mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80138 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1806 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1806 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| 
 | |
| <html>
 | |
| <head>
 | |
|   <title>Kaleidoscope: Extending the Language: User-defined Operators</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <link rel="stylesheet" href="../llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div>
 | |
| 
 | |
| <ul>
 | |
| <li><a href="index.html">Up to Tutorial Index</a></li>
 | |
| <li>Chapter 6
 | |
|   <ol>
 | |
|     <li><a href="#intro">Chapter 6 Introduction</a></li>
 | |
|     <li><a href="#idea">User-defined Operators: the Idea</a></li>
 | |
|     <li><a href="#binary">User-defined Binary Operators</a></li>
 | |
|     <li><a href="#unary">User-defined Unary Operators</a></li>
 | |
|     <li><a href="#example">Kicking the Tires</a></li>
 | |
|     <li><a href="#code">Full Code Listing</a></li>
 | |
|   </ol>
 | |
| </li>
 | |
| <li><a href="LangImpl7.html">Chapter 7</a>: Extending the Language: Mutable
 | |
| Variables / SSA Construction</li>
 | |
| </ul>
 | |
| 
 | |
| <div class="doc_author">
 | |
|   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="intro">Chapter 6 Introduction</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language
 | |
| with LLVM</a>" tutorial.  At this point in our tutorial, we now have a fully
 | |
| functional language that is fairly minimal, but also useful.  There
 | |
| is still one big problem with it, however. Our language doesn't have many 
 | |
| useful operators (like division, logical negation, or even any comparisons 
 | |
| besides less-than).</p>
 | |
| 
 | |
| <p>This chapter of the tutorial takes a wild digression into adding user-defined
 | |
| operators to the simple and beautiful Kaleidoscope language. This digression now gives 
 | |
| us a simple and ugly language in some ways, but also a powerful one at the same time.
 | |
| One of the great things about creating your own language is that you get to
 | |
| decide what is good or bad.  In this tutorial we'll assume that it is okay to
 | |
| use this as a way to show some interesting parsing techniques.</p>
 | |
| 
 | |
| <p>At the end of this tutorial, we'll run through an example Kaleidoscope 
 | |
| application that <a href="#example">renders the Mandelbrot set</a>.  This gives 
 | |
| an example of what you can build with Kaleidoscope and its feature set.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| The "operator overloading" that we will add to Kaleidoscope is more general than
 | |
| languages like C++.  In C++, you are only allowed to redefine existing
 | |
| operators: you can't programatically change the grammar, introduce new
 | |
| operators, change precedence levels, etc.  In this chapter, we will add this
 | |
| capability to Kaleidoscope, which will let the user round out the set of
 | |
| operators that are supported.</p>
 | |
| 
 | |
| <p>The point of going into user-defined operators in a tutorial like this is to
 | |
| show the power and flexibility of using a hand-written parser.  Thus far, the parser
 | |
| we have been implementing uses recursive descent for most parts of the grammar and 
 | |
| operator precedence parsing for the expressions.  See <a 
 | |
| href="LangImpl2.html">Chapter 2</a> for details.  Without using operator
 | |
| precedence parsing, it would be very difficult to allow the programmer to
 | |
| introduce new operators into the grammar: the grammar is dynamically extensible
 | |
| as the JIT runs.</p>
 | |
| 
 | |
| <p>The two specific features we'll add are programmable unary operators (right
 | |
| now, Kaleidoscope has no unary operators at all) as well as binary operators.
 | |
| An example of this is:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Logical unary not.
 | |
| def unary!(v)
 | |
|   if v then
 | |
|     0
 | |
|   else
 | |
|     1;
 | |
| 
 | |
| # Define > with the same precedence as <.
 | |
| def binary> 10 (LHS RHS)
 | |
|   RHS < LHS;
 | |
| 
 | |
| # Binary "logical or", (note that it does not "short circuit")
 | |
| def binary| 5 (LHS RHS)
 | |
|   if LHS then
 | |
|     1
 | |
|   else if RHS then
 | |
|     1
 | |
|   else
 | |
|     0;
 | |
| 
 | |
| # Define = with slightly lower precedence than relationals.
 | |
| def binary= 9 (LHS RHS)
 | |
|   !(LHS < RHS | LHS > RHS);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Many languages aspire to being able to implement their standard runtime
 | |
| library in the language itself.  In Kaleidoscope, we can implement significant
 | |
| parts of the language in the library!</p>
 | |
| 
 | |
| <p>We will break down implementation of these features into two parts:
 | |
| implementing support for user-defined binary operators and adding unary
 | |
| operators.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="binary">User-defined Binary Operators</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Adding support for user-defined binary operators is pretty simple with our
 | |
| current framework.  We'll first add support for the unary/binary keywords:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| enum Token {
 | |
|   ...
 | |
|   <b>// operators
 | |
|   tok_binary = -11, tok_unary = -12</b>
 | |
| };
 | |
| ...
 | |
| static int gettok() {
 | |
| ...
 | |
|     if (IdentifierStr == "for") return tok_for;
 | |
|     if (IdentifierStr == "in") return tok_in;
 | |
|     <b>if (IdentifierStr == "binary") return tok_binary;
 | |
|     if (IdentifierStr == "unary") return tok_unary;</b>
 | |
|     return tok_identifier;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This just adds lexer support for the unary and binary keywords, like we
 | |
| did in <a href="LangImpl5.html#iflexer">previous chapters</a>.  One nice thing
 | |
| about our current AST, is that we represent binary operators with full generalisation
 | |
| by using their ASCII code as the opcode.  For our extended operators, we'll use this
 | |
| same representation, so we don't need any new AST or parser support.</p>
 | |
| 
 | |
| <p>On the other hand, we have to be able to represent the definitions of these
 | |
| new operators, in the "def binary| 5" part of the function definition.  In our
 | |
| grammar so far, the "name" for the function definition is parsed as the
 | |
| "prototype" production and into the <tt>PrototypeAST</tt> AST node.  To
 | |
| represent our new user-defined operators as prototypes, we have to extend
 | |
| the  <tt>PrototypeAST</tt> AST node like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its argument names as well as if it is an operator.
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
|   <b>bool isOperator;
 | |
|   unsigned Precedence;  // Precedence if a binary op.</b>
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | |
|                <b>bool isoperator = false, unsigned prec = 0</b>)
 | |
|   : Name(name), Args(args), <b>isOperator(isoperator), Precedence(prec)</b> {}
 | |
|   
 | |
|   <b>bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | |
|   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | |
|   
 | |
|   char getOperatorName() const {
 | |
|     assert(isUnaryOp() || isBinaryOp());
 | |
|     return Name[Name.size()-1];
 | |
|   }
 | |
|   
 | |
|   unsigned getBinaryPrecedence() const { return Precedence; }</b>
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Basically, in addition to knowing a name for the prototype, we now keep track
 | |
| of whether it was an operator, and if it was, what precedence level the operator
 | |
| is at.  The precedence is only used for binary operators (as you'll see below,
 | |
| it just doesn't apply for unary operators).  Now that we have a way to represent
 | |
| the prototype for a user-defined operator, we need to parse it:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| <b>///   ::= binary LETTER number? (id, id)</b>
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   std::string FnName;
 | |
|   
 | |
|   <b>int Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
 | |
|   unsigned BinaryPrecedence = 30;</b>
 | |
|   
 | |
|   switch (CurTok) {
 | |
|   default:
 | |
|     return ErrorP("Expected function name in prototype");
 | |
|   case tok_identifier:
 | |
|     FnName = IdentifierStr;
 | |
|     Kind = 0;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   <b>case tok_binary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected binary operator");
 | |
|     FnName = "binary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 2;
 | |
|     getNextToken();
 | |
|     
 | |
|     // Read the precedence if present.
 | |
|     if (CurTok == tok_number) {
 | |
|       if (NumVal < 1 || NumVal > 100)
 | |
|         return ErrorP("Invalid precedecnce: must be 1..100");
 | |
|       BinaryPrecedence = (unsigned)NumVal;
 | |
|       getNextToken();
 | |
|     }
 | |
|     break;</b>
 | |
|   }
 | |
|   
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
|   
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
|   
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
|   
 | |
|   <b>// Verify right number of names for operator.
 | |
|   if (Kind && ArgNames.size() != Kind)
 | |
|     return ErrorP("Invalid number of operands for operator");
 | |
|   
 | |
|   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);</b>
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This is all fairly straightforward parsing code, and we have already seen
 | |
| a lot of similar code in the past.  One interesting part about the code above is 
 | |
| the couple lines that set up <tt>FnName</tt> for binary operators.  This builds names 
 | |
| like "binary@" for a newly defined "@" operator.  This then takes advantage of the 
 | |
| fact that symbol names in the LLVM symbol table are allowed to have any character in
 | |
| them, including embedded nul characters.</p>
 | |
| 
 | |
| <p>The next interesting thing to add, is codegen support for these binary operators.
 | |
| Given our current structure, this is a simple addition of a default case for our
 | |
| existing binary operator node:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Value *BinaryExprAST::Codegen() {
 | |
|   Value *L = LHS->Codegen();
 | |
|   Value *R = RHS->Codegen();
 | |
|   if (L == 0 || R == 0) return 0;
 | |
|   
 | |
|   switch (Op) {
 | |
|   case '+': return Builder.CreateAdd(L, R, "addtmp");
 | |
|   case '-': return Builder.CreateSub(L, R, "subtmp");
 | |
|   case '*': return Builder.CreateMul(L, R, "multmp");
 | |
|   case '<':
 | |
|     L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|     // Convert bool 0/1 to double 0.0 or 1.0
 | |
|     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp");
 | |
|   <b>default: break;</b>
 | |
|   }
 | |
|   
 | |
|   <b>// If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | |
|   // a call to it.
 | |
|   Function *F = TheModule->getFunction(std::string("binary")+Op);
 | |
|   assert(F && "binary operator not found!");
 | |
|   
 | |
|   Value *Ops[] = { L, R };
 | |
|   return Builder.CreateCall(F, Ops, Ops+2, "binop");</b>
 | |
| }
 | |
| 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As you can see above, the new code is actually really simple.  It just does
 | |
| a lookup for the appropriate operator in the symbol table and generates a 
 | |
| function call to it.  Since user-defined operators are just built as normal
 | |
| functions (because the "prototype" boils down to a function with the right
 | |
| name) everything falls into place.</p>
 | |
| 
 | |
| <p>The final piece of code we are missing, is a bit of top level magic:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Function *FunctionAST::Codegen() {
 | |
|   NamedValues.clear();
 | |
|   
 | |
|   Function *TheFunction = Proto->Codegen();
 | |
|   if (TheFunction == 0)
 | |
|     return 0;
 | |
|   
 | |
|   <b>// If this is an operator, install it.
 | |
|   if (Proto->isBinaryOp())
 | |
|     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();</b>
 | |
|   
 | |
|   // Create a new basic block to start insertion into.
 | |
|   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   
 | |
|   if (Value *RetVal = Body->Codegen()) {
 | |
|     ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Basically, before codegening a function, if it is a user-defined operator, we
 | |
| register it in the precedence table.  This allows the binary operator parsing
 | |
| logic we already have in place to handle it.  Since we are working on a fully-general operator precedence parser, this is all we need to do to "extend the grammar".</p>
 | |
| 
 | |
| <p>Now we have useful user-defined binary operators.  This builds a lot
 | |
| on the previous framework we built for other operators.  Adding unary operators
 | |
| is a bit more challenging, because we don't have any framework for it yet - lets
 | |
| see what it takes.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="unary">User-defined Unary Operators</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Since we don't currently support unary operators in the Kaleidoscope
 | |
| language, we'll need to add everything to support them.  Above, we added simple
 | |
| support for the 'unary' keyword to the lexer.  In addition to that, we need an
 | |
| AST node:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// UnaryExprAST - Expression class for a unary operator.
 | |
| class UnaryExprAST : public ExprAST {
 | |
|   char Opcode;
 | |
|   ExprAST *Operand;
 | |
| public:
 | |
|   UnaryExprAST(char opcode, ExprAST *operand) 
 | |
|     : Opcode(opcode), Operand(operand) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This AST node is very simple and obvious by now.  It directly mirrors the
 | |
| binary operator AST node, except that it only has one child.  With this, we
 | |
| need to add the parsing logic.  Parsing a unary operator is pretty simple: we'll
 | |
| add a new function to do it:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// unary
 | |
| ///   ::= primary
 | |
| ///   ::= '!' unary
 | |
| static ExprAST *ParseUnary() {
 | |
|   // If the current token is not an operator, it must be a primary expr.
 | |
|   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | |
|     return ParsePrimary();
 | |
|   
 | |
|   // If this is a unary operator, read it.
 | |
|   int Opc = CurTok;
 | |
|   getNextToken();
 | |
|   if (ExprAST *Operand = ParseUnary())
 | |
|     return new UnaryExprAST(Opc, Operand);
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The grammar we add is pretty straightforward here.  If we see a unary
 | |
| operator when parsing a primary operator, we eat the operator as a prefix and
 | |
| parse the remaining piece as another unary operator.  This allows us to handle
 | |
| multiple unary operators (e.g. "!!x").  Note that unary operators can't have 
 | |
| ambiguous parses like binary operators can, so there is no need for precedence
 | |
| information.</p>
 | |
| 
 | |
| <p>The problem with this function, is that we need to call ParseUnary from somewhere.
 | |
| To do this, we change previous callers of ParsePrimary to call ParseUnary
 | |
| instead:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// binoprhs
 | |
| ///   ::= ('+' unary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   ...
 | |
|     <b>// Parse the unary expression after the binary operator.
 | |
|     ExprAST *RHS = ParseUnary();
 | |
|     if (!RHS) return 0;</b>
 | |
|   ...
 | |
| }
 | |
| /// expression
 | |
| ///   ::= unary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   <b>ExprAST *LHS = ParseUnary();</b>
 | |
|   if (!LHS) return 0;
 | |
|   
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>With these two simple changes, we are now able to parse unary operators and build the
 | |
| AST for them.  Next up, we need to add parser support for prototypes, to parse
 | |
| the unary operator prototype.  We extend the binary operator code above 
 | |
| with:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| ///   ::= binary LETTER number? (id, id)
 | |
| <b>///   ::= unary LETTER (id)</b>
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   std::string FnName;
 | |
|   
 | |
|   int Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
 | |
|   unsigned BinaryPrecedence = 30;
 | |
|   
 | |
|   switch (CurTok) {
 | |
|   default:
 | |
|     return ErrorP("Expected function name in prototype");
 | |
|   case tok_identifier:
 | |
|     FnName = IdentifierStr;
 | |
|     Kind = 0;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   <b>case tok_unary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected unary operator");
 | |
|     FnName = "unary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 1;
 | |
|     getNextToken();
 | |
|     break;</b>
 | |
|   case tok_binary:
 | |
|     ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As with binary operators, we name unary operators with a name that includes
 | |
| the operator character.  This assists us at code generation time.  Speaking of,
 | |
| the final piece we need to add is codegen support for unary operators.  It looks
 | |
| like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Value *UnaryExprAST::Codegen() {
 | |
|   Value *OperandV = Operand->Codegen();
 | |
|   if (OperandV == 0) return 0;
 | |
|   
 | |
|   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
 | |
|   if (F == 0)
 | |
|     return ErrorV("Unknown unary operator");
 | |
|   
 | |
|   return Builder.CreateCall(F, OperandV, "unop");
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code is similar to, but simpler than, the code for binary operators.  It
 | |
| is simpler primarily because it doesn't need to handle any predefined operators.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="example">Kicking the Tires</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>It is somewhat hard to believe, but with a few simple extensions we've
 | |
| covered in the last chapters, we have grown a real-ish language.  With this, we 
 | |
| can do a lot of interesting things, including I/O, math, and a bunch of other
 | |
| things.  For example, we can now add a nice sequencing operator (printd is
 | |
| defined to print out the specified value and a newline):</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>extern printd(x);</b>
 | |
| Read extern: declare double @printd(double)
 | |
| ready> <b>def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.</b>
 | |
| ..
 | |
| ready> <b>printd(123) : printd(456) : printd(789);</b>
 | |
| 123.000000
 | |
| 456.000000
 | |
| 789.000000
 | |
| Evaluated to 0.000000
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>We can also define a bunch of other "primitive" operations, such as:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Logical unary not.
 | |
| def unary!(v)
 | |
|   if v then
 | |
|     0
 | |
|   else
 | |
|     1;
 | |
|     
 | |
| # Unary negate.
 | |
| def unary-(v)
 | |
|   0-v;
 | |
| 
 | |
| # Define > with the same precedence as >.
 | |
| def binary> 10 (LHS RHS)
 | |
|   RHS < LHS;
 | |
| 
 | |
| # Binary logical or, which does not short circuit. 
 | |
| def binary| 5 (LHS RHS)
 | |
|   if LHS then
 | |
|     1
 | |
|   else if RHS then
 | |
|     1
 | |
|   else
 | |
|     0;
 | |
| 
 | |
| # Binary logical and, which does not short circuit. 
 | |
| def binary& 6 (LHS RHS)
 | |
|   if !LHS then
 | |
|     0
 | |
|   else
 | |
|     !!RHS;
 | |
| 
 | |
| # Define = with slightly lower precedence than relationals.
 | |
| def binary = 9 (LHS RHS)
 | |
|   !(LHS < RHS | LHS > RHS);
 | |
| 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <p>Given the previous if/then/else support, we can also define interesting
 | |
| functions for I/O.  For example, the following prints out a character whose
 | |
| "density" reflects the value passed in: the lower the value, the denser the
 | |
| character:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready>
 | |
| <b>
 | |
| extern putchard(char)
 | |
| def printdensity(d)
 | |
|   if d > 8 then
 | |
|     putchard(32)  # ' '
 | |
|   else if d > 4 then
 | |
|     putchard(46)  # '.'
 | |
|   else if d > 2 then
 | |
|     putchard(43)  # '+'
 | |
|   else
 | |
|     putchard(42); # '*'</b>
 | |
| ...
 | |
| ready> <b>printdensity(1): printdensity(2): printdensity(3) : 
 | |
|           printdensity(4): printdensity(5): printdensity(9): putchard(10);</b>
 | |
| *++.. 
 | |
| Evaluated to 0.000000
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Based on these simple primitive operations, we can start to define more
 | |
| interesting things.  For example, here's a little function that solves for the
 | |
| number of iterations it takes a function in the complex plane to
 | |
| converge:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # determine whether the specific location diverges.
 | |
| # Solve for z = z^2 + c in the complex plane.
 | |
| def mandleconverger(real imag iters creal cimag)
 | |
|   if iters > 255 | (real*real + imag*imag > 4) then
 | |
|     iters
 | |
|   else
 | |
|     mandleconverger(real*real - imag*imag + creal,
 | |
|                     2*real*imag + cimag,
 | |
|                     iters+1, creal, cimag);
 | |
| 
 | |
| # return the number of iterations required for the iteration to escape
 | |
| def mandleconverge(real imag)
 | |
|   mandleconverger(real, imag, 0, real, imag);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis
 | |
| for computation of the <a 
 | |
| href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>.  Our
 | |
| <tt>mandelconverge</tt> function returns the number of iterations that it takes
 | |
| for a complex orbit to escape, saturating to 255.  This is not a very useful
 | |
| function by itself, but if you plot its value over a two-dimensional plane,
 | |
| you can see the Mandelbrot set.  Given that we are limited to using putchard
 | |
| here, our amazing graphical output is limited, but we can whip together
 | |
| something using the density plotter above:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # compute and plot the mandlebrot set with the specified 2 dimensional range
 | |
| # info.
 | |
| def mandelhelp(xmin xmax xstep   ymin ymax ystep)
 | |
|   for y = ymin, y < ymax, ystep in (
 | |
|     (for x = xmin, x < xmax, xstep in
 | |
|        printdensity(mandleconverge(x,y)))
 | |
|     : putchard(10)
 | |
|   )
 | |
|  
 | |
| # mandel - This is a convenient helper function for ploting the mandelbrot set
 | |
| # from the specified position with the specified Magnification.
 | |
| def mandel(realstart imagstart realmag imagmag) 
 | |
|   mandelhelp(realstart, realstart+realmag*78, realmag,
 | |
|              imagstart, imagstart+imagmag*40, imagmag);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Given this, we can try plotting out the mandlebrot set!  Lets try it out:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b>
 | |
| *******************************+++++++++++*************************************
 | |
| *************************+++++++++++++++++++++++*******************************
 | |
| **********************+++++++++++++++++++++++++++++****************************
 | |
| *******************+++++++++++++++++++++.. ...++++++++*************************
 | |
| *****************++++++++++++++++++++++.... ...+++++++++***********************
 | |
| ***************+++++++++++++++++++++++.....   ...+++++++++*********************
 | |
| **************+++++++++++++++++++++++....     ....+++++++++********************
 | |
| *************++++++++++++++++++++++......      .....++++++++*******************
 | |
| ************+++++++++++++++++++++.......       .......+++++++******************
 | |
| ***********+++++++++++++++++++....                ... .+++++++*****************
 | |
| **********+++++++++++++++++.......                     .+++++++****************
 | |
| *********++++++++++++++...........                    ...+++++++***************
 | |
| ********++++++++++++............                      ...++++++++**************
 | |
| ********++++++++++... ..........                        .++++++++**************
 | |
| *******+++++++++.....                                   .+++++++++*************
 | |
| *******++++++++......                                  ..+++++++++*************
 | |
| *******++++++.......                                   ..+++++++++*************
 | |
| *******+++++......                                     ..+++++++++*************
 | |
| *******.... ....                                      ...+++++++++*************
 | |
| *******.... .                                         ...+++++++++*************
 | |
| *******+++++......                                    ...+++++++++*************
 | |
| *******++++++.......                                   ..+++++++++*************
 | |
| *******++++++++......                                   .+++++++++*************
 | |
| *******+++++++++.....                                  ..+++++++++*************
 | |
| ********++++++++++... ..........                        .++++++++**************
 | |
| ********++++++++++++............                      ...++++++++**************
 | |
| *********++++++++++++++..........                     ...+++++++***************
 | |
| **********++++++++++++++++........                     .+++++++****************
 | |
| **********++++++++++++++++++++....                ... ..+++++++****************
 | |
| ***********++++++++++++++++++++++.......       .......++++++++*****************
 | |
| ************+++++++++++++++++++++++......      ......++++++++******************
 | |
| **************+++++++++++++++++++++++....      ....++++++++********************
 | |
| ***************+++++++++++++++++++++++.....   ...+++++++++*********************
 | |
| *****************++++++++++++++++++++++....  ...++++++++***********************
 | |
| *******************+++++++++++++++++++++......++++++++*************************
 | |
| *********************++++++++++++++++++++++.++++++++***************************
 | |
| *************************+++++++++++++++++++++++*******************************
 | |
| ******************************+++++++++++++************************************
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| Evaluated to 0.000000
 | |
| ready> <b>mandel(-2, -1, 0.02, 0.04);</b>
 | |
| **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
 | |
| ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 | |
| *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
 | |
| *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
 | |
| *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
 | |
| ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
 | |
| **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
 | |
| ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
 | |
| ***********++++++++++++++++++++++++++++++++++++++++++++++++++........        . 
 | |
| **********++++++++++++++++++++++++++++++++++++++++++++++.............          
 | |
| ********+++++++++++++++++++++++++++++++++++++++++++..................          
 | |
| *******+++++++++++++++++++++++++++++++++++++++.......................          
 | |
| ******+++++++++++++++++++++++++++++++++++...........................           
 | |
| *****++++++++++++++++++++++++++++++++............................              
 | |
| *****++++++++++++++++++++++++++++...............................               
 | |
| ****++++++++++++++++++++++++++......   .........................               
 | |
| ***++++++++++++++++++++++++.........     ......    ...........                 
 | |
| ***++++++++++++++++++++++............                                          
 | |
| **+++++++++++++++++++++..............                                          
 | |
| **+++++++++++++++++++................                                          
 | |
| *++++++++++++++++++.................                                           
 | |
| *++++++++++++++++............ ...                                              
 | |
| *++++++++++++++..............                                                  
 | |
| *+++....++++................                                                   
 | |
| *..........  ...........                                                       
 | |
| *                                                                              
 | |
| *..........  ...........                                                       
 | |
| *+++....++++................                                                   
 | |
| *++++++++++++++..............                                                  
 | |
| *++++++++++++++++............ ...                                              
 | |
| *++++++++++++++++++.................                                           
 | |
| **+++++++++++++++++++................                                          
 | |
| **+++++++++++++++++++++..............                                          
 | |
| ***++++++++++++++++++++++............                                          
 | |
| ***++++++++++++++++++++++++.........     ......    ...........                 
 | |
| ****++++++++++++++++++++++++++......   .........................               
 | |
| *****++++++++++++++++++++++++++++...............................               
 | |
| *****++++++++++++++++++++++++++++++++............................              
 | |
| ******+++++++++++++++++++++++++++++++++++...........................           
 | |
| *******+++++++++++++++++++++++++++++++++++++++.......................          
 | |
| ********+++++++++++++++++++++++++++++++++++++++++++..................          
 | |
| Evaluated to 0.000000
 | |
| ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b>
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| **********+++++++++++++++++++++************************************************
 | |
| *+++++++++++++++++++++++++++++++++++++++***************************************
 | |
| +++++++++++++++++++++++++++++++++++++++++++++**********************************
 | |
| ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
 | |
| ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
 | |
| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
 | |
| +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
 | |
| +++++++++++++++++++++++++++++++....   ......+++++++++++++++++++****************
 | |
| +++++++++++++++++++++++++++++.......  ........+++++++++++++++++++**************
 | |
| ++++++++++++++++++++++++++++........   ........++++++++++++++++++++************
 | |
| +++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++**********
 | |
| ++++++++++++++++++++++++++...........        ....++++++++++++++++++++++********
 | |
| ++++++++++++++++++++++++.............       .......++++++++++++++++++++++******
 | |
| +++++++++++++++++++++++.............        ........+++++++++++++++++++++++****
 | |
| ++++++++++++++++++++++...........           ..........++++++++++++++++++++++***
 | |
| ++++++++++++++++++++...........                .........++++++++++++++++++++++*
 | |
| ++++++++++++++++++............                  ...........++++++++++++++++++++
 | |
| ++++++++++++++++...............                 .............++++++++++++++++++
 | |
| ++++++++++++++.................                 ...............++++++++++++++++
 | |
| ++++++++++++..................                  .................++++++++++++++
 | |
| +++++++++..................                      .................+++++++++++++
 | |
| ++++++........        .                               .........  ..++++++++++++
 | |
| ++............                                         ......    ....++++++++++
 | |
| ..............                                                    ...++++++++++
 | |
| ..............                                                    ....+++++++++
 | |
| ..............                                                    .....++++++++
 | |
| .............                                                    ......++++++++
 | |
| ...........                                                     .......++++++++
 | |
| .........                                                       ........+++++++
 | |
| .........                                                       ........+++++++
 | |
| .........                                                           ....+++++++
 | |
| ........                                                             ...+++++++
 | |
| .......                                                              ...+++++++
 | |
|                                                                     ....+++++++
 | |
|                                                                    .....+++++++
 | |
|                                                                     ....+++++++
 | |
|                                                                     ....+++++++
 | |
|                                                                     ....+++++++
 | |
| Evaluated to 0.000000
 | |
| ready> <b>^D</b>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>At this point, you may be starting to realize that Kaleidoscope is a real
 | |
| and powerful language.  It may not be self-similar :), but it can be used to
 | |
| plot things that are!</p>
 | |
| 
 | |
| <p>With this, we conclude the "adding user-defined operators" chapter of the
 | |
| tutorial.  We have successfully augmented our language, adding the ability to extend the
 | |
| language in the library, and we have shown how this can be used to build a simple but
 | |
| interesting end-user application in Kaleidoscope.  At this point, Kaleidoscope
 | |
| can build a variety of applications that are functional and can call functions
 | |
| with side-effects, but it can't actually define and mutate a variable itself.
 | |
| </p>
 | |
| 
 | |
| <p>Strikingly, variable mutation is an important feature of some
 | |
| languages, and it is not at all obvious how to <a href="LangImpl7.html">add
 | |
| support for mutable variables</a> without having to add an "SSA construction"
 | |
| phase to your front-end.  In the next chapter, we will describe how you can
 | |
| add variable mutation without building SSA in your front-end.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="code">Full Code Listing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Here is the complete code listing for our running example, enhanced with the
 | |
| if/then/else and for expressions..  To build this example, use:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|    # Compile
 | |
|    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | |
|    # Run
 | |
|    ./toy
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here is the code:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lexer
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
| // of these for known things.
 | |
| enum Token {
 | |
|   tok_eof = -1,
 | |
| 
 | |
|   // commands
 | |
|   tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|   // primary
 | |
|   tok_identifier = -4, tok_number = -5,
 | |
|   
 | |
|   // control
 | |
|   tok_if = -6, tok_then = -7, tok_else = -8,
 | |
|   tok_for = -9, tok_in = -10,
 | |
|   
 | |
|   // operators
 | |
|   tok_binary = -11, tok_unary = -12
 | |
| };
 | |
| 
 | |
| static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
| static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
| /// gettok - Return the next token from standard input.
 | |
| static int gettok() {
 | |
|   static int LastChar = ' ';
 | |
| 
 | |
|   // Skip any whitespace.
 | |
|   while (isspace(LastChar))
 | |
|     LastChar = getchar();
 | |
| 
 | |
|   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|     IdentifierStr = LastChar;
 | |
|     while (isalnum((LastChar = getchar())))
 | |
|       IdentifierStr += LastChar;
 | |
| 
 | |
|     if (IdentifierStr == "def") return tok_def;
 | |
|     if (IdentifierStr == "extern") return tok_extern;
 | |
|     if (IdentifierStr == "if") return tok_if;
 | |
|     if (IdentifierStr == "then") return tok_then;
 | |
|     if (IdentifierStr == "else") return tok_else;
 | |
|     if (IdentifierStr == "for") return tok_for;
 | |
|     if (IdentifierStr == "in") return tok_in;
 | |
|     if (IdentifierStr == "binary") return tok_binary;
 | |
|     if (IdentifierStr == "unary") return tok_unary;
 | |
|     return tok_identifier;
 | |
|   }
 | |
| 
 | |
|   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|     std::string NumStr;
 | |
|     do {
 | |
|       NumStr += LastChar;
 | |
|       LastChar = getchar();
 | |
|     } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|     NumVal = strtod(NumStr.c_str(), 0);
 | |
|     return tok_number;
 | |
|   }
 | |
| 
 | |
|   if (LastChar == '#') {
 | |
|     // Comment until end of line.
 | |
|     do LastChar = getchar();
 | |
|     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
|     
 | |
|     if (LastChar != EOF)
 | |
|       return gettok();
 | |
|   }
 | |
|   
 | |
|   // Check for end of file.  Don't eat the EOF.
 | |
|   if (LastChar == EOF)
 | |
|     return tok_eof;
 | |
| 
 | |
|   // Otherwise, just return the character as its ascii value.
 | |
|   int ThisChar = LastChar;
 | |
|   LastChar = getchar();
 | |
|   return ThisChar;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Abstract Syntax Tree (aka Parse Tree)
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ExprAST - Base class for all expression nodes.
 | |
| class ExprAST {
 | |
| public:
 | |
|   virtual ~ExprAST() {}
 | |
|   virtual Value *Codegen() = 0;
 | |
| };
 | |
| 
 | |
| /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
| class NumberExprAST : public ExprAST {
 | |
|   double Val;
 | |
| public:
 | |
|   NumberExprAST(double val) : Val(val) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
| class VariableExprAST : public ExprAST {
 | |
|   std::string Name;
 | |
| public:
 | |
|   VariableExprAST(const std::string &name) : Name(name) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// UnaryExprAST - Expression class for a unary operator.
 | |
| class UnaryExprAST : public ExprAST {
 | |
|   char Opcode;
 | |
|   ExprAST *Operand;
 | |
| public:
 | |
|   UnaryExprAST(char opcode, ExprAST *operand) 
 | |
|     : Opcode(opcode), Operand(operand) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// BinaryExprAST - Expression class for a binary operator.
 | |
| class BinaryExprAST : public ExprAST {
 | |
|   char Op;
 | |
|   ExprAST *LHS, *RHS;
 | |
| public:
 | |
|   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | |
|     : Op(op), LHS(lhs), RHS(rhs) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// CallExprAST - Expression class for function calls.
 | |
| class CallExprAST : public ExprAST {
 | |
|   std::string Callee;
 | |
|   std::vector<ExprAST*> Args;
 | |
| public:
 | |
|   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|     : Callee(callee), Args(args) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// IfExprAST - Expression class for if/then/else.
 | |
| class IfExprAST : public ExprAST {
 | |
|   ExprAST *Cond, *Then, *Else;
 | |
| public:
 | |
|   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | |
|   : Cond(cond), Then(then), Else(_else) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// ForExprAST - Expression class for for/in.
 | |
| class ForExprAST : public ExprAST {
 | |
|   std::string VarName;
 | |
|   ExprAST *Start, *End, *Step, *Body;
 | |
| public:
 | |
|   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | |
|              ExprAST *step, ExprAST *body)
 | |
|     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its argument names as well as if it is an operator.
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
|   bool isOperator;
 | |
|   unsigned Precedence;  // Precedence if a binary op.
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | |
|                bool isoperator = false, unsigned prec = 0)
 | |
|   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
 | |
|   
 | |
|   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | |
|   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | |
|   
 | |
|   char getOperatorName() const {
 | |
|     assert(isUnaryOp() || isBinaryOp());
 | |
|     return Name[Name.size()-1];
 | |
|   }
 | |
|   
 | |
|   unsigned getBinaryPrecedence() const { return Precedence; }
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| /// FunctionAST - This class represents a function definition itself.
 | |
| class FunctionAST {
 | |
|   PrototypeAST *Proto;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|     : Proto(proto), Body(body) {}
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
| /// token the parser it looking at.  getNextToken reads another token from the
 | |
| /// lexer and updates CurTok with its results.
 | |
| static int CurTok;
 | |
| static int getNextToken() {
 | |
|   return CurTok = gettok();
 | |
| }
 | |
| 
 | |
| /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
| /// defined.
 | |
| static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
| static int GetTokPrecedence() {
 | |
|   if (!isascii(CurTok))
 | |
|     return -1;
 | |
|   
 | |
|   // Make sure it's a declared binop.
 | |
|   int TokPrec = BinopPrecedence[CurTok];
 | |
|   if (TokPrec <= 0) return -1;
 | |
|   return TokPrec;
 | |
| }
 | |
| 
 | |
| /// Error* - These are little helper functions for error handling.
 | |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| static ExprAST *ParseExpression();
 | |
| 
 | |
| /// identifierexpr
 | |
| ///   ::= identifier
 | |
| ///   ::= identifier '(' expression* ')'
 | |
| static ExprAST *ParseIdentifierExpr() {
 | |
|   std::string IdName = IdentifierStr;
 | |
|   
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '(') // Simple variable ref.
 | |
|     return new VariableExprAST(IdName);
 | |
|   
 | |
|   // Call.
 | |
|   getNextToken();  // eat (
 | |
|   std::vector<ExprAST*> Args;
 | |
|   if (CurTok != ')') {
 | |
|     while (1) {
 | |
|       ExprAST *Arg = ParseExpression();
 | |
|       if (!Arg) return 0;
 | |
|       Args.push_back(Arg);
 | |
|       
 | |
|       if (CurTok == ')') break;
 | |
|       
 | |
|       if (CurTok != ',')
 | |
|         return Error("Expected ')' or ',' in argument list");
 | |
|       getNextToken();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eat the ')'.
 | |
|   getNextToken();
 | |
|   
 | |
|   return new CallExprAST(IdName, Args);
 | |
| }
 | |
| 
 | |
| /// numberexpr ::= number
 | |
| static ExprAST *ParseNumberExpr() {
 | |
|   ExprAST *Result = new NumberExprAST(NumVal);
 | |
|   getNextToken(); // consume the number
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// parenexpr ::= '(' expression ')'
 | |
| static ExprAST *ParseParenExpr() {
 | |
|   getNextToken();  // eat (.
 | |
|   ExprAST *V = ParseExpression();
 | |
|   if (!V) return 0;
 | |
|   
 | |
|   if (CurTok != ')')
 | |
|     return Error("expected ')'");
 | |
|   getNextToken();  // eat ).
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | |
| static ExprAST *ParseIfExpr() {
 | |
|   getNextToken();  // eat the if.
 | |
|   
 | |
|   // condition.
 | |
|   ExprAST *Cond = ParseExpression();
 | |
|   if (!Cond) return 0;
 | |
|   
 | |
|   if (CurTok != tok_then)
 | |
|     return Error("expected then");
 | |
|   getNextToken();  // eat the then
 | |
|   
 | |
|   ExprAST *Then = ParseExpression();
 | |
|   if (Then == 0) return 0;
 | |
|   
 | |
|   if (CurTok != tok_else)
 | |
|     return Error("expected else");
 | |
|   
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *Else = ParseExpression();
 | |
|   if (!Else) return 0;
 | |
|   
 | |
|   return new IfExprAST(Cond, Then, Else);
 | |
| }
 | |
| 
 | |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | |
| static ExprAST *ParseForExpr() {
 | |
|   getNextToken();  // eat the for.
 | |
| 
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after for");
 | |
|   
 | |
|   std::string IdName = IdentifierStr;
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '=')
 | |
|     return Error("expected '=' after for");
 | |
|   getNextToken();  // eat '='.
 | |
|   
 | |
|   
 | |
|   ExprAST *Start = ParseExpression();
 | |
|   if (Start == 0) return 0;
 | |
|   if (CurTok != ',')
 | |
|     return Error("expected ',' after for start value");
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *End = ParseExpression();
 | |
|   if (End == 0) return 0;
 | |
|   
 | |
|   // The step value is optional.
 | |
|   ExprAST *Step = 0;
 | |
|   if (CurTok == ',') {
 | |
|     getNextToken();
 | |
|     Step = ParseExpression();
 | |
|     if (Step == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' after for");
 | |
|   getNextToken();  // eat 'in'.
 | |
|   
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
| 
 | |
|   return new ForExprAST(IdName, Start, End, Step, Body);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| ///   ::= ifexpr
 | |
| ///   ::= forexpr
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   case tok_if:         return ParseIfExpr();
 | |
|   case tok_for:        return ParseForExpr();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// unary
 | |
| ///   ::= primary
 | |
| ///   ::= '!' unary
 | |
| static ExprAST *ParseUnary() {
 | |
|   // If the current token is not an operator, it must be a primary expr.
 | |
|   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | |
|     return ParsePrimary();
 | |
|   
 | |
|   // If this is a unary operator, read it.
 | |
|   int Opc = CurTok;
 | |
|   getNextToken();
 | |
|   if (ExprAST *Operand = ParseUnary())
 | |
|     return new UnaryExprAST(Opc, Operand);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// binoprhs
 | |
| ///   ::= ('+' unary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   // If this is a binop, find its precedence.
 | |
|   while (1) {
 | |
|     int TokPrec = GetTokPrecedence();
 | |
|     
 | |
|     // If this is a binop that binds at least as tightly as the current binop,
 | |
|     // consume it, otherwise we are done.
 | |
|     if (TokPrec < ExprPrec)
 | |
|       return LHS;
 | |
|     
 | |
|     // Okay, we know this is a binop.
 | |
|     int BinOp = CurTok;
 | |
|     getNextToken();  // eat binop
 | |
|     
 | |
|     // Parse the unary expression after the binary operator.
 | |
|     ExprAST *RHS = ParseUnary();
 | |
|     if (!RHS) return 0;
 | |
|     
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
|       RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|       if (RHS == 0) return 0;
 | |
|     }
 | |
|     
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expression
 | |
| ///   ::= unary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   ExprAST *LHS = ParseUnary();
 | |
|   if (!LHS) return 0;
 | |
|   
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| 
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| ///   ::= binary LETTER number? (id, id)
 | |
| ///   ::= unary LETTER (id)
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   std::string FnName;
 | |
|   
 | |
|   int Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
 | |
|   unsigned BinaryPrecedence = 30;
 | |
|   
 | |
|   switch (CurTok) {
 | |
|   default:
 | |
|     return ErrorP("Expected function name in prototype");
 | |
|   case tok_identifier:
 | |
|     FnName = IdentifierStr;
 | |
|     Kind = 0;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   case tok_unary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected unary operator");
 | |
|     FnName = "unary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 1;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   case tok_binary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected binary operator");
 | |
|     FnName = "binary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 2;
 | |
|     getNextToken();
 | |
|     
 | |
|     // Read the precedence if present.
 | |
|     if (CurTok == tok_number) {
 | |
|       if (NumVal < 1 || NumVal > 100)
 | |
|         return ErrorP("Invalid precedecnce: must be 1..100");
 | |
|       BinaryPrecedence = (unsigned)NumVal;
 | |
|       getNextToken();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
|   
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
|   
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
|   
 | |
|   // Verify right number of names for operator.
 | |
|   if (Kind && ArgNames.size() != Kind)
 | |
|     return ErrorP("Invalid number of operands for operator");
 | |
|   
 | |
|   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
 | |
| }
 | |
| 
 | |
| /// definition ::= 'def' prototype expression
 | |
| static FunctionAST *ParseDefinition() {
 | |
|   getNextToken();  // eat def.
 | |
|   PrototypeAST *Proto = ParsePrototype();
 | |
|   if (Proto == 0) return 0;
 | |
| 
 | |
|   if (ExprAST *E = ParseExpression())
 | |
|     return new FunctionAST(Proto, E);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// toplevelexpr ::= expression
 | |
| static FunctionAST *ParseTopLevelExpr() {
 | |
|   if (ExprAST *E = ParseExpression()) {
 | |
|     // Make an anonymous proto.
 | |
|     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|     return new FunctionAST(Proto, E);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// external ::= 'extern' prototype
 | |
| static PrototypeAST *ParseExtern() {
 | |
|   getNextToken();  // eat extern.
 | |
|   return ParsePrototype();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code Generation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Module *TheModule;
 | |
| static IRBuilder<> Builder(getGlobalContext());
 | |
| static std::map<std::string, Value*> NamedValues;
 | |
| static FunctionPassManager *TheFPM;
 | |
| 
 | |
| Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| Value *NumberExprAST::Codegen() {
 | |
|   return ConstantFP::get(getGlobalContext(), APFloat(Val));
 | |
| }
 | |
| 
 | |
| Value *VariableExprAST::Codegen() {
 | |
|   // Look this variable up in the function.
 | |
|   Value *V = NamedValues[Name];
 | |
|   return V ? V : ErrorV("Unknown variable name");
 | |
| }
 | |
| 
 | |
| Value *UnaryExprAST::Codegen() {
 | |
|   Value *OperandV = Operand->Codegen();
 | |
|   if (OperandV == 0) return 0;
 | |
|   
 | |
|   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
 | |
|   if (F == 0)
 | |
|     return ErrorV("Unknown unary operator");
 | |
|   
 | |
|   return Builder.CreateCall(F, OperandV, "unop");
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *BinaryExprAST::Codegen() {
 | |
|   Value *L = LHS->Codegen();
 | |
|   Value *R = RHS->Codegen();
 | |
|   if (L == 0 || R == 0) return 0;
 | |
|   
 | |
|   switch (Op) {
 | |
|   case '+': return Builder.CreateAdd(L, R, "addtmp");
 | |
|   case '-': return Builder.CreateSub(L, R, "subtmp");
 | |
|   case '*': return Builder.CreateMul(L, R, "multmp");
 | |
|   case '<':
 | |
|     L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|     // Convert bool 0/1 to double 0.0 or 1.0
 | |
|     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp");
 | |
|   default: break;
 | |
|   }
 | |
|   
 | |
|   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | |
|   // a call to it.
 | |
|   Function *F = TheModule->getFunction(std::string("binary")+Op);
 | |
|   assert(F && "binary operator not found!");
 | |
|   
 | |
|   Value *Ops[] = { L, R };
 | |
|   return Builder.CreateCall(F, Ops, Ops+2, "binop");
 | |
| }
 | |
| 
 | |
| Value *CallExprAST::Codegen() {
 | |
|   // Look up the name in the global module table.
 | |
|   Function *CalleeF = TheModule->getFunction(Callee);
 | |
|   if (CalleeF == 0)
 | |
|     return ErrorV("Unknown function referenced");
 | |
|   
 | |
|   // If argument mismatch error.
 | |
|   if (CalleeF->arg_size() != Args.size())
 | |
|     return ErrorV("Incorrect # arguments passed");
 | |
| 
 | |
|   std::vector<Value*> ArgsV;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     ArgsV.push_back(Args[i]->Codegen());
 | |
|     if (ArgsV.back() == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | |
| }
 | |
| 
 | |
| Value *IfExprAST::Codegen() {
 | |
|   Value *CondV = Cond->Codegen();
 | |
|   if (CondV == 0) return 0;
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   CondV = Builder.CreateFCmpONE(CondV, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                 "ifcond");
 | |
|   
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|   
 | |
|   // Create blocks for the then and else cases.  Insert the 'then' block at the
 | |
|   // end of the function.
 | |
|   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | |
|   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | |
|   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | |
|   
 | |
|   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | |
|   
 | |
|   // Emit then value.
 | |
|   Builder.SetInsertPoint(ThenBB);
 | |
|   
 | |
|   Value *ThenV = Then->Codegen();
 | |
|   if (ThenV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | |
|   ThenBB = Builder.GetInsertBlock();
 | |
|   
 | |
|   // Emit else block.
 | |
|   TheFunction->getBasicBlockList().push_back(ElseBB);
 | |
|   Builder.SetInsertPoint(ElseBB);
 | |
|   
 | |
|   Value *ElseV = Else->Codegen();
 | |
|   if (ElseV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | |
|   ElseBB = Builder.GetInsertBlock();
 | |
|   
 | |
|   // Emit merge block.
 | |
|   TheFunction->getBasicBlockList().push_back(MergeBB);
 | |
|   Builder.SetInsertPoint(MergeBB);
 | |
|   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), "iftmp");
 | |
|   
 | |
|   PN->addIncoming(ThenV, ThenBB);
 | |
|   PN->addIncoming(ElseV, ElseBB);
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| Value *ForExprAST::Codegen() {
 | |
|   // Output this as:
 | |
|   //   ...
 | |
|   //   start = startexpr
 | |
|   //   goto loop
 | |
|   // loop: 
 | |
|   //   variable = phi [start, loopheader], [nextvariable, loopend]
 | |
|   //   ...
 | |
|   //   bodyexpr
 | |
|   //   ...
 | |
|   // loopend:
 | |
|   //   step = stepexpr
 | |
|   //   nextvariable = variable + step
 | |
|   //   endcond = endexpr
 | |
|   //   br endcond, loop, endloop
 | |
|   // outloop:
 | |
|   
 | |
|   // Emit the start code first, without 'variable' in scope.
 | |
|   Value *StartVal = Start->Codegen();
 | |
|   if (StartVal == 0) return 0;
 | |
|   
 | |
|   // Make the new basic block for the loop header, inserting after current
 | |
|   // block.
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | |
|   
 | |
|   // Insert an explicit fall through from the current block to the LoopBB.
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start insertion in LoopBB.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   
 | |
|   // Start the PHI node with an entry for Start.
 | |
|   PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
 | |
|   Variable->addIncoming(StartVal, PreheaderBB);
 | |
|   
 | |
|   // Within the loop, the variable is defined equal to the PHI node.  If it
 | |
|   // shadows an existing variable, we have to restore it, so save it now.
 | |
|   Value *OldVal = NamedValues[VarName];
 | |
|   NamedValues[VarName] = Variable;
 | |
|   
 | |
|   // Emit the body of the loop.  This, like any other expr, can change the
 | |
|   // current BB.  Note that we ignore the value computed by the body, but don't
 | |
|   // allow an error.
 | |
|   if (Body->Codegen() == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // Emit the step value.
 | |
|   Value *StepVal;
 | |
|   if (Step) {
 | |
|     StepVal = Step->Codegen();
 | |
|     if (StepVal == 0) return 0;
 | |
|   } else {
 | |
|     // If not specified, use 1.0.
 | |
|     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | |
|   }
 | |
|   
 | |
|   Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar");
 | |
| 
 | |
|   // Compute the end condition.
 | |
|   Value *EndCond = End->Codegen();
 | |
|   if (EndCond == 0) return EndCond;
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   EndCond = Builder.CreateFCmpONE(EndCond, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                   "loopcond");
 | |
|   
 | |
|   // Create the "after loop" block and insert it.
 | |
|   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | |
|   
 | |
|   // Insert the conditional branch into the end of LoopEndBB.
 | |
|   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | |
|   
 | |
|   // Any new code will be inserted in AfterBB.
 | |
|   Builder.SetInsertPoint(AfterBB);
 | |
|   
 | |
|   // Add a new entry to the PHI node for the backedge.
 | |
|   Variable->addIncoming(NextVar, LoopEndBB);
 | |
|   
 | |
|   // Restore the unshadowed variable.
 | |
|   if (OldVal)
 | |
|     NamedValues[VarName] = OldVal;
 | |
|   else
 | |
|     NamedValues.erase(VarName);
 | |
| 
 | |
|   
 | |
|   // for expr always returns 0.0.
 | |
|   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
 | |
| }
 | |
| 
 | |
| Function *PrototypeAST::Codegen() {
 | |
|   // Make the function type:  double(double,double) etc.
 | |
|   std::vector<const Type*> Doubles(Args.size(), Type::getDoubleTy(getGlobalContext()));
 | |
|   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
 | |
|   
 | |
|   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | |
|   
 | |
|   // If F conflicted, there was already something named 'Name'.  If it has a
 | |
|   // body, don't allow redefinition or reextern.
 | |
|   if (F->getName() != Name) {
 | |
|     // Delete the one we just made and get the existing one.
 | |
|     F->eraseFromParent();
 | |
|     F = TheModule->getFunction(Name);
 | |
|     
 | |
|     // If F already has a body, reject this.
 | |
|     if (!F->empty()) {
 | |
|       ErrorF("redefinition of function");
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // If F took a different number of args, reject.
 | |
|     if (F->arg_size() != Args.size()) {
 | |
|       ErrorF("redefinition of function with different # args");
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Set names for all arguments.
 | |
|   unsigned Idx = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | |
|        ++AI, ++Idx) {
 | |
|     AI->setName(Args[Idx]);
 | |
|     
 | |
|     // Add arguments to variable symbol table.
 | |
|     NamedValues[Args[Idx]] = AI;
 | |
|   }
 | |
|   
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| Function *FunctionAST::Codegen() {
 | |
|   NamedValues.clear();
 | |
|   
 | |
|   Function *TheFunction = Proto->Codegen();
 | |
|   if (TheFunction == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // If this is an operator, install it.
 | |
|   if (Proto->isBinaryOp())
 | |
|     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
 | |
|   
 | |
|   // Create a new basic block to start insertion into.
 | |
|   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   
 | |
|   if (Value *RetVal = Body->Codegen()) {
 | |
|     // Finish off the function.
 | |
|     Builder.CreateRet(RetVal);
 | |
| 
 | |
|     // Validate the generated code, checking for consistency.
 | |
|     verifyFunction(*TheFunction);
 | |
| 
 | |
|     // Optimize the function.
 | |
|     TheFPM->run(*TheFunction);
 | |
|     
 | |
|     return TheFunction;
 | |
|   }
 | |
|   
 | |
|   // Error reading body, remove function.
 | |
|   TheFunction->eraseFromParent();
 | |
| 
 | |
|   if (Proto->isBinaryOp())
 | |
|     BinopPrecedence.erase(Proto->getOperatorName());
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Top-Level parsing and JIT Driver
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static ExecutionEngine *TheExecutionEngine;
 | |
| 
 | |
| static void HandleDefinition() {
 | |
|   if (FunctionAST *F = ParseDefinition()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       fprintf(stderr, "Read function definition:");
 | |
|       LF->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleExtern() {
 | |
|   if (PrototypeAST *P = ParseExtern()) {
 | |
|     if (Function *F = P->Codegen()) {
 | |
|       fprintf(stderr, "Read extern: ");
 | |
|       F->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleTopLevelExpression() {
 | |
|   // Evaluate a top level expression into an anonymous function.
 | |
|   if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       // JIT the function, returning a function pointer.
 | |
|       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | |
|       
 | |
|       // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|       // can call it as a native function.
 | |
|       double (*FP)() = (double (*)())FPtr;
 | |
|       fprintf(stderr, "Evaluated to %f\n", FP());
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// top ::= definition | external | expression | ';'
 | |
| static void MainLoop() {
 | |
|   while (1) {
 | |
|     fprintf(stderr, "ready> ");
 | |
|     switch (CurTok) {
 | |
|     case tok_eof:    return;
 | |
|     case ';':        getNextToken(); break;  // ignore top level semicolons.
 | |
|     case tok_def:    HandleDefinition(); break;
 | |
|     case tok_extern: HandleExtern(); break;
 | |
|     default:         HandleTopLevelExpression(); break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // "Library" functions that can be "extern'd" from user code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// putchard - putchar that takes a double and returns 0.
 | |
| extern "C" 
 | |
| double putchard(double X) {
 | |
|   putchar((char)X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// printd - printf that takes a double prints it as "%f\n", returning 0.
 | |
| extern "C" 
 | |
| double printd(double X) {
 | |
|   printf("%f\n", X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main driver code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int main() {
 | |
|   // Install standard binary operators.
 | |
|   // 1 is lowest precedence.
 | |
|   BinopPrecedence['<'] = 10;
 | |
|   BinopPrecedence['+'] = 20;
 | |
|   BinopPrecedence['-'] = 20;
 | |
|   BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|   // Prime the first token.
 | |
|   fprintf(stderr, "ready> ");
 | |
|   getNextToken();
 | |
| 
 | |
|   // Make the module, which holds all the code.
 | |
|   TheModule = new Module("my cool jit", getGlobalContext());
 | |
| 
 | |
|   ExistingModuleProvider *OurModuleProvider =
 | |
|       new ExistingModuleProvider(TheModule);
 | |
| 
 | |
|   // Create the JIT.  This takes ownership of the module and module provider.
 | |
|   TheExecutionEngine = EngineBuilder(OurModuleProvider).create();
 | |
| 
 | |
|   FunctionPassManager OurFPM(OurModuleProvider);
 | |
| 
 | |
|   // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|   // target lays out data structures.
 | |
|   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | |
|   // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|   OurFPM.add(createInstructionCombiningPass());
 | |
|   // Reassociate expressions.
 | |
|   OurFPM.add(createReassociatePass());
 | |
|   // Eliminate Common SubExpressions.
 | |
|   OurFPM.add(createGVNPass());
 | |
|   // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|   OurFPM.add(createCFGSimplificationPass());
 | |
| 
 | |
|   // Set the global so the code gen can use this.
 | |
|   TheFPM = &OurFPM;
 | |
| 
 | |
|   // Run the main "interpreter loop" now.
 | |
|   MainLoop();
 | |
| 
 | |
|   TheFPM = 0;
 | |
| 
 | |
|   // Print out all of the generated code.
 | |
|   TheModule->dump();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <a href="LangImpl7.html">Next: Extending the language: mutable variables / SSA construction</a>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | |
| </address>
 | |
| </body>
 | |
| </html>
 |