mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
750ac1bdfa
of the SELECT_CC, BR_CC, and BRTWOWAY_CC nodes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25875 91177308-0d34-0410-b5e6-96231b3b80d8
//===---------------------------------------------------------------------===// // Random ideas for the X86 backend. //===---------------------------------------------------------------------===// Add a MUL2U and MUL2S nodes to represent a multiply that returns both the Hi and Lo parts (combination of MUL and MULH[SU] into one node). Add this to X86, & make the dag combiner produce it when needed. This will eliminate one imul from the code generated for: long long test(long long X, long long Y) { return X*Y; } by using the EAX result from the mul. We should add a similar node for DIVREM. another case is: long long test(int X, int Y) { return (long long)X*Y; } ... which should only be one imul instruction. //===---------------------------------------------------------------------===// This should be one DIV/IDIV instruction, not a libcall: unsigned test(unsigned long long X, unsigned Y) { return X/Y; } This can be done trivially with a custom legalizer. What about overflow though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 //===---------------------------------------------------------------------===// Some targets (e.g. athlons) prefer freep to fstp ST(0): http://gcc.gnu.org/ml/gcc-patches/2004-04/msg00659.html //===---------------------------------------------------------------------===// This should use fiadd on chips where it is profitable: double foo(double P, int *I) { return P+*I; } //===---------------------------------------------------------------------===// The FP stackifier needs to be global. Also, it should handle simple permutates to reduce number of shuffle instructions, e.g. turning: fld P -> fld Q fld Q fld P fxch or: fxch -> fucomi fucomi jl X jg X Ideas: http://gcc.gnu.org/ml/gcc-patches/2004-11/msg02410.html //===---------------------------------------------------------------------===// Improvements to the multiply -> shift/add algorithm: http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html //===---------------------------------------------------------------------===// Improve code like this (occurs fairly frequently, e.g. in LLVM): long long foo(int x) { return 1LL << x; } http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html Another useful one would be ~0ULL >> X and ~0ULL << X. //===---------------------------------------------------------------------===// Should support emission of the bswap instruction, probably by adding a new DAG node for byte swapping. Also useful on PPC which has byte-swapping loads. //===---------------------------------------------------------------------===// Compile this: _Bool f(_Bool a) { return a!=1; } into: movzbl %dil, %eax xorl $1, %eax ret //===---------------------------------------------------------------------===// Some isel ideas: 1. Dynamic programming based approach when compile time if not an issue. 2. Code duplication (addressing mode) during isel. 3. Other ideas from "Register-Sensitive Selection, Duplication, and Sequencing of Instructions". //===---------------------------------------------------------------------===// Should we promote i16 to i32 to avoid partial register update stalls? //===---------------------------------------------------------------------===// Leave any_extend as pseudo instruction and hint to register allocator. Delay codegen until post register allocation. //===---------------------------------------------------------------------===// Add a target specific hook to DAG combiner to handle SINT_TO_FP and FP_TO_SINT when the source operand is already in memory. //===---------------------------------------------------------------------===// Check if load folding would add a cycle in the dag. //===---------------------------------------------------------------------===// Model X86 EFLAGS as a real register to avoid redudant cmp / test. e.g. cmpl $1, %eax setg %al testb %al, %al # unnecessary jne .BB7 //===---------------------------------------------------------------------===// Count leading zeros and count trailing zeros: int clz(int X) { return __builtin_clz(X); } int ctz(int X) { return __builtin_ctz(X); } $ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel clz: bsr %eax, DWORD PTR [%esp+4] xor %eax, 31 ret ctz: bsf %eax, DWORD PTR [%esp+4] ret however, check that these are defined for 0 and 32. Our intrinsics are, GCC's aren't. //===---------------------------------------------------------------------===// Use push/pop instructions in prolog/epilog sequences instead of stores off ESP (certain code size win, perf win on some [which?] processors). //===---------------------------------------------------------------------===// Only use inc/neg/not instructions on processors where they are faster than add/sub/xor. They are slower on the P4 due to only updating some processor flags. //===---------------------------------------------------------------------===// Open code rint,floor,ceil,trunc: http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02006.html http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02011.html //===---------------------------------------------------------------------===// Combine: a = sin(x), b = cos(x) into a,b = sincos(x). //===---------------------------------------------------------------------===// For all targets, not just X86: When llvm.memcpy, llvm.memset, or llvm.memmove are lowered, they should be optimized to a few store instructions if the source is constant and the length is smallish (< 8). This will greatly help some tests like Shootout/strcat.c //===---------------------------------------------------------------------===// Solve this DAG isel folding deficiency: int X, Y; void fn1(void) { X = X | (Y << 3); } compiles to fn1: movl Y, %eax shll $3, %eax orl X, %eax movl %eax, X ret The problem is the store's chain operand is not the load X but rather a TokenFactor of the load X and load Y, which prevents the folding. There are two ways to fix this: 1. The dag combiner can start using alias analysis to realize that y/x don't alias, making the store to X not dependent on the load from Y. 2. The generated isel could be made smarter in the case it can't disambiguate the pointers. Number 1 is the preferred solution. //===---------------------------------------------------------------------===// The instruction selector sometimes misses folding a load into a compare. The pattern is written as (cmp reg, (load p)). Because the compare isn't commutative, it is not matched with the load on both sides. The dag combiner should be made smart enough to cannonicalize the load into the RHS of a compare when it can invert the result of the compare for free. //===---------------------------------------------------------------------===// None of the SSE instructions are handled in X86RegisterInfo::foldMemoryOperand, which prevents the spiller from folding spill code into the instructions. This leads to code like this: mov %eax, 8(%esp) cvtsi2sd %eax, %xmm0 instead of: cvtsi2sd 8(%esp), %xmm0 //===---------------------------------------------------------------------===// LSR should be turned on for the X86 backend and tuned to take advantage of its addressing modes. //===---------------------------------------------------------------------===// When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and other fast SSE modes. //===---------------------------------------------------------------------===// Think about doing i64 math in SSE regs. //===---------------------------------------------------------------------===// The DAG Isel doesn't fold the loads into the adds in this testcase. The pattern selector does. This is because the chain value of the load gets selected first, and the loads aren't checking to see if they are only used by and add. .ll: int %test(int* %x, int* %y, int* %z) { %X = load int* %x %Y = load int* %y %Z = load int* %z %a = add int %X, %Y %b = add int %a, %Z ret int %b } dag isel: _test: movl 4(%esp), %eax movl (%eax), %eax movl 8(%esp), %ecx movl (%ecx), %ecx addl %ecx, %eax movl 12(%esp), %ecx movl (%ecx), %ecx addl %ecx, %eax ret pattern isel: _test: movl 12(%esp), %ecx movl 4(%esp), %edx movl 8(%esp), %eax movl (%eax), %eax addl (%edx), %eax addl (%ecx), %eax ret This is bad for register pressure, though the dag isel is producing a better schedule. :) //===---------------------------------------------------------------------===// This testcase should have no SSE instructions in it, and only one load from a constant pool: double %test3(bool %B) { %C = select bool %B, double 123.412, double 523.01123123 ret double %C } Currently, the select is being lowered, which prevents the dag combiner from turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)' The pattern isel got this one right. //===---------------------------------------------------------------------===// This shouldn't have an explicit ADD (target independent dag combiner hack): bool %X(int %X) { %Y = add int %X, 14 %Z = setne int %Y, 12345 ret bool %Z }