mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	IRCE requires the induction variables it handles to not sign-overflow.
The current scheme of checking if sext({X,+,S}) == {sext(X),+,sext(S)}
fails when SCEV simplifies sext(X) too.  After this change we //also//
check no-signed-wrap by looking at the flags set on the SCEVAddRecExpr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233102 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			1496 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1496 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- InductiveRangeCheckElimination.cpp - ------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
 | 
						|
// three disjoint ranges.  It does that in a way such that the loop running in
 | 
						|
// the middle loop provably does not need range checks. As an example, it will
 | 
						|
// convert
 | 
						|
//
 | 
						|
//   len = < known positive >
 | 
						|
//   for (i = 0; i < n; i++) {
 | 
						|
//     if (0 <= i && i < len) {
 | 
						|
//       do_something();
 | 
						|
//     } else {
 | 
						|
//       throw_out_of_bounds();
 | 
						|
//     }
 | 
						|
//   }
 | 
						|
//
 | 
						|
// to
 | 
						|
//
 | 
						|
//   len = < known positive >
 | 
						|
//   limit = smin(n, len)
 | 
						|
//   // no first segment
 | 
						|
//   for (i = 0; i < limit; i++) {
 | 
						|
//     if (0 <= i && i < len) { // this check is fully redundant
 | 
						|
//       do_something();
 | 
						|
//     } else {
 | 
						|
//       throw_out_of_bounds();
 | 
						|
//     }
 | 
						|
//   }
 | 
						|
//   for (i = limit; i < n; i++) {
 | 
						|
//     if (0 <= i && i < len) {
 | 
						|
//       do_something();
 | 
						|
//     } else {
 | 
						|
//       throw_out_of_bounds();
 | 
						|
//     }
 | 
						|
//   }
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/IR/Verifier.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | 
						|
#include "llvm/Transforms/Utils/UnrollLoop.h"
 | 
						|
#include <array>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
 | 
						|
                                        cl::init(64));
 | 
						|
 | 
						|
static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
 | 
						|
                                       cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
 | 
						|
                                      cl::init(false));
 | 
						|
 | 
						|
static cl::opt<int> MaxExitProbReciprocal("irce-max-exit-prob-reciprocal",
 | 
						|
                                          cl::Hidden, cl::init(10));
 | 
						|
 | 
						|
#define DEBUG_TYPE "irce"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// An inductive range check is conditional branch in a loop with
 | 
						|
///
 | 
						|
///  1. a very cold successor (i.e. the branch jumps to that successor very
 | 
						|
///     rarely)
 | 
						|
///
 | 
						|
///  and
 | 
						|
///
 | 
						|
///  2. a condition that is provably true for some contiguous range of values
 | 
						|
///     taken by the containing loop's induction variable.
 | 
						|
///
 | 
						|
class InductiveRangeCheck {
 | 
						|
  // Classifies a range check
 | 
						|
  enum RangeCheckKind : unsigned {
 | 
						|
    // Range check of the form "0 <= I".
 | 
						|
    RANGE_CHECK_LOWER = 1,
 | 
						|
 | 
						|
    // Range check of the form "I < L" where L is known positive.
 | 
						|
    RANGE_CHECK_UPPER = 2,
 | 
						|
 | 
						|
    // The logical and of the RANGE_CHECK_LOWER and RANGE_CHECK_UPPER
 | 
						|
    // conditions.
 | 
						|
    RANGE_CHECK_BOTH = RANGE_CHECK_LOWER | RANGE_CHECK_UPPER,
 | 
						|
 | 
						|
    // Unrecognized range check condition.
 | 
						|
    RANGE_CHECK_UNKNOWN = (unsigned)-1
 | 
						|
  };
 | 
						|
 | 
						|
  static const char *rangeCheckKindToStr(RangeCheckKind);
 | 
						|
 | 
						|
  const SCEV *Offset;
 | 
						|
  const SCEV *Scale;
 | 
						|
  Value *Length;
 | 
						|
  BranchInst *Branch;
 | 
						|
  RangeCheckKind Kind;
 | 
						|
 | 
						|
  static RangeCheckKind parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
 | 
						|
                                            ScalarEvolution &SE, Value *&Index,
 | 
						|
                                            Value *&Length);
 | 
						|
 | 
						|
  static InductiveRangeCheck::RangeCheckKind
 | 
						|
  parseRangeCheck(Loop *L, ScalarEvolution &SE, Value *Condition,
 | 
						|
                  const SCEV *&Index, Value *&UpperLimit);
 | 
						|
 | 
						|
  InductiveRangeCheck() :
 | 
						|
    Offset(nullptr), Scale(nullptr), Length(nullptr), Branch(nullptr) { }
 | 
						|
 | 
						|
public:
 | 
						|
  const SCEV *getOffset() const { return Offset; }
 | 
						|
  const SCEV *getScale() const { return Scale; }
 | 
						|
  Value *getLength() const { return Length; }
 | 
						|
 | 
						|
  void print(raw_ostream &OS) const {
 | 
						|
    OS << "InductiveRangeCheck:\n";
 | 
						|
    OS << "  Kind: " << rangeCheckKindToStr(Kind) << "\n";
 | 
						|
    OS << "  Offset: ";
 | 
						|
    Offset->print(OS);
 | 
						|
    OS << "  Scale: ";
 | 
						|
    Scale->print(OS);
 | 
						|
    OS << "  Length: ";
 | 
						|
    if (Length)
 | 
						|
      Length->print(OS);
 | 
						|
    else
 | 
						|
      OS << "(null)";
 | 
						|
    OS << "\n  Branch: ";
 | 
						|
    getBranch()->print(OS);
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  void dump() {
 | 
						|
    print(dbgs());
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  BranchInst *getBranch() const { return Branch; }
 | 
						|
 | 
						|
  /// Represents an signed integer range [Range.getBegin(), Range.getEnd()).  If
 | 
						|
  /// R.getEnd() sle R.getBegin(), then R denotes the empty range.
 | 
						|
 | 
						|
  class Range {
 | 
						|
    const SCEV *Begin;
 | 
						|
    const SCEV *End;
 | 
						|
 | 
						|
  public:
 | 
						|
    Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
 | 
						|
      assert(Begin->getType() == End->getType() && "ill-typed range!");
 | 
						|
    }
 | 
						|
 | 
						|
    Type *getType() const { return Begin->getType(); }
 | 
						|
    const SCEV *getBegin() const { return Begin; }
 | 
						|
    const SCEV *getEnd() const { return End; }
 | 
						|
  };
 | 
						|
 | 
						|
  typedef SpecificBumpPtrAllocator<InductiveRangeCheck> AllocatorTy;
 | 
						|
 | 
						|
  /// This is the value the condition of the branch needs to evaluate to for the
 | 
						|
  /// branch to take the hot successor (see (1) above).
 | 
						|
  bool getPassingDirection() { return true; }
 | 
						|
 | 
						|
  /// Computes a range for the induction variable (IndVar) in which the range
 | 
						|
  /// check is redundant and can be constant-folded away.  The induction
 | 
						|
  /// variable is not required to be the canonical {0,+,1} induction variable.
 | 
						|
  Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
 | 
						|
                                            const SCEVAddRecExpr *IndVar,
 | 
						|
                                            IRBuilder<> &B) const;
 | 
						|
 | 
						|
  /// Create an inductive range check out of BI if possible, else return
 | 
						|
  /// nullptr.
 | 
						|
  static InductiveRangeCheck *create(AllocatorTy &Alloc, BranchInst *BI,
 | 
						|
                                     Loop *L, ScalarEvolution &SE,
 | 
						|
                                     BranchProbabilityInfo &BPI);
 | 
						|
};
 | 
						|
 | 
						|
class InductiveRangeCheckElimination : public LoopPass {
 | 
						|
  InductiveRangeCheck::AllocatorTy Allocator;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
  InductiveRangeCheckElimination() : LoopPass(ID) {
 | 
						|
    initializeInductiveRangeCheckEliminationPass(
 | 
						|
        *PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
    AU.addRequiredID(LoopSimplifyID);
 | 
						|
    AU.addRequiredID(LCSSAID);
 | 
						|
    AU.addRequired<ScalarEvolution>();
 | 
						|
    AU.addRequired<BranchProbabilityInfo>();
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | 
						|
};
 | 
						|
 | 
						|
char InductiveRangeCheckElimination::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS(InductiveRangeCheckElimination, "irce",
 | 
						|
                "Inductive range check elimination", false, false)
 | 
						|
 | 
						|
const char *InductiveRangeCheck::rangeCheckKindToStr(
 | 
						|
    InductiveRangeCheck::RangeCheckKind RCK) {
 | 
						|
  switch (RCK) {
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_UNKNOWN:
 | 
						|
    return "RANGE_CHECK_UNKNOWN";
 | 
						|
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_UPPER:
 | 
						|
    return "RANGE_CHECK_UPPER";
 | 
						|
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_LOWER:
 | 
						|
    return "RANGE_CHECK_LOWER";
 | 
						|
 | 
						|
  case InductiveRangeCheck::RANGE_CHECK_BOTH:
 | 
						|
    return "RANGE_CHECK_BOTH";
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("unknown range check type!");
 | 
						|
}
 | 
						|
 | 
						|
/// Parse a single ICmp instruction, `ICI`, into a range check.  If `ICI`
 | 
						|
/// cannot
 | 
						|
/// be interpreted as a range check, return `RANGE_CHECK_UNKNOWN` and set
 | 
						|
/// `Index` and `Length` to `nullptr`.  Otherwise set `Index` to the value
 | 
						|
/// being
 | 
						|
/// range checked, and set `Length` to the upper limit `Index` is being range
 | 
						|
/// checked with if (and only if) the range check type is stronger or equal to
 | 
						|
/// RANGE_CHECK_UPPER.
 | 
						|
///
 | 
						|
InductiveRangeCheck::RangeCheckKind
 | 
						|
InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
 | 
						|
                                         ScalarEvolution &SE, Value *&Index,
 | 
						|
                                         Value *&Length) {
 | 
						|
 | 
						|
  auto IsNonNegativeAndNotLoopVarying = [&SE, L](Value *V) {
 | 
						|
    const SCEV *S = SE.getSCEV(V);
 | 
						|
    if (isa<SCEVCouldNotCompute>(S))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return SE.getLoopDisposition(S, L) == ScalarEvolution::LoopInvariant &&
 | 
						|
           SE.isKnownNonNegative(S);
 | 
						|
  };
 | 
						|
 | 
						|
  using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
  Value *LHS = ICI->getOperand(0);
 | 
						|
  Value *RHS = ICI->getOperand(1);
 | 
						|
 | 
						|
  switch (Pred) {
 | 
						|
  default:
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_SLE:
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  // fallthrough
 | 
						|
  case ICmpInst::ICMP_SGE:
 | 
						|
    if (match(RHS, m_ConstantInt<0>())) {
 | 
						|
      Index = LHS;
 | 
						|
      return RANGE_CHECK_LOWER;
 | 
						|
    }
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_SLT:
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  // fallthrough
 | 
						|
  case ICmpInst::ICMP_SGT:
 | 
						|
    if (match(RHS, m_ConstantInt<-1>())) {
 | 
						|
      Index = LHS;
 | 
						|
      return RANGE_CHECK_LOWER;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IsNonNegativeAndNotLoopVarying(LHS)) {
 | 
						|
      Index = RHS;
 | 
						|
      Length = LHS;
 | 
						|
      return RANGE_CHECK_UPPER;
 | 
						|
    }
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
  case ICmpInst::ICMP_ULT:
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
  // fallthrough
 | 
						|
  case ICmpInst::ICMP_UGT:
 | 
						|
    if (IsNonNegativeAndNotLoopVarying(LHS)) {
 | 
						|
      Index = RHS;
 | 
						|
      Length = LHS;
 | 
						|
      return RANGE_CHECK_BOTH;
 | 
						|
    }
 | 
						|
    return RANGE_CHECK_UNKNOWN;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("default clause returns!");
 | 
						|
}
 | 
						|
 | 
						|
/// Parses an arbitrary condition into a range check.  `Length` is set only if
 | 
						|
/// the range check is recognized to be `RANGE_CHECK_UPPER` or stronger.
 | 
						|
InductiveRangeCheck::RangeCheckKind
 | 
						|
InductiveRangeCheck::parseRangeCheck(Loop *L, ScalarEvolution &SE,
 | 
						|
                                     Value *Condition, const SCEV *&Index,
 | 
						|
                                     Value *&Length) {
 | 
						|
  using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
  Value *A = nullptr;
 | 
						|
  Value *B = nullptr;
 | 
						|
 | 
						|
  if (match(Condition, m_And(m_Value(A), m_Value(B)))) {
 | 
						|
    Value *IndexA = nullptr, *IndexB = nullptr;
 | 
						|
    Value *LengthA = nullptr, *LengthB = nullptr;
 | 
						|
    ICmpInst *ICmpA = dyn_cast<ICmpInst>(A), *ICmpB = dyn_cast<ICmpInst>(B);
 | 
						|
 | 
						|
    if (!ICmpA || !ICmpB)
 | 
						|
      return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
    auto RCKindA = parseRangeCheckICmp(L, ICmpA, SE, IndexA, LengthA);
 | 
						|
    auto RCKindB = parseRangeCheckICmp(L, ICmpB, SE, IndexB, LengthB);
 | 
						|
 | 
						|
    if (RCKindA == InductiveRangeCheck::RANGE_CHECK_UNKNOWN ||
 | 
						|
        RCKindB == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
 | 
						|
      return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
    if (IndexA != IndexB)
 | 
						|
      return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
    if (LengthA != nullptr && LengthB != nullptr && LengthA != LengthB)
 | 
						|
      return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
    Index = SE.getSCEV(IndexA);
 | 
						|
    if (isa<SCEVCouldNotCompute>(Index))
 | 
						|
      return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
    Length = LengthA == nullptr ? LengthB : LengthA;
 | 
						|
 | 
						|
    return (InductiveRangeCheck::RangeCheckKind)(RCKindA | RCKindB);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
 | 
						|
    Value *IndexVal = nullptr;
 | 
						|
 | 
						|
    auto RCKind = parseRangeCheckICmp(L, ICI, SE, IndexVal, Length);
 | 
						|
 | 
						|
    if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
 | 
						|
      return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
    Index = SE.getSCEV(IndexVal);
 | 
						|
    if (isa<SCEVCouldNotCompute>(Index))
 | 
						|
      return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
 | 
						|
    return RCKind;
 | 
						|
  }
 | 
						|
 | 
						|
  return InductiveRangeCheck::RANGE_CHECK_UNKNOWN;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
InductiveRangeCheck *
 | 
						|
InductiveRangeCheck::create(InductiveRangeCheck::AllocatorTy &A, BranchInst *BI,
 | 
						|
                            Loop *L, ScalarEvolution &SE,
 | 
						|
                            BranchProbabilityInfo &BPI) {
 | 
						|
 | 
						|
  if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  BranchProbability LikelyTaken(15, 16);
 | 
						|
 | 
						|
  if (BPI.getEdgeProbability(BI->getParent(), (unsigned) 0) < LikelyTaken)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Value *Length = nullptr;
 | 
						|
  const SCEV *IndexSCEV = nullptr;
 | 
						|
 | 
						|
  auto RCKind = InductiveRangeCheck::parseRangeCheck(L, SE, BI->getCondition(),
 | 
						|
                                                     IndexSCEV, Length);
 | 
						|
 | 
						|
  if (RCKind == InductiveRangeCheck::RANGE_CHECK_UNKNOWN)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(IndexSCEV && "contract with SplitRangeCheckCondition!");
 | 
						|
  assert((!(RCKind & InductiveRangeCheck::RANGE_CHECK_UPPER) || Length) &&
 | 
						|
         "contract with SplitRangeCheckCondition!");
 | 
						|
 | 
						|
  const SCEVAddRecExpr *IndexAddRec = dyn_cast<SCEVAddRecExpr>(IndexSCEV);
 | 
						|
  bool IsAffineIndex =
 | 
						|
      IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
 | 
						|
 | 
						|
  if (!IsAffineIndex)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  InductiveRangeCheck *IRC = new (A.Allocate()) InductiveRangeCheck;
 | 
						|
  IRC->Length = Length;
 | 
						|
  IRC->Offset = IndexAddRec->getStart();
 | 
						|
  IRC->Scale = IndexAddRec->getStepRecurrence(SE);
 | 
						|
  IRC->Branch = BI;
 | 
						|
  IRC->Kind = RCKind;
 | 
						|
  return IRC;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Keeps track of the structure of a loop.  This is similar to llvm::Loop,
 | 
						|
// except that it is more lightweight and can track the state of a loop through
 | 
						|
// changing and potentially invalid IR.  This structure also formalizes the
 | 
						|
// kinds of loops we can deal with -- ones that have a single latch that is also
 | 
						|
// an exiting block *and* have a canonical induction variable.
 | 
						|
struct LoopStructure {
 | 
						|
  const char *Tag;
 | 
						|
 | 
						|
  BasicBlock *Header;
 | 
						|
  BasicBlock *Latch;
 | 
						|
 | 
						|
  // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
 | 
						|
  // successor is `LatchExit', the exit block of the loop.
 | 
						|
  BranchInst *LatchBr;
 | 
						|
  BasicBlock *LatchExit;
 | 
						|
  unsigned LatchBrExitIdx;
 | 
						|
 | 
						|
  Value *IndVarNext;
 | 
						|
  Value *IndVarStart;
 | 
						|
  Value *LoopExitAt;
 | 
						|
  bool IndVarIncreasing;
 | 
						|
 | 
						|
  LoopStructure()
 | 
						|
      : Tag(""), Header(nullptr), Latch(nullptr), LatchBr(nullptr),
 | 
						|
        LatchExit(nullptr), LatchBrExitIdx(-1), IndVarNext(nullptr),
 | 
						|
        IndVarStart(nullptr), LoopExitAt(nullptr), IndVarIncreasing(false) {}
 | 
						|
 | 
						|
  template <typename M> LoopStructure map(M Map) const {
 | 
						|
    LoopStructure Result;
 | 
						|
    Result.Tag = Tag;
 | 
						|
    Result.Header = cast<BasicBlock>(Map(Header));
 | 
						|
    Result.Latch = cast<BasicBlock>(Map(Latch));
 | 
						|
    Result.LatchBr = cast<BranchInst>(Map(LatchBr));
 | 
						|
    Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
 | 
						|
    Result.LatchBrExitIdx = LatchBrExitIdx;
 | 
						|
    Result.IndVarNext = Map(IndVarNext);
 | 
						|
    Result.IndVarStart = Map(IndVarStart);
 | 
						|
    Result.LoopExitAt = Map(LoopExitAt);
 | 
						|
    Result.IndVarIncreasing = IndVarIncreasing;
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &,
 | 
						|
                                                    BranchProbabilityInfo &BPI,
 | 
						|
                                                    Loop &,
 | 
						|
                                                    const char *&);
 | 
						|
};
 | 
						|
 | 
						|
/// This class is used to constrain loops to run within a given iteration space.
 | 
						|
/// The algorithm this class implements is given a Loop and a range [Begin,
 | 
						|
/// End).  The algorithm then tries to break out a "main loop" out of the loop
 | 
						|
/// it is given in a way that the "main loop" runs with the induction variable
 | 
						|
/// in a subset of [Begin, End).  The algorithm emits appropriate pre and post
 | 
						|
/// loops to run any remaining iterations.  The pre loop runs any iterations in
 | 
						|
/// which the induction variable is < Begin, and the post loop runs any
 | 
						|
/// iterations in which the induction variable is >= End.
 | 
						|
///
 | 
						|
class LoopConstrainer {
 | 
						|
  // The representation of a clone of the original loop we started out with.
 | 
						|
  struct ClonedLoop {
 | 
						|
    // The cloned blocks
 | 
						|
    std::vector<BasicBlock *> Blocks;
 | 
						|
 | 
						|
    // `Map` maps values in the clonee into values in the cloned version
 | 
						|
    ValueToValueMapTy Map;
 | 
						|
 | 
						|
    // An instance of `LoopStructure` for the cloned loop
 | 
						|
    LoopStructure Structure;
 | 
						|
  };
 | 
						|
 | 
						|
  // Result of rewriting the range of a loop.  See changeIterationSpaceEnd for
 | 
						|
  // more details on what these fields mean.
 | 
						|
  struct RewrittenRangeInfo {
 | 
						|
    BasicBlock *PseudoExit;
 | 
						|
    BasicBlock *ExitSelector;
 | 
						|
    std::vector<PHINode *> PHIValuesAtPseudoExit;
 | 
						|
    PHINode *IndVarEnd;
 | 
						|
 | 
						|
    RewrittenRangeInfo()
 | 
						|
        : PseudoExit(nullptr), ExitSelector(nullptr), IndVarEnd(nullptr) {}
 | 
						|
  };
 | 
						|
 | 
						|
  // Calculated subranges we restrict the iteration space of the main loop to.
 | 
						|
  // See the implementation of `calculateSubRanges' for more details on how
 | 
						|
  // these fields are computed.  `LowLimit` is None if there is no restriction
 | 
						|
  // on low end of the restricted iteration space of the main loop.  `HighLimit`
 | 
						|
  // is None if there is no restriction on high end of the restricted iteration
 | 
						|
  // space of the main loop.
 | 
						|
 | 
						|
  struct SubRanges {
 | 
						|
    Optional<const SCEV *> LowLimit;
 | 
						|
    Optional<const SCEV *> HighLimit;
 | 
						|
  };
 | 
						|
 | 
						|
  // A utility function that does a `replaceUsesOfWith' on the incoming block
 | 
						|
  // set of a `PHINode' -- replaces instances of `Block' in the `PHINode's
 | 
						|
  // incoming block list with `ReplaceBy'.
 | 
						|
  static void replacePHIBlock(PHINode *PN, BasicBlock *Block,
 | 
						|
                              BasicBlock *ReplaceBy);
 | 
						|
 | 
						|
  // Compute a safe set of limits for the main loop to run in -- effectively the
 | 
						|
  // intersection of `Range' and the iteration space of the original loop.
 | 
						|
  // Return None if unable to compute the set of subranges.
 | 
						|
  //
 | 
						|
  Optional<SubRanges> calculateSubRanges() const;
 | 
						|
 | 
						|
  // Clone `OriginalLoop' and return the result in CLResult.  The IR after
 | 
						|
  // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
 | 
						|
  // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
 | 
						|
  // but there is no such edge.
 | 
						|
  //
 | 
						|
  void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
 | 
						|
 | 
						|
  // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
 | 
						|
  // iteration space of the rewritten loop ends at ExitLoopAt.  The start of the
 | 
						|
  // iteration space is not changed.  `ExitLoopAt' is assumed to be slt
 | 
						|
  // `OriginalHeaderCount'.
 | 
						|
  //
 | 
						|
  // If there are iterations left to execute, control is made to jump to
 | 
						|
  // `ContinuationBlock', otherwise they take the normal loop exit.  The
 | 
						|
  // returned `RewrittenRangeInfo' object is populated as follows:
 | 
						|
  //
 | 
						|
  //  .PseudoExit is a basic block that unconditionally branches to
 | 
						|
  //      `ContinuationBlock'.
 | 
						|
  //
 | 
						|
  //  .ExitSelector is a basic block that decides, on exit from the loop,
 | 
						|
  //      whether to branch to the "true" exit or to `PseudoExit'.
 | 
						|
  //
 | 
						|
  //  .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
 | 
						|
  //      for each PHINode in the loop header on taking the pseudo exit.
 | 
						|
  //
 | 
						|
  // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
 | 
						|
  // preheader because it is made to branch to the loop header only
 | 
						|
  // conditionally.
 | 
						|
  //
 | 
						|
  RewrittenRangeInfo
 | 
						|
  changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
 | 
						|
                          Value *ExitLoopAt,
 | 
						|
                          BasicBlock *ContinuationBlock) const;
 | 
						|
 | 
						|
  // The loop denoted by `LS' has `OldPreheader' as its preheader.  This
 | 
						|
  // function creates a new preheader for `LS' and returns it.
 | 
						|
  //
 | 
						|
  BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
 | 
						|
                              const char *Tag) const;
 | 
						|
 | 
						|
  // `ContinuationBlockAndPreheader' was the continuation block for some call to
 | 
						|
  // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
 | 
						|
  // This function rewrites the PHI nodes in `LS.Header' to start with the
 | 
						|
  // correct value.
 | 
						|
  void rewriteIncomingValuesForPHIs(
 | 
						|
      LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
 | 
						|
      const LoopConstrainer::RewrittenRangeInfo &RRI) const;
 | 
						|
 | 
						|
  // Even though we do not preserve any passes at this time, we at least need to
 | 
						|
  // keep the parent loop structure consistent.  The `LPPassManager' seems to
 | 
						|
  // verify this after running a loop pass.  This function adds the list of
 | 
						|
  // blocks denoted by BBs to this loops parent loop if required.
 | 
						|
  void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
 | 
						|
 | 
						|
  // Some global state.
 | 
						|
  Function &F;
 | 
						|
  LLVMContext &Ctx;
 | 
						|
  ScalarEvolution &SE;
 | 
						|
 | 
						|
  // Information about the original loop we started out with.
 | 
						|
  Loop &OriginalLoop;
 | 
						|
  LoopInfo &OriginalLoopInfo;
 | 
						|
  const SCEV *LatchTakenCount;
 | 
						|
  BasicBlock *OriginalPreheader;
 | 
						|
 | 
						|
  // The preheader of the main loop.  This may or may not be different from
 | 
						|
  // `OriginalPreheader'.
 | 
						|
  BasicBlock *MainLoopPreheader;
 | 
						|
 | 
						|
  // The range we need to run the main loop in.
 | 
						|
  InductiveRangeCheck::Range Range;
 | 
						|
 | 
						|
  // The structure of the main loop (see comment at the beginning of this class
 | 
						|
  // for a definition)
 | 
						|
  LoopStructure MainLoopStructure;
 | 
						|
 | 
						|
public:
 | 
						|
  LoopConstrainer(Loop &L, LoopInfo &LI, const LoopStructure &LS,
 | 
						|
                  ScalarEvolution &SE, InductiveRangeCheck::Range R)
 | 
						|
      : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
 | 
						|
        SE(SE), OriginalLoop(L), OriginalLoopInfo(LI), LatchTakenCount(nullptr),
 | 
						|
        OriginalPreheader(nullptr), MainLoopPreheader(nullptr), Range(R),
 | 
						|
        MainLoopStructure(LS) {}
 | 
						|
 | 
						|
  // Entry point for the algorithm.  Returns true on success.
 | 
						|
  bool run();
 | 
						|
};
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void LoopConstrainer::replacePHIBlock(PHINode *PN, BasicBlock *Block,
 | 
						|
                                      BasicBlock *ReplaceBy) {
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
    if (PN->getIncomingBlock(i) == Block)
 | 
						|
      PN->setIncomingBlock(i, ReplaceBy);
 | 
						|
}
 | 
						|
 | 
						|
static bool CanBeSMax(ScalarEvolution &SE, const SCEV *S) {
 | 
						|
  APInt SMax =
 | 
						|
      APInt::getSignedMaxValue(cast<IntegerType>(S->getType())->getBitWidth());
 | 
						|
  return SE.getSignedRange(S).contains(SMax) &&
 | 
						|
         SE.getUnsignedRange(S).contains(SMax);
 | 
						|
}
 | 
						|
 | 
						|
static bool CanBeSMin(ScalarEvolution &SE, const SCEV *S) {
 | 
						|
  APInt SMin =
 | 
						|
      APInt::getSignedMinValue(cast<IntegerType>(S->getType())->getBitWidth());
 | 
						|
  return SE.getSignedRange(S).contains(SMin) &&
 | 
						|
         SE.getUnsignedRange(S).contains(SMin);
 | 
						|
}
 | 
						|
 | 
						|
Optional<LoopStructure>
 | 
						|
LoopStructure::parseLoopStructure(ScalarEvolution &SE, BranchProbabilityInfo &BPI,
 | 
						|
                                  Loop &L, const char *&FailureReason) {
 | 
						|
  assert(L.isLoopSimplifyForm() && "should follow from addRequired<>");
 | 
						|
 | 
						|
  BasicBlock *Latch = L.getLoopLatch();
 | 
						|
  if (!L.isLoopExiting(Latch)) {
 | 
						|
    FailureReason = "no loop latch";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *Header = L.getHeader();
 | 
						|
  BasicBlock *Preheader = L.getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    FailureReason = "no preheader";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  BranchInst *LatchBr = dyn_cast<BranchInst>(&*Latch->rbegin());
 | 
						|
  if (!LatchBr || LatchBr->isUnconditional()) {
 | 
						|
    FailureReason = "latch terminator not conditional branch";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
 | 
						|
 | 
						|
  BranchProbability ExitProbability =
 | 
						|
    BPI.getEdgeProbability(LatchBr->getParent(), LatchBrExitIdx);
 | 
						|
 | 
						|
  if (ExitProbability > BranchProbability(1, MaxExitProbReciprocal)) {
 | 
						|
    FailureReason = "short running loop, not profitable";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
 | 
						|
  if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
 | 
						|
    FailureReason = "latch terminator branch not conditional on integral icmp";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *LatchCount = SE.getExitCount(&L, Latch);
 | 
						|
  if (isa<SCEVCouldNotCompute>(LatchCount)) {
 | 
						|
    FailureReason = "could not compute latch count";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  ICmpInst::Predicate Pred = ICI->getPredicate();
 | 
						|
  Value *LeftValue = ICI->getOperand(0);
 | 
						|
  const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
 | 
						|
  IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
 | 
						|
 | 
						|
  Value *RightValue = ICI->getOperand(1);
 | 
						|
  const SCEV *RightSCEV = SE.getSCEV(RightValue);
 | 
						|
 | 
						|
  // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
 | 
						|
  if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
 | 
						|
    if (isa<SCEVAddRecExpr>(RightSCEV)) {
 | 
						|
      std::swap(LeftSCEV, RightSCEV);
 | 
						|
      std::swap(LeftValue, RightValue);
 | 
						|
      Pred = ICmpInst::getSwappedPredicate(Pred);
 | 
						|
    } else {
 | 
						|
      FailureReason = "no add recurrences in the icmp";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
 | 
						|
    if (AR->getNoWrapFlags(SCEV::FlagNSW))
 | 
						|
      return true;
 | 
						|
 | 
						|
    IntegerType *Ty = cast<IntegerType>(AR->getType());
 | 
						|
    IntegerType *WideTy =
 | 
						|
        IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
 | 
						|
 | 
						|
    const SCEVAddRecExpr *ExtendAfterOp =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
 | 
						|
    if (ExtendAfterOp) {
 | 
						|
      const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
 | 
						|
      const SCEV *ExtendedStep =
 | 
						|
          SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
 | 
						|
 | 
						|
      bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
 | 
						|
                          ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
 | 
						|
 | 
						|
      if (NoSignedWrap)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We may have proved this when computing the sign extension above.
 | 
						|
    return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
 | 
						|
  };
 | 
						|
 | 
						|
  auto IsInductionVar = [&](const SCEVAddRecExpr *AR, bool &IsIncreasing) {
 | 
						|
    if (!AR->isAffine())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Currently we only work with induction variables that have been proved to
 | 
						|
    // not wrap.  This restriction can potentially be lifted in the future.
 | 
						|
 | 
						|
    if (!HasNoSignedWrap(AR))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (const SCEVConstant *StepExpr =
 | 
						|
            dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) {
 | 
						|
      ConstantInt *StepCI = StepExpr->getValue();
 | 
						|
      if (StepCI->isOne() || StepCI->isMinusOne()) {
 | 
						|
        IsIncreasing = StepCI->isOne();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // `ICI` is interpreted as taking the backedge if the *next* value of the
 | 
						|
  // induction variable satisfies some constraint.
 | 
						|
 | 
						|
  const SCEVAddRecExpr *IndVarNext = cast<SCEVAddRecExpr>(LeftSCEV);
 | 
						|
  bool IsIncreasing = false;
 | 
						|
  if (!IsInductionVar(IndVarNext, IsIncreasing)) {
 | 
						|
    FailureReason = "LHS in icmp not induction variable";
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  ConstantInt *One = ConstantInt::get(IndVarTy, 1);
 | 
						|
  // TODO: generalize the predicates here to also match their unsigned variants.
 | 
						|
  if (IsIncreasing) {
 | 
						|
    bool FoundExpectedPred =
 | 
						|
        (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 1) ||
 | 
						|
        (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 0);
 | 
						|
 | 
						|
    if (!FoundExpectedPred) {
 | 
						|
      FailureReason = "expected icmp slt semantically, found something else";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LatchBrExitIdx == 0) {
 | 
						|
      if (CanBeSMax(SE, RightSCEV)) {
 | 
						|
        // TODO: this restriction is easily removable -- we just have to
 | 
						|
        // remember that the icmp was an slt and not an sle.
 | 
						|
        FailureReason = "limit may overflow when coercing sle to slt";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
 | 
						|
      IRBuilder<> B(&*Preheader->rbegin());
 | 
						|
      RightValue = B.CreateAdd(RightValue, One);
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    bool FoundExpectedPred =
 | 
						|
        (Pred == ICmpInst::ICMP_SGT && LatchBrExitIdx == 1) ||
 | 
						|
        (Pred == ICmpInst::ICMP_SLT && LatchBrExitIdx == 0);
 | 
						|
 | 
						|
    if (!FoundExpectedPred) {
 | 
						|
      FailureReason = "expected icmp sgt semantically, found something else";
 | 
						|
      return None;
 | 
						|
    }
 | 
						|
 | 
						|
    if (LatchBrExitIdx == 0) {
 | 
						|
      if (CanBeSMin(SE, RightSCEV)) {
 | 
						|
        // TODO: this restriction is easily removable -- we just have to
 | 
						|
        // remember that the icmp was an sgt and not an sge.
 | 
						|
        FailureReason = "limit may overflow when coercing sge to sgt";
 | 
						|
        return None;
 | 
						|
      }
 | 
						|
 | 
						|
      IRBuilder<> B(&*Preheader->rbegin());
 | 
						|
      RightValue = B.CreateSub(RightValue, One);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *StartNext = IndVarNext->getStart();
 | 
						|
  const SCEV *Addend = SE.getNegativeSCEV(IndVarNext->getStepRecurrence(SE));
 | 
						|
  const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
 | 
						|
 | 
						|
  BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
 | 
						|
 | 
						|
  assert(SE.getLoopDisposition(LatchCount, &L) ==
 | 
						|
             ScalarEvolution::LoopInvariant &&
 | 
						|
         "loop variant exit count doesn't make sense!");
 | 
						|
 | 
						|
  assert(!L.contains(LatchExit) && "expected an exit block!");
 | 
						|
  const DataLayout &DL = Preheader->getModule()->getDataLayout();
 | 
						|
  Value *IndVarStartV =
 | 
						|
      SCEVExpander(SE, DL, "irce")
 | 
						|
          .expandCodeFor(IndVarStart, IndVarTy, &*Preheader->rbegin());
 | 
						|
  IndVarStartV->setName("indvar.start");
 | 
						|
 | 
						|
  LoopStructure Result;
 | 
						|
 | 
						|
  Result.Tag = "main";
 | 
						|
  Result.Header = Header;
 | 
						|
  Result.Latch = Latch;
 | 
						|
  Result.LatchBr = LatchBr;
 | 
						|
  Result.LatchExit = LatchExit;
 | 
						|
  Result.LatchBrExitIdx = LatchBrExitIdx;
 | 
						|
  Result.IndVarStart = IndVarStartV;
 | 
						|
  Result.IndVarNext = LeftValue;
 | 
						|
  Result.IndVarIncreasing = IsIncreasing;
 | 
						|
  Result.LoopExitAt = RightValue;
 | 
						|
 | 
						|
  FailureReason = nullptr;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
Optional<LoopConstrainer::SubRanges>
 | 
						|
LoopConstrainer::calculateSubRanges() const {
 | 
						|
  IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
 | 
						|
 | 
						|
  if (Range.getType() != Ty)
 | 
						|
    return None;
 | 
						|
 | 
						|
  LoopConstrainer::SubRanges Result;
 | 
						|
 | 
						|
  // I think we can be more aggressive here and make this nuw / nsw if the
 | 
						|
  // addition that feeds into the icmp for the latch's terminating branch is nuw
 | 
						|
  // / nsw.  In any case, a wrapping 2's complement addition is safe.
 | 
						|
  ConstantInt *One = ConstantInt::get(Ty, 1);
 | 
						|
  const SCEV *Start = SE.getSCEV(MainLoopStructure.IndVarStart);
 | 
						|
  const SCEV *End = SE.getSCEV(MainLoopStructure.LoopExitAt);
 | 
						|
 | 
						|
  bool Increasing = MainLoopStructure.IndVarIncreasing;
 | 
						|
 | 
						|
  // We compute `Smallest` and `Greatest` such that [Smallest, Greatest) is the
 | 
						|
  // range of values the induction variable takes.
 | 
						|
 | 
						|
  const SCEV *Smallest = nullptr, *Greatest = nullptr;
 | 
						|
 | 
						|
  if (Increasing) {
 | 
						|
    Smallest = Start;
 | 
						|
    Greatest = End;
 | 
						|
  } else {
 | 
						|
    // These two computations may sign-overflow.  Here is why that is okay:
 | 
						|
    //
 | 
						|
    // We know that the induction variable does not sign-overflow on any
 | 
						|
    // iteration except the last one, and it starts at `Start` and ends at
 | 
						|
    // `End`, decrementing by one every time.
 | 
						|
    //
 | 
						|
    //  * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
 | 
						|
    //    induction variable is decreasing we know that that the smallest value
 | 
						|
    //    the loop body is actually executed with is `INT_SMIN` == `Smallest`.
 | 
						|
    //
 | 
						|
    //  * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`.  In
 | 
						|
    //    that case, `Clamp` will always return `Smallest` and
 | 
						|
    //    [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
 | 
						|
    //    will be an empty range.  Returning an empty range is always safe.
 | 
						|
    //
 | 
						|
 | 
						|
    Smallest = SE.getAddExpr(End, SE.getSCEV(One));
 | 
						|
    Greatest = SE.getAddExpr(Start, SE.getSCEV(One));
 | 
						|
  }
 | 
						|
 | 
						|
  auto Clamp = [this, Smallest, Greatest](const SCEV *S) {
 | 
						|
    return SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S));
 | 
						|
  };
 | 
						|
 | 
						|
  // In some cases we can prove that we don't need a pre or post loop
 | 
						|
 | 
						|
  bool ProvablyNoPreloop =
 | 
						|
      SE.isKnownPredicate(ICmpInst::ICMP_SLE, Range.getBegin(), Smallest);
 | 
						|
  if (!ProvablyNoPreloop)
 | 
						|
    Result.LowLimit = Clamp(Range.getBegin());
 | 
						|
 | 
						|
  bool ProvablyNoPostLoop =
 | 
						|
      SE.isKnownPredicate(ICmpInst::ICMP_SLE, Greatest, Range.getEnd());
 | 
						|
  if (!ProvablyNoPostLoop)
 | 
						|
    Result.HighLimit = Clamp(Range.getEnd());
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
 | 
						|
                                const char *Tag) const {
 | 
						|
  for (BasicBlock *BB : OriginalLoop.getBlocks()) {
 | 
						|
    BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
 | 
						|
    Result.Blocks.push_back(Clone);
 | 
						|
    Result.Map[BB] = Clone;
 | 
						|
  }
 | 
						|
 | 
						|
  auto GetClonedValue = [&Result](Value *V) {
 | 
						|
    assert(V && "null values not in domain!");
 | 
						|
    auto It = Result.Map.find(V);
 | 
						|
    if (It == Result.Map.end())
 | 
						|
      return V;
 | 
						|
    return static_cast<Value *>(It->second);
 | 
						|
  };
 | 
						|
 | 
						|
  Result.Structure = MainLoopStructure.map(GetClonedValue);
 | 
						|
  Result.Structure.Tag = Tag;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
 | 
						|
    BasicBlock *ClonedBB = Result.Blocks[i];
 | 
						|
    BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
 | 
						|
 | 
						|
    assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
 | 
						|
 | 
						|
    for (Instruction &I : *ClonedBB)
 | 
						|
      RemapInstruction(&I, Result.Map,
 | 
						|
                       RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
 | 
						|
 | 
						|
    // Exit blocks will now have one more predecessor and their PHI nodes need
 | 
						|
    // to be edited to reflect that.  No phi nodes need to be introduced because
 | 
						|
    // the loop is in LCSSA.
 | 
						|
 | 
						|
    for (auto SBBI = succ_begin(OriginalBB), SBBE = succ_end(OriginalBB);
 | 
						|
         SBBI != SBBE; ++SBBI) {
 | 
						|
 | 
						|
      if (OriginalLoop.contains(*SBBI))
 | 
						|
        continue; // not an exit block
 | 
						|
 | 
						|
      for (Instruction &I : **SBBI) {
 | 
						|
        if (!isa<PHINode>(&I))
 | 
						|
          break;
 | 
						|
 | 
						|
        PHINode *PN = cast<PHINode>(&I);
 | 
						|
        Value *OldIncoming = PN->getIncomingValueForBlock(OriginalBB);
 | 
						|
        PN->addIncoming(GetClonedValue(OldIncoming), ClonedBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
 | 
						|
    const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
 | 
						|
    BasicBlock *ContinuationBlock) const {
 | 
						|
 | 
						|
  // We start with a loop with a single latch:
 | 
						|
  //
 | 
						|
  //    +--------------------+
 | 
						|
  //    |                    |
 | 
						|
  //    |     preheader      |
 | 
						|
  //    |                    |
 | 
						|
  //    +--------+-----------+
 | 
						|
  //             |      ----------------\
 | 
						|
  //             |     /                |
 | 
						|
  //    +--------v----v------+          |
 | 
						|
  //    |                    |          |
 | 
						|
  //    |      header        |          |
 | 
						|
  //    |                    |          |
 | 
						|
  //    +--------------------+          |
 | 
						|
  //                                    |
 | 
						|
  //            .....                   |
 | 
						|
  //                                    |
 | 
						|
  //    +--------------------+          |
 | 
						|
  //    |                    |          |
 | 
						|
  //    |       latch        >----------/
 | 
						|
  //    |                    |
 | 
						|
  //    +-------v------------+
 | 
						|
  //            |
 | 
						|
  //            |
 | 
						|
  //            |   +--------------------+
 | 
						|
  //            |   |                    |
 | 
						|
  //            +--->   original exit    |
 | 
						|
  //                |                    |
 | 
						|
  //                +--------------------+
 | 
						|
  //
 | 
						|
  // We change the control flow to look like
 | 
						|
  //
 | 
						|
  //
 | 
						|
  //    +--------------------+
 | 
						|
  //    |                    |
 | 
						|
  //    |     preheader      >-------------------------+
 | 
						|
  //    |                    |                         |
 | 
						|
  //    +--------v-----------+                         |
 | 
						|
  //             |    /-------------+                  |
 | 
						|
  //             |   /              |                  |
 | 
						|
  //    +--------v--v--------+      |                  |
 | 
						|
  //    |                    |      |                  |
 | 
						|
  //    |      header        |      |   +--------+     |
 | 
						|
  //    |                    |      |   |        |     |
 | 
						|
  //    +--------------------+      |   |  +-----v-----v-----------+
 | 
						|
  //                                |   |  |                       |
 | 
						|
  //                                |   |  |     .pseudo.exit      |
 | 
						|
  //                                |   |  |                       |
 | 
						|
  //                                |   |  +-----------v-----------+
 | 
						|
  //                                |   |              |
 | 
						|
  //            .....               |   |              |
 | 
						|
  //                                |   |     +--------v-------------+
 | 
						|
  //    +--------------------+      |   |     |                      |
 | 
						|
  //    |                    |      |   |     |   ContinuationBlock  |
 | 
						|
  //    |       latch        >------+   |     |                      |
 | 
						|
  //    |                    |          |     +----------------------+
 | 
						|
  //    +---------v----------+          |
 | 
						|
  //              |                     |
 | 
						|
  //              |                     |
 | 
						|
  //              |     +---------------^-----+
 | 
						|
  //              |     |                     |
 | 
						|
  //              +----->    .exit.selector   |
 | 
						|
  //                    |                     |
 | 
						|
  //                    +----------v----------+
 | 
						|
  //                               |
 | 
						|
  //     +--------------------+    |
 | 
						|
  //     |                    |    |
 | 
						|
  //     |   original exit    <----+
 | 
						|
  //     |                    |
 | 
						|
  //     +--------------------+
 | 
						|
  //
 | 
						|
 | 
						|
  RewrittenRangeInfo RRI;
 | 
						|
 | 
						|
  auto BBInsertLocation = std::next(Function::iterator(LS.Latch));
 | 
						|
  RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
 | 
						|
                                        &F, BBInsertLocation);
 | 
						|
  RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
 | 
						|
                                      BBInsertLocation);
 | 
						|
 | 
						|
  BranchInst *PreheaderJump = cast<BranchInst>(&*Preheader->rbegin());
 | 
						|
  bool Increasing = LS.IndVarIncreasing;
 | 
						|
 | 
						|
  IRBuilder<> B(PreheaderJump);
 | 
						|
 | 
						|
  // EnterLoopCond - is it okay to start executing this `LS'?
 | 
						|
  Value *EnterLoopCond = Increasing
 | 
						|
                             ? B.CreateICmpSLT(LS.IndVarStart, ExitSubloopAt)
 | 
						|
                             : B.CreateICmpSGT(LS.IndVarStart, ExitSubloopAt);
 | 
						|
 | 
						|
  B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
 | 
						|
  PreheaderJump->eraseFromParent();
 | 
						|
 | 
						|
  LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
 | 
						|
  B.SetInsertPoint(LS.LatchBr);
 | 
						|
  Value *TakeBackedgeLoopCond =
 | 
						|
      Increasing ? B.CreateICmpSLT(LS.IndVarNext, ExitSubloopAt)
 | 
						|
                 : B.CreateICmpSGT(LS.IndVarNext, ExitSubloopAt);
 | 
						|
  Value *CondForBranch = LS.LatchBrExitIdx == 1
 | 
						|
                             ? TakeBackedgeLoopCond
 | 
						|
                             : B.CreateNot(TakeBackedgeLoopCond);
 | 
						|
 | 
						|
  LS.LatchBr->setCondition(CondForBranch);
 | 
						|
 | 
						|
  B.SetInsertPoint(RRI.ExitSelector);
 | 
						|
 | 
						|
  // IterationsLeft - are there any more iterations left, given the original
 | 
						|
  // upper bound on the induction variable?  If not, we branch to the "real"
 | 
						|
  // exit.
 | 
						|
  Value *IterationsLeft = Increasing
 | 
						|
                              ? B.CreateICmpSLT(LS.IndVarNext, LS.LoopExitAt)
 | 
						|
                              : B.CreateICmpSGT(LS.IndVarNext, LS.LoopExitAt);
 | 
						|
  B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
 | 
						|
 | 
						|
  BranchInst *BranchToContinuation =
 | 
						|
      BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
 | 
						|
 | 
						|
  // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
 | 
						|
  // each of the PHI nodes in the loop header.  This feeds into the initial
 | 
						|
  // value of the same PHI nodes if/when we continue execution.
 | 
						|
  for (Instruction &I : *LS.Header) {
 | 
						|
    if (!isa<PHINode>(&I))
 | 
						|
      break;
 | 
						|
 | 
						|
    PHINode *PN = cast<PHINode>(&I);
 | 
						|
 | 
						|
    PHINode *NewPHI = PHINode::Create(PN->getType(), 2, PN->getName() + ".copy",
 | 
						|
                                      BranchToContinuation);
 | 
						|
 | 
						|
    NewPHI->addIncoming(PN->getIncomingValueForBlock(Preheader), Preheader);
 | 
						|
    NewPHI->addIncoming(PN->getIncomingValueForBlock(LS.Latch),
 | 
						|
                        RRI.ExitSelector);
 | 
						|
    RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
 | 
						|
  }
 | 
						|
 | 
						|
  RRI.IndVarEnd = PHINode::Create(LS.IndVarNext->getType(), 2, "indvar.end",
 | 
						|
                                  BranchToContinuation);
 | 
						|
  RRI.IndVarEnd->addIncoming(LS.IndVarStart, Preheader);
 | 
						|
  RRI.IndVarEnd->addIncoming(LS.IndVarNext, RRI.ExitSelector);
 | 
						|
 | 
						|
  // The latch exit now has a branch from `RRI.ExitSelector' instead of
 | 
						|
  // `LS.Latch'.  The PHI nodes need to be updated to reflect that.
 | 
						|
  for (Instruction &I : *LS.LatchExit) {
 | 
						|
    if (PHINode *PN = dyn_cast<PHINode>(&I))
 | 
						|
      replacePHIBlock(PN, LS.Latch, RRI.ExitSelector);
 | 
						|
    else
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return RRI;
 | 
						|
}
 | 
						|
 | 
						|
void LoopConstrainer::rewriteIncomingValuesForPHIs(
 | 
						|
    LoopStructure &LS, BasicBlock *ContinuationBlock,
 | 
						|
    const LoopConstrainer::RewrittenRangeInfo &RRI) const {
 | 
						|
 | 
						|
  unsigned PHIIndex = 0;
 | 
						|
  for (Instruction &I : *LS.Header) {
 | 
						|
    if (!isa<PHINode>(&I))
 | 
						|
      break;
 | 
						|
 | 
						|
    PHINode *PN = cast<PHINode>(&I);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | 
						|
      if (PN->getIncomingBlock(i) == ContinuationBlock)
 | 
						|
        PN->setIncomingValue(i, RRI.PHIValuesAtPseudoExit[PHIIndex++]);
 | 
						|
  }
 | 
						|
 | 
						|
  LS.IndVarStart = RRI.IndVarEnd;
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
 | 
						|
                                             BasicBlock *OldPreheader,
 | 
						|
                                             const char *Tag) const {
 | 
						|
 | 
						|
  BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
 | 
						|
  BranchInst::Create(LS.Header, Preheader);
 | 
						|
 | 
						|
  for (Instruction &I : *LS.Header) {
 | 
						|
    if (!isa<PHINode>(&I))
 | 
						|
      break;
 | 
						|
 | 
						|
    PHINode *PN = cast<PHINode>(&I);
 | 
						|
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
 | 
						|
      replacePHIBlock(PN, OldPreheader, Preheader);
 | 
						|
  }
 | 
						|
 | 
						|
  return Preheader;
 | 
						|
}
 | 
						|
 | 
						|
void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
 | 
						|
  Loop *ParentLoop = OriginalLoop.getParentLoop();
 | 
						|
  if (!ParentLoop)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (BasicBlock *BB : BBs)
 | 
						|
    ParentLoop->addBasicBlockToLoop(BB, OriginalLoopInfo);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopConstrainer::run() {
 | 
						|
  BasicBlock *Preheader = nullptr;
 | 
						|
  LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
 | 
						|
  Preheader = OriginalLoop.getLoopPreheader();
 | 
						|
  assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
 | 
						|
         "preconditions!");
 | 
						|
 | 
						|
  OriginalPreheader = Preheader;
 | 
						|
  MainLoopPreheader = Preheader;
 | 
						|
 | 
						|
  Optional<SubRanges> MaybeSR = calculateSubRanges();
 | 
						|
  if (!MaybeSR.hasValue()) {
 | 
						|
    DEBUG(dbgs() << "irce: could not compute subranges\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  SubRanges SR = MaybeSR.getValue();
 | 
						|
  bool Increasing = MainLoopStructure.IndVarIncreasing;
 | 
						|
  IntegerType *IVTy =
 | 
						|
      cast<IntegerType>(MainLoopStructure.IndVarNext->getType());
 | 
						|
 | 
						|
  SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
 | 
						|
  Instruction *InsertPt = OriginalPreheader->getTerminator();
 | 
						|
 | 
						|
  // It would have been better to make `PreLoop' and `PostLoop'
 | 
						|
  // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
 | 
						|
  // constructor.
 | 
						|
  ClonedLoop PreLoop, PostLoop;
 | 
						|
  bool NeedsPreLoop =
 | 
						|
      Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
 | 
						|
  bool NeedsPostLoop =
 | 
						|
      Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
 | 
						|
 | 
						|
  Value *ExitPreLoopAt = nullptr;
 | 
						|
  Value *ExitMainLoopAt = nullptr;
 | 
						|
  const SCEVConstant *MinusOneS =
 | 
						|
      cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
 | 
						|
 | 
						|
  if (NeedsPreLoop) {
 | 
						|
    const SCEV *ExitPreLoopAtSCEV = nullptr;
 | 
						|
 | 
						|
    if (Increasing)
 | 
						|
      ExitPreLoopAtSCEV = *SR.LowLimit;
 | 
						|
    else {
 | 
						|
      if (CanBeSMin(SE, *SR.HighLimit)) {
 | 
						|
        DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
 | 
						|
                     << "preloop exit limit.  HighLimit = " << *(*SR.HighLimit)
 | 
						|
                     << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
 | 
						|
    }
 | 
						|
 | 
						|
    ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
 | 
						|
    ExitPreLoopAt->setName("exit.preloop.at");
 | 
						|
  }
 | 
						|
 | 
						|
  if (NeedsPostLoop) {
 | 
						|
    const SCEV *ExitMainLoopAtSCEV = nullptr;
 | 
						|
 | 
						|
    if (Increasing)
 | 
						|
      ExitMainLoopAtSCEV = *SR.HighLimit;
 | 
						|
    else {
 | 
						|
      if (CanBeSMin(SE, *SR.LowLimit)) {
 | 
						|
        DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
 | 
						|
                     << "mainloop exit limit.  LowLimit = " << *(*SR.LowLimit)
 | 
						|
                     << "\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
 | 
						|
    }
 | 
						|
 | 
						|
    ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
 | 
						|
    ExitMainLoopAt->setName("exit.mainloop.at");
 | 
						|
  }
 | 
						|
 | 
						|
  // We clone these ahead of time so that we don't have to deal with changing
 | 
						|
  // and temporarily invalid IR as we transform the loops.
 | 
						|
  if (NeedsPreLoop)
 | 
						|
    cloneLoop(PreLoop, "preloop");
 | 
						|
  if (NeedsPostLoop)
 | 
						|
    cloneLoop(PostLoop, "postloop");
 | 
						|
 | 
						|
  RewrittenRangeInfo PreLoopRRI;
 | 
						|
 | 
						|
  if (NeedsPreLoop) {
 | 
						|
    Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
 | 
						|
                                                  PreLoop.Structure.Header);
 | 
						|
 | 
						|
    MainLoopPreheader =
 | 
						|
        createPreheader(MainLoopStructure, Preheader, "mainloop");
 | 
						|
    PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
 | 
						|
                                         ExitPreLoopAt, MainLoopPreheader);
 | 
						|
    rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
 | 
						|
                                 PreLoopRRI);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *PostLoopPreheader = nullptr;
 | 
						|
  RewrittenRangeInfo PostLoopRRI;
 | 
						|
 | 
						|
  if (NeedsPostLoop) {
 | 
						|
    PostLoopPreheader =
 | 
						|
        createPreheader(PostLoop.Structure, Preheader, "postloop");
 | 
						|
    PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
 | 
						|
                                          ExitMainLoopAt, PostLoopPreheader);
 | 
						|
    rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
 | 
						|
                                 PostLoopRRI);
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *NewMainLoopPreheader =
 | 
						|
      MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
 | 
						|
  BasicBlock *NewBlocks[] = {PostLoopPreheader,        PreLoopRRI.PseudoExit,
 | 
						|
                             PreLoopRRI.ExitSelector,  PostLoopRRI.PseudoExit,
 | 
						|
                             PostLoopRRI.ExitSelector, NewMainLoopPreheader};
 | 
						|
 | 
						|
  // Some of the above may be nullptr, filter them out before passing to
 | 
						|
  // addToParentLoopIfNeeded.
 | 
						|
  auto NewBlocksEnd =
 | 
						|
      std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
 | 
						|
 | 
						|
  addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
 | 
						|
  addToParentLoopIfNeeded(PreLoop.Blocks);
 | 
						|
  addToParentLoopIfNeeded(PostLoop.Blocks);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Computes and returns a range of values for the induction variable (IndVar)
 | 
						|
/// in which the range check can be safely elided.  If it cannot compute such a
 | 
						|
/// range, returns None.
 | 
						|
Optional<InductiveRangeCheck::Range>
 | 
						|
InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
 | 
						|
                                               const SCEVAddRecExpr *IndVar,
 | 
						|
                                               IRBuilder<> &) const {
 | 
						|
  // IndVar is of the form "A + B * I" (where "I" is the canonical induction
 | 
						|
  // variable, that may or may not exist as a real llvm::Value in the loop) and
 | 
						|
  // this inductive range check is a range check on the "C + D * I" ("C" is
 | 
						|
  // getOffset() and "D" is getScale()).  We rewrite the value being range
 | 
						|
  // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
 | 
						|
  // Currently we support this only for "B" = "D" = { 1 or -1 }, but the code
 | 
						|
  // can be generalized as needed.
 | 
						|
  //
 | 
						|
  // The actual inequalities we solve are of the form
 | 
						|
  //
 | 
						|
  //   0 <= M + 1 * IndVar < L given L >= 0  (i.e. N == 1)
 | 
						|
  //
 | 
						|
  // The inequality is satisfied by -M <= IndVar < (L - M) [^1].  All additions
 | 
						|
  // and subtractions are twos-complement wrapping and comparisons are signed.
 | 
						|
  //
 | 
						|
  // Proof:
 | 
						|
  //
 | 
						|
  //   If there exists IndVar such that -M <= IndVar < (L - M) then it follows
 | 
						|
  //   that -M <= (-M + L) [== Eq. 1].  Since L >= 0, if (-M + L) sign-overflows
 | 
						|
  //   then (-M + L) < (-M).  Hence by [Eq. 1], (-M + L) could not have
 | 
						|
  //   overflown.
 | 
						|
  //
 | 
						|
  //   This means IndVar = t + (-M) for t in [0, L).  Hence (IndVar + M) = t.
 | 
						|
  //   Hence 0 <= (IndVar + M) < L
 | 
						|
 | 
						|
  // [^1]: Note that the solution does _not_ apply if L < 0; consider values M =
 | 
						|
  // 127, IndVar = 126 and L = -2 in an i8 world.
 | 
						|
 | 
						|
  if (!IndVar->isAffine())
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *A = IndVar->getStart();
 | 
						|
  const SCEVConstant *B = dyn_cast<SCEVConstant>(IndVar->getStepRecurrence(SE));
 | 
						|
  if (!B)
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *C = getOffset();
 | 
						|
  const SCEVConstant *D = dyn_cast<SCEVConstant>(getScale());
 | 
						|
  if (D != B)
 | 
						|
    return None;
 | 
						|
 | 
						|
  ConstantInt *ConstD = D->getValue();
 | 
						|
  if (!(ConstD->isMinusOne() || ConstD->isOne()))
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *M = SE.getMinusSCEV(C, A);
 | 
						|
 | 
						|
  const SCEV *Begin = SE.getNegativeSCEV(M);
 | 
						|
  const SCEV *UpperLimit = nullptr;
 | 
						|
 | 
						|
  // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
 | 
						|
  // We can potentially do much better here.
 | 
						|
  if (Value *V = getLength()) {
 | 
						|
    UpperLimit = SE.getSCEV(V);
 | 
						|
  } else {
 | 
						|
    assert(Kind == InductiveRangeCheck::RANGE_CHECK_LOWER && "invariant!");
 | 
						|
    unsigned BitWidth = cast<IntegerType>(IndVar->getType())->getBitWidth();
 | 
						|
    UpperLimit = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
 | 
						|
  }
 | 
						|
 | 
						|
  const SCEV *End = SE.getMinusSCEV(UpperLimit, M);
 | 
						|
  return InductiveRangeCheck::Range(Begin, End);
 | 
						|
}
 | 
						|
 | 
						|
static Optional<InductiveRangeCheck::Range>
 | 
						|
IntersectRange(ScalarEvolution &SE,
 | 
						|
               const Optional<InductiveRangeCheck::Range> &R1,
 | 
						|
               const InductiveRangeCheck::Range &R2, IRBuilder<> &B) {
 | 
						|
  if (!R1.hasValue())
 | 
						|
    return R2;
 | 
						|
  auto &R1Value = R1.getValue();
 | 
						|
 | 
						|
  // TODO: we could widen the smaller range and have this work; but for now we
 | 
						|
  // bail out to keep things simple.
 | 
						|
  if (R1Value.getType() != R2.getType())
 | 
						|
    return None;
 | 
						|
 | 
						|
  const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
 | 
						|
  const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
 | 
						|
 | 
						|
  return InductiveRangeCheck::Range(NewBegin, NewEnd);
 | 
						|
}
 | 
						|
 | 
						|
bool InductiveRangeCheckElimination::runOnLoop(Loop *L, LPPassManager &LPM) {
 | 
						|
  if (L->getBlocks().size() >= LoopSizeCutoff) {
 | 
						|
    DEBUG(dbgs() << "irce: giving up constraining loop, too large\n";);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  if (!Preheader) {
 | 
						|
    DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVMContext &Context = Preheader->getContext();
 | 
						|
  InductiveRangeCheck::AllocatorTy IRCAlloc;
 | 
						|
  SmallVector<InductiveRangeCheck *, 16> RangeChecks;
 | 
						|
  ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
 | 
						|
  BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
 | 
						|
 | 
						|
  for (auto BBI : L->getBlocks())
 | 
						|
    if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
 | 
						|
      if (InductiveRangeCheck *IRC =
 | 
						|
          InductiveRangeCheck::create(IRCAlloc, TBI, L, SE, BPI))
 | 
						|
        RangeChecks.push_back(IRC);
 | 
						|
 | 
						|
  if (RangeChecks.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
 | 
						|
    OS << "irce: looking at loop "; L->print(OS);
 | 
						|
    OS << "irce: loop has " << RangeChecks.size()
 | 
						|
       << " inductive range checks: \n";
 | 
						|
    for (InductiveRangeCheck *IRC : RangeChecks)
 | 
						|
      IRC->print(OS);
 | 
						|
  };
 | 
						|
 | 
						|
  DEBUG(PrintRecognizedRangeChecks(dbgs()));
 | 
						|
 | 
						|
  if (PrintRangeChecks)
 | 
						|
    PrintRecognizedRangeChecks(errs());
 | 
						|
 | 
						|
  const char *FailureReason = nullptr;
 | 
						|
  Optional<LoopStructure> MaybeLoopStructure =
 | 
						|
      LoopStructure::parseLoopStructure(SE, BPI, *L, FailureReason);
 | 
						|
  if (!MaybeLoopStructure.hasValue()) {
 | 
						|
    DEBUG(dbgs() << "irce: could not parse loop structure: " << FailureReason
 | 
						|
                 << "\n";);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  LoopStructure LS = MaybeLoopStructure.getValue();
 | 
						|
  bool Increasing = LS.IndVarIncreasing;
 | 
						|
  const SCEV *MinusOne =
 | 
						|
      SE.getConstant(LS.IndVarNext->getType(), Increasing ? -1 : 1, true);
 | 
						|
  const SCEVAddRecExpr *IndVar =
 | 
						|
      cast<SCEVAddRecExpr>(SE.getAddExpr(SE.getSCEV(LS.IndVarNext), MinusOne));
 | 
						|
 | 
						|
  Optional<InductiveRangeCheck::Range> SafeIterRange;
 | 
						|
  Instruction *ExprInsertPt = Preheader->getTerminator();
 | 
						|
 | 
						|
  SmallVector<InductiveRangeCheck *, 4> RangeChecksToEliminate;
 | 
						|
 | 
						|
  IRBuilder<> B(ExprInsertPt);
 | 
						|
  for (InductiveRangeCheck *IRC : RangeChecks) {
 | 
						|
    auto Result = IRC->computeSafeIterationSpace(SE, IndVar, B);
 | 
						|
    if (Result.hasValue()) {
 | 
						|
      auto MaybeSafeIterRange =
 | 
						|
        IntersectRange(SE, SafeIterRange, Result.getValue(), B);
 | 
						|
      if (MaybeSafeIterRange.hasValue()) {
 | 
						|
        RangeChecksToEliminate.push_back(IRC);
 | 
						|
        SafeIterRange = MaybeSafeIterRange.getValue();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SafeIterRange.hasValue())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LoopConstrainer LC(*L, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), LS,
 | 
						|
                     SE, SafeIterRange.getValue());
 | 
						|
  bool Changed = LC.run();
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    auto PrintConstrainedLoopInfo = [L]() {
 | 
						|
      dbgs() << "irce: in function ";
 | 
						|
      dbgs() << L->getHeader()->getParent()->getName() << ": ";
 | 
						|
      dbgs() << "constrained ";
 | 
						|
      L->print(dbgs());
 | 
						|
    };
 | 
						|
 | 
						|
    DEBUG(PrintConstrainedLoopInfo());
 | 
						|
 | 
						|
    if (PrintChangedLoops)
 | 
						|
      PrintConstrainedLoopInfo();
 | 
						|
 | 
						|
    // Optimize away the now-redundant range checks.
 | 
						|
 | 
						|
    for (InductiveRangeCheck *IRC : RangeChecksToEliminate) {
 | 
						|
      ConstantInt *FoldedRangeCheck = IRC->getPassingDirection()
 | 
						|
                                          ? ConstantInt::getTrue(Context)
 | 
						|
                                          : ConstantInt::getFalse(Context);
 | 
						|
      IRC->getBranch()->setCondition(FoldedRangeCheck);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createInductiveRangeCheckEliminationPass() {
 | 
						|
  return new InductiveRangeCheckElimination;
 | 
						|
}
 |