mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80138 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1767 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1767 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| 
 | |
| <html>
 | |
| <head>
 | |
|   <title>Kaleidoscope: Extending the Language: Control Flow</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <link rel="stylesheet" href="../llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <div class="doc_title">Kaleidoscope: Extending the Language: Control Flow</div>
 | |
| 
 | |
| <ul>
 | |
| <li><a href="index.html">Up to Tutorial Index</a></li>
 | |
| <li>Chapter 5
 | |
|   <ol>
 | |
|     <li><a href="#intro">Chapter 5 Introduction</a></li>
 | |
|     <li><a href="#ifthen">If/Then/Else</a>
 | |
|     <ol>
 | |
|       <li><a href="#iflexer">Lexer Extensions</a></li>
 | |
|       <li><a href="#ifast">AST Extensions</a></li>
 | |
|       <li><a href="#ifparser">Parser Extensions</a></li>
 | |
|       <li><a href="#ifir">LLVM IR</a></li>
 | |
|       <li><a href="#ifcodegen">Code Generation</a></li>
 | |
|     </ol>
 | |
|     </li>
 | |
|     <li><a href="#for">'for' Loop Expression</a>
 | |
|     <ol>
 | |
|       <li><a href="#forlexer">Lexer Extensions</a></li>
 | |
|       <li><a href="#forast">AST Extensions</a></li>
 | |
|       <li><a href="#forparser">Parser Extensions</a></li>
 | |
|       <li><a href="#forir">LLVM IR</a></li>
 | |
|       <li><a href="#forcodegen">Code Generation</a></li>
 | |
|     </ol>
 | |
|     </li>
 | |
|     <li><a href="#code">Full Code Listing</a></li>
 | |
|   </ol>
 | |
| </li>
 | |
| <li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language: 
 | |
| User-defined Operators</li>
 | |
| </ul>
 | |
| 
 | |
| <div class="doc_author">
 | |
|   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="intro">Chapter 5 Introduction</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
 | |
| with LLVM</a>" tutorial.  Parts 1-4 described the implementation of the simple
 | |
| Kaleidoscope language and included support for generating LLVM IR, followed by
 | |
| optimizations and a JIT compiler.  Unfortunately, as presented, Kaleidoscope is
 | |
| mostly useless: it has no control flow other than call and return.  This means
 | |
| that you can't have conditional branches in the code, significantly limiting its
 | |
| power.  In this episode of "build that compiler", we'll extend Kaleidoscope to
 | |
| have an if/then/else expression plus a simple 'for' loop.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="ifthen">If/Then/Else</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Extending Kaleidoscope to support if/then/else is quite straightforward.  It
 | |
| basically requires adding lexer support for this "new" concept to the lexer,
 | |
| parser, AST, and LLVM code emitter.  This example is nice, because it shows how
 | |
| easy it is to "grow" a language over time, incrementally extending it as new
 | |
| ideas are discovered.</p>
 | |
| 
 | |
| <p>Before we get going on "how" we add this extension, lets talk about "what" we
 | |
| want.  The basic idea is that we want to be able to write this sort of thing:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| def fib(x)
 | |
|   if x < 3 then
 | |
|     1
 | |
|   else
 | |
|     fib(x-1)+fib(x-2);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In Kaleidoscope, every construct is an expression: there are no statements.
 | |
| As such, the if/then/else expression needs to return a value like any other.
 | |
| Since we're using a mostly functional form, we'll have it evaluate its
 | |
| conditional, then return the 'then' or 'else' value based on how the condition
 | |
| was resolved.  This is very similar to the C "?:" expression.</p>
 | |
| 
 | |
| <p>The semantics of the if/then/else expression is that it evaluates the
 | |
| condition to a boolean equality value: 0.0 is considered to be false and
 | |
| everything else is considered to be true.
 | |
| If the condition is true, the first subexpression is evaluated and returned, if
 | |
| the condition is false, the second subexpression is evaluated and returned.
 | |
| Since Kaleidoscope allows side-effects, this behavior is important to nail down.
 | |
| </p>
 | |
| 
 | |
| <p>Now that we know what we "want", lets break this down into its constituent
 | |
| pieces.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="iflexer">Lexer Extensions for
 | |
| If/Then/Else</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The lexer extensions are straightforward.  First we add new enum values
 | |
| for the relevant tokens:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // control
 | |
|   tok_if = -6, tok_then = -7, tok_else = -8,
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
 | |
| stuff:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|     ...
 | |
|     if (IdentifierStr == "def") return tok_def;
 | |
|     if (IdentifierStr == "extern") return tok_extern;
 | |
|     <b>if (IdentifierStr == "if") return tok_if;
 | |
|     if (IdentifierStr == "then") return tok_then;
 | |
|     if (IdentifierStr == "else") return tok_else;</b>
 | |
|     return tok_identifier;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="ifast">AST Extensions for
 | |
|  If/Then/Else</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>To represent the new expression we add a new AST node for it:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// IfExprAST - Expression class for if/then/else.
 | |
| class IfExprAST : public ExprAST {
 | |
|   ExprAST *Cond, *Then, *Else;
 | |
| public:
 | |
|   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | |
|     : Cond(cond), Then(then), Else(_else) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The AST node just has pointers to the various subexpressions.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="ifparser">Parser Extensions for
 | |
| If/Then/Else</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Now that we have the relevant tokens coming from the lexer and we have the
 | |
| AST node to build, our parsing logic is relatively straightforward.  First we
 | |
| define a new parsing function:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | |
| static ExprAST *ParseIfExpr() {
 | |
|   getNextToken();  // eat the if.
 | |
|   
 | |
|   // condition.
 | |
|   ExprAST *Cond = ParseExpression();
 | |
|   if (!Cond) return 0;
 | |
|   
 | |
|   if (CurTok != tok_then)
 | |
|     return Error("expected then");
 | |
|   getNextToken();  // eat the then
 | |
|   
 | |
|   ExprAST *Then = ParseExpression();
 | |
|   if (Then == 0) return 0;
 | |
|   
 | |
|   if (CurTok != tok_else)
 | |
|     return Error("expected else");
 | |
|   
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *Else = ParseExpression();
 | |
|   if (!Else) return 0;
 | |
|   
 | |
|   return new IfExprAST(Cond, Then, Else);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Next we hook it up as a primary expression:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   <b>case tok_if:         return ParseIfExpr();</b>
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="ifir">LLVM IR for If/Then/Else</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Now that we have it parsing and building the AST, the final piece is adding
 | |
| LLVM code generation support.  This is the most interesting part of the
 | |
| if/then/else example, because this is where it starts to introduce new concepts.
 | |
| All of the code above has been thoroughly described in previous chapters.
 | |
| </p>
 | |
| 
 | |
| <p>To motivate the code we want to produce, lets take a look at a simple
 | |
| example.  Consider:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| extern foo();
 | |
| extern bar();
 | |
| def baz(x) if x then foo() else bar();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
 | |
| looks like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| declare double @foo()
 | |
| 
 | |
| declare double @bar()
 | |
| 
 | |
| define double @baz(double %x) {
 | |
| entry:
 | |
| 	%ifcond = fcmp one double %x, 0.000000e+00
 | |
| 	br i1 %ifcond, label %then, label %else
 | |
| 
 | |
| then:		; preds = %entry
 | |
| 	%calltmp = call double @foo()
 | |
| 	br label %ifcont
 | |
| 
 | |
| else:		; preds = %entry
 | |
| 	%calltmp1 = call double @bar()
 | |
| 	br label %ifcont
 | |
| 
 | |
| ifcont:		; preds = %else, %then
 | |
| 	%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
 | |
| 	ret double %iftmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>To visualize the control flow graph, you can use a nifty feature of the LLVM
 | |
| '<a href="http://llvm.org/cmds/opt.html">opt</a>' tool.  If you put this LLVM IR
 | |
| into "t.ll" and run "<tt>llvm-as < t.ll | opt -analyze -view-cfg</tt>", <a
 | |
| href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
 | |
| see this graph:</p>
 | |
| 
 | |
| <div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423" 
 | |
| height="315"></div>
 | |
| 
 | |
| <p>Another way to get this is to call "<tt>F->viewCFG()</tt>" or
 | |
| "<tt>F->viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by
 | |
| inserting actual calls into the code and recompiling or by calling these in the
 | |
| debugger.  LLVM has many nice features for visualizing various graphs.</p>
 | |
| 
 | |
| <p>Getting back to the generated code, it is fairly simple: the entry block 
 | |
| evaluates the conditional expression ("x" in our case here) and compares the
 | |
| result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
 | |
| instruction ('one' is "Ordered and Not Equal").  Based on the result of this
 | |
| expression, the code jumps to either the "then" or "else" blocks, which contain
 | |
| the expressions for the true/false cases.</p>
 | |
| 
 | |
| <p>Once the then/else blocks are finished executing, they both branch back to the
 | |
| 'ifcont' block to execute the code that happens after the if/then/else.  In this
 | |
| case the only thing left to do is to return to the caller of the function.  The
 | |
| question then becomes: how does the code know which expression to return?</p>
 | |
| 
 | |
| <p>The answer to this question involves an important SSA operation: the
 | |
| <a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
 | |
| operation</a>.  If you're not familiar with SSA, <a 
 | |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
 | |
| article</a> is a good introduction and there are various other introductions to
 | |
| it available on your favorite search engine.  The short version is that
 | |
| "execution" of the Phi operation requires "remembering" which block control came
 | |
| from.  The Phi operation takes on the value corresponding to the input control
 | |
| block.  In this case, if control comes in from the "then" block, it gets the
 | |
| value of "calltmp".  If control comes from the "else" block, it gets the value
 | |
| of "calltmp1".</p>
 | |
| 
 | |
| <p>At this point, you are probably starting to think "Oh no! This means my
 | |
| simple and elegant front-end will have to start generating SSA form in order to
 | |
| use LLVM!".  Fortunately, this is not the case, and we strongly advise
 | |
| <em>not</em> implementing an SSA construction algorithm in your front-end
 | |
| unless there is an amazingly good reason to do so.  In practice, there are two
 | |
| sorts of values that float around in code written for your average imperative
 | |
| programming language that might need Phi nodes:</p>
 | |
| 
 | |
| <ol>
 | |
| <li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
 | |
| <li>Values that are implicit in the structure of your AST, such as the Phi node
 | |
| in this case.</li>
 | |
| </ol>
 | |
| 
 | |
| <p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable 
 | |
| variables"), we'll talk about #1
 | |
| in depth.  For now, just believe me that you don't need SSA construction to
 | |
| handle this case.  For #2, you have the choice of using the techniques that we will 
 | |
| describe for #1, or you can insert Phi nodes directly, if convenient.  In this 
 | |
| case, it is really really easy to generate the Phi node, so we choose to do it
 | |
| directly.</p>
 | |
| 
 | |
| <p>Okay, enough of the motivation and overview, lets generate code!</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="ifcodegen">Code Generation for 
 | |
| If/Then/Else</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>In order to generate code for this, we implement the <tt>Codegen</tt> method
 | |
| for <tt>IfExprAST</tt>:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Value *IfExprAST::Codegen() {
 | |
|   Value *CondV = Cond->Codegen();
 | |
|   if (CondV == 0) return 0;
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   CondV = Builder.CreateFCmpONE(CondV, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                 "ifcond");
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code is straightforward and similar to what we saw before.  We emit the
 | |
| expression for the condition, then compare that value to zero to get a truth
 | |
| value as a 1-bit (bool) value.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|   
 | |
|   // Create blocks for the then and else cases.  Insert the 'then' block at the
 | |
|   // end of the function.
 | |
|   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | |
|   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | |
|   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | |
| 
 | |
|   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code creates the basic blocks that are related to the if/then/else
 | |
| statement, and correspond directly to the blocks in the example above.  The
 | |
| first line gets the current Function object that is being built.  It
 | |
| gets this by asking the builder for the current BasicBlock, and asking that
 | |
| block for its "parent" (the function it is currently embedded into).</p>
 | |
| 
 | |
| <p>Once it has that, it creates three blocks.  Note that it passes "TheFunction"
 | |
| into the constructor for the "then" block.  This causes the constructor to
 | |
| automatically insert the new block into the end of the specified function.  The
 | |
| other two blocks are created, but aren't yet inserted into the function.</p>
 | |
| 
 | |
| <p>Once the blocks are created, we can emit the conditional branch that chooses
 | |
| between them.  Note that creating new blocks does not implicitly affect the
 | |
| IRBuilder, so it is still inserting into the block that the condition
 | |
| went into.  Also note that it is creating a branch to the "then" block and the
 | |
| "else" block, even though the "else" block isn't inserted into the function yet.
 | |
| This is all ok: it is the standard way that LLVM supports forward 
 | |
| references.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Emit then value.
 | |
|   Builder.SetInsertPoint(ThenBB);
 | |
|   
 | |
|   Value *ThenV = Then->Codegen();
 | |
|   if (ThenV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | |
|   ThenBB = Builder.GetInsertBlock();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>After the conditional branch is inserted, we move the builder to start
 | |
| inserting into the "then" block.  Strictly speaking, this call moves the
 | |
| insertion point to be at the end of the specified block.  However, since the
 | |
| "then" block is empty, it also starts out by inserting at the beginning of the
 | |
| block.  :)</p>
 | |
| 
 | |
| <p>Once the insertion point is set, we recursively codegen the "then" expression
 | |
| from the AST.  To finish off the "then" block, we create an unconditional branch
 | |
| to the merge block.  One interesting (and very important) aspect of the LLVM IR
 | |
| is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
 | |
| to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
 | |
| instruction</a> such as return or branch.  This means that all control flow,
 | |
| <em>including fall throughs</em> must be made explicit in the LLVM IR.  If you
 | |
| violate this rule, the verifier will emit an error.</p>
 | |
| 
 | |
| <p>The final line here is quite subtle, but is very important.  The basic issue
 | |
| is that when we create the Phi node in the merge block, we need to set up the
 | |
| block/value pairs that indicate how the Phi will work.  Importantly, the Phi
 | |
| node expects to have an entry for each predecessor of the block in the CFG.  Why
 | |
| then, are we getting the current block when we just set it to ThenBB 5 lines
 | |
| above?  The problem is that the "Then" expression may actually itself change the
 | |
| block that the Builder is emitting into if, for example, it contains a nested
 | |
| "if/then/else" expression.  Because calling Codegen recursively could
 | |
| arbitrarily change the notion of the current block, we are required to get an
 | |
| up-to-date value for code that will set up the Phi node.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Emit else block.
 | |
|   TheFunction->getBasicBlockList().push_back(ElseBB);
 | |
|   Builder.SetInsertPoint(ElseBB);
 | |
|   
 | |
|   Value *ElseV = Else->Codegen();
 | |
|   if (ElseV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | |
|   ElseBB = Builder.GetInsertBlock();
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Code generation for the 'else' block is basically identical to codegen for
 | |
| the 'then' block.  The only significant difference is the first line, which adds
 | |
| the 'else' block to the function.  Recall previously that the 'else' block was
 | |
| created, but not added to the function.  Now that the 'then' and 'else' blocks
 | |
| are emitted, we can finish up with the merge code:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Emit merge block.
 | |
|   TheFunction->getBasicBlockList().push_back(MergeBB);
 | |
|   Builder.SetInsertPoint(MergeBB);
 | |
|   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), "iftmp");
 | |
|   
 | |
|   PN->addIncoming(ThenV, ThenBB);
 | |
|   PN->addIncoming(ElseV, ElseBB);
 | |
|   return PN;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The first two lines here are now familiar: the first adds the "merge" block
 | |
| to the Function object (it was previously floating, like the else block above).
 | |
| The second block changes the insertion point so that newly created code will go
 | |
| into the "merge" block.  Once that is done, we need to create the PHI node and
 | |
| set up the block/value pairs for the PHI.</p>
 | |
| 
 | |
| <p>Finally, the CodeGen function returns the phi node as the value computed by
 | |
| the if/then/else expression.  In our example above, this returned value will 
 | |
| feed into the code for the top-level function, which will create the return
 | |
| instruction.</p>
 | |
| 
 | |
| <p>Overall, we now have the ability to execute conditional code in
 | |
| Kaleidoscope.  With this extension, Kaleidoscope is a fairly complete language
 | |
| that can calculate a wide variety of numeric functions.  Next up we'll add
 | |
| another useful expression that is familiar from non-functional languages...</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="for">'for' Loop Expression</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Now that we know how to add basic control flow constructs to the language,
 | |
| we have the tools to add more powerful things.  Lets add something more
 | |
| aggressive, a 'for' expression:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|  extern putchard(char)
 | |
|  def printstar(n)
 | |
|    for i = 1, i < n, 1.0 in
 | |
|      putchard(42);  # ascii 42 = '*'
 | |
|      
 | |
|  # print 100 '*' characters
 | |
|  printstar(100);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This expression defines a new variable ("i" in this case) which iterates from
 | |
| a starting value, while the condition ("i < n" in this case) is true, 
 | |
| incrementing by an optional step value ("1.0" in this case).  If the step value
 | |
| is omitted, it defaults to 1.0.  While the loop is true, it executes its 
 | |
| body expression.  Because we don't have anything better to return, we'll just
 | |
| define the loop as always returning 0.0.  In the future when we have mutable
 | |
| variables, it will get more useful.</p>
 | |
| 
 | |
| <p>As before, lets talk about the changes that we need to Kaleidoscope to
 | |
| support this.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="forlexer">Lexer Extensions for
 | |
| the 'for' Loop</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The lexer extensions are the same sort of thing as for if/then/else:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   ... in enum Token ...
 | |
|   // control
 | |
|   tok_if = -6, tok_then = -7, tok_else = -8,
 | |
| <b>  tok_for = -9, tok_in = -10</b>
 | |
| 
 | |
|   ... in gettok ...
 | |
|   if (IdentifierStr == "def") return tok_def;
 | |
|   if (IdentifierStr == "extern") return tok_extern;
 | |
|   if (IdentifierStr == "if") return tok_if;
 | |
|   if (IdentifierStr == "then") return tok_then;
 | |
|   if (IdentifierStr == "else") return tok_else;
 | |
|   <b>if (IdentifierStr == "for") return tok_for;
 | |
|   if (IdentifierStr == "in") return tok_in;</b>
 | |
|   return tok_identifier;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="forast">AST Extensions for
 | |
| the 'for' Loop</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The AST node is just as simple.  It basically boils down to capturing
 | |
| the variable name and the constituent expressions in the node.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// ForExprAST - Expression class for for/in.
 | |
| class ForExprAST : public ExprAST {
 | |
|   std::string VarName;
 | |
|   ExprAST *Start, *End, *Step, *Body;
 | |
| public:
 | |
|   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | |
|              ExprAST *step, ExprAST *body)
 | |
|     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="forparser">Parser Extensions for
 | |
| the 'for' Loop</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The parser code is also fairly standard.  The only interesting thing here is
 | |
| handling of the optional step value.  The parser code handles it by checking to
 | |
| see if the second comma is present.  If not, it sets the step value to null in
 | |
| the AST node:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | |
| static ExprAST *ParseForExpr() {
 | |
|   getNextToken();  // eat the for.
 | |
| 
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after for");
 | |
|   
 | |
|   std::string IdName = IdentifierStr;
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '=')
 | |
|     return Error("expected '=' after for");
 | |
|   getNextToken();  // eat '='.
 | |
|   
 | |
|   
 | |
|   ExprAST *Start = ParseExpression();
 | |
|   if (Start == 0) return 0;
 | |
|   if (CurTok != ',')
 | |
|     return Error("expected ',' after for start value");
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *End = ParseExpression();
 | |
|   if (End == 0) return 0;
 | |
|   
 | |
|   // The step value is optional.
 | |
|   ExprAST *Step = 0;
 | |
|   if (CurTok == ',') {
 | |
|     getNextToken();
 | |
|     Step = ParseExpression();
 | |
|     if (Step == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' after for");
 | |
|   getNextToken();  // eat 'in'.
 | |
|   
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
| 
 | |
|   return new ForExprAST(IdName, Start, End, Step, Body);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="forir">LLVM IR for 
 | |
| the 'for' Loop</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Now we get to the good part: the LLVM IR we want to generate for this thing.
 | |
| With the simple example above, we get this LLVM IR (note that this dump is
 | |
| generated with optimizations disabled for clarity):
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| declare double @putchard(double)
 | |
| 
 | |
| define double @printstar(double %n) {
 | |
| entry:
 | |
|         ; initial value = 1.0 (inlined into phi)
 | |
| 	br label %loop
 | |
| 
 | |
| loop:		; preds = %loop, %entry
 | |
| 	%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
 | |
|         ; body
 | |
| 	%calltmp = call double @putchard( double 4.200000e+01 )
 | |
|         ; increment
 | |
| 	%nextvar = add double %i, 1.000000e+00
 | |
| 
 | |
|         ; termination test
 | |
| 	%cmptmp = fcmp ult double %i, %n
 | |
| 	%booltmp = uitofp i1 %cmptmp to double
 | |
| 	%loopcond = fcmp one double %booltmp, 0.000000e+00
 | |
| 	br i1 %loopcond, label %loop, label %afterloop
 | |
| 
 | |
| afterloop:		; preds = %loop
 | |
|         ; loop always returns 0.0
 | |
| 	ret double 0.000000e+00
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This loop contains all the same constructs we saw before: a phi node, several
 | |
| expressions, and some basic blocks.  Lets see how this fits together.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- ======================================================================= -->
 | |
| <div class="doc_subsubsection"><a name="forcodegen">Code Generation for 
 | |
| the 'for' Loop</a></div>
 | |
| <!-- ======================================================================= -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The first part of Codegen is very simple: we just output the start expression
 | |
| for the loop value:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Value *ForExprAST::Codegen() {
 | |
|   // Emit the start code first, without 'variable' in scope.
 | |
|   Value *StartVal = Start->Codegen();
 | |
|   if (StartVal == 0) return 0;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>With this out of the way, the next step is to set up the LLVM basic block
 | |
| for the start of the loop body.  In the case above, the whole loop body is one
 | |
| block, but remember that the body code itself could consist of multiple blocks
 | |
| (e.g. if it contains an if/then/else or a for/in expression).</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Make the new basic block for the loop header, inserting after current
 | |
|   // block.
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | |
|   
 | |
|   // Insert an explicit fall through from the current block to the LoopBB.
 | |
|   Builder.CreateBr(LoopBB);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code is similar to what we saw for if/then/else.  Because we will need
 | |
| it to create the Phi node, we remember the block that falls through into the
 | |
| loop.  Once we have that, we create the actual block that starts the loop and
 | |
| create an unconditional branch for the fall-through between the two blocks.</p>
 | |
|   
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Start insertion in LoopBB.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   
 | |
|   // Start the PHI node with an entry for Start.
 | |
|   PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
 | |
|   Variable->addIncoming(StartVal, PreheaderBB);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now that the "preheader" for the loop is set up, we switch to emitting code
 | |
| for the loop body.  To begin with, we move the insertion point and create the
 | |
| PHI node for the loop induction variable.  Since we already know the incoming
 | |
| value for the starting value, we add it to the Phi node.  Note that the Phi will
 | |
| eventually get a second value for the backedge, but we can't set it up yet
 | |
| (because it doesn't exist!).</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Within the loop, the variable is defined equal to the PHI node.  If it
 | |
|   // shadows an existing variable, we have to restore it, so save it now.
 | |
|   Value *OldVal = NamedValues[VarName];
 | |
|   NamedValues[VarName] = Variable;
 | |
|   
 | |
|   // Emit the body of the loop.  This, like any other expr, can change the
 | |
|   // current BB.  Note that we ignore the value computed by the body, but don't
 | |
|   // allow an error.
 | |
|   if (Body->Codegen() == 0)
 | |
|     return 0;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now the code starts to get more interesting.  Our 'for' loop introduces a new
 | |
| variable to the symbol table.  This means that our symbol table can now contain
 | |
| either function arguments or loop variables.  To handle this, before we codegen
 | |
| the body of the loop, we add the loop variable as the current value for its
 | |
| name.  Note that it is possible that there is a variable of the same name in the
 | |
| outer scope.  It would be easy to make this an error (emit an error and return
 | |
| null if there is already an entry for VarName) but we choose to allow shadowing
 | |
| of variables.  In order to handle this correctly, we remember the Value that
 | |
| we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is
 | |
| no shadowed variable).</p>
 | |
| 
 | |
| <p>Once the loop variable is set into the symbol table, the code recursively
 | |
| codegen's the body.  This allows the body to use the loop variable: any
 | |
| references to it will naturally find it in the symbol table.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Emit the step value.
 | |
|   Value *StepVal;
 | |
|   if (Step) {
 | |
|     StepVal = Step->Codegen();
 | |
|     if (StepVal == 0) return 0;
 | |
|   } else {
 | |
|     // If not specified, use 1.0.
 | |
|     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | |
|   }
 | |
|   
 | |
|   Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now that the body is emitted, we compute the next value of the iteration
 | |
| variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>'
 | |
| will be the value of the loop variable on the next iteration of the loop.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Compute the end condition.
 | |
|   Value *EndCond = End->Codegen();
 | |
|   if (EndCond == 0) return EndCond;
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   EndCond = Builder.CreateFCmpONE(EndCond, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                   "loopcond");
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Finally, we evaluate the exit value of the loop, to determine whether the
 | |
| loop should exit.  This mirrors the condition evaluation for the if/then/else
 | |
| statement.</p>
 | |
|       
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Create the "after loop" block and insert it.
 | |
|   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | |
|   
 | |
|   // Insert the conditional branch into the end of LoopEndBB.
 | |
|   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | |
|   
 | |
|   // Any new code will be inserted in AfterBB.
 | |
|   Builder.SetInsertPoint(AfterBB);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>With the code for the body of the loop complete, we just need to finish up
 | |
| the control flow for it.  This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop").  Based on the value of the
 | |
| exit condition, it creates a conditional branch that chooses between executing
 | |
| the loop again and exiting the loop.  Any future code is emitted in the
 | |
| "afterloop" block, so it sets the insertion position to it.</p>
 | |
|   
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Add a new entry to the PHI node for the backedge.
 | |
|   Variable->addIncoming(NextVar, LoopEndBB);
 | |
|   
 | |
|   // Restore the unshadowed variable.
 | |
|   if (OldVal)
 | |
|     NamedValues[VarName] = OldVal;
 | |
|   else
 | |
|     NamedValues.erase(VarName);
 | |
|   
 | |
|   // for expr always returns 0.0.
 | |
|   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The final code handles various cleanups: now that we have the "NextVar"
 | |
| value, we can add the incoming value to the loop PHI node.  After that, we
 | |
| remove the loop variable from the symbol table, so that it isn't in scope after
 | |
| the for loop.  Finally, code generation of the for loop always returns 0.0, so
 | |
| that is what we return from <tt>ForExprAST::Codegen</tt>.</p>
 | |
| 
 | |
| <p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
 | |
| the tutorial.  In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors
 | |
| to know.  In the next chapter of our saga, we will get a bit crazier and add
 | |
| <a href="LangImpl6.html">user-defined operators</a> to our poor innocent 
 | |
| language.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="code">Full Code Listing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Here is the complete code listing for our running example, enhanced with the
 | |
| if/then/else and for expressions..  To build this example, use:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|    # Compile
 | |
|    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | |
|    # Run
 | |
|    ./toy
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here is the code:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lexer
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
| // of these for known things.
 | |
| enum Token {
 | |
|   tok_eof = -1,
 | |
| 
 | |
|   // commands
 | |
|   tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|   // primary
 | |
|   tok_identifier = -4, tok_number = -5,
 | |
|   
 | |
|   // control
 | |
|   tok_if = -6, tok_then = -7, tok_else = -8,
 | |
|   tok_for = -9, tok_in = -10
 | |
| };
 | |
| 
 | |
| static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
| static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
| /// gettok - Return the next token from standard input.
 | |
| static int gettok() {
 | |
|   static int LastChar = ' ';
 | |
| 
 | |
|   // Skip any whitespace.
 | |
|   while (isspace(LastChar))
 | |
|     LastChar = getchar();
 | |
| 
 | |
|   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|     IdentifierStr = LastChar;
 | |
|     while (isalnum((LastChar = getchar())))
 | |
|       IdentifierStr += LastChar;
 | |
| 
 | |
|     if (IdentifierStr == "def") return tok_def;
 | |
|     if (IdentifierStr == "extern") return tok_extern;
 | |
|     if (IdentifierStr == "if") return tok_if;
 | |
|     if (IdentifierStr == "then") return tok_then;
 | |
|     if (IdentifierStr == "else") return tok_else;
 | |
|     if (IdentifierStr == "for") return tok_for;
 | |
|     if (IdentifierStr == "in") return tok_in;
 | |
|     return tok_identifier;
 | |
|   }
 | |
| 
 | |
|   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|     std::string NumStr;
 | |
|     do {
 | |
|       NumStr += LastChar;
 | |
|       LastChar = getchar();
 | |
|     } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|     NumVal = strtod(NumStr.c_str(), 0);
 | |
|     return tok_number;
 | |
|   }
 | |
| 
 | |
|   if (LastChar == '#') {
 | |
|     // Comment until end of line.
 | |
|     do LastChar = getchar();
 | |
|     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
|     
 | |
|     if (LastChar != EOF)
 | |
|       return gettok();
 | |
|   }
 | |
|   
 | |
|   // Check for end of file.  Don't eat the EOF.
 | |
|   if (LastChar == EOF)
 | |
|     return tok_eof;
 | |
| 
 | |
|   // Otherwise, just return the character as its ascii value.
 | |
|   int ThisChar = LastChar;
 | |
|   LastChar = getchar();
 | |
|   return ThisChar;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Abstract Syntax Tree (aka Parse Tree)
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ExprAST - Base class for all expression nodes.
 | |
| class ExprAST {
 | |
| public:
 | |
|   virtual ~ExprAST() {}
 | |
|   virtual Value *Codegen() = 0;
 | |
| };
 | |
| 
 | |
| /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
| class NumberExprAST : public ExprAST {
 | |
|   double Val;
 | |
| public:
 | |
|   NumberExprAST(double val) : Val(val) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
| class VariableExprAST : public ExprAST {
 | |
|   std::string Name;
 | |
| public:
 | |
|   VariableExprAST(const std::string &name) : Name(name) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// BinaryExprAST - Expression class for a binary operator.
 | |
| class BinaryExprAST : public ExprAST {
 | |
|   char Op;
 | |
|   ExprAST *LHS, *RHS;
 | |
| public:
 | |
|   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | |
|     : Op(op), LHS(lhs), RHS(rhs) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// CallExprAST - Expression class for function calls.
 | |
| class CallExprAST : public ExprAST {
 | |
|   std::string Callee;
 | |
|   std::vector<ExprAST*> Args;
 | |
| public:
 | |
|   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|     : Callee(callee), Args(args) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// IfExprAST - Expression class for if/then/else.
 | |
| class IfExprAST : public ExprAST {
 | |
|   ExprAST *Cond, *Then, *Else;
 | |
| public:
 | |
|   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | |
|   : Cond(cond), Then(then), Else(_else) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// ForExprAST - Expression class for for/in.
 | |
| class ForExprAST : public ExprAST {
 | |
|   std::string VarName;
 | |
|   ExprAST *Start, *End, *Step, *Body;
 | |
| public:
 | |
|   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | |
|              ExprAST *step, ExprAST *body)
 | |
|     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its argument names as well as if it is an operator.
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args)
 | |
|     : Name(name), Args(args) {}
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| /// FunctionAST - This class represents a function definition itself.
 | |
| class FunctionAST {
 | |
|   PrototypeAST *Proto;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|     : Proto(proto), Body(body) {}
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
| /// token the parser it looking at.  getNextToken reads another token from the
 | |
| /// lexer and updates CurTok with its results.
 | |
| static int CurTok;
 | |
| static int getNextToken() {
 | |
|   return CurTok = gettok();
 | |
| }
 | |
| 
 | |
| /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
| /// defined.
 | |
| static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
| static int GetTokPrecedence() {
 | |
|   if (!isascii(CurTok))
 | |
|     return -1;
 | |
|   
 | |
|   // Make sure it's a declared binop.
 | |
|   int TokPrec = BinopPrecedence[CurTok];
 | |
|   if (TokPrec <= 0) return -1;
 | |
|   return TokPrec;
 | |
| }
 | |
| 
 | |
| /// Error* - These are little helper functions for error handling.
 | |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| static ExprAST *ParseExpression();
 | |
| 
 | |
| /// identifierexpr
 | |
| ///   ::= identifier
 | |
| ///   ::= identifier '(' expression* ')'
 | |
| static ExprAST *ParseIdentifierExpr() {
 | |
|   std::string IdName = IdentifierStr;
 | |
|   
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '(') // Simple variable ref.
 | |
|     return new VariableExprAST(IdName);
 | |
|   
 | |
|   // Call.
 | |
|   getNextToken();  // eat (
 | |
|   std::vector<ExprAST*> Args;
 | |
|   if (CurTok != ')') {
 | |
|     while (1) {
 | |
|       ExprAST *Arg = ParseExpression();
 | |
|       if (!Arg) return 0;
 | |
|       Args.push_back(Arg);
 | |
|       
 | |
|       if (CurTok == ')') break;
 | |
|       
 | |
|       if (CurTok != ',')
 | |
|         return Error("Expected ')' or ',' in argument list");
 | |
|       getNextToken();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eat the ')'.
 | |
|   getNextToken();
 | |
|   
 | |
|   return new CallExprAST(IdName, Args);
 | |
| }
 | |
| 
 | |
| /// numberexpr ::= number
 | |
| static ExprAST *ParseNumberExpr() {
 | |
|   ExprAST *Result = new NumberExprAST(NumVal);
 | |
|   getNextToken(); // consume the number
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// parenexpr ::= '(' expression ')'
 | |
| static ExprAST *ParseParenExpr() {
 | |
|   getNextToken();  // eat (.
 | |
|   ExprAST *V = ParseExpression();
 | |
|   if (!V) return 0;
 | |
|   
 | |
|   if (CurTok != ')')
 | |
|     return Error("expected ')'");
 | |
|   getNextToken();  // eat ).
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | |
| static ExprAST *ParseIfExpr() {
 | |
|   getNextToken();  // eat the if.
 | |
|   
 | |
|   // condition.
 | |
|   ExprAST *Cond = ParseExpression();
 | |
|   if (!Cond) return 0;
 | |
|   
 | |
|   if (CurTok != tok_then)
 | |
|     return Error("expected then");
 | |
|   getNextToken();  // eat the then
 | |
|   
 | |
|   ExprAST *Then = ParseExpression();
 | |
|   if (Then == 0) return 0;
 | |
|   
 | |
|   if (CurTok != tok_else)
 | |
|     return Error("expected else");
 | |
|   
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *Else = ParseExpression();
 | |
|   if (!Else) return 0;
 | |
|   
 | |
|   return new IfExprAST(Cond, Then, Else);
 | |
| }
 | |
| 
 | |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | |
| static ExprAST *ParseForExpr() {
 | |
|   getNextToken();  // eat the for.
 | |
| 
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after for");
 | |
|   
 | |
|   std::string IdName = IdentifierStr;
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '=')
 | |
|     return Error("expected '=' after for");
 | |
|   getNextToken();  // eat '='.
 | |
|   
 | |
|   
 | |
|   ExprAST *Start = ParseExpression();
 | |
|   if (Start == 0) return 0;
 | |
|   if (CurTok != ',')
 | |
|     return Error("expected ',' after for start value");
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *End = ParseExpression();
 | |
|   if (End == 0) return 0;
 | |
|   
 | |
|   // The step value is optional.
 | |
|   ExprAST *Step = 0;
 | |
|   if (CurTok == ',') {
 | |
|     getNextToken();
 | |
|     Step = ParseExpression();
 | |
|     if (Step == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' after for");
 | |
|   getNextToken();  // eat 'in'.
 | |
|   
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
| 
 | |
|   return new ForExprAST(IdName, Start, End, Step, Body);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| ///   ::= ifexpr
 | |
| ///   ::= forexpr
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   case tok_if:         return ParseIfExpr();
 | |
|   case tok_for:        return ParseForExpr();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// binoprhs
 | |
| ///   ::= ('+' primary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   // If this is a binop, find its precedence.
 | |
|   while (1) {
 | |
|     int TokPrec = GetTokPrecedence();
 | |
|     
 | |
|     // If this is a binop that binds at least as tightly as the current binop,
 | |
|     // consume it, otherwise we are done.
 | |
|     if (TokPrec < ExprPrec)
 | |
|       return LHS;
 | |
|     
 | |
|     // Okay, we know this is a binop.
 | |
|     int BinOp = CurTok;
 | |
|     getNextToken();  // eat binop
 | |
|     
 | |
|     // Parse the primary expression after the binary operator.
 | |
|     ExprAST *RHS = ParsePrimary();
 | |
|     if (!RHS) return 0;
 | |
|     
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
|       RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|       if (RHS == 0) return 0;
 | |
|     }
 | |
|     
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expression
 | |
| ///   ::= primary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   ExprAST *LHS = ParsePrimary();
 | |
|   if (!LHS) return 0;
 | |
|   
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| 
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   if (CurTok != tok_identifier)
 | |
|     return ErrorP("Expected function name in prototype");
 | |
| 
 | |
|   std::string FnName = IdentifierStr;
 | |
|   getNextToken();
 | |
|   
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
|   
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
|   
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
|   
 | |
|   return new PrototypeAST(FnName, ArgNames);
 | |
| }
 | |
| 
 | |
| /// definition ::= 'def' prototype expression
 | |
| static FunctionAST *ParseDefinition() {
 | |
|   getNextToken();  // eat def.
 | |
|   PrototypeAST *Proto = ParsePrototype();
 | |
|   if (Proto == 0) return 0;
 | |
| 
 | |
|   if (ExprAST *E = ParseExpression())
 | |
|     return new FunctionAST(Proto, E);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// toplevelexpr ::= expression
 | |
| static FunctionAST *ParseTopLevelExpr() {
 | |
|   if (ExprAST *E = ParseExpression()) {
 | |
|     // Make an anonymous proto.
 | |
|     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|     return new FunctionAST(Proto, E);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// external ::= 'extern' prototype
 | |
| static PrototypeAST *ParseExtern() {
 | |
|   getNextToken();  // eat extern.
 | |
|   return ParsePrototype();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code Generation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Module *TheModule;
 | |
| static IRBuilder<> Builder(getGlobalContext());
 | |
| static std::map<std::string, Value*> NamedValues;
 | |
| static FunctionPassManager *TheFPM;
 | |
| 
 | |
| Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| Value *NumberExprAST::Codegen() {
 | |
|   return ConstantFP::get(getGlobalContext(), APFloat(Val));
 | |
| }
 | |
| 
 | |
| Value *VariableExprAST::Codegen() {
 | |
|   // Look this variable up in the function.
 | |
|   Value *V = NamedValues[Name];
 | |
|   return V ? V : ErrorV("Unknown variable name");
 | |
| }
 | |
| 
 | |
| Value *BinaryExprAST::Codegen() {
 | |
|   Value *L = LHS->Codegen();
 | |
|   Value *R = RHS->Codegen();
 | |
|   if (L == 0 || R == 0) return 0;
 | |
|   
 | |
|   switch (Op) {
 | |
|   case '+': return Builder.CreateAdd(L, R, "addtmp");
 | |
|   case '-': return Builder.CreateSub(L, R, "subtmp");
 | |
|   case '*': return Builder.CreateMul(L, R, "multmp");
 | |
|   case '<':
 | |
|     L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|     // Convert bool 0/1 to double 0.0 or 1.0
 | |
|     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp");
 | |
|   default: return ErrorV("invalid binary operator");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *CallExprAST::Codegen() {
 | |
|   // Look up the name in the global module table.
 | |
|   Function *CalleeF = TheModule->getFunction(Callee);
 | |
|   if (CalleeF == 0)
 | |
|     return ErrorV("Unknown function referenced");
 | |
|   
 | |
|   // If argument mismatch error.
 | |
|   if (CalleeF->arg_size() != Args.size())
 | |
|     return ErrorV("Incorrect # arguments passed");
 | |
| 
 | |
|   std::vector<Value*> ArgsV;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     ArgsV.push_back(Args[i]->Codegen());
 | |
|     if (ArgsV.back() == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | |
| }
 | |
| 
 | |
| Value *IfExprAST::Codegen() {
 | |
|   Value *CondV = Cond->Codegen();
 | |
|   if (CondV == 0) return 0;
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   CondV = Builder.CreateFCmpONE(CondV, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                 "ifcond");
 | |
|   
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|   
 | |
|   // Create blocks for the then and else cases.  Insert the 'then' block at the
 | |
|   // end of the function.
 | |
|   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | |
|   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | |
|   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | |
|   
 | |
|   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | |
|   
 | |
|   // Emit then value.
 | |
|   Builder.SetInsertPoint(ThenBB);
 | |
|   
 | |
|   Value *ThenV = Then->Codegen();
 | |
|   if (ThenV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | |
|   ThenBB = Builder.GetInsertBlock();
 | |
|   
 | |
|   // Emit else block.
 | |
|   TheFunction->getBasicBlockList().push_back(ElseBB);
 | |
|   Builder.SetInsertPoint(ElseBB);
 | |
|   
 | |
|   Value *ElseV = Else->Codegen();
 | |
|   if (ElseV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | |
|   ElseBB = Builder.GetInsertBlock();
 | |
|   
 | |
|   // Emit merge block.
 | |
|   TheFunction->getBasicBlockList().push_back(MergeBB);
 | |
|   Builder.SetInsertPoint(MergeBB);
 | |
|   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), "iftmp");
 | |
|   
 | |
|   PN->addIncoming(ThenV, ThenBB);
 | |
|   PN->addIncoming(ElseV, ElseBB);
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| Value *ForExprAST::Codegen() {
 | |
|   // Output this as:
 | |
|   //   ...
 | |
|   //   start = startexpr
 | |
|   //   goto loop
 | |
|   // loop: 
 | |
|   //   variable = phi [start, loopheader], [nextvariable, loopend]
 | |
|   //   ...
 | |
|   //   bodyexpr
 | |
|   //   ...
 | |
|   // loopend:
 | |
|   //   step = stepexpr
 | |
|   //   nextvariable = variable + step
 | |
|   //   endcond = endexpr
 | |
|   //   br endcond, loop, endloop
 | |
|   // outloop:
 | |
|   
 | |
|   // Emit the start code first, without 'variable' in scope.
 | |
|   Value *StartVal = Start->Codegen();
 | |
|   if (StartVal == 0) return 0;
 | |
|   
 | |
|   // Make the new basic block for the loop header, inserting after current
 | |
|   // block.
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | |
|   
 | |
|   // Insert an explicit fall through from the current block to the LoopBB.
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start insertion in LoopBB.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   
 | |
|   // Start the PHI node with an entry for Start.
 | |
|   PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
 | |
|   Variable->addIncoming(StartVal, PreheaderBB);
 | |
|   
 | |
|   // Within the loop, the variable is defined equal to the PHI node.  If it
 | |
|   // shadows an existing variable, we have to restore it, so save it now.
 | |
|   Value *OldVal = NamedValues[VarName];
 | |
|   NamedValues[VarName] = Variable;
 | |
|   
 | |
|   // Emit the body of the loop.  This, like any other expr, can change the
 | |
|   // current BB.  Note that we ignore the value computed by the body, but don't
 | |
|   // allow an error.
 | |
|   if (Body->Codegen() == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // Emit the step value.
 | |
|   Value *StepVal;
 | |
|   if (Step) {
 | |
|     StepVal = Step->Codegen();
 | |
|     if (StepVal == 0) return 0;
 | |
|   } else {
 | |
|     // If not specified, use 1.0.
 | |
|     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | |
|   }
 | |
|   
 | |
|   Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
 | |
| 
 | |
|   // Compute the end condition.
 | |
|   Value *EndCond = End->Codegen();
 | |
|   if (EndCond == 0) return EndCond;
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   EndCond = Builder.CreateFCmpONE(EndCond, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                   "loopcond");
 | |
|   
 | |
|   // Create the "after loop" block and insert it.
 | |
|   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | |
|   
 | |
|   // Insert the conditional branch into the end of LoopEndBB.
 | |
|   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | |
|   
 | |
|   // Any new code will be inserted in AfterBB.
 | |
|   Builder.SetInsertPoint(AfterBB);
 | |
|   
 | |
|   // Add a new entry to the PHI node for the backedge.
 | |
|   Variable->addIncoming(NextVar, LoopEndBB);
 | |
|   
 | |
|   // Restore the unshadowed variable.
 | |
|   if (OldVal)
 | |
|     NamedValues[VarName] = OldVal;
 | |
|   else
 | |
|     NamedValues.erase(VarName);
 | |
| 
 | |
|   
 | |
|   // for expr always returns 0.0.
 | |
|   return getGlobalContext().getNullValue(Type::getDoubleTy(getGlobalContext()));
 | |
| }
 | |
| 
 | |
| Function *PrototypeAST::Codegen() {
 | |
|   // Make the function type:  double(double,double) etc.
 | |
|   std::vector<const Type*> Doubles(Args.size(), Type::getDoubleTy(getGlobalContext()));
 | |
|   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
 | |
|   
 | |
|   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | |
|   
 | |
|   // If F conflicted, there was already something named 'Name'.  If it has a
 | |
|   // body, don't allow redefinition or reextern.
 | |
|   if (F->getName() != Name) {
 | |
|     // Delete the one we just made and get the existing one.
 | |
|     F->eraseFromParent();
 | |
|     F = TheModule->getFunction(Name);
 | |
|     
 | |
|     // If F already has a body, reject this.
 | |
|     if (!F->empty()) {
 | |
|       ErrorF("redefinition of function");
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // If F took a different number of args, reject.
 | |
|     if (F->arg_size() != Args.size()) {
 | |
|       ErrorF("redefinition of function with different # args");
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Set names for all arguments.
 | |
|   unsigned Idx = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | |
|        ++AI, ++Idx) {
 | |
|     AI->setName(Args[Idx]);
 | |
|     
 | |
|     // Add arguments to variable symbol table.
 | |
|     NamedValues[Args[Idx]] = AI;
 | |
|   }
 | |
|   
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| Function *FunctionAST::Codegen() {
 | |
|   NamedValues.clear();
 | |
|   
 | |
|   Function *TheFunction = Proto->Codegen();
 | |
|   if (TheFunction == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // Create a new basic block to start insertion into.
 | |
|   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   
 | |
|   if (Value *RetVal = Body->Codegen()) {
 | |
|     // Finish off the function.
 | |
|     Builder.CreateRet(RetVal);
 | |
| 
 | |
|     // Validate the generated code, checking for consistency.
 | |
|     verifyFunction(*TheFunction);
 | |
| 
 | |
|     // Optimize the function.
 | |
|     TheFPM->run(*TheFunction);
 | |
|     
 | |
|     return TheFunction;
 | |
|   }
 | |
|   
 | |
|   // Error reading body, remove function.
 | |
|   TheFunction->eraseFromParent();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Top-Level parsing and JIT Driver
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static ExecutionEngine *TheExecutionEngine;
 | |
| 
 | |
| static void HandleDefinition() {
 | |
|   if (FunctionAST *F = ParseDefinition()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       fprintf(stderr, "Read function definition:");
 | |
|       LF->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleExtern() {
 | |
|   if (PrototypeAST *P = ParseExtern()) {
 | |
|     if (Function *F = P->Codegen()) {
 | |
|       fprintf(stderr, "Read extern: ");
 | |
|       F->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleTopLevelExpression() {
 | |
|   // Evaluate a top level expression into an anonymous function.
 | |
|   if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       // JIT the function, returning a function pointer.
 | |
|       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | |
|       
 | |
|       // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|       // can call it as a native function.
 | |
|       double (*FP)() = (double (*)())FPtr;
 | |
|       fprintf(stderr, "Evaluated to %f\n", FP());
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// top ::= definition | external | expression | ';'
 | |
| static void MainLoop() {
 | |
|   while (1) {
 | |
|     fprintf(stderr, "ready> ");
 | |
|     switch (CurTok) {
 | |
|     case tok_eof:    return;
 | |
|     case ';':        getNextToken(); break;  // ignore top level semicolons.
 | |
|     case tok_def:    HandleDefinition(); break;
 | |
|     case tok_extern: HandleExtern(); break;
 | |
|     default:         HandleTopLevelExpression(); break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // "Library" functions that can be "extern'd" from user code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// putchard - putchar that takes a double and returns 0.
 | |
| extern "C" 
 | |
| double putchard(double X) {
 | |
|   putchar((char)X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main driver code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int main() {
 | |
|   // Install standard binary operators.
 | |
|   // 1 is lowest precedence.
 | |
|   BinopPrecedence['<'] = 10;
 | |
|   BinopPrecedence['+'] = 20;
 | |
|   BinopPrecedence['-'] = 20;
 | |
|   BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|   // Prime the first token.
 | |
|   fprintf(stderr, "ready> ");
 | |
|   getNextToken();
 | |
| 
 | |
|   // Make the module, which holds all the code.
 | |
|   TheModule = new Module("my cool jit", getGlobalContext());
 | |
| 
 | |
|   ExistingModuleProvider *OurModuleProvider =
 | |
|       new ExistingModuleProvider(TheModule);
 | |
| 
 | |
|   // Create the JIT.  This takes ownership of the module and module provider.
 | |
|   TheExecutionEngine = EngineBuilder(OurModuleProvider).create();
 | |
| 
 | |
|   FunctionPassManager OurFPM(OurModuleProvider);
 | |
| 
 | |
|   // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|   // target lays out data structures.
 | |
|   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | |
|   // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|   OurFPM.add(createInstructionCombiningPass());
 | |
|   // Reassociate expressions.
 | |
|   OurFPM.add(createReassociatePass());
 | |
|   // Eliminate Common SubExpressions.
 | |
|   OurFPM.add(createGVNPass());
 | |
|   // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|   OurFPM.add(createCFGSimplificationPass());
 | |
| 
 | |
|   // Set the global so the code gen can use this.
 | |
|   TheFPM = &OurFPM;
 | |
| 
 | |
|   // Run the main "interpreter loop" now.
 | |
|   MainLoop();
 | |
| 
 | |
|   TheFPM = 0;
 | |
| 
 | |
|   // Print out all of the generated code.
 | |
|   TheModule->dump();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <a href="LangImpl6.html">Next: Extending the language: user-defined operators</a>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | |
| </address>
 | |
| </body>
 | |
| </html>
 |