llvm-6502/lib/Analysis/LibCallAliasAnalysis.cpp
Mehdi Amini c94da20917 Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 18:43:29 +00:00

142 lines
5.4 KiB
C++

//===- LibCallAliasAnalysis.cpp - Implement AliasAnalysis for libcalls ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LibCallAliasAnalysis class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LibCallAliasAnalysis.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
using namespace llvm;
// Register this pass...
char LibCallAliasAnalysis::ID = 0;
INITIALIZE_AG_PASS(LibCallAliasAnalysis, AliasAnalysis, "libcall-aa",
"LibCall Alias Analysis", false, true, false)
FunctionPass *llvm::createLibCallAliasAnalysisPass(LibCallInfo *LCI) {
return new LibCallAliasAnalysis(LCI);
}
LibCallAliasAnalysis::~LibCallAliasAnalysis() {
delete LCI;
}
void LibCallAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code
}
bool LibCallAliasAnalysis::runOnFunction(Function &F) {
// set up super class
InitializeAliasAnalysis(this, &F.getParent()->getDataLayout());
return false;
}
/// AnalyzeLibCallDetails - Given a call to a function with the specified
/// LibCallFunctionInfo, see if we can improve the mod/ref footprint of the call
/// vs the specified pointer/size.
AliasAnalysis::ModRefResult
LibCallAliasAnalysis::AnalyzeLibCallDetails(const LibCallFunctionInfo *FI,
ImmutableCallSite CS,
const Location &Loc) {
// If we have a function, check to see what kind of mod/ref effects it
// has. Start by including any info globally known about the function.
AliasAnalysis::ModRefResult MRInfo = FI->UniversalBehavior;
if (MRInfo == NoModRef) return MRInfo;
// If that didn't tell us that the function is 'readnone', check to see
// if we have detailed info and if 'P' is any of the locations we know
// about.
const LibCallFunctionInfo::LocationMRInfo *Details = FI->LocationDetails;
if (Details == nullptr)
return MRInfo;
// If the details array is of the 'DoesNot' kind, we only know something if
// the pointer is a match for one of the locations in 'Details'. If we find a
// match, we can prove some interactions cannot happen.
//
if (FI->DetailsType == LibCallFunctionInfo::DoesNot) {
// Find out if the pointer refers to a known location.
for (unsigned i = 0; Details[i].LocationID != ~0U; ++i) {
const LibCallLocationInfo &LocInfo =
LCI->getLocationInfo(Details[i].LocationID);
LibCallLocationInfo::LocResult Res = LocInfo.isLocation(CS, Loc);
if (Res != LibCallLocationInfo::Yes) continue;
// If we find a match against a location that we 'do not' interact with,
// learn this info into MRInfo.
return ModRefResult(MRInfo & ~Details[i].MRInfo);
}
return MRInfo;
}
// If the details are of the 'DoesOnly' sort, we know something if the pointer
// is a match for one of the locations in 'Details'. Also, if we can prove
// that the pointers is *not* one of the locations in 'Details', we know that
// the call is NoModRef.
assert(FI->DetailsType == LibCallFunctionInfo::DoesOnly);
// Find out if the pointer refers to a known location.
bool NoneMatch = true;
for (unsigned i = 0; Details[i].LocationID != ~0U; ++i) {
const LibCallLocationInfo &LocInfo =
LCI->getLocationInfo(Details[i].LocationID);
LibCallLocationInfo::LocResult Res = LocInfo.isLocation(CS, Loc);
if (Res == LibCallLocationInfo::No) continue;
// If we don't know if this pointer points to the location, then we have to
// assume it might alias in some case.
if (Res == LibCallLocationInfo::Unknown) {
NoneMatch = false;
continue;
}
// If we know that this pointer definitely is pointing into the location,
// merge in this information.
return ModRefResult(MRInfo & Details[i].MRInfo);
}
// If we found that the pointer is guaranteed to not match any of the
// locations in our 'DoesOnly' rule, then we know that the pointer must point
// to some other location. Since the libcall doesn't mod/ref any other
// locations, return NoModRef.
if (NoneMatch)
return NoModRef;
// Otherwise, return any other info gained so far.
return MRInfo;
}
// getModRefInfo - Check to see if the specified callsite can clobber the
// specified memory object.
//
AliasAnalysis::ModRefResult
LibCallAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
const Location &Loc) {
ModRefResult MRInfo = ModRef;
// If this is a direct call to a function that LCI knows about, get the
// information about the runtime function.
if (LCI) {
if (const Function *F = CS.getCalledFunction()) {
if (const LibCallFunctionInfo *FI = LCI->getFunctionInfo(F)) {
MRInfo = ModRefResult(MRInfo & AnalyzeLibCallDetails(FI, CS, Loc));
if (MRInfo == NoModRef) return NoModRef;
}
}
}
// The AliasAnalysis base class has some smarts, lets use them.
return (ModRefResult)(MRInfo | AliasAnalysis::getModRefInfo(CS, Loc));
}