executing it!</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="jit">Adding a JIT Compiler</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Code that is available in LLVM IR can have a wide variety of tools 
 | |
| applied to it.  For example, you can run optimizations on it (as we did above),
 | |
| you can dump it out in textual or binary forms, you can compile the code to an
 | |
| assembly file (.s) for some target, or you can JIT compile it.  The nice thing
 | |
| about the LLVM IR representation is that it is the "common currency" between
 | |
| many different parts of the compiler.
 | |
| </p>
 | |
| 
 | |
| <p>In this section, we'll add JIT compiler support to our interpreter.  The
 | |
| basic idea that we want for Kaleidoscope is to have the user enter function
 | |
| bodies as they do now, but immediately evaluate the top-level expressions they
 | |
| type in.  For example, if they type in "1 + 2;", we should evaluate and print
 | |
| out 3.  If they define a function, they should be able to call it from the 
 | |
| command line.</p>
 | |
| 
 | |
| <p>In order to do this, we first declare and initialize the JIT.  This is done
 | |
| by adding a global variable and a call in <tt>main</tt>:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| <b>static ExecutionEngine *TheExecutionEngine;</b>
 | |
| ...
 | |
| int main() {
 | |
|   ..
 | |
|   <b>// Create the JIT.  This takes ownership of the module and module provider.
 | |
|   TheExecutionEngine = EngineBuilder(OurModuleProvider).create();</b>
 | |
|   ..
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This creates an abstract "Execution Engine" which can be either a JIT
 | |
| compiler or the LLVM interpreter.  LLVM will automatically pick a JIT compiler
 | |
| for you if one is available for your platform, otherwise it will fall back to
 | |
| the interpreter.</p>
 | |
| 
 | |
| <p>Once the <tt>ExecutionEngine</tt> is created, the JIT is ready to be used.
 | |
| There are a variety of APIs that are useful, but the simplest one is the
 | |
| "<tt>getPointerToFunction(F)</tt>" method.  This method JIT compiles the
 | |
| specified LLVM Function and returns a function pointer to the generated machine
 | |
| code.  In our case, this means that we can change the code that parses a
 | |
| top-level expression to look like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| static void HandleTopLevelExpression() {
 | |
|   // Evaluate a top level expression into an anonymous function.
 | |
|   if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       LF->dump();  // Dump the function for exposition purposes.
 | |
|     
 | |
|       <b>// JIT the function, returning a function pointer.
 | |
|       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | |
|       
 | |
|       // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|       // can call it as a native function.
 | |
|       double (*FP)() = (double (*)())FPtr;
 | |
|       fprintf(stderr, "Evaluated to %f\n", FP());</b>
 | |
|     }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Recall that we compile top-level expressions into a self-contained LLVM
 | |
| function that takes no arguments and returns the computed double.  Because the 
 | |
| LLVM JIT compiler matches the native platform ABI, this means that you can just
 | |
| cast the result pointer to a function pointer of that type and call it directly.
 | |
| This means, there is no difference between JIT compiled code and native machine
 | |
| code that is statically linked into your application.</p>
 | |
| 
 | |
| <p>With just these two changes, lets see how Kaleidoscope works now!</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>4+5;</b>
 | |
| define double @""() {
 | |
| entry:
 | |
|         ret double 9.000000e+00
 | |
| }
 | |
| 
 | |
| <em>Evaluated to 9.000000</em>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Well this looks like it is basically working.  The dump of the function
 | |
| shows the "no argument function that always returns double" that we synthesize
 | |
| for each top level expression that is typed in.  This demonstrates very basic
 | |
| functionality, but can we do more?</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>def testfunc(x y) x + y*2; </b> 
 | |
| Read function definition:
 | |
| define double @testfunc(double %x, double %y) {
 | |
| entry:
 | |
|         %multmp = mul double %y, 2.000000e+00
 | |
|         %addtmp = add double %multmp, %x
 | |
|         ret double %addtmp
 | |
| }
 | |
| 
 | |
| ready> <b>testfunc(4, 10);</b>
 | |
| define double @""() {
 | |
| entry:
 | |
|         %calltmp = call double @testfunc( double 4.000000e+00, double 1.000000e+01 )
 | |
|         ret double %calltmp
 | |
| }
 | |
| 
 | |
| <em>Evaluated to 24.000000</em>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This illustrates that we can now call user code, but there is something a bit subtle
 | |
| going on here.  Note that we only invoke the JIT on the anonymous functions
 | |
| that <em>call testfunc</em>, but we never invoked it on <em>testfunc
 | |
| </em>itself.</p>
 | |
| 
 | |
| <p>What actually happened here is that the anonymous function was
 | |
| JIT'd when requested.  When the Kaleidoscope app calls through the function
 | |
| pointer that is returned, the anonymous function starts executing.  It ends up
 | |
| making the call to the "testfunc" function, and ends up in a stub that invokes
 | |
| the JIT, lazily, on testfunc.  Once the JIT finishes lazily compiling testfunc,
 | |
| it returns and the code re-executes the call.</p>
 | |
| 
 | |
| <p>In summary, the JIT will lazily JIT code, on the fly, as it is needed.  The
 | |
| JIT provides a number of other more advanced interfaces for things like freeing
 | |
| allocated machine code, rejit'ing functions to update them, etc.  However, even
 | |
| with this simple code, we get some surprisingly powerful capabilities - check
 | |
| this out (I removed the dump of the anonymous functions, you should get the idea
 | |
| by now :) :</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>extern sin(x);</b>
 | |
| Read extern: 
 | |
| declare double @sin(double)
 | |
| 
 | |
| ready> <b>extern cos(x);</b>
 | |
| Read extern: 
 | |
| declare double @cos(double)
 | |
| 
 | |
| ready> <b>sin(1.0);</b>
 | |
| <em>Evaluated to 0.841471</em>
 | |
| 
 | |
| ready> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);</b>
 | |
| Read function definition:
 | |
| define double @foo(double %x) {
 | |
| entry:
 | |
|         %calltmp = call double @sin( double %x )
 | |
|         %multmp = mul double %calltmp, %calltmp
 | |
|         %calltmp2 = call double @cos( double %x )
 | |
|         %multmp4 = mul double %calltmp2, %calltmp2
 | |
|         %addtmp = add double %multmp, %multmp4
 | |
|         ret double %addtmp
 | |
| }
 | |
| 
 | |
| ready> <b>foo(4.0);</b>
 | |
| <em>Evaluated to 1.000000</em>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Whoa, how does the JIT know about sin and cos?  The answer is surprisingly
 | |
| simple: in this
 | |
| example, the JIT started execution of a function and got to a function call.  It
 | |
| realized that the function was not yet JIT compiled and invoked the standard set
 | |
| of routines to resolve the function.  In this case, there is no body defined
 | |
| for the function, so the JIT ended up calling "<tt>dlsym("sin")</tt>" on the
 | |
| Kaleidoscope process itself.
 | |
| Since "<tt>sin</tt>" is defined within the JIT's address space, it simply
 | |
| patches up calls in the module to call the libm version of <tt>sin</tt>
 | |
| directly.</p>
 | |
| 
 | |
| <p>The LLVM JIT provides a number of interfaces (look in the 
 | |
| <tt>ExecutionEngine.h</tt> file) for controlling how unknown functions get
 | |
| resolved.  It allows you to establish explicit mappings between IR objects and
 | |
| addresses (useful for LLVM global variables that you want to map to static
 | |
| tables, for example), allows you to dynamically decide on the fly based on the
 | |
| function name, and even allows you to have the JIT abort itself if any lazy
 | |
| compilation is attempted.</p>
 | |
| 
 | |
| <p>One interesting application of this is that we can now extend the language
 | |
| by writing arbitrary C++ code to implement operations.  For example, if we add:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// putchard - putchar that takes a double and returns 0.
 | |
| extern "C" 
 | |
| double putchard(double X) {
 | |
|   putchar((char)X);
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now we can produce simple output to the console by using things like:
 | |
| "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
 | |
| the console (120 is the ASCII code for 'x').  Similar code could be used to 
 | |
| implement file I/O, console input, and many other capabilities in
 | |
| Kaleidoscope.</p>
 | |
| 
 | |
| <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
 | |
| this point, we can compile a non-Turing-complete programming language, optimize
 | |
| and JIT compile it in a user-driven way.  Next up we'll look into <a 
 | |
| href="LangImpl5.html">extending the language with control flow constructs</a>,
 | |
| tackling some interesting LLVM IR issues along the way.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="code">Full Code Listing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Here is the complete code listing for our running example, enhanced with the
 | |
| LLVM JIT and optimizer.  To build this example, use:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|    # Compile
 | |
|    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | |
|    # Run
 | |
|    ./toy
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| If you are compiling this on Linux, make sure to add the "-rdynamic" option 
 | |
| as well.  This makes sure that the external functions are resolved properly 
 | |
| at runtime.</p>
 | |
| 
 | |
| <p>Here is the code:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lexer
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
| // of these for known things.
 | |
| enum Token {
 | |
|   tok_eof = -1,
 | |
| 
 | |
|   // commands
 | |
|   tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|   // primary
 | |
|   tok_identifier = -4, tok_number = -5,
 | |
| };
 | |
| 
 | |
| static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
| static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
| /// gettok - Return the next token from standard input.
 | |
| static int gettok() {
 | |
|   static int LastChar = ' ';
 | |
| 
 | |
|   // Skip any whitespace.
 | |
|   while (isspace(LastChar))
 | |
|     LastChar = getchar();
 | |
| 
 | |
|   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|     IdentifierStr = LastChar;
 | |
|     while (isalnum((LastChar = getchar())))
 | |
|       IdentifierStr += LastChar;
 | |
| 
 | |
|     if (IdentifierStr == "def") return tok_def;
 | |
|     if (IdentifierStr == "extern") return tok_extern;
 | |
|     return tok_identifier;
 | |
|   }
 | |
| 
 | |
|   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|     std::string NumStr;
 | |
|     do {
 | |
|       NumStr += LastChar;
 | |
|       LastChar = getchar();
 | |
|     } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|     NumVal = strtod(NumStr.c_str(), 0);
 | |
|     return tok_number;
 | |
|   }
 | |
| 
 | |
|   if (LastChar == '#') {
 | |
|     // Comment until end of line.
 | |
|     do LastChar = getchar();
 | |
|     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
|     
 | |
|     if (LastChar != EOF)
 | |
|       return gettok();
 | |
|   }
 | |
|   
 | |
|   // Check for end of file.  Don't eat the EOF.
 | |
|   if (LastChar == EOF)
 | |
|     return tok_eof;
 | |
| 
 | |
|   // Otherwise, just return the character as its ascii value.
 | |
|   int ThisChar = LastChar;
 | |
|   LastChar = getchar();
 | |
|   return ThisChar;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Abstract Syntax Tree (aka Parse Tree)
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ExprAST - Base class for all expression nodes.
 | |
| class ExprAST {
 | |
| public:
 | |
|   virtual ~ExprAST() {}
 | |
|   virtual Value *Codegen() = 0;
 | |
| };
 | |
| 
 | |
| /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
| class NumberExprAST : public ExprAST {
 | |
|   double Val;
 | |
| public:
 | |
|   NumberExprAST(double val) : Val(val) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
| class VariableExprAST : public ExprAST {
 | |
|   std::string Name;
 | |
| public:
 | |
|   VariableExprAST(const std::string &name) : Name(name) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// BinaryExprAST - Expression class for a binary operator.
 | |
| class BinaryExprAST : public ExprAST {
 | |
|   char Op;
 | |
|   ExprAST *LHS, *RHS;
 | |
| public:
 | |
|   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | |
|     : Op(op), LHS(lhs), RHS(rhs) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// CallExprAST - Expression class for function calls.
 | |
| class CallExprAST : public ExprAST {
 | |
|   std::string Callee;
 | |
|   std::vector<ExprAST*> Args;
 | |
| public:
 | |
|   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|     : Callee(callee), Args(args) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its argument names as well as if it is an operator.
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args)
 | |
|     : Name(name), Args(args) {}
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| /// FunctionAST - This class represents a function definition itself.
 | |
| class FunctionAST {
 | |
|   PrototypeAST *Proto;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|     : Proto(proto), Body(body) {}
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
| /// token the parser it looking at.  getNextToken reads another token from the
 | |
| /// lexer and updates CurTok with its results.
 | |
| static int CurTok;
 | |
| static int getNextToken() {
 | |
|   return CurTok = gettok();
 | |
| }
 | |
| 
 | |
| /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
| /// defined.
 | |
| static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
| static int GetTokPrecedence() {
 | |
|   if (!isascii(CurTok))
 | |
|     return -1;
 | |
|   
 | |
|   // Make sure it's a declared binop.
 | |
|   int TokPrec = BinopPrecedence[CurTok];
 | |
|   if (TokPrec <= 0) return -1;
 | |
|   return TokPrec;
 | |
| }
 | |
| 
 | |
| /// Error* - These are little helper functions for error handling.
 | |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| static ExprAST *ParseExpression();
 | |
| 
 | |
| /// identifierexpr
 | |
| ///   ::= identifier
 | |
| ///   ::= identifier '(' expression* ')'
 | |
| static ExprAST *ParseIdentifierExpr() {
 | |
|   std::string IdName = IdentifierStr;
 | |
|   
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '(') // Simple variable ref.
 | |
|     return new VariableExprAST(IdName);
 | |
|   
 | |
|   // Call.
 | |
|   getNextToken();  // eat (
 | |
|   std::vector<ExprAST*> Args;
 | |
|   if (CurTok != ')') {
 | |
|     while (1) {
 | |
|       ExprAST *Arg = ParseExpression();
 | |
|       if (!Arg) return 0;
 | |
|       Args.push_back(Arg);
 | |
|     
 | |
|       if (CurTok == ')') break;
 | |
|     
 | |
|       if (CurTok != ',')
 | |
|         return Error("Expected ')' or ',' in argument list");
 | |
|       getNextToken();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eat the ')'.
 | |
|   getNextToken();
 | |
|   
 | |
|   return new CallExprAST(IdName, Args);
 | |
| }
 | |
| 
 | |
| /// numberexpr ::= number
 | |
| static ExprAST *ParseNumberExpr() {
 | |
|   ExprAST *Result = new NumberExprAST(NumVal);
 | |
|   getNextToken(); // consume the number
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// parenexpr ::= '(' expression ')'
 | |
| static ExprAST *ParseParenExpr() {
 | |
|   getNextToken();  // eat (.
 | |
|   ExprAST *V = ParseExpression();
 | |
|   if (!V) return 0;
 | |
|   
 | |
|   if (CurTok != ')')
 | |
|     return Error("expected ')'");
 | |
|   getNextToken();  // eat ).
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// binoprhs
 | |
| ///   ::= ('+' primary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   // If this is a binop, find its precedence.
 | |
|   while (1) {
 | |
|     int TokPrec = GetTokPrecedence();
 | |
|     
 | |
|     // If this is a binop that binds at least as tightly as the current binop,
 | |
|     // consume it, otherwise we are done.
 | |
|     if (TokPrec < ExprPrec)
 | |
|       return LHS;
 | |
|     
 | |
|     // Okay, we know this is a binop.
 | |
|     int BinOp = CurTok;
 | |
|     getNextToken();  // eat binop
 | |
|     
 | |
|     // Parse the primary expression after the binary operator.
 | |
|     ExprAST *RHS = ParsePrimary();
 | |
|     if (!RHS) return 0;
 | |
|     
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
|       RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|       if (RHS == 0) return 0;
 | |
|     }
 | |
|     
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expression
 | |
| ///   ::= primary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   ExprAST *LHS = ParsePrimary();
 | |
|   if (!LHS) return 0;
 | |
|   
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| 
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   if (CurTok != tok_identifier)
 | |
|     return ErrorP("Expected function name in prototype");
 | |
| 
 | |
|   std::string FnName = IdentifierStr;
 | |
|   getNextToken();
 | |
|   
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
|   
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
|   
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
|   
 | |
|   return new PrototypeAST(FnName, ArgNames);
 | |
| }
 | |
| 
 | |
| /// definition ::= 'def' prototype expression
 | |
| static FunctionAST *ParseDefinition() {
 | |
|   getNextToken();  // eat def.
 | |
|   PrototypeAST *Proto = ParsePrototype();
 | |
|   if (Proto == 0) return 0;
 | |
| 
 | |
|   if (ExprAST *E = ParseExpression())
 | |
|     return new FunctionAST(Proto, E);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// toplevelexpr ::= expression
 | |
| static FunctionAST *ParseTopLevelExpr() {
 | |
|   if (ExprAST *E = ParseExpression()) {
 | |
|     // Make an anonymous proto.
 | |
|     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|     return new FunctionAST(Proto, E);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// external ::= 'extern' prototype
 | |
| static PrototypeAST *ParseExtern() {
 | |
|   getNextToken();  // eat extern.
 | |
|   return ParsePrototype();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code Generation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Module *TheModule;
 | |
| static IRBuilder<> Builder(getGlobalContext());
 | |
| static std::map<std::string, Value*> NamedValues;
 | |
| static FunctionPassManager *TheFPM;
 | |
| 
 | |
| Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| Value *NumberExprAST::Codegen() {
 | |
|   return ConstantFP::get(getGlobalContext(), APFloat(Val));
 | |
| }
 | |
| 
 | |
| Value *VariableExprAST::Codegen() {
 | |
|   // Look this variable up in the function.
 | |
|   Value *V = NamedValues[Name];
 | |
|   return V ? V : ErrorV("Unknown variable name");
 | |
| }
 | |
| 
 | |
| Value *BinaryExprAST::Codegen() {
 | |
|   Value *L = LHS->Codegen();
 | |
|   Value *R = RHS->Codegen();
 | |
|   if (L == 0 || R == 0) return 0;
 | |
|   
 | |
|   switch (Op) {
 | |
|   case '+': return Builder.CreateAdd(L, R, "addtmp");
 | |
|   case '-': return Builder.CreateSub(L, R, "subtmp");
 | |
|   case '*': return Builder.CreateMul(L, R, "multmp");
 | |
|   case '<':
 | |
|     L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|     // Convert bool 0/1 to double 0.0 or 1.0
 | |
|     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp");
 | |
|   default: return ErrorV("invalid binary operator");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *CallExprAST::Codegen() {
 | |
|   // Look up the name in the global module table.
 | |
|   Function *CalleeF = TheModule->getFunction(Callee);
 | |
|   if (CalleeF == 0)
 | |
|     return ErrorV("Unknown function referenced");
 | |
|   
 | |
|   // If argument mismatch error.
 | |
|   if (CalleeF->arg_size() != Args.size())
 | |
|     return ErrorV("Incorrect # arguments passed");
 | |
| 
 | |
|   std::vector<Value*> ArgsV;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     ArgsV.push_back(Args[i]->Codegen());
 | |
|     if (ArgsV.back() == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | |
| }
 | |
| 
 | |
| Function *PrototypeAST::Codegen() {
 | |
|   // Make the function type:  double(double,double) etc.
 | |
|   std::vector<const Type*> Doubles(Args.size(), Type::getDoubleTy(getGlobalContext()));
 | |
|   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
 | |
|   
 | |
|   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | |
|   
 | |
|   // If F conflicted, there was already something named 'Name'.  If it has a
 | |
|   // body, don't allow redefinition or reextern.
 | |
|   if (F->getName() != Name) {
 | |
|     // Delete the one we just made and get the existing one.
 | |
|     F->eraseFromParent();
 | |
|     F = TheModule->getFunction(Name);
 | |
|     
 | |
|     // If F already has a body, reject this.
 | |
|     if (!F->empty()) {
 | |
|       ErrorF("redefinition of function");
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // If F took a different number of args, reject.
 | |
|     if (F->arg_size() != Args.size()) {
 | |
|       ErrorF("redefinition of function with different # args");
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Set names for all arguments.
 | |
|   unsigned Idx = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | |
|        ++AI, ++Idx) {
 | |
|     AI->setName(Args[Idx]);
 | |
|     
 | |
|     // Add arguments to variable symbol table.
 | |
|     NamedValues[Args[Idx]] = AI;
 | |
|   }
 | |
|   
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| Function *FunctionAST::Codegen() {
 | |
|   NamedValues.clear();
 | |
|   
 | |
|   Function *TheFunction = Proto->Codegen();
 | |
|   if (TheFunction == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // Create a new basic block to start insertion into.
 | |
|   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   
 | |
|   if (Value *RetVal = Body->Codegen()) {
 | |
|     // Finish off the function.
 | |
|     Builder.CreateRet(RetVal);
 | |
| 
 | |
|     // Validate the generated code, checking for consistency.
 | |
|     verifyFunction(*TheFunction);
 | |
| 
 | |
|     // Optimize the function.
 | |
|     TheFPM->run(*TheFunction);
 | |
|     
 | |
|     return TheFunction;
 | |
|   }
 | |
|   
 | |
|   // Error reading body, remove function.
 | |
|   TheFunction->eraseFromParent();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Top-Level parsing and JIT Driver
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static ExecutionEngine *TheExecutionEngine;
 | |
| 
 | |
| static void HandleDefinition() {
 | |
|   if (FunctionAST *F = ParseDefinition()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       fprintf(stderr, "Read function definition:");
 | |
|       LF->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleExtern() {
 | |
|   if (PrototypeAST *P = ParseExtern()) {
 | |
|     if (Function *F = P->Codegen()) {
 | |
|       fprintf(stderr, "Read extern: ");
 | |
|       F->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleTopLevelExpression() {
 | |
|   // Evaluate a top level expression into an anonymous function.
 | |
|   if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       // JIT the function, returning a function pointer.
 | |
|       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | |
|       
 | |
|       // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|       // can call it as a native function.
 | |
|       double (*FP)() = (double (*)())FPtr;
 | |
|       fprintf(stderr, "Evaluated to %f\n", FP());
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// top ::= definition | external | expression | ';'
 | |
| static void MainLoop() {
 | |
|   while (1) {
 | |
|     fprintf(stderr, "ready> ");
 | |
|     switch (CurTok) {
 | |
|     case tok_eof:    return;
 | |
|     case ';':        getNextToken(); break;  // ignore top level semicolons.
 | |
|     case tok_def:    HandleDefinition(); break;
 | |
|     case tok_extern: HandleExtern(); break;
 | |
|     default:         HandleTopLevelExpression(); break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // "Library" functions that can be "extern'd" from user code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// putchard - putchar that takes a double and returns 0.
 | |
| extern "C" 
 | |
| double putchard(double X) {
 | |
|   putchar((char)X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main driver code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int main() {
 | |
|   // Install standard binary operators.
 | |
|   // 1 is lowest precedence.
 | |
|   BinopPrecedence['<'] = 10;
 | |
|   BinopPrecedence['+'] = 20;
 | |
|   BinopPrecedence['-'] = 20;
 | |
|   BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|   // Prime the first token.
 | |
|   fprintf(stderr, "ready> ");
 | |
|   getNextToken();
 | |
| 
 | |
|   // Make the module, which holds all the code.
 | |
|   TheModule = new Module("my cool jit", getGlobalContext());
 | |
| 
 | |
|   ExistingModuleProvider *OurModuleProvider =
 | |
|       new ExistingModuleProvider(TheModule);
 | |
| 
 | |
|   // Create the JIT.  This takes ownership of the module and module provider.
 | |
|   TheExecutionEngine = EngineBuilder(OurModuleProvider).create();
 | |
| 
 | |
|   FunctionPassManager OurFPM(OurModuleProvider);
 | |
| 
 | |
|   // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|   // target lays out data structures.
 | |
|   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | |
|   // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|   OurFPM.add(createInstructionCombiningPass());
 | |
|   // Reassociate expressions.
 | |
|   OurFPM.add(createReassociatePass());
 | |
|   // Eliminate Common SubExpressions.
 | |
|   OurFPM.add(createGVNPass());
 | |
|   // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|   OurFPM.add(createCFGSimplificationPass());
 | |
| 
 | |
|   // Set the global so the code gen can use this.
 | |
|   TheFPM = &OurFPM;
 | |
| 
 | |
|   // Run the main "interpreter loop" now.
 | |
|   MainLoop();
 | |
| 
 | |
|   TheFPM = 0;
 | |
| 
 | |
|   // Print out all of the generated code.
 | |
|   TheModule->dump();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <a href="LangImpl5.html">Next: Extending the language: control flow</a>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | |
| </address>
 | |
| </body>
 | |
| </html>
 |