mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80138 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2158 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			2158 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| 
 | |
| <html>
 | |
| <head>
 | |
|   <title>Kaleidoscope: Extending the Language: Mutable Variables / SSA
 | |
|          construction</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <link rel="stylesheet" href="../llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <div class="doc_title">Kaleidoscope: Extending the Language: Mutable Variables</div>
 | |
| 
 | |
| <ul>
 | |
| <li><a href="index.html">Up to Tutorial Index</a></li>
 | |
| <li>Chapter 7
 | |
|   <ol>
 | |
|     <li><a href="#intro">Chapter 7 Introduction</a></li>
 | |
|     <li><a href="#why">Why is this a hard problem?</a></li>
 | |
|     <li><a href="#memory">Memory in LLVM</a></li>
 | |
|     <li><a href="#kalvars">Mutable Variables in Kaleidoscope</a></li>
 | |
|     <li><a href="#adjustments">Adjusting Existing Variables for
 | |
|      Mutation</a></li>
 | |
|     <li><a href="#assignment">New Assignment Operator</a></li>
 | |
|     <li><a href="#localvars">User-defined Local Variables</a></li>
 | |
|     <li><a href="#code">Full Code Listing</a></li>
 | |
|   </ol>
 | |
| </li>
 | |
| <li><a href="LangImpl8.html">Chapter 8</a>: Conclusion and other useful LLVM
 | |
|  tidbits</li>
 | |
| </ul>
 | |
| 
 | |
| <div class="doc_author">
 | |
|   <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="intro">Chapter 7 Introduction</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Welcome to Chapter 7 of the "<a href="index.html">Implementing a language
 | |
| with LLVM</a>" tutorial.  In chapters 1 through 6, we've built a very
 | |
| respectable, albeit simple, <a 
 | |
| href="http://en.wikipedia.org/wiki/Functional_programming">functional
 | |
| programming language</a>.  In our journey, we learned some parsing techniques,
 | |
| how to build and represent an AST, how to build LLVM IR, and how to optimize
 | |
| the resultant code as well as JIT compile it.</p>
 | |
| 
 | |
| <p>While Kaleidoscope is interesting as a functional language, the fact that it
 | |
| is functional makes it "too easy" to generate LLVM IR for it.  In particular, a 
 | |
| functional language makes it very easy to build LLVM IR directly in <a 
 | |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">SSA form</a>.
 | |
| Since LLVM requires that the input code be in SSA form, this is a very nice
 | |
| property and it is often unclear to newcomers how to generate code for an
 | |
| imperative language with mutable variables.</p>
 | |
| 
 | |
| <p>The short (and happy) summary of this chapter is that there is no need for
 | |
| your front-end to build SSA form: LLVM provides highly tuned and well tested
 | |
| support for this, though the way it works is a bit unexpected for some.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="why">Why is this a hard problem?</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| To understand why mutable variables cause complexities in SSA construction, 
 | |
| consider this extremely simple C example:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| int G, H;
 | |
| int test(_Bool Condition) {
 | |
|   int X;
 | |
|   if (Condition)
 | |
|     X = G;
 | |
|   else
 | |
|     X = H;
 | |
|   return X;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In this case, we have the variable "X", whose value depends on the path 
 | |
| executed in the program.  Because there are two different possible values for X
 | |
| before the return instruction, a PHI node is inserted to merge the two values.
 | |
| The LLVM IR that we want for this example looks like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| @G = weak global i32 0   ; type of @G is i32*
 | |
| @H = weak global i32 0   ; type of @H is i32*
 | |
| 
 | |
| define i32 @test(i1 %Condition) {
 | |
| entry:
 | |
| 	br i1 %Condition, label %cond_true, label %cond_false
 | |
| 
 | |
| cond_true:
 | |
| 	%X.0 = load i32* @G
 | |
| 	br label %cond_next
 | |
| 
 | |
| cond_false:
 | |
| 	%X.1 = load i32* @H
 | |
| 	br label %cond_next
 | |
| 
 | |
| cond_next:
 | |
| 	%X.2 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
 | |
| 	ret i32 %X.2
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In this example, the loads from the G and H global variables are explicit in
 | |
| the LLVM IR, and they live in the then/else branches of the if statement
 | |
| (cond_true/cond_false).  In order to merge the incoming values, the X.2 phi node
 | |
| in the cond_next block selects the right value to use based on where control 
 | |
| flow is coming from: if control flow comes from the cond_false block, X.2 gets
 | |
| the value of X.1.  Alternatively, if control flow comes from cond_true, it gets
 | |
| the value of X.0.  The intent of this chapter is not to explain the details of
 | |
| SSA form.  For more information, see one of the many <a 
 | |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">online 
 | |
| references</a>.</p>
 | |
| 
 | |
| <p>The question for this article is "who places the phi nodes when lowering 
 | |
| assignments to mutable variables?".  The issue here is that LLVM 
 | |
| <em>requires</em> that its IR be in SSA form: there is no "non-ssa" mode for it.
 | |
| However, SSA construction requires non-trivial algorithms and data structures,
 | |
| so it is inconvenient and wasteful for every front-end to have to reproduce this
 | |
| logic.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="memory">Memory in LLVM</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>The 'trick' here is that while LLVM does require all register values to be
 | |
| in SSA form, it does not require (or permit) memory objects to be in SSA form.
 | |
| In the example above, note that the loads from G and H are direct accesses to
 | |
| G and H: they are not renamed or versioned.  This differs from some other
 | |
| compiler systems, which do try to version memory objects.  In LLVM, instead of
 | |
| encoding dataflow analysis of memory into the LLVM IR, it is handled with <a 
 | |
| href="../WritingAnLLVMPass.html">Analysis Passes</a> which are computed on
 | |
| demand.</p>
 | |
| 
 | |
| <p>
 | |
| With this in mind, the high-level idea is that we want to make a stack variable
 | |
| (which lives in memory, because it is on the stack) for each mutable object in
 | |
| a function.  To take advantage of this trick, we need to talk about how LLVM
 | |
| represents stack variables.
 | |
| </p>
 | |
| 
 | |
| <p>In LLVM, all memory accesses are explicit with load/store instructions, and
 | |
| it is carefully designed not to have (or need) an "address-of" operator.  Notice
 | |
| how the type of the @G/@H global variables is actually "i32*" even though the 
 | |
| variable is defined as "i32".  What this means is that @G defines <em>space</em>
 | |
| for an i32 in the global data area, but its <em>name</em> actually refers to the
 | |
| address for that space.  Stack variables work the same way, except that instead of 
 | |
| being declared with global variable definitions, they are declared with the 
 | |
| <a href="../LangRef.html#i_alloca">LLVM alloca instruction</a>:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| define i32 @example() {
 | |
| entry:
 | |
| 	%X = alloca i32           ; type of %X is i32*.
 | |
| 	...
 | |
| 	%tmp = load i32* %X       ; load the stack value %X from the stack.
 | |
| 	%tmp2 = add i32 %tmp, 1   ; increment it
 | |
| 	store i32 %tmp2, i32* %X  ; store it back
 | |
| 	...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code shows an example of how you can declare and manipulate a stack
 | |
| variable in the LLVM IR.  Stack memory allocated with the alloca instruction is
 | |
| fully general: you can pass the address of the stack slot to functions, you can
 | |
| store it in other variables, etc.  In our example above, we could rewrite the
 | |
| example to use the alloca technique to avoid using a PHI node:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| @G = weak global i32 0   ; type of @G is i32*
 | |
| @H = weak global i32 0   ; type of @H is i32*
 | |
| 
 | |
| define i32 @test(i1 %Condition) {
 | |
| entry:
 | |
| 	%X = alloca i32           ; type of %X is i32*.
 | |
| 	br i1 %Condition, label %cond_true, label %cond_false
 | |
| 
 | |
| cond_true:
 | |
| 	%X.0 = load i32* @G
 | |
|         store i32 %X.0, i32* %X   ; Update X
 | |
| 	br label %cond_next
 | |
| 
 | |
| cond_false:
 | |
| 	%X.1 = load i32* @H
 | |
|         store i32 %X.1, i32* %X   ; Update X
 | |
| 	br label %cond_next
 | |
| 
 | |
| cond_next:
 | |
| 	%X.2 = load i32* %X       ; Read X
 | |
| 	ret i32 %X.2
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>With this, we have discovered a way to handle arbitrary mutable variables
 | |
| without the need to create Phi nodes at all:</p>
 | |
| 
 | |
| <ol>
 | |
| <li>Each mutable variable becomes a stack allocation.</li>
 | |
| <li>Each read of the variable becomes a load from the stack.</li>
 | |
| <li>Each update of the variable becomes a store to the stack.</li>
 | |
| <li>Taking the address of a variable just uses the stack address directly.</li>
 | |
| </ol>
 | |
| 
 | |
| <p>While this solution has solved our immediate problem, it introduced another
 | |
| one: we have now apparently introduced a lot of stack traffic for very simple
 | |
| and common operations, a major performance problem.  Fortunately for us, the
 | |
| LLVM optimizer has a highly-tuned optimization pass named "mem2reg" that handles
 | |
| this case, promoting allocas like this into SSA registers, inserting Phi nodes
 | |
| as appropriate.  If you run this example through the pass, for example, you'll
 | |
| get:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| $ <b>llvm-as < example.ll | opt -mem2reg | llvm-dis</b>
 | |
| @G = weak global i32 0
 | |
| @H = weak global i32 0
 | |
| 
 | |
| define i32 @test(i1 %Condition) {
 | |
| entry:
 | |
| 	br i1 %Condition, label %cond_true, label %cond_false
 | |
| 
 | |
| cond_true:
 | |
| 	%X.0 = load i32* @G
 | |
| 	br label %cond_next
 | |
| 
 | |
| cond_false:
 | |
| 	%X.1 = load i32* @H
 | |
| 	br label %cond_next
 | |
| 
 | |
| cond_next:
 | |
| 	%X.01 = phi i32 [ %X.1, %cond_false ], [ %X.0, %cond_true ]
 | |
| 	ret i32 %X.01
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The mem2reg pass implements the standard "iterated dominance frontier"
 | |
| algorithm for constructing SSA form and has a number of optimizations that speed
 | |
| up (very common) degenerate cases. The mem2reg optimization pass is the answer to dealing 
 | |
| with mutable variables, and we highly recommend that you depend on it.  Note that
 | |
| mem2reg only works on variables in certain circumstances:</p>
 | |
| 
 | |
| <ol>
 | |
| <li>mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
 | |
| promotes them.  It does not apply to global variables or heap allocations.</li>
 | |
| 
 | |
| <li>mem2reg only looks for alloca instructions in the entry block of the
 | |
| function.  Being in the entry block guarantees that the alloca is only executed
 | |
| once, which makes analysis simpler.</li>
 | |
| 
 | |
| <li>mem2reg only promotes allocas whose uses are direct loads and stores.  If
 | |
| the address of the stack object is passed to a function, or if any funny pointer
 | |
| arithmetic is involved, the alloca will not be promoted.</li>
 | |
| 
 | |
| <li>mem2reg only works on allocas of <a 
 | |
| href="../LangRef.html#t_classifications">first class</a> 
 | |
| values (such as pointers, scalars and vectors), and only if the array size
 | |
| of the allocation is 1 (or missing in the .ll file).  mem2reg is not capable of
 | |
| promoting structs or arrays to registers.  Note that the "scalarrepl" pass is
 | |
| more powerful and can promote structs, "unions", and arrays in many cases.</li>
 | |
| 
 | |
| </ol>
 | |
| 
 | |
| <p>
 | |
| All of these properties are easy to satisfy for most imperative languages, and
 | |
| we'll illustrate it below with Kaleidoscope.  The final question you may be
 | |
| asking is: should I bother with this nonsense for my front-end?  Wouldn't it be
 | |
| better if I just did SSA construction directly, avoiding use of the mem2reg
 | |
| optimization pass?  In short, we strongly recommend that you use this technique
 | |
| for building SSA form, unless there is an extremely good reason not to.  Using
 | |
| this technique is:</p>
 | |
| 
 | |
| <ul>
 | |
| <li>Proven and well tested: llvm-gcc and clang both use this technique for local
 | |
| mutable variables.  As such, the most common clients of LLVM are using this to
 | |
| handle a bulk of their variables.  You can be sure that bugs are found fast and
 | |
| fixed early.</li>
 | |
| 
 | |
| <li>Extremely Fast: mem2reg has a number of special cases that make it fast in
 | |
| common cases as well as fully general.  For example, it has fast-paths for
 | |
| variables that are only used in a single block, variables that only have one
 | |
| assignment point, good heuristics to avoid insertion of unneeded phi nodes, etc.
 | |
| </li>
 | |
| 
 | |
| <li>Needed for debug info generation: <a href="../SourceLevelDebugging.html">
 | |
| Debug information in LLVM</a> relies on having the address of the variable
 | |
| exposed so that debug info can be attached to it.  This technique dovetails 
 | |
| very naturally with this style of debug info.</li>
 | |
| </ul>
 | |
| 
 | |
| <p>If nothing else, this makes it much easier to get your front-end up and 
 | |
| running, and is very simple to implement.  Lets extend Kaleidoscope with mutable
 | |
| variables now!
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="kalvars">Mutable Variables in 
 | |
| Kaleidoscope</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Now that we know the sort of problem we want to tackle, lets see what this
 | |
| looks like in the context of our little Kaleidoscope language.  We're going to
 | |
| add two features:</p>
 | |
| 
 | |
| <ol>
 | |
| <li>The ability to mutate variables with the '=' operator.</li>
 | |
| <li>The ability to define new variables.</li>
 | |
| </ol>
 | |
| 
 | |
| <p>While the first item is really what this is about, we only have variables
 | |
| for incoming arguments as well as for induction variables, and redefining those only
 | |
| goes so far :).  Also, the ability to define new variables is a
 | |
| useful thing regardless of whether you will be mutating them.  Here's a
 | |
| motivating example that shows how we could use these:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Define ':' for sequencing: as a low-precedence operator that ignores operands
 | |
| # and just returns the RHS.
 | |
| def binary : 1 (x y) y;
 | |
| 
 | |
| # Recursive fib, we could do this before.
 | |
| def fib(x)
 | |
|   if (x < 3) then
 | |
|     1
 | |
|   else
 | |
|     fib(x-1)+fib(x-2);
 | |
| 
 | |
| # Iterative fib.
 | |
| def fibi(x)
 | |
|   <b>var a = 1, b = 1, c in</b>
 | |
|   (for i = 3, i < x in 
 | |
|      <b>c = a + b</b> :
 | |
|      <b>a = b</b> :
 | |
|      <b>b = c</b>) :
 | |
|   b;
 | |
| 
 | |
| # Call it. 
 | |
| fibi(10);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>
 | |
| In order to mutate variables, we have to change our existing variables to use
 | |
| the "alloca trick".  Once we have that, we'll add our new operator, then extend
 | |
| Kaleidoscope to support new variable definitions.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="adjustments">Adjusting Existing Variables for
 | |
| Mutation</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| The symbol table in Kaleidoscope is managed at code generation time by the 
 | |
| '<tt>NamedValues</tt>' map.  This map currently keeps track of the LLVM "Value*"
 | |
| that holds the double value for the named variable.  In order to support
 | |
| mutation, we need to change this slightly, so that it <tt>NamedValues</tt> holds
 | |
| the <em>memory location</em> of the variable in question.  Note that this 
 | |
| change is a refactoring: it changes the structure of the code, but does not
 | |
| (by itself) change the behavior of the compiler.  All of these changes are 
 | |
| isolated in the Kaleidoscope code generator.</p>
 | |
| 
 | |
| <p>
 | |
| At this point in Kaleidoscope's development, it only supports variables for two
 | |
| things: incoming arguments to functions and the induction variable of 'for'
 | |
| loops.  For consistency, we'll allow mutation of these variables in addition to
 | |
| other user-defined variables.  This means that these will both need memory
 | |
| locations.
 | |
| </p>
 | |
| 
 | |
| <p>To start our transformation of Kaleidoscope, we'll change the NamedValues
 | |
| map so that it maps to AllocaInst* instead of Value*.  Once we do this, the C++ 
 | |
| compiler will tell us what parts of the code we need to update:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| static std::map<std::string, AllocaInst*> NamedValues;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Also, since we will need to create these alloca's, we'll use a helper
 | |
| function that ensures that the allocas are created in the entry block of the
 | |
| function:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
 | |
| /// the function.  This is used for mutable variables etc.
 | |
| static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 | |
|                                           const std::string &VarName) {
 | |
|   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 | |
|                  TheFunction->getEntryBlock().begin());
 | |
|   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, VarName.c_str());
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This funny looking code creates an IRBuilder object that is pointing at
 | |
| the first instruction (.begin()) of the entry block.  It then creates an alloca
 | |
| with the expected name and returns it.  Because all values in Kaleidoscope are
 | |
| doubles, there is no need to pass in a type to use.</p>
 | |
| 
 | |
| <p>With this in place, the first functionality change we want to make is to
 | |
| variable references.  In our new scheme, variables live on the stack, so code
 | |
| generating a reference to them actually needs to produce a load from the stack
 | |
| slot:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Value *VariableExprAST::Codegen() {
 | |
|   // Look this variable up in the function.
 | |
|   Value *V = NamedValues[Name];
 | |
|   if (V == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|   <b>// Load the value.
 | |
|   return Builder.CreateLoad(V, Name.c_str());</b>
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As you can see, this is pretty straightforward.  Now we need to update the
 | |
| things that define the variables to set up the alloca.  We'll start with 
 | |
| <tt>ForExprAST::Codegen</tt> (see the <a href="#code">full code listing</a> for
 | |
| the unabridged code):</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|   <b>// Create an alloca for the variable in the entry block.
 | |
|   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);</b>
 | |
|   
 | |
|     // Emit the start code first, without 'variable' in scope.
 | |
|   Value *StartVal = Start->Codegen();
 | |
|   if (StartVal == 0) return 0;
 | |
|   
 | |
|   <b>// Store the value into the alloca.
 | |
|   Builder.CreateStore(StartVal, Alloca);</b>
 | |
|   ...
 | |
| 
 | |
|   // Compute the end condition.
 | |
|   Value *EndCond = End->Codegen();
 | |
|   if (EndCond == 0) return EndCond;
 | |
|   
 | |
|   <b>// Reload, increment, and restore the alloca.  This handles the case where
 | |
|   // the body of the loop mutates the variable.
 | |
|   Value *CurVar = Builder.CreateLoad(Alloca);
 | |
|   Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
 | |
|   Builder.CreateStore(NextVar, Alloca);</b>
 | |
|   ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code is virtually identical to the code <a 
 | |
| href="LangImpl5.html#forcodegen">before we allowed mutable variables</a>.  The
 | |
| big difference is that we no longer have to construct a PHI node, and we use
 | |
| load/store to access the variable as needed.</p>
 | |
| 
 | |
| <p>To support mutable argument variables, we need to also make allocas for them.
 | |
| The code for this is also pretty simple:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// CreateArgumentAllocas - Create an alloca for each argument and register the
 | |
| /// argument in the symbol table so that references to it will succeed.
 | |
| void PrototypeAST::CreateArgumentAllocas(Function *F) {
 | |
|   Function::arg_iterator AI = F->arg_begin();
 | |
|   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
 | |
|     // Create an alloca for this variable.
 | |
|     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
 | |
| 
 | |
|     // Store the initial value into the alloca.
 | |
|     Builder.CreateStore(AI, Alloca);
 | |
| 
 | |
|     // Add arguments to variable symbol table.
 | |
|     NamedValues[Args[Idx]] = Alloca;
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>For each argument, we make an alloca, store the input value to the function
 | |
| into the alloca, and register the alloca as the memory location for the
 | |
| argument.  This method gets invoked by <tt>FunctionAST::Codegen</tt> right after
 | |
| it sets up the entry block for the function.</p>
 | |
| 
 | |
| <p>The final missing piece is adding the mem2reg pass, which allows us to get
 | |
| good codegen once again:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|     // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|     // target lays out data structures.
 | |
|     OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | |
|     <b>// Promote allocas to registers.
 | |
|     OurFPM.add(createPromoteMemoryToRegisterPass());</b>
 | |
|     // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|     OurFPM.add(createInstructionCombiningPass());
 | |
|     // Reassociate expressions.
 | |
|     OurFPM.add(createReassociatePass());
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>It is interesting to see what the code looks like before and after the
 | |
| mem2reg optimization runs.  For example, this is the before/after code for our
 | |
| recursive fib function.  Before the optimization:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| define double @fib(double %x) {
 | |
| entry:
 | |
| 	<b>%x1 = alloca double
 | |
| 	store double %x, double* %x1
 | |
| 	%x2 = load double* %x1</b>
 | |
| 	%cmptmp = fcmp ult double %x2, 3.000000e+00
 | |
| 	%booltmp = uitofp i1 %cmptmp to double
 | |
| 	%ifcond = fcmp one double %booltmp, 0.000000e+00
 | |
| 	br i1 %ifcond, label %then, label %else
 | |
| 
 | |
| then:		; preds = %entry
 | |
| 	br label %ifcont
 | |
| 
 | |
| else:		; preds = %entry
 | |
| 	<b>%x3 = load double* %x1</b>
 | |
| 	%subtmp = sub double %x3, 1.000000e+00
 | |
| 	%calltmp = call double @fib( double %subtmp )
 | |
| 	<b>%x4 = load double* %x1</b>
 | |
| 	%subtmp5 = sub double %x4, 2.000000e+00
 | |
| 	%calltmp6 = call double @fib( double %subtmp5 )
 | |
| 	%addtmp = add double %calltmp, %calltmp6
 | |
| 	br label %ifcont
 | |
| 
 | |
| ifcont:		; preds = %else, %then
 | |
| 	%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
 | |
| 	ret double %iftmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here there is only one variable (x, the input argument) but you can still
 | |
| see the extremely simple-minded code generation strategy we are using.  In the
 | |
| entry block, an alloca is created, and the initial input value is stored into
 | |
| it.  Each reference to the variable does a reload from the stack.  Also, note
 | |
| that we didn't modify the if/then/else expression, so it still inserts a PHI
 | |
| node.  While we could make an alloca for it, it is actually easier to create a 
 | |
| PHI node for it, so we still just make the PHI.</p>
 | |
| 
 | |
| <p>Here is the code after the mem2reg pass runs:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| define double @fib(double %x) {
 | |
| entry:
 | |
| 	%cmptmp = fcmp ult double <b>%x</b>, 3.000000e+00
 | |
| 	%booltmp = uitofp i1 %cmptmp to double
 | |
| 	%ifcond = fcmp one double %booltmp, 0.000000e+00
 | |
| 	br i1 %ifcond, label %then, label %else
 | |
| 
 | |
| then:
 | |
| 	br label %ifcont
 | |
| 
 | |
| else:
 | |
| 	%subtmp = sub double <b>%x</b>, 1.000000e+00
 | |
| 	%calltmp = call double @fib( double %subtmp )
 | |
| 	%subtmp5 = sub double <b>%x</b>, 2.000000e+00
 | |
| 	%calltmp6 = call double @fib( double %subtmp5 )
 | |
| 	%addtmp = add double %calltmp, %calltmp6
 | |
| 	br label %ifcont
 | |
| 
 | |
| ifcont:		; preds = %else, %then
 | |
| 	%iftmp = phi double [ 1.000000e+00, %then ], [ %addtmp, %else ]
 | |
| 	ret double %iftmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This is a trivial case for mem2reg, since there are no redefinitions of the
 | |
| variable.  The point of showing this is to calm your tension about inserting
 | |
| such blatent inefficiencies :).</p>
 | |
| 
 | |
| <p>After the rest of the optimizers run, we get:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| define double @fib(double %x) {
 | |
| entry:
 | |
| 	%cmptmp = fcmp ult double %x, 3.000000e+00
 | |
| 	%booltmp = uitofp i1 %cmptmp to double
 | |
| 	%ifcond = fcmp ueq double %booltmp, 0.000000e+00
 | |
| 	br i1 %ifcond, label %else, label %ifcont
 | |
| 
 | |
| else:
 | |
| 	%subtmp = sub double %x, 1.000000e+00
 | |
| 	%calltmp = call double @fib( double %subtmp )
 | |
| 	%subtmp5 = sub double %x, 2.000000e+00
 | |
| 	%calltmp6 = call double @fib( double %subtmp5 )
 | |
| 	%addtmp = add double %calltmp, %calltmp6
 | |
| 	ret double %addtmp
 | |
| 
 | |
| ifcont:
 | |
| 	ret double 1.000000e+00
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here we see that the simplifycfg pass decided to clone the return instruction
 | |
| into the end of the 'else' block.  This allowed it to eliminate some branches
 | |
| and the PHI node.</p>
 | |
| 
 | |
| <p>Now that all symbol table references are updated to use stack variables, 
 | |
| we'll add the assignment operator.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="assignment">New Assignment Operator</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>With our current framework, adding a new assignment operator is really
 | |
| simple.  We will parse it just like any other binary operator, but handle it
 | |
| internally (instead of allowing the user to define it).  The first step is to
 | |
| set a precedence:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|  int main() {
 | |
|    // Install standard binary operators.
 | |
|    // 1 is lowest precedence.
 | |
|    <b>BinopPrecedence['='] = 2;</b>
 | |
|    BinopPrecedence['<'] = 10;
 | |
|    BinopPrecedence['+'] = 20;
 | |
|    BinopPrecedence['-'] = 20;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now that the parser knows the precedence of the binary operator, it takes
 | |
| care of all the parsing and AST generation.  We just need to implement codegen
 | |
| for the assignment operator.  This looks like:</p> 
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Value *BinaryExprAST::Codegen() {
 | |
|   // Special case '=' because we don't want to emit the LHS as an expression.
 | |
|   if (Op == '=') {
 | |
|     // Assignment requires the LHS to be an identifier.
 | |
|     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
 | |
|     if (!LHSE)
 | |
|       return ErrorV("destination of '=' must be a variable");
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Unlike the rest of the binary operators, our assignment operator doesn't
 | |
| follow the "emit LHS, emit RHS, do computation" model.  As such, it is handled
 | |
| as a special case before the other binary operators are handled.  The other 
 | |
| strange thing is that it requires the LHS to be a variable.  It is invalid to
 | |
| have "(x+1) = expr" - only things like "x = expr" are allowed.
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|     // Codegen the RHS.
 | |
|     Value *Val = RHS->Codegen();
 | |
|     if (Val == 0) return 0;
 | |
| 
 | |
|     // Look up the name.
 | |
|     Value *Variable = NamedValues[LHSE->getName()];
 | |
|     if (Variable == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|     Builder.CreateStore(Val, Variable);
 | |
|     return Val;
 | |
|   }
 | |
|   ...  
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Once we have the variable, codegen'ing the assignment is straightforward:
 | |
| we emit the RHS of the assignment, create a store, and return the computed
 | |
| value.  Returning a value allows for chained assignments like "X = (Y = Z)".</p>
 | |
| 
 | |
| <p>Now that we have an assignment operator, we can mutate loop variables and
 | |
| arguments.  For example, we can now run code like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Function to print a double.
 | |
| extern printd(x);
 | |
| 
 | |
| # Define ':' for sequencing: as a low-precedence operator that ignores operands
 | |
| # and just returns the RHS.
 | |
| def binary : 1 (x y) y;
 | |
| 
 | |
| def test(x)
 | |
|   printd(x) :
 | |
|   x = 4 :
 | |
|   printd(x);
 | |
| 
 | |
| test(123);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>When run, this example prints "123" and then "4", showing that we did
 | |
| actually mutate the value!  Okay, we have now officially implemented our goal:
 | |
| getting this to work requires SSA construction in the general case.  However,
 | |
| to be really useful, we want the ability to define our own local variables, lets
 | |
| add this next! 
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="localvars">User-defined Local 
 | |
| Variables</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Adding var/in is just like any other other extensions we made to 
 | |
| Kaleidoscope: we extend the lexer, the parser, the AST and the code generator.
 | |
| The first step for adding our new 'var/in' construct is to extend the lexer.
 | |
| As before, this is pretty trivial, the code looks like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| enum Token {
 | |
|   ...
 | |
|   <b>// var definition
 | |
|   tok_var = -13</b>
 | |
| ...
 | |
| }
 | |
| ...
 | |
| static int gettok() {
 | |
| ...
 | |
|     if (IdentifierStr == "in") return tok_in;
 | |
|     if (IdentifierStr == "binary") return tok_binary;
 | |
|     if (IdentifierStr == "unary") return tok_unary;
 | |
|     <b>if (IdentifierStr == "var") return tok_var;</b>
 | |
|     return tok_identifier;
 | |
| ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The next step is to define the AST node that we will construct.  For var/in,
 | |
| it looks like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// VarExprAST - Expression class for var/in
 | |
| class VarExprAST : public ExprAST {
 | |
|   std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
 | |
|              ExprAST *body)
 | |
|   : VarNames(varnames), Body(body) {}
 | |
|   
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>var/in allows a list of names to be defined all at once, and each name can
 | |
| optionally have an initializer value.  As such, we capture this information in
 | |
| the VarNames vector.  Also, var/in has a body, this body is allowed to access
 | |
| the variables defined by the var/in.</p>
 | |
| 
 | |
| <p>With this in place, we can define the parser pieces.  The first thing we do is add
 | |
| it as a primary expression:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| ///   ::= ifexpr
 | |
| ///   ::= forexpr
 | |
| <b>///   ::= varexpr</b>
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   case tok_if:         return ParseIfExpr();
 | |
|   case tok_for:        return ParseForExpr();
 | |
|   <b>case tok_var:        return ParseVarExpr();</b>
 | |
|   }
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Next we define ParseVarExpr:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| /// varexpr ::= 'var' identifier ('=' expression)? 
 | |
| //                    (',' identifier ('=' expression)?)* 'in' expression
 | |
| static ExprAST *ParseVarExpr() {
 | |
|   getNextToken();  // eat the var.
 | |
| 
 | |
|   std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
| 
 | |
|   // At least one variable name is required.
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after var");
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The first part of this code parses the list of identifier/expr pairs into the
 | |
| local <tt>VarNames</tt> vector.  
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   while (1) {
 | |
|     std::string Name = IdentifierStr;
 | |
|     getNextToken();  // eat identifier.
 | |
| 
 | |
|     // Read the optional initializer.
 | |
|     ExprAST *Init = 0;
 | |
|     if (CurTok == '=') {
 | |
|       getNextToken(); // eat the '='.
 | |
|       
 | |
|       Init = ParseExpression();
 | |
|       if (Init == 0) return 0;
 | |
|     }
 | |
|     
 | |
|     VarNames.push_back(std::make_pair(Name, Init));
 | |
|     
 | |
|     // End of var list, exit loop.
 | |
|     if (CurTok != ',') break;
 | |
|     getNextToken(); // eat the ','.
 | |
|     
 | |
|     if (CurTok != tok_identifier)
 | |
|       return Error("expected identifier list after var");
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Once all the variables are parsed, we then parse the body and create the
 | |
| AST node:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // At this point, we have to have 'in'.
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' keyword after 'var'");
 | |
|   getNextToken();  // eat 'in'.
 | |
|   
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
|   
 | |
|   return new VarExprAST(VarNames, Body);
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now that we can parse and represent the code, we need to support emission of
 | |
| LLVM IR for it.  This code starts out with:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| Value *VarExprAST::Codegen() {
 | |
|   std::vector<AllocaInst *> OldBindings;
 | |
|   
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|   // Register all variables and emit their initializer.
 | |
|   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 | |
|     const std::string &VarName = VarNames[i].first;
 | |
|     ExprAST *Init = VarNames[i].second;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Basically it loops over all the variables, installing them one at a time.
 | |
| For each variable we put into the symbol table, we remember the previous value
 | |
| that we replace in OldBindings.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|     // Emit the initializer before adding the variable to scope, this prevents
 | |
|     // the initializer from referencing the variable itself, and permits stuff
 | |
|     // like this:
 | |
|     //  var a = 1 in
 | |
|     //    var a = a in ...   # refers to outer 'a'.
 | |
|     Value *InitVal;
 | |
|     if (Init) {
 | |
|       InitVal = Init->Codegen();
 | |
|       if (InitVal == 0) return 0;
 | |
|     } else { // If not specified, use 0.0.
 | |
|       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
 | |
|     }
 | |
|     
 | |
|     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
|     Builder.CreateStore(InitVal, Alloca);
 | |
| 
 | |
|     // Remember the old variable binding so that we can restore the binding when
 | |
|     // we unrecurse.
 | |
|     OldBindings.push_back(NamedValues[VarName]);
 | |
|     
 | |
|     // Remember this binding.
 | |
|     NamedValues[VarName] = Alloca;
 | |
|   }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>There are more comments here than code.  The basic idea is that we emit the
 | |
| initializer, create the alloca, then update the symbol table to point to it.
 | |
| Once all the variables are installed in the symbol table, we evaluate the body
 | |
| of the var/in expression:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Codegen the body, now that all vars are in scope.
 | |
|   Value *BodyVal = Body->Codegen();
 | |
|   if (BodyVal == 0) return 0;
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Finally, before returning, we restore the previous variable bindings:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   // Pop all our variables from scope.
 | |
|   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 | |
|     NamedValues[VarNames[i].first] = OldBindings[i];
 | |
| 
 | |
|   // Return the body computation.
 | |
|   return BodyVal;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The end result of all of this is that we get properly scoped variable 
 | |
| definitions, and we even (trivially) allow mutation of them :).</p>
 | |
| 
 | |
| <p>With this, we completed what we set out to do.  Our nice iterative fib
 | |
| example from the intro compiles and runs just fine.  The mem2reg pass optimizes
 | |
| all of our stack variables into SSA registers, inserting PHI nodes where needed,
 | |
| and our front-end remains simple: no "iterated dominance frontier" computation
 | |
| anywhere in sight.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="code">Full Code Listing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Here is the complete code listing for our running example, enhanced with mutable
 | |
| variables and var/in support.  To build this example, use:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|    # Compile
 | |
|    g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | |
|    # Run
 | |
|    ./toy
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here is the code:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/ExecutionEngine/ExecutionEngine.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include <cstdio>
 | |
| #include <string>
 | |
| #include <map>
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Lexer
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | |
| // of these for known things.
 | |
| enum Token {
 | |
|   tok_eof = -1,
 | |
| 
 | |
|   // commands
 | |
|   tok_def = -2, tok_extern = -3,
 | |
| 
 | |
|   // primary
 | |
|   tok_identifier = -4, tok_number = -5,
 | |
|   
 | |
|   // control
 | |
|   tok_if = -6, tok_then = -7, tok_else = -8,
 | |
|   tok_for = -9, tok_in = -10,
 | |
|   
 | |
|   // operators
 | |
|   tok_binary = -11, tok_unary = -12,
 | |
|   
 | |
|   // var definition
 | |
|   tok_var = -13
 | |
| };
 | |
| 
 | |
| static std::string IdentifierStr;  // Filled in if tok_identifier
 | |
| static double NumVal;              // Filled in if tok_number
 | |
| 
 | |
| /// gettok - Return the next token from standard input.
 | |
| static int gettok() {
 | |
|   static int LastChar = ' ';
 | |
| 
 | |
|   // Skip any whitespace.
 | |
|   while (isspace(LastChar))
 | |
|     LastChar = getchar();
 | |
| 
 | |
|   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | |
|     IdentifierStr = LastChar;
 | |
|     while (isalnum((LastChar = getchar())))
 | |
|       IdentifierStr += LastChar;
 | |
| 
 | |
|     if (IdentifierStr == "def") return tok_def;
 | |
|     if (IdentifierStr == "extern") return tok_extern;
 | |
|     if (IdentifierStr == "if") return tok_if;
 | |
|     if (IdentifierStr == "then") return tok_then;
 | |
|     if (IdentifierStr == "else") return tok_else;
 | |
|     if (IdentifierStr == "for") return tok_for;
 | |
|     if (IdentifierStr == "in") return tok_in;
 | |
|     if (IdentifierStr == "binary") return tok_binary;
 | |
|     if (IdentifierStr == "unary") return tok_unary;
 | |
|     if (IdentifierStr == "var") return tok_var;
 | |
|     return tok_identifier;
 | |
|   }
 | |
| 
 | |
|   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | |
|     std::string NumStr;
 | |
|     do {
 | |
|       NumStr += LastChar;
 | |
|       LastChar = getchar();
 | |
|     } while (isdigit(LastChar) || LastChar == '.');
 | |
| 
 | |
|     NumVal = strtod(NumStr.c_str(), 0);
 | |
|     return tok_number;
 | |
|   }
 | |
| 
 | |
|   if (LastChar == '#') {
 | |
|     // Comment until end of line.
 | |
|     do LastChar = getchar();
 | |
|     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | |
|     
 | |
|     if (LastChar != EOF)
 | |
|       return gettok();
 | |
|   }
 | |
|   
 | |
|   // Check for end of file.  Don't eat the EOF.
 | |
|   if (LastChar == EOF)
 | |
|     return tok_eof;
 | |
| 
 | |
|   // Otherwise, just return the character as its ascii value.
 | |
|   int ThisChar = LastChar;
 | |
|   LastChar = getchar();
 | |
|   return ThisChar;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Abstract Syntax Tree (aka Parse Tree)
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ExprAST - Base class for all expression nodes.
 | |
| class ExprAST {
 | |
| public:
 | |
|   virtual ~ExprAST() {}
 | |
|   virtual Value *Codegen() = 0;
 | |
| };
 | |
| 
 | |
| /// NumberExprAST - Expression class for numeric literals like "1.0".
 | |
| class NumberExprAST : public ExprAST {
 | |
|   double Val;
 | |
| public:
 | |
|   NumberExprAST(double val) : Val(val) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// VariableExprAST - Expression class for referencing a variable, like "a".
 | |
| class VariableExprAST : public ExprAST {
 | |
|   std::string Name;
 | |
| public:
 | |
|   VariableExprAST(const std::string &name) : Name(name) {}
 | |
|   const std::string &getName() const { return Name; }
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// UnaryExprAST - Expression class for a unary operator.
 | |
| class UnaryExprAST : public ExprAST {
 | |
|   char Opcode;
 | |
|   ExprAST *Operand;
 | |
| public:
 | |
|   UnaryExprAST(char opcode, ExprAST *operand) 
 | |
|     : Opcode(opcode), Operand(operand) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// BinaryExprAST - Expression class for a binary operator.
 | |
| class BinaryExprAST : public ExprAST {
 | |
|   char Op;
 | |
|   ExprAST *LHS, *RHS;
 | |
| public:
 | |
|   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | |
|     : Op(op), LHS(lhs), RHS(rhs) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// CallExprAST - Expression class for function calls.
 | |
| class CallExprAST : public ExprAST {
 | |
|   std::string Callee;
 | |
|   std::vector<ExprAST*> Args;
 | |
| public:
 | |
|   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | |
|     : Callee(callee), Args(args) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// IfExprAST - Expression class for if/then/else.
 | |
| class IfExprAST : public ExprAST {
 | |
|   ExprAST *Cond, *Then, *Else;
 | |
| public:
 | |
|   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | |
|   : Cond(cond), Then(then), Else(_else) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// ForExprAST - Expression class for for/in.
 | |
| class ForExprAST : public ExprAST {
 | |
|   std::string VarName;
 | |
|   ExprAST *Start, *End, *Step, *Body;
 | |
| public:
 | |
|   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | |
|              ExprAST *step, ExprAST *body)
 | |
|     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// VarExprAST - Expression class for var/in
 | |
| class VarExprAST : public ExprAST {
 | |
|   std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
 | |
|              ExprAST *body)
 | |
|   : VarNames(varnames), Body(body) {}
 | |
|   
 | |
|   virtual Value *Codegen();
 | |
| };
 | |
| 
 | |
| /// PrototypeAST - This class represents the "prototype" for a function,
 | |
| /// which captures its argument names as well as if it is an operator.
 | |
| class PrototypeAST {
 | |
|   std::string Name;
 | |
|   std::vector<std::string> Args;
 | |
|   bool isOperator;
 | |
|   unsigned Precedence;  // Precedence if a binary op.
 | |
| public:
 | |
|   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
 | |
|                bool isoperator = false, unsigned prec = 0)
 | |
|   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
 | |
|   
 | |
|   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
 | |
|   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
 | |
|   
 | |
|   char getOperatorName() const {
 | |
|     assert(isUnaryOp() || isBinaryOp());
 | |
|     return Name[Name.size()-1];
 | |
|   }
 | |
|   
 | |
|   unsigned getBinaryPrecedence() const { return Precedence; }
 | |
|   
 | |
|   Function *Codegen();
 | |
|   
 | |
|   void CreateArgumentAllocas(Function *F);
 | |
| };
 | |
| 
 | |
| /// FunctionAST - This class represents a function definition itself.
 | |
| class FunctionAST {
 | |
|   PrototypeAST *Proto;
 | |
|   ExprAST *Body;
 | |
| public:
 | |
|   FunctionAST(PrototypeAST *proto, ExprAST *body)
 | |
|     : Proto(proto), Body(body) {}
 | |
|   
 | |
|   Function *Codegen();
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | |
| /// token the parser it looking at.  getNextToken reads another token from the
 | |
| /// lexer and updates CurTok with its results.
 | |
| static int CurTok;
 | |
| static int getNextToken() {
 | |
|   return CurTok = gettok();
 | |
| }
 | |
| 
 | |
| /// BinopPrecedence - This holds the precedence for each binary operator that is
 | |
| /// defined.
 | |
| static std::map<char, int> BinopPrecedence;
 | |
| 
 | |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | |
| static int GetTokPrecedence() {
 | |
|   if (!isascii(CurTok))
 | |
|     return -1;
 | |
|   
 | |
|   // Make sure it's a declared binop.
 | |
|   int TokPrec = BinopPrecedence[CurTok];
 | |
|   if (TokPrec <= 0) return -1;
 | |
|   return TokPrec;
 | |
| }
 | |
| 
 | |
| /// Error* - These are little helper functions for error handling.
 | |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| static ExprAST *ParseExpression();
 | |
| 
 | |
| /// identifierexpr
 | |
| ///   ::= identifier
 | |
| ///   ::= identifier '(' expression* ')'
 | |
| static ExprAST *ParseIdentifierExpr() {
 | |
|   std::string IdName = IdentifierStr;
 | |
|   
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '(') // Simple variable ref.
 | |
|     return new VariableExprAST(IdName);
 | |
|   
 | |
|   // Call.
 | |
|   getNextToken();  // eat (
 | |
|   std::vector<ExprAST*> Args;
 | |
|   if (CurTok != ')') {
 | |
|     while (1) {
 | |
|       ExprAST *Arg = ParseExpression();
 | |
|       if (!Arg) return 0;
 | |
|       Args.push_back(Arg);
 | |
|       
 | |
|       if (CurTok == ')') break;
 | |
|       
 | |
|       if (CurTok != ',')
 | |
|         return Error("Expected ')' or ',' in argument list");
 | |
|       getNextToken();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Eat the ')'.
 | |
|   getNextToken();
 | |
|   
 | |
|   return new CallExprAST(IdName, Args);
 | |
| }
 | |
| 
 | |
| /// numberexpr ::= number
 | |
| static ExprAST *ParseNumberExpr() {
 | |
|   ExprAST *Result = new NumberExprAST(NumVal);
 | |
|   getNextToken(); // consume the number
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// parenexpr ::= '(' expression ')'
 | |
| static ExprAST *ParseParenExpr() {
 | |
|   getNextToken();  // eat (.
 | |
|   ExprAST *V = ParseExpression();
 | |
|   if (!V) return 0;
 | |
|   
 | |
|   if (CurTok != ')')
 | |
|     return Error("expected ')'");
 | |
|   getNextToken();  // eat ).
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | |
| static ExprAST *ParseIfExpr() {
 | |
|   getNextToken();  // eat the if.
 | |
|   
 | |
|   // condition.
 | |
|   ExprAST *Cond = ParseExpression();
 | |
|   if (!Cond) return 0;
 | |
|   
 | |
|   if (CurTok != tok_then)
 | |
|     return Error("expected then");
 | |
|   getNextToken();  // eat the then
 | |
|   
 | |
|   ExprAST *Then = ParseExpression();
 | |
|   if (Then == 0) return 0;
 | |
|   
 | |
|   if (CurTok != tok_else)
 | |
|     return Error("expected else");
 | |
|   
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *Else = ParseExpression();
 | |
|   if (!Else) return 0;
 | |
|   
 | |
|   return new IfExprAST(Cond, Then, Else);
 | |
| }
 | |
| 
 | |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | |
| static ExprAST *ParseForExpr() {
 | |
|   getNextToken();  // eat the for.
 | |
| 
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after for");
 | |
|   
 | |
|   std::string IdName = IdentifierStr;
 | |
|   getNextToken();  // eat identifier.
 | |
|   
 | |
|   if (CurTok != '=')
 | |
|     return Error("expected '=' after for");
 | |
|   getNextToken();  // eat '='.
 | |
|   
 | |
|   
 | |
|   ExprAST *Start = ParseExpression();
 | |
|   if (Start == 0) return 0;
 | |
|   if (CurTok != ',')
 | |
|     return Error("expected ',' after for start value");
 | |
|   getNextToken();
 | |
|   
 | |
|   ExprAST *End = ParseExpression();
 | |
|   if (End == 0) return 0;
 | |
|   
 | |
|   // The step value is optional.
 | |
|   ExprAST *Step = 0;
 | |
|   if (CurTok == ',') {
 | |
|     getNextToken();
 | |
|     Step = ParseExpression();
 | |
|     if (Step == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' after for");
 | |
|   getNextToken();  // eat 'in'.
 | |
|   
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
| 
 | |
|   return new ForExprAST(IdName, Start, End, Step, Body);
 | |
| }
 | |
| 
 | |
| /// varexpr ::= 'var' identifier ('=' expression)? 
 | |
| //                    (',' identifier ('=' expression)?)* 'in' expression
 | |
| static ExprAST *ParseVarExpr() {
 | |
|   getNextToken();  // eat the var.
 | |
| 
 | |
|   std::vector<std::pair<std::string, ExprAST*> > VarNames;
 | |
| 
 | |
|   // At least one variable name is required.
 | |
|   if (CurTok != tok_identifier)
 | |
|     return Error("expected identifier after var");
 | |
|   
 | |
|   while (1) {
 | |
|     std::string Name = IdentifierStr;
 | |
|     getNextToken();  // eat identifier.
 | |
| 
 | |
|     // Read the optional initializer.
 | |
|     ExprAST *Init = 0;
 | |
|     if (CurTok == '=') {
 | |
|       getNextToken(); // eat the '='.
 | |
|       
 | |
|       Init = ParseExpression();
 | |
|       if (Init == 0) return 0;
 | |
|     }
 | |
|     
 | |
|     VarNames.push_back(std::make_pair(Name, Init));
 | |
|     
 | |
|     // End of var list, exit loop.
 | |
|     if (CurTok != ',') break;
 | |
|     getNextToken(); // eat the ','.
 | |
|     
 | |
|     if (CurTok != tok_identifier)
 | |
|       return Error("expected identifier list after var");
 | |
|   }
 | |
|   
 | |
|   // At this point, we have to have 'in'.
 | |
|   if (CurTok != tok_in)
 | |
|     return Error("expected 'in' keyword after 'var'");
 | |
|   getNextToken();  // eat 'in'.
 | |
|   
 | |
|   ExprAST *Body = ParseExpression();
 | |
|   if (Body == 0) return 0;
 | |
|   
 | |
|   return new VarExprAST(VarNames, Body);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// primary
 | |
| ///   ::= identifierexpr
 | |
| ///   ::= numberexpr
 | |
| ///   ::= parenexpr
 | |
| ///   ::= ifexpr
 | |
| ///   ::= forexpr
 | |
| ///   ::= varexpr
 | |
| static ExprAST *ParsePrimary() {
 | |
|   switch (CurTok) {
 | |
|   default: return Error("unknown token when expecting an expression");
 | |
|   case tok_identifier: return ParseIdentifierExpr();
 | |
|   case tok_number:     return ParseNumberExpr();
 | |
|   case '(':            return ParseParenExpr();
 | |
|   case tok_if:         return ParseIfExpr();
 | |
|   case tok_for:        return ParseForExpr();
 | |
|   case tok_var:        return ParseVarExpr();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// unary
 | |
| ///   ::= primary
 | |
| ///   ::= '!' unary
 | |
| static ExprAST *ParseUnary() {
 | |
|   // If the current token is not an operator, it must be a primary expr.
 | |
|   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
 | |
|     return ParsePrimary();
 | |
|   
 | |
|   // If this is a unary operator, read it.
 | |
|   int Opc = CurTok;
 | |
|   getNextToken();
 | |
|   if (ExprAST *Operand = ParseUnary())
 | |
|     return new UnaryExprAST(Opc, Operand);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// binoprhs
 | |
| ///   ::= ('+' unary)*
 | |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | |
|   // If this is a binop, find its precedence.
 | |
|   while (1) {
 | |
|     int TokPrec = GetTokPrecedence();
 | |
|     
 | |
|     // If this is a binop that binds at least as tightly as the current binop,
 | |
|     // consume it, otherwise we are done.
 | |
|     if (TokPrec < ExprPrec)
 | |
|       return LHS;
 | |
|     
 | |
|     // Okay, we know this is a binop.
 | |
|     int BinOp = CurTok;
 | |
|     getNextToken();  // eat binop
 | |
|     
 | |
|     // Parse the unary expression after the binary operator.
 | |
|     ExprAST *RHS = ParseUnary();
 | |
|     if (!RHS) return 0;
 | |
|     
 | |
|     // If BinOp binds less tightly with RHS than the operator after RHS, let
 | |
|     // the pending operator take RHS as its LHS.
 | |
|     int NextPrec = GetTokPrecedence();
 | |
|     if (TokPrec < NextPrec) {
 | |
|       RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | |
|       if (RHS == 0) return 0;
 | |
|     }
 | |
|     
 | |
|     // Merge LHS/RHS.
 | |
|     LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// expression
 | |
| ///   ::= unary binoprhs
 | |
| ///
 | |
| static ExprAST *ParseExpression() {
 | |
|   ExprAST *LHS = ParseUnary();
 | |
|   if (!LHS) return 0;
 | |
|   
 | |
|   return ParseBinOpRHS(0, LHS);
 | |
| }
 | |
| 
 | |
| /// prototype
 | |
| ///   ::= id '(' id* ')'
 | |
| ///   ::= binary LETTER number? (id, id)
 | |
| ///   ::= unary LETTER (id)
 | |
| static PrototypeAST *ParsePrototype() {
 | |
|   std::string FnName;
 | |
|   
 | |
|   int Kind = 0;  // 0 = identifier, 1 = unary, 2 = binary.
 | |
|   unsigned BinaryPrecedence = 30;
 | |
|   
 | |
|   switch (CurTok) {
 | |
|   default:
 | |
|     return ErrorP("Expected function name in prototype");
 | |
|   case tok_identifier:
 | |
|     FnName = IdentifierStr;
 | |
|     Kind = 0;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   case tok_unary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected unary operator");
 | |
|     FnName = "unary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 1;
 | |
|     getNextToken();
 | |
|     break;
 | |
|   case tok_binary:
 | |
|     getNextToken();
 | |
|     if (!isascii(CurTok))
 | |
|       return ErrorP("Expected binary operator");
 | |
|     FnName = "binary";
 | |
|     FnName += (char)CurTok;
 | |
|     Kind = 2;
 | |
|     getNextToken();
 | |
|     
 | |
|     // Read the precedence if present.
 | |
|     if (CurTok == tok_number) {
 | |
|       if (NumVal < 1 || NumVal > 100)
 | |
|         return ErrorP("Invalid precedecnce: must be 1..100");
 | |
|       BinaryPrecedence = (unsigned)NumVal;
 | |
|       getNextToken();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   if (CurTok != '(')
 | |
|     return ErrorP("Expected '(' in prototype");
 | |
|   
 | |
|   std::vector<std::string> ArgNames;
 | |
|   while (getNextToken() == tok_identifier)
 | |
|     ArgNames.push_back(IdentifierStr);
 | |
|   if (CurTok != ')')
 | |
|     return ErrorP("Expected ')' in prototype");
 | |
|   
 | |
|   // success.
 | |
|   getNextToken();  // eat ')'.
 | |
|   
 | |
|   // Verify right number of names for operator.
 | |
|   if (Kind && ArgNames.size() != Kind)
 | |
|     return ErrorP("Invalid number of operands for operator");
 | |
|   
 | |
|   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
 | |
| }
 | |
| 
 | |
| /// definition ::= 'def' prototype expression
 | |
| static FunctionAST *ParseDefinition() {
 | |
|   getNextToken();  // eat def.
 | |
|   PrototypeAST *Proto = ParsePrototype();
 | |
|   if (Proto == 0) return 0;
 | |
| 
 | |
|   if (ExprAST *E = ParseExpression())
 | |
|     return new FunctionAST(Proto, E);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// toplevelexpr ::= expression
 | |
| static FunctionAST *ParseTopLevelExpr() {
 | |
|   if (ExprAST *E = ParseExpression()) {
 | |
|     // Make an anonymous proto.
 | |
|     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | |
|     return new FunctionAST(Proto, E);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// external ::= 'extern' prototype
 | |
| static PrototypeAST *ParseExtern() {
 | |
|   getNextToken();  // eat extern.
 | |
|   return ParsePrototype();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code Generation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Module *TheModule;
 | |
| static IRBuilder<> Builder(getGlobalContext());
 | |
| static std::map<std::string, AllocaInst*> NamedValues;
 | |
| static FunctionPassManager *TheFPM;
 | |
| 
 | |
| Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | |
| 
 | |
| /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
 | |
| /// the function.  This is used for mutable variables etc.
 | |
| static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
 | |
|                                           const std::string &VarName) {
 | |
|   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
 | |
|                  TheFunction->getEntryBlock().begin());
 | |
|   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, VarName.c_str());
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *NumberExprAST::Codegen() {
 | |
|   return ConstantFP::get(getGlobalContext(), APFloat(Val));
 | |
| }
 | |
| 
 | |
| Value *VariableExprAST::Codegen() {
 | |
|   // Look this variable up in the function.
 | |
|   Value *V = NamedValues[Name];
 | |
|   if (V == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|   // Load the value.
 | |
|   return Builder.CreateLoad(V, Name.c_str());
 | |
| }
 | |
| 
 | |
| Value *UnaryExprAST::Codegen() {
 | |
|   Value *OperandV = Operand->Codegen();
 | |
|   if (OperandV == 0) return 0;
 | |
|   
 | |
|   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
 | |
|   if (F == 0)
 | |
|     return ErrorV("Unknown unary operator");
 | |
|   
 | |
|   return Builder.CreateCall(F, OperandV, "unop");
 | |
| }
 | |
| 
 | |
| 
 | |
| Value *BinaryExprAST::Codegen() {
 | |
|   // Special case '=' because we don't want to emit the LHS as an expression.
 | |
|   if (Op == '=') {
 | |
|     // Assignment requires the LHS to be an identifier.
 | |
|     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
 | |
|     if (!LHSE)
 | |
|       return ErrorV("destination of '=' must be a variable");
 | |
|     // Codegen the RHS.
 | |
|     Value *Val = RHS->Codegen();
 | |
|     if (Val == 0) return 0;
 | |
| 
 | |
|     // Look up the name.
 | |
|     Value *Variable = NamedValues[LHSE->getName()];
 | |
|     if (Variable == 0) return ErrorV("Unknown variable name");
 | |
| 
 | |
|     Builder.CreateStore(Val, Variable);
 | |
|     return Val;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   Value *L = LHS->Codegen();
 | |
|   Value *R = RHS->Codegen();
 | |
|   if (L == 0 || R == 0) return 0;
 | |
|   
 | |
|   switch (Op) {
 | |
|   case '+': return Builder.CreateAdd(L, R, "addtmp");
 | |
|   case '-': return Builder.CreateSub(L, R, "subtmp");
 | |
|   case '*': return Builder.CreateMul(L, R, "multmp");
 | |
|   case '<':
 | |
|     L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | |
|     // Convert bool 0/1 to double 0.0 or 1.0
 | |
|     return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp");
 | |
|   default: break;
 | |
|   }
 | |
|   
 | |
|   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
 | |
|   // a call to it.
 | |
|   Function *F = TheModule->getFunction(std::string("binary")+Op);
 | |
|   assert(F && "binary operator not found!");
 | |
|   
 | |
|   Value *Ops[] = { L, R };
 | |
|   return Builder.CreateCall(F, Ops, Ops+2, "binop");
 | |
| }
 | |
| 
 | |
| Value *CallExprAST::Codegen() {
 | |
|   // Look up the name in the global module table.
 | |
|   Function *CalleeF = TheModule->getFunction(Callee);
 | |
|   if (CalleeF == 0)
 | |
|     return ErrorV("Unknown function referenced");
 | |
|   
 | |
|   // If argument mismatch error.
 | |
|   if (CalleeF->arg_size() != Args.size())
 | |
|     return ErrorV("Incorrect # arguments passed");
 | |
| 
 | |
|   std::vector<Value*> ArgsV;
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | |
|     ArgsV.push_back(Args[i]->Codegen());
 | |
|     if (ArgsV.back() == 0) return 0;
 | |
|   }
 | |
|   
 | |
|   return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | |
| }
 | |
| 
 | |
| Value *IfExprAST::Codegen() {
 | |
|   Value *CondV = Cond->Codegen();
 | |
|   if (CondV == 0) return 0;
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   CondV = Builder.CreateFCmpONE(CondV, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                 "ifcond");
 | |
|   
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
|   
 | |
|   // Create blocks for the then and else cases.  Insert the 'then' block at the
 | |
|   // end of the function.
 | |
|   BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | |
|   BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | |
|   BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | |
|   
 | |
|   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | |
|   
 | |
|   // Emit then value.
 | |
|   Builder.SetInsertPoint(ThenBB);
 | |
|   
 | |
|   Value *ThenV = Then->Codegen();
 | |
|   if (ThenV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | |
|   ThenBB = Builder.GetInsertBlock();
 | |
|   
 | |
|   // Emit else block.
 | |
|   TheFunction->getBasicBlockList().push_back(ElseBB);
 | |
|   Builder.SetInsertPoint(ElseBB);
 | |
|   
 | |
|   Value *ElseV = Else->Codegen();
 | |
|   if (ElseV == 0) return 0;
 | |
|   
 | |
|   Builder.CreateBr(MergeBB);
 | |
|   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | |
|   ElseBB = Builder.GetInsertBlock();
 | |
|   
 | |
|   // Emit merge block.
 | |
|   TheFunction->getBasicBlockList().push_back(MergeBB);
 | |
|   Builder.SetInsertPoint(MergeBB);
 | |
|   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), "iftmp");
 | |
|   
 | |
|   PN->addIncoming(ThenV, ThenBB);
 | |
|   PN->addIncoming(ElseV, ElseBB);
 | |
|   return PN;
 | |
| }
 | |
| 
 | |
| Value *ForExprAST::Codegen() {
 | |
|   // Output this as:
 | |
|   //   var = alloca double
 | |
|   //   ...
 | |
|   //   start = startexpr
 | |
|   //   store start -> var
 | |
|   //   goto loop
 | |
|   // loop: 
 | |
|   //   ...
 | |
|   //   bodyexpr
 | |
|   //   ...
 | |
|   // loopend:
 | |
|   //   step = stepexpr
 | |
|   //   endcond = endexpr
 | |
|   //
 | |
|   //   curvar = load var
 | |
|   //   nextvar = curvar + step
 | |
|   //   store nextvar -> var
 | |
|   //   br endcond, loop, endloop
 | |
|   // outloop:
 | |
|   
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|   // Create an alloca for the variable in the entry block.
 | |
|   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
|   
 | |
|   // Emit the start code first, without 'variable' in scope.
 | |
|   Value *StartVal = Start->Codegen();
 | |
|   if (StartVal == 0) return 0;
 | |
|   
 | |
|   // Store the value into the alloca.
 | |
|   Builder.CreateStore(StartVal, Alloca);
 | |
|   
 | |
|   // Make the new basic block for the loop header, inserting after current
 | |
|   // block.
 | |
|   BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | |
|   
 | |
|   // Insert an explicit fall through from the current block to the LoopBB.
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start insertion in LoopBB.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   
 | |
|   // Within the loop, the variable is defined equal to the PHI node.  If it
 | |
|   // shadows an existing variable, we have to restore it, so save it now.
 | |
|   AllocaInst *OldVal = NamedValues[VarName];
 | |
|   NamedValues[VarName] = Alloca;
 | |
|   
 | |
|   // Emit the body of the loop.  This, like any other expr, can change the
 | |
|   // current BB.  Note that we ignore the value computed by the body, but don't
 | |
|   // allow an error.
 | |
|   if (Body->Codegen() == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // Emit the step value.
 | |
|   Value *StepVal;
 | |
|   if (Step) {
 | |
|     StepVal = Step->Codegen();
 | |
|     if (StepVal == 0) return 0;
 | |
|   } else {
 | |
|     // If not specified, use 1.0.
 | |
|     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | |
|   }
 | |
|   
 | |
|   // Compute the end condition.
 | |
|   Value *EndCond = End->Codegen();
 | |
|   if (EndCond == 0) return EndCond;
 | |
|   
 | |
|   // Reload, increment, and restore the alloca.  This handles the case where
 | |
|   // the body of the loop mutates the variable.
 | |
|   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
 | |
|   Value *NextVar = Builder.CreateAdd(CurVar, StepVal, "nextvar");
 | |
|   Builder.CreateStore(NextVar, Alloca);
 | |
|   
 | |
|   // Convert condition to a bool by comparing equal to 0.0.
 | |
|   EndCond = Builder.CreateFCmpONE(EndCond, 
 | |
|                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | |
|                                   "loopcond");
 | |
|   
 | |
|   // Create the "after loop" block and insert it.
 | |
|   BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | |
|   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | |
|   
 | |
|   // Insert the conditional branch into the end of LoopEndBB.
 | |
|   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | |
|   
 | |
|   // Any new code will be inserted in AfterBB.
 | |
|   Builder.SetInsertPoint(AfterBB);
 | |
|   
 | |
|   // Restore the unshadowed variable.
 | |
|   if (OldVal)
 | |
|     NamedValues[VarName] = OldVal;
 | |
|   else
 | |
|     NamedValues.erase(VarName);
 | |
| 
 | |
|   
 | |
|   // for expr always returns 0.0.
 | |
|   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
 | |
| }
 | |
| 
 | |
| Value *VarExprAST::Codegen() {
 | |
|   std::vector<AllocaInst *> OldBindings;
 | |
|   
 | |
|   Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | |
| 
 | |
|   // Register all variables and emit their initializer.
 | |
|   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
 | |
|     const std::string &VarName = VarNames[i].first;
 | |
|     ExprAST *Init = VarNames[i].second;
 | |
|     
 | |
|     // Emit the initializer before adding the variable to scope, this prevents
 | |
|     // the initializer from referencing the variable itself, and permits stuff
 | |
|     // like this:
 | |
|     //  var a = 1 in
 | |
|     //    var a = a in ...   # refers to outer 'a'.
 | |
|     Value *InitVal;
 | |
|     if (Init) {
 | |
|       InitVal = Init->Codegen();
 | |
|       if (InitVal == 0) return 0;
 | |
|     } else { // If not specified, use 0.0.
 | |
|       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
 | |
|     }
 | |
|     
 | |
|     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
 | |
|     Builder.CreateStore(InitVal, Alloca);
 | |
| 
 | |
|     // Remember the old variable binding so that we can restore the binding when
 | |
|     // we unrecurse.
 | |
|     OldBindings.push_back(NamedValues[VarName]);
 | |
|     
 | |
|     // Remember this binding.
 | |
|     NamedValues[VarName] = Alloca;
 | |
|   }
 | |
|   
 | |
|   // Codegen the body, now that all vars are in scope.
 | |
|   Value *BodyVal = Body->Codegen();
 | |
|   if (BodyVal == 0) return 0;
 | |
|   
 | |
|   // Pop all our variables from scope.
 | |
|   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
 | |
|     NamedValues[VarNames[i].first] = OldBindings[i];
 | |
| 
 | |
|   // Return the body computation.
 | |
|   return BodyVal;
 | |
| }
 | |
| 
 | |
| 
 | |
| Function *PrototypeAST::Codegen() {
 | |
|   // Make the function type:  double(double,double) etc.
 | |
|   std::vector<const Type*> Doubles(Args.size(), Type::getDoubleTy(getGlobalContext()));
 | |
|   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), Doubles, false);
 | |
|   
 | |
|   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | |
|   
 | |
|   // If F conflicted, there was already something named 'Name'.  If it has a
 | |
|   // body, don't allow redefinition or reextern.
 | |
|   if (F->getName() != Name) {
 | |
|     // Delete the one we just made and get the existing one.
 | |
|     F->eraseFromParent();
 | |
|     F = TheModule->getFunction(Name);
 | |
|     
 | |
|     // If F already has a body, reject this.
 | |
|     if (!F->empty()) {
 | |
|       ErrorF("redefinition of function");
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // If F took a different number of args, reject.
 | |
|     if (F->arg_size() != Args.size()) {
 | |
|       ErrorF("redefinition of function with different # args");
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Set names for all arguments.
 | |
|   unsigned Idx = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | |
|        ++AI, ++Idx)
 | |
|     AI->setName(Args[Idx]);
 | |
|     
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| /// CreateArgumentAllocas - Create an alloca for each argument and register the
 | |
| /// argument in the symbol table so that references to it will succeed.
 | |
| void PrototypeAST::CreateArgumentAllocas(Function *F) {
 | |
|   Function::arg_iterator AI = F->arg_begin();
 | |
|   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
 | |
|     // Create an alloca for this variable.
 | |
|     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
 | |
| 
 | |
|     // Store the initial value into the alloca.
 | |
|     Builder.CreateStore(AI, Alloca);
 | |
| 
 | |
|     // Add arguments to variable symbol table.
 | |
|     NamedValues[Args[Idx]] = Alloca;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| Function *FunctionAST::Codegen() {
 | |
|   NamedValues.clear();
 | |
|   
 | |
|   Function *TheFunction = Proto->Codegen();
 | |
|   if (TheFunction == 0)
 | |
|     return 0;
 | |
|   
 | |
|   // If this is an operator, install it.
 | |
|   if (Proto->isBinaryOp())
 | |
|     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
 | |
|   
 | |
|   // Create a new basic block to start insertion into.
 | |
|   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   
 | |
|   // Add all arguments to the symbol table and create their allocas.
 | |
|   Proto->CreateArgumentAllocas(TheFunction);
 | |
|   
 | |
|   if (Value *RetVal = Body->Codegen()) {
 | |
|     // Finish off the function.
 | |
|     Builder.CreateRet(RetVal);
 | |
| 
 | |
|     // Validate the generated code, checking for consistency.
 | |
|     verifyFunction(*TheFunction);
 | |
| 
 | |
|     // Optimize the function.
 | |
|     TheFPM->run(*TheFunction);
 | |
|     
 | |
|     return TheFunction;
 | |
|   }
 | |
|   
 | |
|   // Error reading body, remove function.
 | |
|   TheFunction->eraseFromParent();
 | |
| 
 | |
|   if (Proto->isBinaryOp())
 | |
|     BinopPrecedence.erase(Proto->getOperatorName());
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Top-Level parsing and JIT Driver
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static ExecutionEngine *TheExecutionEngine;
 | |
| 
 | |
| static void HandleDefinition() {
 | |
|   if (FunctionAST *F = ParseDefinition()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       fprintf(stderr, "Read function definition:");
 | |
|       LF->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleExtern() {
 | |
|   if (PrototypeAST *P = ParseExtern()) {
 | |
|     if (Function *F = P->Codegen()) {
 | |
|       fprintf(stderr, "Read extern: ");
 | |
|       F->dump();
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void HandleTopLevelExpression() {
 | |
|   // Evaluate a top level expression into an anonymous function.
 | |
|   if (FunctionAST *F = ParseTopLevelExpr()) {
 | |
|     if (Function *LF = F->Codegen()) {
 | |
|       // JIT the function, returning a function pointer.
 | |
|       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | |
|       
 | |
|       // Cast it to the right type (takes no arguments, returns a double) so we
 | |
|       // can call it as a native function.
 | |
|       double (*FP)() = (double (*)())FPtr;
 | |
|       fprintf(stderr, "Evaluated to %f\n", FP());
 | |
|     }
 | |
|   } else {
 | |
|     // Skip token for error recovery.
 | |
|     getNextToken();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// top ::= definition | external | expression | ';'
 | |
| static void MainLoop() {
 | |
|   while (1) {
 | |
|     fprintf(stderr, "ready> ");
 | |
|     switch (CurTok) {
 | |
|     case tok_eof:    return;
 | |
|     case ';':        getNextToken(); break;  // ignore top level semicolons.
 | |
|     case tok_def:    HandleDefinition(); break;
 | |
|     case tok_extern: HandleExtern(); break;
 | |
|     default:         HandleTopLevelExpression(); break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // "Library" functions that can be "extern'd" from user code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// putchard - putchar that takes a double and returns 0.
 | |
| extern "C" 
 | |
| double putchard(double X) {
 | |
|   putchar((char)X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// printd - printf that takes a double prints it as "%f\n", returning 0.
 | |
| extern "C" 
 | |
| double printd(double X) {
 | |
|   printf("%f\n", X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main driver code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| int main() {
 | |
|   // Install standard binary operators.
 | |
|   // 1 is lowest precedence.
 | |
|   BinopPrecedence['='] = 2;
 | |
|   BinopPrecedence['<'] = 10;
 | |
|   BinopPrecedence['+'] = 20;
 | |
|   BinopPrecedence['-'] = 20;
 | |
|   BinopPrecedence['*'] = 40;  // highest.
 | |
| 
 | |
|   // Prime the first token.
 | |
|   fprintf(stderr, "ready> ");
 | |
|   getNextToken();
 | |
| 
 | |
|   // Make the module, which holds all the code.
 | |
|   TheModule = new Module("my cool jit", getGlobalContext());
 | |
| 
 | |
|   ExistingModuleProvider *OurModuleProvider =
 | |
|       new ExistingModuleProvider(TheModule);
 | |
| 
 | |
|   // Create the JIT.  This takes ownership of the module and module provider.
 | |
|   TheExecutionEngine = EngineBuilder(OurModuleProvider).create();
 | |
| 
 | |
|   FunctionPassManager OurFPM(OurModuleProvider);
 | |
| 
 | |
|   // Set up the optimizer pipeline.  Start with registering info about how the
 | |
|   // target lays out data structures.
 | |
|   OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | |
|   // Do simple "peephole" optimizations and bit-twiddling optzns.
 | |
|   OurFPM.add(createInstructionCombiningPass());
 | |
|   // Reassociate expressions.
 | |
|   OurFPM.add(createReassociatePass());
 | |
|   // Eliminate Common SubExpressions.
 | |
|   OurFPM.add(createGVNPass());
 | |
|   // Simplify the control flow graph (deleting unreachable blocks, etc).
 | |
|   OurFPM.add(createCFGSimplificationPass());
 | |
| 
 | |
|   // Set the global so the code gen can use this.
 | |
|   TheFPM = &OurFPM;
 | |
| 
 | |
|   // Run the main "interpreter loop" now.
 | |
|   MainLoop();
 | |
| 
 | |
|   TheFPM = 0;
 | |
| 
 | |
|   // Print out all of the generated code.
 | |
|   TheModule->dump();
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <a href="LangImpl8.html">Next: Conclusion and other useful LLVM tidbits</a>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | |
| </address>
 | |
| </body>
 | |
| </html>
 |