mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162085 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2093 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2093 lines
		
	
	
		
			73 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// It contains the tablegen backend that emits the decoder functions for
 | 
						|
// targets with fixed length instruction set.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "decoder-emitter"
 | 
						|
 | 
						|
#include "CodeGenTarget.h"
 | 
						|
#include "llvm/TableGen/Record.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/MC/MCFixedLenDisassembler.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/FormattedStream.h"
 | 
						|
#include "llvm/Support/LEB128.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/TableGen/TableGenBackend.h"
 | 
						|
 | 
						|
#include <vector>
 | 
						|
#include <map>
 | 
						|
#include <string>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
struct EncodingField {
 | 
						|
  unsigned Base, Width, Offset;
 | 
						|
  EncodingField(unsigned B, unsigned W, unsigned O)
 | 
						|
    : Base(B), Width(W), Offset(O) { }
 | 
						|
};
 | 
						|
 | 
						|
struct OperandInfo {
 | 
						|
  std::vector<EncodingField> Fields;
 | 
						|
  std::string Decoder;
 | 
						|
 | 
						|
  OperandInfo(std::string D)
 | 
						|
    : Decoder(D) { }
 | 
						|
 | 
						|
  void addField(unsigned Base, unsigned Width, unsigned Offset) {
 | 
						|
    Fields.push_back(EncodingField(Base, Width, Offset));
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned numFields() const { return Fields.size(); }
 | 
						|
 | 
						|
  typedef std::vector<EncodingField>::const_iterator const_iterator;
 | 
						|
 | 
						|
  const_iterator begin() const { return Fields.begin(); }
 | 
						|
  const_iterator end() const   { return Fields.end();   }
 | 
						|
};
 | 
						|
 | 
						|
typedef std::vector<uint8_t> DecoderTable;
 | 
						|
typedef uint32_t DecoderFixup;
 | 
						|
typedef std::vector<DecoderFixup> FixupList;
 | 
						|
typedef std::vector<FixupList> FixupScopeList;
 | 
						|
typedef SetVector<std::string> PredicateSet;
 | 
						|
typedef SetVector<std::string> DecoderSet;
 | 
						|
struct DecoderTableInfo {
 | 
						|
  DecoderTable Table;
 | 
						|
  FixupScopeList FixupStack;
 | 
						|
  PredicateSet Predicates;
 | 
						|
  DecoderSet Decoders;
 | 
						|
};
 | 
						|
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
class FixedLenDecoderEmitter {
 | 
						|
  const std::vector<const CodeGenInstruction*> *NumberedInstructions;
 | 
						|
public:
 | 
						|
 | 
						|
  // Defaults preserved here for documentation, even though they aren't
 | 
						|
  // strictly necessary given the way that this is currently being called.
 | 
						|
  FixedLenDecoderEmitter(RecordKeeper &R,
 | 
						|
                         std::string PredicateNamespace,
 | 
						|
                         std::string GPrefix  = "if (",
 | 
						|
                         std::string GPostfix = " == MCDisassembler::Fail)"
 | 
						|
                         " return MCDisassembler::Fail;",
 | 
						|
                         std::string ROK      = "MCDisassembler::Success",
 | 
						|
                         std::string RFail    = "MCDisassembler::Fail",
 | 
						|
                         std::string L        = "") :
 | 
						|
    Target(R),
 | 
						|
    PredicateNamespace(PredicateNamespace),
 | 
						|
    GuardPrefix(GPrefix), GuardPostfix(GPostfix),
 | 
						|
    ReturnOK(ROK), ReturnFail(RFail), Locals(L) {}
 | 
						|
 | 
						|
  // Emit the decoder state machine table.
 | 
						|
  void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
 | 
						|
                 unsigned Indentation, unsigned BitWidth,
 | 
						|
                 StringRef Namespace) const;
 | 
						|
  void emitPredicateFunction(formatted_raw_ostream &OS,
 | 
						|
                             PredicateSet &Predicates,
 | 
						|
                             unsigned Indentation) const;
 | 
						|
  void emitDecoderFunction(formatted_raw_ostream &OS,
 | 
						|
                           DecoderSet &Decoders,
 | 
						|
                           unsigned Indentation) const;
 | 
						|
 | 
						|
  // run - Output the code emitter
 | 
						|
  void run(raw_ostream &o);
 | 
						|
 | 
						|
private:
 | 
						|
  CodeGenTarget Target;
 | 
						|
public:
 | 
						|
  std::string PredicateNamespace;
 | 
						|
  std::string GuardPrefix, GuardPostfix;
 | 
						|
  std::string ReturnOK, ReturnFail;
 | 
						|
  std::string Locals;
 | 
						|
};
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
 | 
						|
// for a bit value.
 | 
						|
//
 | 
						|
// BIT_UNFILTERED is used as the init value for a filter position.  It is used
 | 
						|
// only for filter processings.
 | 
						|
typedef enum {
 | 
						|
  BIT_TRUE,      // '1'
 | 
						|
  BIT_FALSE,     // '0'
 | 
						|
  BIT_UNSET,     // '?'
 | 
						|
  BIT_UNFILTERED // unfiltered
 | 
						|
} bit_value_t;
 | 
						|
 | 
						|
static bool ValueSet(bit_value_t V) {
 | 
						|
  return (V == BIT_TRUE || V == BIT_FALSE);
 | 
						|
}
 | 
						|
static bool ValueNotSet(bit_value_t V) {
 | 
						|
  return (V == BIT_UNSET);
 | 
						|
}
 | 
						|
static int Value(bit_value_t V) {
 | 
						|
  return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
 | 
						|
}
 | 
						|
static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
 | 
						|
  if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
 | 
						|
    return bit->getValue() ? BIT_TRUE : BIT_FALSE;
 | 
						|
 | 
						|
  // The bit is uninitialized.
 | 
						|
  return BIT_UNSET;
 | 
						|
}
 | 
						|
// Prints the bit value for each position.
 | 
						|
static void dumpBits(raw_ostream &o, const BitsInit &bits) {
 | 
						|
  for (unsigned index = bits.getNumBits(); index > 0; --index) {
 | 
						|
    switch (bitFromBits(bits, index - 1)) {
 | 
						|
    case BIT_TRUE:
 | 
						|
      o << "1";
 | 
						|
      break;
 | 
						|
    case BIT_FALSE:
 | 
						|
      o << "0";
 | 
						|
      break;
 | 
						|
    case BIT_UNSET:
 | 
						|
      o << "_";
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("unexpected return value from bitFromBits");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static BitsInit &getBitsField(const Record &def, const char *str) {
 | 
						|
  BitsInit *bits = def.getValueAsBitsInit(str);
 | 
						|
  return *bits;
 | 
						|
}
 | 
						|
 | 
						|
// Forward declaration.
 | 
						|
namespace {
 | 
						|
class FilterChooser;
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
// Representation of the instruction to work on.
 | 
						|
typedef std::vector<bit_value_t> insn_t;
 | 
						|
 | 
						|
/// Filter - Filter works with FilterChooser to produce the decoding tree for
 | 
						|
/// the ISA.
 | 
						|
///
 | 
						|
/// It is useful to think of a Filter as governing the switch stmts of the
 | 
						|
/// decoding tree in a certain level.  Each case stmt delegates to an inferior
 | 
						|
/// FilterChooser to decide what further decoding logic to employ, or in another
 | 
						|
/// words, what other remaining bits to look at.  The FilterChooser eventually
 | 
						|
/// chooses a best Filter to do its job.
 | 
						|
///
 | 
						|
/// This recursive scheme ends when the number of Opcodes assigned to the
 | 
						|
/// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
 | 
						|
/// the Filter/FilterChooser combo does not know how to distinguish among the
 | 
						|
/// Opcodes assigned.
 | 
						|
///
 | 
						|
/// An example of a conflict is
 | 
						|
///
 | 
						|
/// Conflict:
 | 
						|
///                     111101000.00........00010000....
 | 
						|
///                     111101000.00........0001........
 | 
						|
///                     1111010...00........0001........
 | 
						|
///                     1111010...00....................
 | 
						|
///                     1111010.........................
 | 
						|
///                     1111............................
 | 
						|
///                     ................................
 | 
						|
///     VST4q8a         111101000_00________00010000____
 | 
						|
///     VST4q8b         111101000_00________00010000____
 | 
						|
///
 | 
						|
/// The Debug output shows the path that the decoding tree follows to reach the
 | 
						|
/// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
 | 
						|
/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
 | 
						|
///
 | 
						|
/// The encoding info in the .td files does not specify this meta information,
 | 
						|
/// which could have been used by the decoder to resolve the conflict.  The
 | 
						|
/// decoder could try to decode the even/odd register numbering and assign to
 | 
						|
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
 | 
						|
/// version and return the Opcode since the two have the same Asm format string.
 | 
						|
namespace {
 | 
						|
class Filter {
 | 
						|
protected:
 | 
						|
  const FilterChooser *Owner;// points to the FilterChooser who owns this filter
 | 
						|
  unsigned StartBit; // the starting bit position
 | 
						|
  unsigned NumBits; // number of bits to filter
 | 
						|
  bool Mixed; // a mixed region contains both set and unset bits
 | 
						|
 | 
						|
  // Map of well-known segment value to the set of uid's with that value.
 | 
						|
  std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
 | 
						|
 | 
						|
  // Set of uid's with non-constant segment values.
 | 
						|
  std::vector<unsigned> VariableInstructions;
 | 
						|
 | 
						|
  // Map of well-known segment value to its delegate.
 | 
						|
  std::map<unsigned, const FilterChooser*> FilterChooserMap;
 | 
						|
 | 
						|
  // Number of instructions which fall under FilteredInstructions category.
 | 
						|
  unsigned NumFiltered;
 | 
						|
 | 
						|
  // Keeps track of the last opcode in the filtered bucket.
 | 
						|
  unsigned LastOpcFiltered;
 | 
						|
 | 
						|
public:
 | 
						|
  unsigned getNumFiltered() const { return NumFiltered; }
 | 
						|
  unsigned getSingletonOpc() const {
 | 
						|
    assert(NumFiltered == 1);
 | 
						|
    return LastOpcFiltered;
 | 
						|
  }
 | 
						|
  // Return the filter chooser for the group of instructions without constant
 | 
						|
  // segment values.
 | 
						|
  const FilterChooser &getVariableFC() const {
 | 
						|
    assert(NumFiltered == 1);
 | 
						|
    assert(FilterChooserMap.size() == 1);
 | 
						|
    return *(FilterChooserMap.find((unsigned)-1)->second);
 | 
						|
  }
 | 
						|
 | 
						|
  Filter(const Filter &f);
 | 
						|
  Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
 | 
						|
 | 
						|
  ~Filter();
 | 
						|
 | 
						|
  // Divides the decoding task into sub tasks and delegates them to the
 | 
						|
  // inferior FilterChooser's.
 | 
						|
  //
 | 
						|
  // A special case arises when there's only one entry in the filtered
 | 
						|
  // instructions.  In order to unambiguously decode the singleton, we need to
 | 
						|
  // match the remaining undecoded encoding bits against the singleton.
 | 
						|
  void recurse();
 | 
						|
 | 
						|
  // Emit table entries to decode instructions given a segment or segments of
 | 
						|
  // bits.
 | 
						|
  void emitTableEntry(DecoderTableInfo &TableInfo) const;
 | 
						|
 | 
						|
  // Returns the number of fanout produced by the filter.  More fanout implies
 | 
						|
  // the filter distinguishes more categories of instructions.
 | 
						|
  unsigned usefulness() const;
 | 
						|
}; // End of class Filter
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
// These are states of our finite state machines used in FilterChooser's
 | 
						|
// filterProcessor() which produces the filter candidates to use.
 | 
						|
typedef enum {
 | 
						|
  ATTR_NONE,
 | 
						|
  ATTR_FILTERED,
 | 
						|
  ATTR_ALL_SET,
 | 
						|
  ATTR_ALL_UNSET,
 | 
						|
  ATTR_MIXED
 | 
						|
} bitAttr_t;
 | 
						|
 | 
						|
/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
 | 
						|
/// in order to perform the decoding of instructions at the current level.
 | 
						|
///
 | 
						|
/// Decoding proceeds from the top down.  Based on the well-known encoding bits
 | 
						|
/// of instructions available, FilterChooser builds up the possible Filters that
 | 
						|
/// can further the task of decoding by distinguishing among the remaining
 | 
						|
/// candidate instructions.
 | 
						|
///
 | 
						|
/// Once a filter has been chosen, it is called upon to divide the decoding task
 | 
						|
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
 | 
						|
/// processings.
 | 
						|
///
 | 
						|
/// It is useful to think of a Filter as governing the switch stmts of the
 | 
						|
/// decoding tree.  And each case is delegated to an inferior FilterChooser to
 | 
						|
/// decide what further remaining bits to look at.
 | 
						|
namespace {
 | 
						|
class FilterChooser {
 | 
						|
protected:
 | 
						|
  friend class Filter;
 | 
						|
 | 
						|
  // Vector of codegen instructions to choose our filter.
 | 
						|
  const std::vector<const CodeGenInstruction*> &AllInstructions;
 | 
						|
 | 
						|
  // Vector of uid's for this filter chooser to work on.
 | 
						|
  const std::vector<unsigned> &Opcodes;
 | 
						|
 | 
						|
  // Lookup table for the operand decoding of instructions.
 | 
						|
  const std::map<unsigned, std::vector<OperandInfo> > &Operands;
 | 
						|
 | 
						|
  // Vector of candidate filters.
 | 
						|
  std::vector<Filter> Filters;
 | 
						|
 | 
						|
  // Array of bit values passed down from our parent.
 | 
						|
  // Set to all BIT_UNFILTERED's for Parent == NULL.
 | 
						|
  std::vector<bit_value_t> FilterBitValues;
 | 
						|
 | 
						|
  // Links to the FilterChooser above us in the decoding tree.
 | 
						|
  const FilterChooser *Parent;
 | 
						|
 | 
						|
  // Index of the best filter from Filters.
 | 
						|
  int BestIndex;
 | 
						|
 | 
						|
  // Width of instructions
 | 
						|
  unsigned BitWidth;
 | 
						|
 | 
						|
  // Parent emitter
 | 
						|
  const FixedLenDecoderEmitter *Emitter;
 | 
						|
 | 
						|
public:
 | 
						|
  FilterChooser(const FilterChooser &FC)
 | 
						|
    : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
 | 
						|
      Operands(FC.Operands), Filters(FC.Filters),
 | 
						|
      FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
 | 
						|
      BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
 | 
						|
      Emitter(FC.Emitter) { }
 | 
						|
 | 
						|
  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | 
						|
                const std::vector<unsigned> &IDs,
 | 
						|
                const std::map<unsigned, std::vector<OperandInfo> > &Ops,
 | 
						|
                unsigned BW,
 | 
						|
                const FixedLenDecoderEmitter *E)
 | 
						|
    : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
 | 
						|
      Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
 | 
						|
    for (unsigned i = 0; i < BitWidth; ++i)
 | 
						|
      FilterBitValues.push_back(BIT_UNFILTERED);
 | 
						|
 | 
						|
    doFilter();
 | 
						|
  }
 | 
						|
 | 
						|
  FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
 | 
						|
                const std::vector<unsigned> &IDs,
 | 
						|
                const std::map<unsigned, std::vector<OperandInfo> > &Ops,
 | 
						|
                const std::vector<bit_value_t> &ParentFilterBitValues,
 | 
						|
                const FilterChooser &parent)
 | 
						|
    : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
 | 
						|
      Filters(), FilterBitValues(ParentFilterBitValues),
 | 
						|
      Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
 | 
						|
      Emitter(parent.Emitter) {
 | 
						|
    doFilter();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getBitWidth() const { return BitWidth; }
 | 
						|
 | 
						|
protected:
 | 
						|
  // Populates the insn given the uid.
 | 
						|
  void insnWithID(insn_t &Insn, unsigned Opcode) const {
 | 
						|
    BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
 | 
						|
 | 
						|
    // We may have a SoftFail bitmask, which specifies a mask where an encoding
 | 
						|
    // may differ from the value in "Inst" and yet still be valid, but the
 | 
						|
    // disassembler should return SoftFail instead of Success.
 | 
						|
    //
 | 
						|
    // This is used for marking UNPREDICTABLE instructions in the ARM world.
 | 
						|
    BitsInit *SFBits =
 | 
						|
      AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail");
 | 
						|
 | 
						|
    for (unsigned i = 0; i < BitWidth; ++i) {
 | 
						|
      if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
 | 
						|
        Insn.push_back(BIT_UNSET);
 | 
						|
      else
 | 
						|
        Insn.push_back(bitFromBits(Bits, i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns the record name.
 | 
						|
  const std::string &nameWithID(unsigned Opcode) const {
 | 
						|
    return AllInstructions[Opcode]->TheDef->getName();
 | 
						|
  }
 | 
						|
 | 
						|
  // Populates the field of the insn given the start position and the number of
 | 
						|
  // consecutive bits to scan for.
 | 
						|
  //
 | 
						|
  // Returns false if there exists any uninitialized bit value in the range.
 | 
						|
  // Returns true, otherwise.
 | 
						|
  bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
 | 
						|
                     unsigned NumBits) const;
 | 
						|
 | 
						|
  /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | 
						|
  /// filter array as a series of chars.
 | 
						|
  void dumpFilterArray(raw_ostream &o,
 | 
						|
                       const std::vector<bit_value_t> & filter) const;
 | 
						|
 | 
						|
  /// dumpStack - dumpStack traverses the filter chooser chain and calls
 | 
						|
  /// dumpFilterArray on each filter chooser up to the top level one.
 | 
						|
  void dumpStack(raw_ostream &o, const char *prefix) const;
 | 
						|
 | 
						|
  Filter &bestFilter() {
 | 
						|
    assert(BestIndex != -1 && "BestIndex not set");
 | 
						|
    return Filters[BestIndex];
 | 
						|
  }
 | 
						|
 | 
						|
  // Called from Filter::recurse() when singleton exists.  For debug purpose.
 | 
						|
  void SingletonExists(unsigned Opc) const;
 | 
						|
 | 
						|
  bool PositionFiltered(unsigned i) const {
 | 
						|
    return ValueSet(FilterBitValues[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculates the island(s) needed to decode the instruction.
 | 
						|
  // This returns a lit of undecoded bits of an instructions, for example,
 | 
						|
  // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | 
						|
  // decoded bits in order to verify that the instruction matches the Opcode.
 | 
						|
  unsigned getIslands(std::vector<unsigned> &StartBits,
 | 
						|
                      std::vector<unsigned> &EndBits,
 | 
						|
                      std::vector<uint64_t> &FieldVals,
 | 
						|
                      const insn_t &Insn) const;
 | 
						|
 | 
						|
  // Emits code to check the Predicates member of an instruction are true.
 | 
						|
  // Returns true if predicate matches were emitted, false otherwise.
 | 
						|
  bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
 | 
						|
                          unsigned Opc) const;
 | 
						|
 | 
						|
  bool doesOpcodeNeedPredicate(unsigned Opc) const;
 | 
						|
  unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
 | 
						|
  void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                               unsigned Opc) const;
 | 
						|
 | 
						|
  void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                              unsigned Opc) const;
 | 
						|
 | 
						|
  // Emits table entries to decode the singleton.
 | 
						|
  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                               unsigned Opc) const;
 | 
						|
 | 
						|
  // Emits code to decode the singleton, and then to decode the rest.
 | 
						|
  void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                               const Filter &Best) const;
 | 
						|
 | 
						|
  void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
 | 
						|
                        const OperandInfo &OpInfo) const;
 | 
						|
 | 
						|
  void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const;
 | 
						|
  unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const;
 | 
						|
 | 
						|
  // Assign a single filter and run with it.
 | 
						|
  void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
 | 
						|
 | 
						|
  // reportRegion is a helper function for filterProcessor to mark a region as
 | 
						|
  // eligible for use as a filter region.
 | 
						|
  void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
 | 
						|
                    bool AllowMixed);
 | 
						|
 | 
						|
  // FilterProcessor scans the well-known encoding bits of the instructions and
 | 
						|
  // builds up a list of candidate filters.  It chooses the best filter and
 | 
						|
  // recursively descends down the decoding tree.
 | 
						|
  bool filterProcessor(bool AllowMixed, bool Greedy = true);
 | 
						|
 | 
						|
  // Decides on the best configuration of filter(s) to use in order to decode
 | 
						|
  // the instructions.  A conflict of instructions may occur, in which case we
 | 
						|
  // dump the conflict set to the standard error.
 | 
						|
  void doFilter();
 | 
						|
 | 
						|
public:
 | 
						|
  // emitTableEntries - Emit state machine entries to decode our share of
 | 
						|
  // instructions.
 | 
						|
  void emitTableEntries(DecoderTableInfo &TableInfo) const;
 | 
						|
};
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
///////////////////////////
 | 
						|
//                       //
 | 
						|
// Filter Implementation //
 | 
						|
//                       //
 | 
						|
///////////////////////////
 | 
						|
 | 
						|
Filter::Filter(const Filter &f)
 | 
						|
  : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
 | 
						|
    FilteredInstructions(f.FilteredInstructions),
 | 
						|
    VariableInstructions(f.VariableInstructions),
 | 
						|
    FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
 | 
						|
    LastOpcFiltered(f.LastOpcFiltered) {
 | 
						|
}
 | 
						|
 | 
						|
Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
 | 
						|
               bool mixed)
 | 
						|
  : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
 | 
						|
  assert(StartBit + NumBits - 1 < Owner->BitWidth);
 | 
						|
 | 
						|
  NumFiltered = 0;
 | 
						|
  LastOpcFiltered = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
 | 
						|
    insn_t Insn;
 | 
						|
 | 
						|
    // Populates the insn given the uid.
 | 
						|
    Owner->insnWithID(Insn, Owner->Opcodes[i]);
 | 
						|
 | 
						|
    uint64_t Field;
 | 
						|
    // Scans the segment for possibly well-specified encoding bits.
 | 
						|
    bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
 | 
						|
 | 
						|
    if (ok) {
 | 
						|
      // The encoding bits are well-known.  Lets add the uid of the
 | 
						|
      // instruction into the bucket keyed off the constant field value.
 | 
						|
      LastOpcFiltered = Owner->Opcodes[i];
 | 
						|
      FilteredInstructions[Field].push_back(LastOpcFiltered);
 | 
						|
      ++NumFiltered;
 | 
						|
    } else {
 | 
						|
      // Some of the encoding bit(s) are unspecified.  This contributes to
 | 
						|
      // one additional member of "Variable" instructions.
 | 
						|
      VariableInstructions.push_back(Owner->Opcodes[i]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
 | 
						|
         && "Filter returns no instruction categories");
 | 
						|
}
 | 
						|
 | 
						|
Filter::~Filter() {
 | 
						|
  std::map<unsigned, const FilterChooser*>::iterator filterIterator;
 | 
						|
  for (filterIterator = FilterChooserMap.begin();
 | 
						|
       filterIterator != FilterChooserMap.end();
 | 
						|
       filterIterator++) {
 | 
						|
    delete filterIterator->second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Divides the decoding task into sub tasks and delegates them to the
 | 
						|
// inferior FilterChooser's.
 | 
						|
//
 | 
						|
// A special case arises when there's only one entry in the filtered
 | 
						|
// instructions.  In order to unambiguously decode the singleton, we need to
 | 
						|
// match the remaining undecoded encoding bits against the singleton.
 | 
						|
void Filter::recurse() {
 | 
						|
  std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
 | 
						|
 | 
						|
  // Starts by inheriting our parent filter chooser's filter bit values.
 | 
						|
  std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
 | 
						|
 | 
						|
  if (VariableInstructions.size()) {
 | 
						|
    // Conservatively marks each segment position as BIT_UNSET.
 | 
						|
    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
 | 
						|
      BitValueArray[StartBit + bitIndex] = BIT_UNSET;
 | 
						|
 | 
						|
    // Delegates to an inferior filter chooser for further processing on this
 | 
						|
    // group of instructions whose segment values are variable.
 | 
						|
    FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
 | 
						|
                              (unsigned)-1,
 | 
						|
                              new FilterChooser(Owner->AllInstructions,
 | 
						|
                                                VariableInstructions,
 | 
						|
                                                Owner->Operands,
 | 
						|
                                                BitValueArray,
 | 
						|
                                                *Owner)
 | 
						|
                              ));
 | 
						|
  }
 | 
						|
 | 
						|
  // No need to recurse for a singleton filtered instruction.
 | 
						|
  // See also Filter::emit*().
 | 
						|
  if (getNumFiltered() == 1) {
 | 
						|
    //Owner->SingletonExists(LastOpcFiltered);
 | 
						|
    assert(FilterChooserMap.size() == 1);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, create sub choosers.
 | 
						|
  for (mapIterator = FilteredInstructions.begin();
 | 
						|
       mapIterator != FilteredInstructions.end();
 | 
						|
       mapIterator++) {
 | 
						|
 | 
						|
    // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
 | 
						|
    for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
 | 
						|
      if (mapIterator->first & (1ULL << bitIndex))
 | 
						|
        BitValueArray[StartBit + bitIndex] = BIT_TRUE;
 | 
						|
      else
 | 
						|
        BitValueArray[StartBit + bitIndex] = BIT_FALSE;
 | 
						|
    }
 | 
						|
 | 
						|
    // Delegates to an inferior filter chooser for further processing on this
 | 
						|
    // category of instructions.
 | 
						|
    FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>(
 | 
						|
                              mapIterator->first,
 | 
						|
                              new FilterChooser(Owner->AllInstructions,
 | 
						|
                                                mapIterator->second,
 | 
						|
                                                Owner->Operands,
 | 
						|
                                                BitValueArray,
 | 
						|
                                                *Owner)
 | 
						|
                              ));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
 | 
						|
                               uint32_t DestIdx) {
 | 
						|
  // Any NumToSkip fixups in the current scope can resolve to the
 | 
						|
  // current location.
 | 
						|
  for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
 | 
						|
                                         E = Fixups.rend();
 | 
						|
       I != E; ++I) {
 | 
						|
    // Calculate the distance from the byte following the fixup entry byte
 | 
						|
    // to the destination. The Target is calculated from after the 16-bit
 | 
						|
    // NumToSkip entry itself, so subtract two  from the displacement here
 | 
						|
    // to account for that.
 | 
						|
    uint32_t FixupIdx = *I;
 | 
						|
    uint32_t Delta = DestIdx - FixupIdx - 2;
 | 
						|
    // Our NumToSkip entries are 16-bits. Make sure our table isn't too
 | 
						|
    // big.
 | 
						|
    assert(Delta < 65536U && "disassembler decoding table too large!");
 | 
						|
    Table[FixupIdx] = (uint8_t)Delta;
 | 
						|
    Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Emit table entries to decode instructions given a segment or segments
 | 
						|
// of bits.
 | 
						|
void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
 | 
						|
  TableInfo.Table.push_back(MCD::OPC_ExtractField);
 | 
						|
  TableInfo.Table.push_back(StartBit);
 | 
						|
  TableInfo.Table.push_back(NumBits);
 | 
						|
 | 
						|
  // A new filter entry begins a new scope for fixup resolution.
 | 
						|
  TableInfo.FixupStack.push_back(FixupList());
 | 
						|
 | 
						|
  std::map<unsigned, const FilterChooser*>::const_iterator filterIterator;
 | 
						|
 | 
						|
  DecoderTable &Table = TableInfo.Table;
 | 
						|
 | 
						|
  size_t PrevFilter = 0;
 | 
						|
  bool HasFallthrough = false;
 | 
						|
  for (filterIterator = FilterChooserMap.begin();
 | 
						|
       filterIterator != FilterChooserMap.end();
 | 
						|
       filterIterator++) {
 | 
						|
    // Field value -1 implies a non-empty set of variable instructions.
 | 
						|
    // See also recurse().
 | 
						|
    if (filterIterator->first == (unsigned)-1) {
 | 
						|
      HasFallthrough = true;
 | 
						|
 | 
						|
      // Each scope should always have at least one filter value to check
 | 
						|
      // for.
 | 
						|
      assert(PrevFilter != 0 && "empty filter set!");
 | 
						|
      FixupList &CurScope = TableInfo.FixupStack.back();
 | 
						|
      // Resolve any NumToSkip fixups in the current scope.
 | 
						|
      resolveTableFixups(Table, CurScope, Table.size());
 | 
						|
      CurScope.clear();
 | 
						|
      PrevFilter = 0;  // Don't re-process the filter's fallthrough.
 | 
						|
    } else {
 | 
						|
      Table.push_back(MCD::OPC_FilterValue);
 | 
						|
      // Encode and emit the value to filter against.
 | 
						|
      uint8_t Buffer[8];
 | 
						|
      unsigned Len = encodeULEB128(filterIterator->first, Buffer);
 | 
						|
      Table.insert(Table.end(), Buffer, Buffer + Len);
 | 
						|
      // Reserve space for the NumToSkip entry. We'll backpatch the value
 | 
						|
      // later.
 | 
						|
      PrevFilter = Table.size();
 | 
						|
      Table.push_back(0);
 | 
						|
      Table.push_back(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // We arrive at a category of instructions with the same segment value.
 | 
						|
    // Now delegate to the sub filter chooser for further decodings.
 | 
						|
    // The case may fallthrough, which happens if the remaining well-known
 | 
						|
    // encoding bits do not match exactly.
 | 
						|
    filterIterator->second->emitTableEntries(TableInfo);
 | 
						|
 | 
						|
    // Now that we've emitted the body of the handler, update the NumToSkip
 | 
						|
    // of the filter itself to be able to skip forward when false. Subtract
 | 
						|
    // two as to account for the width of the NumToSkip field itself.
 | 
						|
    if (PrevFilter) {
 | 
						|
      uint32_t NumToSkip = Table.size() - PrevFilter - 2;
 | 
						|
      assert(NumToSkip < 65536U && "disassembler decoding table too large!");
 | 
						|
      Table[PrevFilter] = (uint8_t)NumToSkip;
 | 
						|
      Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Any remaining unresolved fixups bubble up to the parent fixup scope.
 | 
						|
  assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
 | 
						|
  FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
 | 
						|
  FixupScopeList::iterator Dest = Source - 1;
 | 
						|
  Dest->insert(Dest->end(), Source->begin(), Source->end());
 | 
						|
  TableInfo.FixupStack.pop_back();
 | 
						|
 | 
						|
  // If there is no fallthrough, then the final filter should get fixed
 | 
						|
  // up according to the enclosing scope rather than the current position.
 | 
						|
  if (!HasFallthrough)
 | 
						|
    TableInfo.FixupStack.back().push_back(PrevFilter);
 | 
						|
}
 | 
						|
 | 
						|
// Returns the number of fanout produced by the filter.  More fanout implies
 | 
						|
// the filter distinguishes more categories of instructions.
 | 
						|
unsigned Filter::usefulness() const {
 | 
						|
  if (VariableInstructions.size())
 | 
						|
    return FilteredInstructions.size();
 | 
						|
  else
 | 
						|
    return FilteredInstructions.size() + 1;
 | 
						|
}
 | 
						|
 | 
						|
//////////////////////////////////
 | 
						|
//                              //
 | 
						|
// Filterchooser Implementation //
 | 
						|
//                              //
 | 
						|
//////////////////////////////////
 | 
						|
 | 
						|
// Emit the decoder state machine table.
 | 
						|
void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
 | 
						|
                                       DecoderTable &Table,
 | 
						|
                                       unsigned Indentation,
 | 
						|
                                       unsigned BitWidth,
 | 
						|
                                       StringRef Namespace) const {
 | 
						|
  OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
 | 
						|
    << BitWidth << "[] = {\n";
 | 
						|
 | 
						|
  Indentation += 2;
 | 
						|
 | 
						|
  // FIXME: We may be able to use the NumToSkip values to recover
 | 
						|
  // appropriate indentation levels.
 | 
						|
  DecoderTable::const_iterator I = Table.begin();
 | 
						|
  DecoderTable::const_iterator E = Table.end();
 | 
						|
  while (I != E) {
 | 
						|
    assert (I < E && "incomplete decode table entry!");
 | 
						|
 | 
						|
    uint64_t Pos = I - Table.begin();
 | 
						|
    OS << "/* " << Pos << " */";
 | 
						|
    OS.PadToColumn(12);
 | 
						|
 | 
						|
    switch (*I) {
 | 
						|
    default:
 | 
						|
      throw "invalid decode table opcode";
 | 
						|
    case MCD::OPC_ExtractField: {
 | 
						|
      ++I;
 | 
						|
      unsigned Start = *I++;
 | 
						|
      unsigned Len = *I++;
 | 
						|
      OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
 | 
						|
        << Len << ",  // Inst{";
 | 
						|
      if (Len > 1)
 | 
						|
        OS << (Start + Len - 1) << "-";
 | 
						|
      OS << Start << "} ...\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MCD::OPC_FilterValue: {
 | 
						|
      ++I;
 | 
						|
      OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
 | 
						|
      // The filter value is ULEB128 encoded.
 | 
						|
      while (*I >= 128)
 | 
						|
        OS << utostr(*I++) << ", ";
 | 
						|
      OS << utostr(*I++) << ", ";
 | 
						|
 | 
						|
      // 16-bit numtoskip value.
 | 
						|
      uint8_t Byte = *I++;
 | 
						|
      uint32_t NumToSkip = Byte;
 | 
						|
      OS << utostr(Byte) << ", ";
 | 
						|
      Byte = *I++;
 | 
						|
      OS << utostr(Byte) << ", ";
 | 
						|
      NumToSkip |= Byte << 8;
 | 
						|
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MCD::OPC_CheckField: {
 | 
						|
      ++I;
 | 
						|
      unsigned Start = *I++;
 | 
						|
      unsigned Len = *I++;
 | 
						|
      OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
 | 
						|
        << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
 | 
						|
      // ULEB128 encoded field value.
 | 
						|
      for (; *I >= 128; ++I)
 | 
						|
        OS << utostr(*I) << ", ";
 | 
						|
      OS << utostr(*I++) << ", ";
 | 
						|
      // 16-bit numtoskip value.
 | 
						|
      uint8_t Byte = *I++;
 | 
						|
      uint32_t NumToSkip = Byte;
 | 
						|
      OS << utostr(Byte) << ", ";
 | 
						|
      Byte = *I++;
 | 
						|
      OS << utostr(Byte) << ", ";
 | 
						|
      NumToSkip |= Byte << 8;
 | 
						|
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MCD::OPC_CheckPredicate: {
 | 
						|
      ++I;
 | 
						|
      OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
 | 
						|
      for (; *I >= 128; ++I)
 | 
						|
        OS << utostr(*I) << ", ";
 | 
						|
      OS << utostr(*I++) << ", ";
 | 
						|
 | 
						|
      // 16-bit numtoskip value.
 | 
						|
      uint8_t Byte = *I++;
 | 
						|
      uint32_t NumToSkip = Byte;
 | 
						|
      OS << utostr(Byte) << ", ";
 | 
						|
      Byte = *I++;
 | 
						|
      OS << utostr(Byte) << ", ";
 | 
						|
      NumToSkip |= Byte << 8;
 | 
						|
      OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MCD::OPC_Decode: {
 | 
						|
      ++I;
 | 
						|
      // Extract the ULEB128 encoded Opcode to a buffer.
 | 
						|
      uint8_t Buffer[8], *p = Buffer;
 | 
						|
      while ((*p++ = *I++) >= 128)
 | 
						|
        assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
 | 
						|
               && "ULEB128 value too large!");
 | 
						|
      // Decode the Opcode value.
 | 
						|
      unsigned Opc = decodeULEB128(Buffer);
 | 
						|
      OS.indent(Indentation) << "MCD::OPC_Decode, ";
 | 
						|
      for (p = Buffer; *p >= 128; ++p)
 | 
						|
        OS << utostr(*p) << ", ";
 | 
						|
      OS << utostr(*p) << ", ";
 | 
						|
 | 
						|
      // Decoder index.
 | 
						|
      for (; *I >= 128; ++I)
 | 
						|
        OS << utostr(*I) << ", ";
 | 
						|
      OS << utostr(*I++) << ", ";
 | 
						|
 | 
						|
      OS << "// Opcode: "
 | 
						|
         << NumberedInstructions->at(Opc)->TheDef->getName() << "\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MCD::OPC_SoftFail: {
 | 
						|
      ++I;
 | 
						|
      OS.indent(Indentation) << "MCD::OPC_SoftFail";
 | 
						|
      // Positive mask
 | 
						|
      uint64_t Value = 0;
 | 
						|
      unsigned Shift = 0;
 | 
						|
      do {
 | 
						|
        OS << ", " << utostr(*I);
 | 
						|
        Value += (*I & 0x7f) << Shift;
 | 
						|
        Shift += 7;
 | 
						|
      } while (*I++ >= 128);
 | 
						|
      if (Value > 127)
 | 
						|
        OS << " /* 0x" << utohexstr(Value) << " */";
 | 
						|
      // Negative mask
 | 
						|
      Value = 0;
 | 
						|
      Shift = 0;
 | 
						|
      do {
 | 
						|
        OS << ", " << utostr(*I);
 | 
						|
        Value += (*I & 0x7f) << Shift;
 | 
						|
        Shift += 7;
 | 
						|
      } while (*I++ >= 128);
 | 
						|
      if (Value > 127)
 | 
						|
        OS << " /* 0x" << utohexstr(Value) << " */";
 | 
						|
      OS << ",\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case MCD::OPC_Fail: {
 | 
						|
      ++I;
 | 
						|
      OS.indent(Indentation) << "MCD::OPC_Fail,\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS.indent(Indentation) << "0\n";
 | 
						|
 | 
						|
  Indentation -= 2;
 | 
						|
 | 
						|
  OS.indent(Indentation) << "};\n\n";
 | 
						|
}
 | 
						|
 | 
						|
void FixedLenDecoderEmitter::
 | 
						|
emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
 | 
						|
                      unsigned Indentation) const {
 | 
						|
  // The predicate function is just a big switch statement based on the
 | 
						|
  // input predicate index.
 | 
						|
  OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
 | 
						|
    << "uint64_t Bits) {\n";
 | 
						|
  Indentation += 2;
 | 
						|
  OS.indent(Indentation) << "switch (Idx) {\n";
 | 
						|
  OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (PredicateSet::const_iterator I = Predicates.begin(), E = Predicates.end();
 | 
						|
       I != E; ++I, ++Index) {
 | 
						|
    OS.indent(Indentation) << "case " << Index << ":\n";
 | 
						|
    OS.indent(Indentation+2) << "return (" << *I << ");\n";
 | 
						|
  }
 | 
						|
  OS.indent(Indentation) << "}\n";
 | 
						|
  Indentation -= 2;
 | 
						|
  OS.indent(Indentation) << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
void FixedLenDecoderEmitter::
 | 
						|
emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
 | 
						|
                    unsigned Indentation) const {
 | 
						|
  // The decoder function is just a big switch statement based on the
 | 
						|
  // input decoder index.
 | 
						|
  OS.indent(Indentation) << "template<typename InsnType>\n";
 | 
						|
  OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
 | 
						|
    << " unsigned Idx, InsnType insn, MCInst &MI,\n";
 | 
						|
  OS.indent(Indentation) << "                                   uint64_t "
 | 
						|
    << "Address, const void *Decoder) {\n";
 | 
						|
  Indentation += 2;
 | 
						|
  OS.indent(Indentation) << "InsnType tmp;\n";
 | 
						|
  OS.indent(Indentation) << "switch (Idx) {\n";
 | 
						|
  OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
 | 
						|
  unsigned Index = 0;
 | 
						|
  for (DecoderSet::const_iterator I = Decoders.begin(), E = Decoders.end();
 | 
						|
       I != E; ++I, ++Index) {
 | 
						|
    OS.indent(Indentation) << "case " << Index << ":\n";
 | 
						|
    OS << *I;
 | 
						|
    OS.indent(Indentation+2) << "return S;\n";
 | 
						|
  }
 | 
						|
  OS.indent(Indentation) << "}\n";
 | 
						|
  Indentation -= 2;
 | 
						|
  OS.indent(Indentation) << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
// Populates the field of the insn given the start position and the number of
 | 
						|
// consecutive bits to scan for.
 | 
						|
//
 | 
						|
// Returns false if and on the first uninitialized bit value encountered.
 | 
						|
// Returns true, otherwise.
 | 
						|
bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
 | 
						|
                                  unsigned StartBit, unsigned NumBits) const {
 | 
						|
  Field = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumBits; ++i) {
 | 
						|
    if (Insn[StartBit + i] == BIT_UNSET)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (Insn[StartBit + i] == BIT_TRUE)
 | 
						|
      Field = Field | (1ULL << i);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
 | 
						|
/// filter array as a series of chars.
 | 
						|
void FilterChooser::dumpFilterArray(raw_ostream &o,
 | 
						|
                                 const std::vector<bit_value_t> &filter) const {
 | 
						|
  for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
 | 
						|
    switch (filter[bitIndex - 1]) {
 | 
						|
    case BIT_UNFILTERED:
 | 
						|
      o << ".";
 | 
						|
      break;
 | 
						|
    case BIT_UNSET:
 | 
						|
      o << "_";
 | 
						|
      break;
 | 
						|
    case BIT_TRUE:
 | 
						|
      o << "1";
 | 
						|
      break;
 | 
						|
    case BIT_FALSE:
 | 
						|
      o << "0";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// dumpStack - dumpStack traverses the filter chooser chain and calls
 | 
						|
/// dumpFilterArray on each filter chooser up to the top level one.
 | 
						|
void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
 | 
						|
  const FilterChooser *current = this;
 | 
						|
 | 
						|
  while (current) {
 | 
						|
    o << prefix;
 | 
						|
    dumpFilterArray(o, current->FilterBitValues);
 | 
						|
    o << '\n';
 | 
						|
    current = current->Parent;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Called from Filter::recurse() when singleton exists.  For debug purpose.
 | 
						|
void FilterChooser::SingletonExists(unsigned Opc) const {
 | 
						|
  insn_t Insn0;
 | 
						|
  insnWithID(Insn0, Opc);
 | 
						|
 | 
						|
  errs() << "Singleton exists: " << nameWithID(Opc)
 | 
						|
         << " with its decoding dominating ";
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
    if (Opcodes[i] == Opc) continue;
 | 
						|
    errs() << nameWithID(Opcodes[i]) << ' ';
 | 
						|
  }
 | 
						|
  errs() << '\n';
 | 
						|
 | 
						|
  dumpStack(errs(), "\t\t");
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
    const std::string &Name = nameWithID(Opcodes[i]);
 | 
						|
 | 
						|
    errs() << '\t' << Name << " ";
 | 
						|
    dumpBits(errs(),
 | 
						|
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | 
						|
    errs() << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Calculates the island(s) needed to decode the instruction.
 | 
						|
// This returns a list of undecoded bits of an instructions, for example,
 | 
						|
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
 | 
						|
// decoded bits in order to verify that the instruction matches the Opcode.
 | 
						|
unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
 | 
						|
                                   std::vector<unsigned> &EndBits,
 | 
						|
                                   std::vector<uint64_t> &FieldVals,
 | 
						|
                                   const insn_t &Insn) const {
 | 
						|
  unsigned Num, BitNo;
 | 
						|
  Num = BitNo = 0;
 | 
						|
 | 
						|
  uint64_t FieldVal = 0;
 | 
						|
 | 
						|
  // 0: Init
 | 
						|
  // 1: Water (the bit value does not affect decoding)
 | 
						|
  // 2: Island (well-known bit value needed for decoding)
 | 
						|
  int State = 0;
 | 
						|
  int Val = -1;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < BitWidth; ++i) {
 | 
						|
    Val = Value(Insn[i]);
 | 
						|
    bool Filtered = PositionFiltered(i);
 | 
						|
    switch (State) {
 | 
						|
    default: llvm_unreachable("Unreachable code!");
 | 
						|
    case 0:
 | 
						|
    case 1:
 | 
						|
      if (Filtered || Val == -1)
 | 
						|
        State = 1; // Still in Water
 | 
						|
      else {
 | 
						|
        State = 2; // Into the Island
 | 
						|
        BitNo = 0;
 | 
						|
        StartBits.push_back(i);
 | 
						|
        FieldVal = Val;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      if (Filtered || Val == -1) {
 | 
						|
        State = 1; // Into the Water
 | 
						|
        EndBits.push_back(i - 1);
 | 
						|
        FieldVals.push_back(FieldVal);
 | 
						|
        ++Num;
 | 
						|
      } else {
 | 
						|
        State = 2; // Still in Island
 | 
						|
        ++BitNo;
 | 
						|
        FieldVal = FieldVal | Val << BitNo;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If we are still in Island after the loop, do some housekeeping.
 | 
						|
  if (State == 2) {
 | 
						|
    EndBits.push_back(BitWidth - 1);
 | 
						|
    FieldVals.push_back(FieldVal);
 | 
						|
    ++Num;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(StartBits.size() == Num && EndBits.size() == Num &&
 | 
						|
         FieldVals.size() == Num);
 | 
						|
  return Num;
 | 
						|
}
 | 
						|
 | 
						|
void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
 | 
						|
                                     const OperandInfo &OpInfo) const {
 | 
						|
  const std::string &Decoder = OpInfo.Decoder;
 | 
						|
 | 
						|
  if (OpInfo.numFields() == 1) {
 | 
						|
    OperandInfo::const_iterator OI = OpInfo.begin();
 | 
						|
    o.indent(Indentation) << "tmp = fieldFromInstruction"
 | 
						|
                          << "(insn, " << OI->Base << ", " << OI->Width
 | 
						|
                          << ");\n";
 | 
						|
  } else {
 | 
						|
    o.indent(Indentation) << "tmp = 0;\n";
 | 
						|
    for (OperandInfo::const_iterator OI = OpInfo.begin(), OE = OpInfo.end();
 | 
						|
         OI != OE; ++OI) {
 | 
						|
      o.indent(Indentation) << "tmp |= (fieldFromInstruction"
 | 
						|
                            << "(insn, " << OI->Base << ", " << OI->Width
 | 
						|
                            << ") << " << OI->Offset << ");\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Decoder != "")
 | 
						|
    o.indent(Indentation) << Emitter->GuardPrefix << Decoder
 | 
						|
                          << "(MI, tmp, Address, Decoder)"
 | 
						|
                          << Emitter->GuardPostfix << "\n";
 | 
						|
  else
 | 
						|
    o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n";
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
 | 
						|
                                unsigned Opc) const {
 | 
						|
  std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter =
 | 
						|
    Operands.find(Opc);
 | 
						|
  const std::vector<OperandInfo>& InsnOperands = OpIter->second;
 | 
						|
  for (std::vector<OperandInfo>::const_iterator
 | 
						|
       I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
 | 
						|
    // If a custom instruction decoder was specified, use that.
 | 
						|
    if (I->numFields() == 0 && I->Decoder.size()) {
 | 
						|
      OS.indent(Indentation) << Emitter->GuardPrefix << I->Decoder
 | 
						|
        << "(MI, insn, Address, Decoder)"
 | 
						|
        << Emitter->GuardPostfix << "\n";
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    emitBinaryParser(OS, Indentation, *I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
 | 
						|
                                        unsigned Opc) const {
 | 
						|
  // Build up the predicate string.
 | 
						|
  SmallString<256> Decoder;
 | 
						|
  // FIXME: emitDecoder() function can take a buffer directly rather than
 | 
						|
  // a stream.
 | 
						|
  raw_svector_ostream S(Decoder);
 | 
						|
  unsigned I = 4;
 | 
						|
  emitDecoder(S, I, Opc);
 | 
						|
  S.flush();
 | 
						|
 | 
						|
  // Using the full decoder string as the key value here is a bit
 | 
						|
  // heavyweight, but is effective. If the string comparisons become a
 | 
						|
  // performance concern, we can implement a mangling of the predicate
 | 
						|
  // data easilly enough with a map back to the actual string. That's
 | 
						|
  // overkill for now, though.
 | 
						|
 | 
						|
  // Make sure the predicate is in the table.
 | 
						|
  Decoders.insert(Decoder.str());
 | 
						|
  // Now figure out the index for when we write out the table.
 | 
						|
  DecoderSet::const_iterator P = std::find(Decoders.begin(),
 | 
						|
                                           Decoders.end(),
 | 
						|
                                           Decoder.str());
 | 
						|
  return (unsigned)(P - Decoders.begin());
 | 
						|
}
 | 
						|
 | 
						|
static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
 | 
						|
                                     const std::string &PredicateNamespace) {
 | 
						|
  if (str[0] == '!')
 | 
						|
    o << "!(Bits & " << PredicateNamespace << "::"
 | 
						|
      << str.slice(1,str.size()) << ")";
 | 
						|
  else
 | 
						|
    o << "(Bits & " << PredicateNamespace << "::" << str << ")";
 | 
						|
}
 | 
						|
 | 
						|
bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
 | 
						|
                                       unsigned Opc) const {
 | 
						|
  ListInit *Predicates =
 | 
						|
    AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
 | 
						|
  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
 | 
						|
    Record *Pred = Predicates->getElementAsRecord(i);
 | 
						|
    if (!Pred->getValue("AssemblerMatcherPredicate"))
 | 
						|
      continue;
 | 
						|
 | 
						|
    std::string P = Pred->getValueAsString("AssemblerCondString");
 | 
						|
 | 
						|
    if (!P.length())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (i != 0)
 | 
						|
      o << " && ";
 | 
						|
 | 
						|
    StringRef SR(P);
 | 
						|
    std::pair<StringRef, StringRef> pairs = SR.split(',');
 | 
						|
    while (pairs.second.size()) {
 | 
						|
      emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
 | 
						|
      o << " && ";
 | 
						|
      pairs = pairs.second.split(',');
 | 
						|
    }
 | 
						|
    emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
 | 
						|
  }
 | 
						|
  return Predicates->getSize() > 0;
 | 
						|
}
 | 
						|
 | 
						|
bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
 | 
						|
  ListInit *Predicates =
 | 
						|
    AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
 | 
						|
  for (unsigned i = 0; i < Predicates->getSize(); ++i) {
 | 
						|
    Record *Pred = Predicates->getElementAsRecord(i);
 | 
						|
    if (!Pred->getValue("AssemblerMatcherPredicate"))
 | 
						|
      continue;
 | 
						|
 | 
						|
    std::string P = Pred->getValueAsString("AssemblerCondString");
 | 
						|
 | 
						|
    if (!P.length())
 | 
						|
      continue;
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
 | 
						|
                                          StringRef Predicate) const {
 | 
						|
  // Using the full predicate string as the key value here is a bit
 | 
						|
  // heavyweight, but is effective. If the string comparisons become a
 | 
						|
  // performance concern, we can implement a mangling of the predicate
 | 
						|
  // data easilly enough with a map back to the actual string. That's
 | 
						|
  // overkill for now, though.
 | 
						|
 | 
						|
  // Make sure the predicate is in the table.
 | 
						|
  TableInfo.Predicates.insert(Predicate.str());
 | 
						|
  // Now figure out the index for when we write out the table.
 | 
						|
  PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(),
 | 
						|
                                             TableInfo.Predicates.end(),
 | 
						|
                                             Predicate.str());
 | 
						|
  return (unsigned)(P - TableInfo.Predicates.begin());
 | 
						|
}
 | 
						|
 | 
						|
void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                                            unsigned Opc) const {
 | 
						|
  if (!doesOpcodeNeedPredicate(Opc))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Build up the predicate string.
 | 
						|
  SmallString<256> Predicate;
 | 
						|
  // FIXME: emitPredicateMatch() functions can take a buffer directly rather
 | 
						|
  // than a stream.
 | 
						|
  raw_svector_ostream PS(Predicate);
 | 
						|
  unsigned I = 0;
 | 
						|
  emitPredicateMatch(PS, I, Opc);
 | 
						|
 | 
						|
  // Figure out the index into the predicate table for the predicate just
 | 
						|
  // computed.
 | 
						|
  unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
 | 
						|
  SmallString<16> PBytes;
 | 
						|
  raw_svector_ostream S(PBytes);
 | 
						|
  encodeULEB128(PIdx, S);
 | 
						|
  S.flush();
 | 
						|
 | 
						|
  TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
 | 
						|
  // Predicate index
 | 
						|
  for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
 | 
						|
    TableInfo.Table.push_back(PBytes[i]);
 | 
						|
  // Push location for NumToSkip backpatching.
 | 
						|
  TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
 | 
						|
  TableInfo.Table.push_back(0);
 | 
						|
  TableInfo.Table.push_back(0);
 | 
						|
}
 | 
						|
 | 
						|
void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                                           unsigned Opc) const {
 | 
						|
  BitsInit *SFBits =
 | 
						|
    AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail");
 | 
						|
  if (!SFBits) return;
 | 
						|
  BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst");
 | 
						|
 | 
						|
  APInt PositiveMask(BitWidth, 0ULL);
 | 
						|
  APInt NegativeMask(BitWidth, 0ULL);
 | 
						|
  for (unsigned i = 0; i < BitWidth; ++i) {
 | 
						|
    bit_value_t B = bitFromBits(*SFBits, i);
 | 
						|
    bit_value_t IB = bitFromBits(*InstBits, i);
 | 
						|
 | 
						|
    if (B != BIT_TRUE) continue;
 | 
						|
 | 
						|
    switch (IB) {
 | 
						|
    case BIT_FALSE:
 | 
						|
      // The bit is meant to be false, so emit a check to see if it is true.
 | 
						|
      PositiveMask.setBit(i);
 | 
						|
      break;
 | 
						|
    case BIT_TRUE:
 | 
						|
      // The bit is meant to be true, so emit a check to see if it is false.
 | 
						|
      NegativeMask.setBit(i);
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      // The bit is not set; this must be an error!
 | 
						|
      StringRef Name = AllInstructions[Opc]->TheDef->getName();
 | 
						|
      errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name
 | 
						|
             << " is set but Inst{" << i << "} is unset!\n"
 | 
						|
             << "  - You can only mark a bit as SoftFail if it is fully defined"
 | 
						|
             << " (1/0 - not '?') in Inst\n";
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool NeedPositiveMask = PositiveMask.getBoolValue();
 | 
						|
  bool NeedNegativeMask = NegativeMask.getBoolValue();
 | 
						|
 | 
						|
  if (!NeedPositiveMask && !NeedNegativeMask)
 | 
						|
    return;
 | 
						|
 | 
						|
  TableInfo.Table.push_back(MCD::OPC_SoftFail);
 | 
						|
 | 
						|
  SmallString<16> MaskBytes;
 | 
						|
  raw_svector_ostream S(MaskBytes);
 | 
						|
  if (NeedPositiveMask) {
 | 
						|
    encodeULEB128(PositiveMask.getZExtValue(), S);
 | 
						|
    S.flush();
 | 
						|
    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
 | 
						|
      TableInfo.Table.push_back(MaskBytes[i]);
 | 
						|
  } else
 | 
						|
    TableInfo.Table.push_back(0);
 | 
						|
  if (NeedNegativeMask) {
 | 
						|
    MaskBytes.clear();
 | 
						|
    S.resync();
 | 
						|
    encodeULEB128(NegativeMask.getZExtValue(), S);
 | 
						|
    S.flush();
 | 
						|
    for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
 | 
						|
      TableInfo.Table.push_back(MaskBytes[i]);
 | 
						|
  } else
 | 
						|
    TableInfo.Table.push_back(0);
 | 
						|
}
 | 
						|
 | 
						|
// Emits table entries to decode the singleton.
 | 
						|
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                                            unsigned Opc) const {
 | 
						|
  std::vector<unsigned> StartBits;
 | 
						|
  std::vector<unsigned> EndBits;
 | 
						|
  std::vector<uint64_t> FieldVals;
 | 
						|
  insn_t Insn;
 | 
						|
  insnWithID(Insn, Opc);
 | 
						|
 | 
						|
  // Look for islands of undecoded bits of the singleton.
 | 
						|
  getIslands(StartBits, EndBits, FieldVals, Insn);
 | 
						|
 | 
						|
  unsigned Size = StartBits.size();
 | 
						|
 | 
						|
  // Emit the predicate table entry if one is needed.
 | 
						|
  emitPredicateTableEntry(TableInfo, Opc);
 | 
						|
 | 
						|
  // Check any additional encoding fields needed.
 | 
						|
  for (unsigned I = Size; I != 0; --I) {
 | 
						|
    unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
 | 
						|
    TableInfo.Table.push_back(MCD::OPC_CheckField);
 | 
						|
    TableInfo.Table.push_back(StartBits[I-1]);
 | 
						|
    TableInfo.Table.push_back(NumBits);
 | 
						|
    uint8_t Buffer[8], *p;
 | 
						|
    encodeULEB128(FieldVals[I-1], Buffer);
 | 
						|
    for (p = Buffer; *p >= 128 ; ++p)
 | 
						|
      TableInfo.Table.push_back(*p);
 | 
						|
    TableInfo.Table.push_back(*p);
 | 
						|
    // Push location for NumToSkip backpatching.
 | 
						|
    TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
 | 
						|
    // The fixup is always 16-bits, so go ahead and allocate the space
 | 
						|
    // in the table so all our relative position calculations work OK even
 | 
						|
    // before we fully resolve the real value here.
 | 
						|
    TableInfo.Table.push_back(0);
 | 
						|
    TableInfo.Table.push_back(0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for soft failure of the match.
 | 
						|
  emitSoftFailTableEntry(TableInfo, Opc);
 | 
						|
 | 
						|
  TableInfo.Table.push_back(MCD::OPC_Decode);
 | 
						|
  uint8_t Buffer[8], *p;
 | 
						|
  encodeULEB128(Opc, Buffer);
 | 
						|
  for (p = Buffer; *p >= 128 ; ++p)
 | 
						|
    TableInfo.Table.push_back(*p);
 | 
						|
  TableInfo.Table.push_back(*p);
 | 
						|
 | 
						|
  unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc);
 | 
						|
  SmallString<16> Bytes;
 | 
						|
  raw_svector_ostream S(Bytes);
 | 
						|
  encodeULEB128(DIdx, S);
 | 
						|
  S.flush();
 | 
						|
 | 
						|
  // Decoder index
 | 
						|
  for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
 | 
						|
    TableInfo.Table.push_back(Bytes[i]);
 | 
						|
}
 | 
						|
 | 
						|
// Emits table entries to decode the singleton, and then to decode the rest.
 | 
						|
void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
 | 
						|
                                            const Filter &Best) const {
 | 
						|
  unsigned Opc = Best.getSingletonOpc();
 | 
						|
 | 
						|
  // complex singletons need predicate checks from the first singleton
 | 
						|
  // to refer forward to the variable filterchooser that follows.
 | 
						|
  TableInfo.FixupStack.push_back(FixupList());
 | 
						|
 | 
						|
  emitSingletonTableEntry(TableInfo, Opc);
 | 
						|
 | 
						|
  resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
 | 
						|
                     TableInfo.Table.size());
 | 
						|
  TableInfo.FixupStack.pop_back();
 | 
						|
 | 
						|
  Best.getVariableFC().emitTableEntries(TableInfo);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Assign a single filter and run with it.  Top level API client can initialize
 | 
						|
// with a single filter to start the filtering process.
 | 
						|
void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
 | 
						|
                                    bool mixed) {
 | 
						|
  Filters.clear();
 | 
						|
  Filter F(*this, startBit, numBit, true);
 | 
						|
  Filters.push_back(F);
 | 
						|
  BestIndex = 0; // Sole Filter instance to choose from.
 | 
						|
  bestFilter().recurse();
 | 
						|
}
 | 
						|
 | 
						|
// reportRegion is a helper function for filterProcessor to mark a region as
 | 
						|
// eligible for use as a filter region.
 | 
						|
void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
 | 
						|
                                 unsigned BitIndex, bool AllowMixed) {
 | 
						|
  if (RA == ATTR_MIXED && AllowMixed)
 | 
						|
    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
 | 
						|
  else if (RA == ATTR_ALL_SET && !AllowMixed)
 | 
						|
    Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
 | 
						|
}
 | 
						|
 | 
						|
// FilterProcessor scans the well-known encoding bits of the instructions and
 | 
						|
// builds up a list of candidate filters.  It chooses the best filter and
 | 
						|
// recursively descends down the decoding tree.
 | 
						|
bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
 | 
						|
  Filters.clear();
 | 
						|
  BestIndex = -1;
 | 
						|
  unsigned numInstructions = Opcodes.size();
 | 
						|
 | 
						|
  assert(numInstructions && "Filter created with no instructions");
 | 
						|
 | 
						|
  // No further filtering is necessary.
 | 
						|
  if (numInstructions == 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
 | 
						|
  // instructions is 3.
 | 
						|
  if (AllowMixed && !Greedy) {
 | 
						|
    assert(numInstructions == 3);
 | 
						|
 | 
						|
    for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
      std::vector<unsigned> StartBits;
 | 
						|
      std::vector<unsigned> EndBits;
 | 
						|
      std::vector<uint64_t> FieldVals;
 | 
						|
      insn_t Insn;
 | 
						|
 | 
						|
      insnWithID(Insn, Opcodes[i]);
 | 
						|
 | 
						|
      // Look for islands of undecoded bits of any instruction.
 | 
						|
      if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
 | 
						|
        // Found an instruction with island(s).  Now just assign a filter.
 | 
						|
        runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BitIndex;
 | 
						|
 | 
						|
  // We maintain BIT_WIDTH copies of the bitAttrs automaton.
 | 
						|
  // The automaton consumes the corresponding bit from each
 | 
						|
  // instruction.
 | 
						|
  //
 | 
						|
  //   Input symbols: 0, 1, and _ (unset).
 | 
						|
  //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
 | 
						|
  //   Initial state: NONE.
 | 
						|
  //
 | 
						|
  // (NONE) ------- [01] -> (ALL_SET)
 | 
						|
  // (NONE) ------- _ ----> (ALL_UNSET)
 | 
						|
  // (ALL_SET) ---- [01] -> (ALL_SET)
 | 
						|
  // (ALL_SET) ---- _ ----> (MIXED)
 | 
						|
  // (ALL_UNSET) -- [01] -> (MIXED)
 | 
						|
  // (ALL_UNSET) -- _ ----> (ALL_UNSET)
 | 
						|
  // (MIXED) ------ . ----> (MIXED)
 | 
						|
  // (FILTERED)---- . ----> (FILTERED)
 | 
						|
 | 
						|
  std::vector<bitAttr_t> bitAttrs;
 | 
						|
 | 
						|
  // FILTERED bit positions provide no entropy and are not worthy of pursuing.
 | 
						|
  // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
 | 
						|
  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
 | 
						|
    if (FilterBitValues[BitIndex] == BIT_TRUE ||
 | 
						|
        FilterBitValues[BitIndex] == BIT_FALSE)
 | 
						|
      bitAttrs.push_back(ATTR_FILTERED);
 | 
						|
    else
 | 
						|
      bitAttrs.push_back(ATTR_NONE);
 | 
						|
 | 
						|
  for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
 | 
						|
    insn_t insn;
 | 
						|
 | 
						|
    insnWithID(insn, Opcodes[InsnIndex]);
 | 
						|
 | 
						|
    for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
 | 
						|
      switch (bitAttrs[BitIndex]) {
 | 
						|
      case ATTR_NONE:
 | 
						|
        if (insn[BitIndex] == BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_ALL_UNSET;
 | 
						|
        else
 | 
						|
          bitAttrs[BitIndex] = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        if (insn[BitIndex] == BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        if (insn[BitIndex] != BIT_UNSET)
 | 
						|
          bitAttrs[BitIndex] = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The regionAttr automaton consumes the bitAttrs automatons' state,
 | 
						|
  // lowest-to-highest.
 | 
						|
  //
 | 
						|
  //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
 | 
						|
  //   States:        NONE, ALL_SET, MIXED
 | 
						|
  //   Initial state: NONE
 | 
						|
  //
 | 
						|
  // (NONE) ----- F --> (NONE)
 | 
						|
  // (NONE) ----- S --> (ALL_SET)     ; and set region start
 | 
						|
  // (NONE) ----- U --> (NONE)
 | 
						|
  // (NONE) ----- M --> (MIXED)       ; and set region start
 | 
						|
  // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
 | 
						|
  // (ALL_SET) -- S --> (ALL_SET)
 | 
						|
  // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
 | 
						|
  // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
 | 
						|
  // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
 | 
						|
  // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
 | 
						|
  // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
 | 
						|
  // (MIXED) ---- M --> (MIXED)
 | 
						|
 | 
						|
  bitAttr_t RA = ATTR_NONE;
 | 
						|
  unsigned StartBit = 0;
 | 
						|
 | 
						|
  for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
 | 
						|
    bitAttr_t bitAttr = bitAttrs[BitIndex];
 | 
						|
 | 
						|
    assert(bitAttr != ATTR_NONE && "Bit without attributes");
 | 
						|
 | 
						|
    switch (RA) {
 | 
						|
    case ATTR_NONE:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_ALL_SET:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_MIXED;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_MIXED:
 | 
						|
      switch (bitAttr) {
 | 
						|
      case ATTR_FILTERED:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_SET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        StartBit = BitIndex;
 | 
						|
        RA = ATTR_ALL_SET;
 | 
						|
        break;
 | 
						|
      case ATTR_ALL_UNSET:
 | 
						|
        reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
        RA = ATTR_NONE;
 | 
						|
        break;
 | 
						|
      case ATTR_MIXED:
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unexpected bitAttr!");
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case ATTR_ALL_UNSET:
 | 
						|
      llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
 | 
						|
    case ATTR_FILTERED:
 | 
						|
      llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // At the end, if we're still in ALL_SET or MIXED states, report a region
 | 
						|
  switch (RA) {
 | 
						|
  case ATTR_NONE:
 | 
						|
    break;
 | 
						|
  case ATTR_FILTERED:
 | 
						|
    break;
 | 
						|
  case ATTR_ALL_SET:
 | 
						|
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
    break;
 | 
						|
  case ATTR_ALL_UNSET:
 | 
						|
    break;
 | 
						|
  case ATTR_MIXED:
 | 
						|
    reportRegion(RA, StartBit, BitIndex, AllowMixed);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have finished with the filter processings.  Now it's time to choose
 | 
						|
  // the best performing filter.
 | 
						|
  BestIndex = 0;
 | 
						|
  bool AllUseless = true;
 | 
						|
  unsigned BestScore = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
 | 
						|
    unsigned Usefulness = Filters[i].usefulness();
 | 
						|
 | 
						|
    if (Usefulness)
 | 
						|
      AllUseless = false;
 | 
						|
 | 
						|
    if (Usefulness > BestScore) {
 | 
						|
      BestIndex = i;
 | 
						|
      BestScore = Usefulness;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AllUseless)
 | 
						|
    bestFilter().recurse();
 | 
						|
 | 
						|
  return !AllUseless;
 | 
						|
} // end of FilterChooser::filterProcessor(bool)
 | 
						|
 | 
						|
// Decides on the best configuration of filter(s) to use in order to decode
 | 
						|
// the instructions.  A conflict of instructions may occur, in which case we
 | 
						|
// dump the conflict set to the standard error.
 | 
						|
void FilterChooser::doFilter() {
 | 
						|
  unsigned Num = Opcodes.size();
 | 
						|
  assert(Num && "FilterChooser created with no instructions");
 | 
						|
 | 
						|
  // Try regions of consecutive known bit values first.
 | 
						|
  if (filterProcessor(false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Then regions of mixed bits (both known and unitialized bit values allowed).
 | 
						|
  if (filterProcessor(true))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
 | 
						|
  // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
 | 
						|
  // well-known encoding pattern.  In such case, we backtrack and scan for the
 | 
						|
  // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
 | 
						|
  if (Num == 3 && filterProcessor(true, false))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If we come to here, the instruction decoding has failed.
 | 
						|
  // Set the BestIndex to -1 to indicate so.
 | 
						|
  BestIndex = -1;
 | 
						|
}
 | 
						|
 | 
						|
// emitTableEntries - Emit state machine entries to decode our share of
 | 
						|
// instructions.
 | 
						|
void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
 | 
						|
  if (Opcodes.size() == 1) {
 | 
						|
    // There is only one instruction in the set, which is great!
 | 
						|
    // Call emitSingletonDecoder() to see whether there are any remaining
 | 
						|
    // encodings bits.
 | 
						|
    emitSingletonTableEntry(TableInfo, Opcodes[0]);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Choose the best filter to do the decodings!
 | 
						|
  if (BestIndex != -1) {
 | 
						|
    const Filter &Best = Filters[BestIndex];
 | 
						|
    if (Best.getNumFiltered() == 1)
 | 
						|
      emitSingletonTableEntry(TableInfo, Best);
 | 
						|
    else
 | 
						|
      Best.emitTableEntry(TableInfo);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We don't know how to decode these instructions!  Dump the
 | 
						|
  // conflict set and bail.
 | 
						|
 | 
						|
  // Print out useful conflict information for postmortem analysis.
 | 
						|
  errs() << "Decoding Conflict:\n";
 | 
						|
 | 
						|
  dumpStack(errs(), "\t\t");
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Opcodes.size(); ++i) {
 | 
						|
    const std::string &Name = nameWithID(Opcodes[i]);
 | 
						|
 | 
						|
    errs() << '\t' << Name << " ";
 | 
						|
    dumpBits(errs(),
 | 
						|
             getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
 | 
						|
    errs() << '\n';
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool populateInstruction(const CodeGenInstruction &CGI, unsigned Opc,
 | 
						|
                       std::map<unsigned, std::vector<OperandInfo> > &Operands){
 | 
						|
  const Record &Def = *CGI.TheDef;
 | 
						|
  // If all the bit positions are not specified; do not decode this instruction.
 | 
						|
  // We are bound to fail!  For proper disassembly, the well-known encoding bits
 | 
						|
  // of the instruction must be fully specified.
 | 
						|
  //
 | 
						|
  // This also removes pseudo instructions from considerations of disassembly,
 | 
						|
  // which is a better design and less fragile than the name matchings.
 | 
						|
  // Ignore "asm parser only" instructions.
 | 
						|
  if (Def.getValueAsBit("isAsmParserOnly") ||
 | 
						|
      Def.getValueAsBit("isCodeGenOnly"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  BitsInit &Bits = getBitsField(Def, "Inst");
 | 
						|
  if (Bits.allInComplete()) return false;
 | 
						|
 | 
						|
  std::vector<OperandInfo> InsnOperands;
 | 
						|
 | 
						|
  // If the instruction has specified a custom decoding hook, use that instead
 | 
						|
  // of trying to auto-generate the decoder.
 | 
						|
  std::string InstDecoder = Def.getValueAsString("DecoderMethod");
 | 
						|
  if (InstDecoder != "") {
 | 
						|
    InsnOperands.push_back(OperandInfo(InstDecoder));
 | 
						|
    Operands[Opc] = InsnOperands;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate a description of the operand of the instruction that we know
 | 
						|
  // how to decode automatically.
 | 
						|
  // FIXME: We'll need to have a way to manually override this as needed.
 | 
						|
 | 
						|
  // Gather the outputs/inputs of the instruction, so we can find their
 | 
						|
  // positions in the encoding.  This assumes for now that they appear in the
 | 
						|
  // MCInst in the order that they're listed.
 | 
						|
  std::vector<std::pair<Init*, std::string> > InOutOperands;
 | 
						|
  DagInit *Out  = Def.getValueAsDag("OutOperandList");
 | 
						|
  DagInit *In  = Def.getValueAsDag("InOperandList");
 | 
						|
  for (unsigned i = 0; i < Out->getNumArgs(); ++i)
 | 
						|
    InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
 | 
						|
  for (unsigned i = 0; i < In->getNumArgs(); ++i)
 | 
						|
    InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
 | 
						|
 | 
						|
  // Search for tied operands, so that we can correctly instantiate
 | 
						|
  // operands that are not explicitly represented in the encoding.
 | 
						|
  std::map<std::string, std::string> TiedNames;
 | 
						|
  for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
 | 
						|
    int tiedTo = CGI.Operands[i].getTiedRegister();
 | 
						|
    if (tiedTo != -1) {
 | 
						|
      TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
 | 
						|
      TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For each operand, see if we can figure out where it is encoded.
 | 
						|
  for (std::vector<std::pair<Init*, std::string> >::const_iterator
 | 
						|
       NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
 | 
						|
    std::string Decoder = "";
 | 
						|
 | 
						|
    // At this point, we can locate the field, but we need to know how to
 | 
						|
    // interpret it.  As a first step, require the target to provide callbacks
 | 
						|
    // for decoding register classes.
 | 
						|
    // FIXME: This need to be extended to handle instructions with custom
 | 
						|
    // decoder methods, and operands with (simple) MIOperandInfo's.
 | 
						|
    TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
 | 
						|
    RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
 | 
						|
    Record *TypeRecord = Type->getRecord();
 | 
						|
    bool isReg = false;
 | 
						|
    if (TypeRecord->isSubClassOf("RegisterOperand"))
 | 
						|
      TypeRecord = TypeRecord->getValueAsDef("RegClass");
 | 
						|
    if (TypeRecord->isSubClassOf("RegisterClass")) {
 | 
						|
      Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
 | 
						|
      isReg = true;
 | 
						|
    }
 | 
						|
 | 
						|
    RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
 | 
						|
    StringInit *String = DecoderString ?
 | 
						|
      dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
 | 
						|
    if (!isReg && String && String->getValue() != "")
 | 
						|
      Decoder = String->getValue();
 | 
						|
 | 
						|
    OperandInfo OpInfo(Decoder);
 | 
						|
    unsigned Base = ~0U;
 | 
						|
    unsigned Width = 0;
 | 
						|
    unsigned Offset = 0;
 | 
						|
 | 
						|
    for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
 | 
						|
      VarInit *Var = 0;
 | 
						|
      VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
 | 
						|
      if (BI)
 | 
						|
        Var = dynamic_cast<VarInit*>(BI->getVariable());
 | 
						|
      else
 | 
						|
        Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
 | 
						|
 | 
						|
      if (!Var) {
 | 
						|
        if (Base != ~0U) {
 | 
						|
          OpInfo.addField(Base, Width, Offset);
 | 
						|
          Base = ~0U;
 | 
						|
          Width = 0;
 | 
						|
          Offset = 0;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Var->getName() != NI->second &&
 | 
						|
          Var->getName() != TiedNames[NI->second]) {
 | 
						|
        if (Base != ~0U) {
 | 
						|
          OpInfo.addField(Base, Width, Offset);
 | 
						|
          Base = ~0U;
 | 
						|
          Width = 0;
 | 
						|
          Offset = 0;
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Base == ~0U) {
 | 
						|
        Base = bi;
 | 
						|
        Width = 1;
 | 
						|
        Offset = BI ? BI->getBitNum() : 0;
 | 
						|
      } else if (BI && BI->getBitNum() != Offset + Width) {
 | 
						|
        OpInfo.addField(Base, Width, Offset);
 | 
						|
        Base = bi;
 | 
						|
        Width = 1;
 | 
						|
        Offset = BI->getBitNum();
 | 
						|
      } else {
 | 
						|
        ++Width;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Base != ~0U)
 | 
						|
      OpInfo.addField(Base, Width, Offset);
 | 
						|
 | 
						|
    if (OpInfo.numFields() > 0)
 | 
						|
      InsnOperands.push_back(OpInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  Operands[Opc] = InsnOperands;
 | 
						|
 | 
						|
 | 
						|
#if 0
 | 
						|
  DEBUG({
 | 
						|
      // Dumps the instruction encoding bits.
 | 
						|
      dumpBits(errs(), Bits);
 | 
						|
 | 
						|
      errs() << '\n';
 | 
						|
 | 
						|
      // Dumps the list of operand info.
 | 
						|
      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
 | 
						|
        const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
 | 
						|
        const std::string &OperandName = Info.Name;
 | 
						|
        const Record &OperandDef = *Info.Rec;
 | 
						|
 | 
						|
        errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
 | 
						|
      }
 | 
						|
    });
 | 
						|
#endif
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// emitFieldFromInstruction - Emit the templated helper function
 | 
						|
// fieldFromInstruction().
 | 
						|
static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
 | 
						|
  OS << "// Helper function for extracting fields from encoded instructions.\n"
 | 
						|
     << "template<typename InsnType>\n"
 | 
						|
   << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n"
 | 
						|
     << "                                     unsigned numBits) {\n"
 | 
						|
     << "    assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n"
 | 
						|
     << "           \"Instruction field out of bounds!\");\n"
 | 
						|
     << "    InsnType fieldMask;\n"
 | 
						|
     << "    if (numBits == sizeof(InsnType)*8)\n"
 | 
						|
     << "      fieldMask = (InsnType)(-1LL);\n"
 | 
						|
     << "    else\n"
 | 
						|
     << "      fieldMask = ((1 << numBits) - 1) << startBit;\n"
 | 
						|
     << "    return (insn & fieldMask) >> startBit;\n"
 | 
						|
     << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
// emitDecodeInstruction - Emit the templated helper function
 | 
						|
// decodeInstruction().
 | 
						|
static void emitDecodeInstruction(formatted_raw_ostream &OS) {
 | 
						|
  OS << "template<typename InsnType>\n"
 | 
						|
     << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n"
 | 
						|
     << "                                      InsnType insn, uint64_t Address,\n"
 | 
						|
     << "                                      const void *DisAsm,\n"
 | 
						|
     << "                                      const MCSubtargetInfo &STI) {\n"
 | 
						|
     << "  uint64_t Bits = STI.getFeatureBits();\n"
 | 
						|
     << "\n"
 | 
						|
     << "  const uint8_t *Ptr = DecodeTable;\n"
 | 
						|
     << "  uint32_t CurFieldValue;\n"
 | 
						|
     << "  DecodeStatus S = MCDisassembler::Success;\n"
 | 
						|
     << "  for (;;) {\n"
 | 
						|
     << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
 | 
						|
     << "    switch (*Ptr) {\n"
 | 
						|
     << "    default:\n"
 | 
						|
     << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
 | 
						|
     << "      return MCDisassembler::Fail;\n"
 | 
						|
     << "    case MCD::OPC_ExtractField: {\n"
 | 
						|
     << "      unsigned Start = *++Ptr;\n"
 | 
						|
     << "      unsigned Len = *++Ptr;\n"
 | 
						|
     << "      ++Ptr;\n"
 | 
						|
     << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
 | 
						|
     << "      DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n"
 | 
						|
     << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
 | 
						|
     << "      break;\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "    case MCD::OPC_FilterValue: {\n"
 | 
						|
     << "      // Decode the field value.\n"
 | 
						|
     << "      unsigned Len;\n"
 | 
						|
     << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
 | 
						|
     << "      Ptr += Len;\n"
 | 
						|
     << "      // NumToSkip is a plain 16-bit integer.\n"
 | 
						|
     << "      unsigned NumToSkip = *Ptr++;\n"
 | 
						|
     << "      NumToSkip |= (*Ptr++) << 8;\n"
 | 
						|
     << "\n"
 | 
						|
     << "      // Perform the filter operation.\n"
 | 
						|
     << "      if (Val != CurFieldValue)\n"
 | 
						|
     << "        Ptr += NumToSkip;\n"
 | 
						|
     << "      DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n"
 | 
						|
     << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n"
 | 
						|
     << "                   << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n"
 | 
						|
     << "\n"
 | 
						|
     << "      break;\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "    case MCD::OPC_CheckField: {\n"
 | 
						|
     << "      unsigned Start = *++Ptr;\n"
 | 
						|
     << "      unsigned Len = *++Ptr;\n"
 | 
						|
     << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
 | 
						|
     << "      // Decode the field value.\n"
 | 
						|
     << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
 | 
						|
     << "      Ptr += Len;\n"
 | 
						|
     << "      // NumToSkip is a plain 16-bit integer.\n"
 | 
						|
     << "      unsigned NumToSkip = *Ptr++;\n"
 | 
						|
     << "      NumToSkip |= (*Ptr++) << 8;\n"
 | 
						|
     << "\n"
 | 
						|
     << "      // If the actual and expected values don't match, skip.\n"
 | 
						|
     << "      if (ExpectedValue != FieldValue)\n"
 | 
						|
     << "        Ptr += NumToSkip;\n"
 | 
						|
     << "      DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n"
 | 
						|
     << "                   << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n"
 | 
						|
     << "                   << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n"
 | 
						|
     << "                   << ExpectedValue << \": \"\n"
 | 
						|
     << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n"
 | 
						|
     << "      break;\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "    case MCD::OPC_CheckPredicate: {\n"
 | 
						|
     << "      unsigned Len;\n"
 | 
						|
     << "      // Decode the Predicate Index value.\n"
 | 
						|
     << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
 | 
						|
     << "      Ptr += Len;\n"
 | 
						|
     << "      // NumToSkip is a plain 16-bit integer.\n"
 | 
						|
     << "      unsigned NumToSkip = *Ptr++;\n"
 | 
						|
     << "      NumToSkip |= (*Ptr++) << 8;\n"
 | 
						|
     << "      // Check the predicate.\n"
 | 
						|
     << "      bool Pred;\n"
 | 
						|
     << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
 | 
						|
     << "        Ptr += NumToSkip;\n"
 | 
						|
     << "      (void)Pred;\n"
 | 
						|
     << "      DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n"
 | 
						|
     << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
 | 
						|
     << "\n"
 | 
						|
     << "      break;\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "    case MCD::OPC_Decode: {\n"
 | 
						|
     << "      unsigned Len;\n"
 | 
						|
     << "      // Decode the Opcode value.\n"
 | 
						|
     << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
 | 
						|
     << "      Ptr += Len;\n"
 | 
						|
     << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
 | 
						|
     << "      Ptr += Len;\n"
 | 
						|
     << "      DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
 | 
						|
     << "                   << \", using decoder \" << DecodeIdx << \"\\n\" );\n"
 | 
						|
     << "      DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n"
 | 
						|
     << "\n"
 | 
						|
     << "      MI.setOpcode(Opc);\n"
 | 
						|
     << "      return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "    case MCD::OPC_SoftFail: {\n"
 | 
						|
     << "      // Decode the mask values.\n"
 | 
						|
     << "      unsigned Len;\n"
 | 
						|
     << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
 | 
						|
     << "      Ptr += Len;\n"
 | 
						|
     << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
 | 
						|
     << "      Ptr += Len;\n"
 | 
						|
     << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
 | 
						|
     << "      if (Fail)\n"
 | 
						|
     << "        S = MCDisassembler::SoftFail;\n"
 | 
						|
     << "      DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n"
 | 
						|
     << "      break;\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "    case MCD::OPC_Fail: {\n"
 | 
						|
     << "      DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
 | 
						|
     << "      return MCDisassembler::Fail;\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "    }\n"
 | 
						|
     << "  }\n"
 | 
						|
     << "  llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n"
 | 
						|
     << "}\n\n";
 | 
						|
}
 | 
						|
 | 
						|
// Emits disassembler code for instruction decoding.
 | 
						|
void FixedLenDecoderEmitter::run(raw_ostream &o) {
 | 
						|
  formatted_raw_ostream OS(o);
 | 
						|
  OS << "#include \"llvm/MC/MCInst.h\"\n";
 | 
						|
  OS << "#include \"llvm/Support/Debug.h\"\n";
 | 
						|
  OS << "#include \"llvm/Support/DataTypes.h\"\n";
 | 
						|
  OS << "#include \"llvm/Support/LEB128.h\"\n";
 | 
						|
  OS << "#include \"llvm/Support/raw_ostream.h\"\n";
 | 
						|
  OS << "#include <assert.h>\n";
 | 
						|
  OS << '\n';
 | 
						|
  OS << "namespace llvm {\n\n";
 | 
						|
 | 
						|
  emitFieldFromInstruction(OS);
 | 
						|
 | 
						|
  // Parameterize the decoders based on namespace and instruction width.
 | 
						|
  NumberedInstructions = &Target.getInstructionsByEnumValue();
 | 
						|
  std::map<std::pair<std::string, unsigned>,
 | 
						|
           std::vector<unsigned> > OpcMap;
 | 
						|
  std::map<unsigned, std::vector<OperandInfo> > Operands;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < NumberedInstructions->size(); ++i) {
 | 
						|
    const CodeGenInstruction *Inst = NumberedInstructions->at(i);
 | 
						|
    const Record *Def = Inst->TheDef;
 | 
						|
    unsigned Size = Def->getValueAsInt("Size");
 | 
						|
    if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
 | 
						|
        Def->getValueAsBit("isPseudo") ||
 | 
						|
        Def->getValueAsBit("isAsmParserOnly") ||
 | 
						|
        Def->getValueAsBit("isCodeGenOnly"))
 | 
						|
      continue;
 | 
						|
 | 
						|
    std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
 | 
						|
 | 
						|
    if (Size) {
 | 
						|
      if (populateInstruction(*Inst, i, Operands)) {
 | 
						|
        OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DecoderTableInfo TableInfo;
 | 
						|
  std::set<unsigned> Sizes;
 | 
						|
  for (std::map<std::pair<std::string, unsigned>,
 | 
						|
                std::vector<unsigned> >::const_iterator
 | 
						|
       I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
 | 
						|
    // Emit the decoder for this namespace+width combination.
 | 
						|
    FilterChooser FC(*NumberedInstructions, I->second, Operands,
 | 
						|
                     8*I->first.second, this);
 | 
						|
 | 
						|
    // The decode table is cleared for each top level decoder function. The
 | 
						|
    // predicates and decoders themselves, however, are shared across all
 | 
						|
    // decoders to give more opportunities for uniqueing.
 | 
						|
    TableInfo.Table.clear();
 | 
						|
    TableInfo.FixupStack.clear();
 | 
						|
    TableInfo.Table.reserve(16384);
 | 
						|
    TableInfo.FixupStack.push_back(FixupList());
 | 
						|
    FC.emitTableEntries(TableInfo);
 | 
						|
    // Any NumToSkip fixups in the top level scope can resolve to the
 | 
						|
    // OPC_Fail at the end of the table.
 | 
						|
    assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
 | 
						|
    // Resolve any NumToSkip fixups in the current scope.
 | 
						|
    resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
 | 
						|
                       TableInfo.Table.size());
 | 
						|
    TableInfo.FixupStack.clear();
 | 
						|
 | 
						|
    TableInfo.Table.push_back(MCD::OPC_Fail);
 | 
						|
 | 
						|
    // Print the table to the output stream.
 | 
						|
    emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), I->first.first);
 | 
						|
    OS.flush();
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the predicate function.
 | 
						|
  emitPredicateFunction(OS, TableInfo.Predicates, 0);
 | 
						|
 | 
						|
  // Emit the decoder function.
 | 
						|
  emitDecoderFunction(OS, TableInfo.Decoders, 0);
 | 
						|
 | 
						|
  // Emit the main entry point for the decoder, decodeInstruction().
 | 
						|
  emitDecodeInstruction(OS);
 | 
						|
 | 
						|
  OS << "\n} // End llvm namespace\n";
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
 | 
						|
                         std::string PredicateNamespace,
 | 
						|
                         std::string GPrefix,
 | 
						|
                         std::string GPostfix,
 | 
						|
                         std::string ROK,
 | 
						|
                         std::string RFail,
 | 
						|
                         std::string L) {
 | 
						|
  FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
 | 
						|
                         ROK, RFail, L).run(OS);
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 |