mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
15658b2908
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187336 91177308-0d34-0410-b5e6-96231b3b80d8
2167 lines
72 KiB
C++
2167 lines
72 KiB
C++
//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a coalescing interval map for small objects.
|
|
//
|
|
// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
|
|
// same value are represented in a compressed form.
|
|
//
|
|
// Iterators provide ordered access to the compressed intervals rather than the
|
|
// individual keys, and insert and erase operations use key intervals as well.
|
|
//
|
|
// Like SmallVector, IntervalMap will store the first N intervals in the map
|
|
// object itself without any allocations. When space is exhausted it switches to
|
|
// a B+-tree representation with very small overhead for small key and value
|
|
// objects.
|
|
//
|
|
// A Traits class specifies how keys are compared. It also allows IntervalMap to
|
|
// work with both closed and half-open intervals.
|
|
//
|
|
// Keys and values are not stored next to each other in a std::pair, so we don't
|
|
// provide such a value_type. Dereferencing iterators only returns the mapped
|
|
// value. The interval bounds are accessible through the start() and stop()
|
|
// iterator methods.
|
|
//
|
|
// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
|
|
// is the optimal size. For large objects use std::map instead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Synopsis:
|
|
//
|
|
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
// class IntervalMap {
|
|
// public:
|
|
// typedef KeyT key_type;
|
|
// typedef ValT mapped_type;
|
|
// typedef RecyclingAllocator<...> Allocator;
|
|
// class iterator;
|
|
// class const_iterator;
|
|
//
|
|
// explicit IntervalMap(Allocator&);
|
|
// ~IntervalMap():
|
|
//
|
|
// bool empty() const;
|
|
// KeyT start() const;
|
|
// KeyT stop() const;
|
|
// ValT lookup(KeyT x, Value NotFound = Value()) const;
|
|
//
|
|
// const_iterator begin() const;
|
|
// const_iterator end() const;
|
|
// iterator begin();
|
|
// iterator end();
|
|
// const_iterator find(KeyT x) const;
|
|
// iterator find(KeyT x);
|
|
//
|
|
// void insert(KeyT a, KeyT b, ValT y);
|
|
// void clear();
|
|
// };
|
|
//
|
|
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
// class IntervalMap::const_iterator :
|
|
// public std::iterator<std::bidirectional_iterator_tag, ValT> {
|
|
// public:
|
|
// bool operator==(const const_iterator &) const;
|
|
// bool operator!=(const const_iterator &) const;
|
|
// bool valid() const;
|
|
//
|
|
// const KeyT &start() const;
|
|
// const KeyT &stop() const;
|
|
// const ValT &value() const;
|
|
// const ValT &operator*() const;
|
|
// const ValT *operator->() const;
|
|
//
|
|
// const_iterator &operator++();
|
|
// const_iterator &operator++(int);
|
|
// const_iterator &operator--();
|
|
// const_iterator &operator--(int);
|
|
// void goToBegin();
|
|
// void goToEnd();
|
|
// void find(KeyT x);
|
|
// void advanceTo(KeyT x);
|
|
// };
|
|
//
|
|
// template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
// class IntervalMap::iterator : public const_iterator {
|
|
// public:
|
|
// void insert(KeyT a, KeyT b, Value y);
|
|
// void erase();
|
|
// };
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_INTERVALMAP_H
|
|
#define LLVM_ADT_INTERVALMAP_H
|
|
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include <iterator>
|
|
|
|
namespace llvm {
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- Key traits ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The IntervalMap works with closed or half-open intervals.
|
|
// Adjacent intervals that map to the same value are coalesced.
|
|
//
|
|
// The IntervalMapInfo traits class is used to determine if a key is contained
|
|
// in an interval, and if two intervals are adjacent so they can be coalesced.
|
|
// The provided implementation works for closed integer intervals, other keys
|
|
// probably need a specialized version.
|
|
//
|
|
// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
|
|
//
|
|
// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
|
|
// allowed. This is so that stopLess(a, b) can be used to determine if two
|
|
// intervals overlap.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T>
|
|
struct IntervalMapInfo {
|
|
|
|
/// startLess - Return true if x is not in [a;b].
|
|
/// This is x < a both for closed intervals and for [a;b) half-open intervals.
|
|
static inline bool startLess(const T &x, const T &a) {
|
|
return x < a;
|
|
}
|
|
|
|
/// stopLess - Return true if x is not in [a;b].
|
|
/// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
|
|
static inline bool stopLess(const T &b, const T &x) {
|
|
return b < x;
|
|
}
|
|
|
|
/// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
|
|
/// This is a+1 == b for closed intervals, a == b for half-open intervals.
|
|
static inline bool adjacent(const T &a, const T &b) {
|
|
return a+1 == b;
|
|
}
|
|
|
|
};
|
|
|
|
template <typename T>
|
|
struct IntervalMapHalfOpenInfo {
|
|
|
|
/// startLess - Return true if x is not in [a;b).
|
|
static inline bool startLess(const T &x, const T &a) {
|
|
return x < a;
|
|
}
|
|
|
|
/// stopLess - Return true if x is not in [a;b).
|
|
static inline bool stopLess(const T &b, const T &x) {
|
|
return b <= x;
|
|
}
|
|
|
|
/// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
|
|
static inline bool adjacent(const T &a, const T &b) {
|
|
return a == b;
|
|
}
|
|
|
|
};
|
|
|
|
/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
|
|
/// It should be considered private to the implementation.
|
|
namespace IntervalMapImpl {
|
|
|
|
// Forward declarations.
|
|
template <typename, typename, unsigned, typename> class LeafNode;
|
|
template <typename, typename, unsigned, typename> class BranchNode;
|
|
|
|
typedef std::pair<unsigned,unsigned> IdxPair;
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMapImpl::NodeBase ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Both leaf and branch nodes store vectors of pairs.
|
|
// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
|
|
//
|
|
// Keys and values are stored in separate arrays to avoid padding caused by
|
|
// different object alignments. This also helps improve locality of reference
|
|
// when searching the keys.
|
|
//
|
|
// The nodes don't know how many elements they contain - that information is
|
|
// stored elsewhere. Omitting the size field prevents padding and allows a node
|
|
// to fill the allocated cache lines completely.
|
|
//
|
|
// These are typical key and value sizes, the node branching factor (N), and
|
|
// wasted space when nodes are sized to fit in three cache lines (192 bytes):
|
|
//
|
|
// T1 T2 N Waste Used by
|
|
// 4 4 24 0 Branch<4> (32-bit pointers)
|
|
// 8 4 16 0 Leaf<4,4>, Branch<4>
|
|
// 8 8 12 0 Leaf<4,8>, Branch<8>
|
|
// 16 4 9 12 Leaf<8,4>
|
|
// 16 8 8 0 Leaf<8,8>
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T1, typename T2, unsigned N>
|
|
class NodeBase {
|
|
public:
|
|
enum { Capacity = N };
|
|
|
|
T1 first[N];
|
|
T2 second[N];
|
|
|
|
/// copy - Copy elements from another node.
|
|
/// @param Other Node elements are copied from.
|
|
/// @param i Beginning of the source range in other.
|
|
/// @param j Beginning of the destination range in this.
|
|
/// @param Count Number of elements to copy.
|
|
template <unsigned M>
|
|
void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
|
|
unsigned j, unsigned Count) {
|
|
assert(i + Count <= M && "Invalid source range");
|
|
assert(j + Count <= N && "Invalid dest range");
|
|
for (unsigned e = i + Count; i != e; ++i, ++j) {
|
|
first[j] = Other.first[i];
|
|
second[j] = Other.second[i];
|
|
}
|
|
}
|
|
|
|
/// moveLeft - Move elements to the left.
|
|
/// @param i Beginning of the source range.
|
|
/// @param j Beginning of the destination range.
|
|
/// @param Count Number of elements to copy.
|
|
void moveLeft(unsigned i, unsigned j, unsigned Count) {
|
|
assert(j <= i && "Use moveRight shift elements right");
|
|
copy(*this, i, j, Count);
|
|
}
|
|
|
|
/// moveRight - Move elements to the right.
|
|
/// @param i Beginning of the source range.
|
|
/// @param j Beginning of the destination range.
|
|
/// @param Count Number of elements to copy.
|
|
void moveRight(unsigned i, unsigned j, unsigned Count) {
|
|
assert(i <= j && "Use moveLeft shift elements left");
|
|
assert(j + Count <= N && "Invalid range");
|
|
while (Count--) {
|
|
first[j + Count] = first[i + Count];
|
|
second[j + Count] = second[i + Count];
|
|
}
|
|
}
|
|
|
|
/// erase - Erase elements [i;j).
|
|
/// @param i Beginning of the range to erase.
|
|
/// @param j End of the range. (Exclusive).
|
|
/// @param Size Number of elements in node.
|
|
void erase(unsigned i, unsigned j, unsigned Size) {
|
|
moveLeft(j, i, Size - j);
|
|
}
|
|
|
|
/// erase - Erase element at i.
|
|
/// @param i Index of element to erase.
|
|
/// @param Size Number of elements in node.
|
|
void erase(unsigned i, unsigned Size) {
|
|
erase(i, i+1, Size);
|
|
}
|
|
|
|
/// shift - Shift elements [i;size) 1 position to the right.
|
|
/// @param i Beginning of the range to move.
|
|
/// @param Size Number of elements in node.
|
|
void shift(unsigned i, unsigned Size) {
|
|
moveRight(i, i + 1, Size - i);
|
|
}
|
|
|
|
/// transferToLeftSib - Transfer elements to a left sibling node.
|
|
/// @param Size Number of elements in this.
|
|
/// @param Sib Left sibling node.
|
|
/// @param SSize Number of elements in sib.
|
|
/// @param Count Number of elements to transfer.
|
|
void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
|
|
unsigned Count) {
|
|
Sib.copy(*this, 0, SSize, Count);
|
|
erase(0, Count, Size);
|
|
}
|
|
|
|
/// transferToRightSib - Transfer elements to a right sibling node.
|
|
/// @param Size Number of elements in this.
|
|
/// @param Sib Right sibling node.
|
|
/// @param SSize Number of elements in sib.
|
|
/// @param Count Number of elements to transfer.
|
|
void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
|
|
unsigned Count) {
|
|
Sib.moveRight(0, Count, SSize);
|
|
Sib.copy(*this, Size-Count, 0, Count);
|
|
}
|
|
|
|
/// adjustFromLeftSib - Adjust the number if elements in this node by moving
|
|
/// elements to or from a left sibling node.
|
|
/// @param Size Number of elements in this.
|
|
/// @param Sib Right sibling node.
|
|
/// @param SSize Number of elements in sib.
|
|
/// @param Add The number of elements to add to this node, possibly < 0.
|
|
/// @return Number of elements added to this node, possibly negative.
|
|
int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
|
|
if (Add > 0) {
|
|
// We want to grow, copy from sib.
|
|
unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
|
|
Sib.transferToRightSib(SSize, *this, Size, Count);
|
|
return Count;
|
|
} else {
|
|
// We want to shrink, copy to sib.
|
|
unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
|
|
transferToLeftSib(Size, Sib, SSize, Count);
|
|
return -Count;
|
|
}
|
|
}
|
|
};
|
|
|
|
/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
|
|
/// @param Node Array of pointers to sibling nodes.
|
|
/// @param Nodes Number of nodes.
|
|
/// @param CurSize Array of current node sizes, will be overwritten.
|
|
/// @param NewSize Array of desired node sizes.
|
|
template <typename NodeT>
|
|
void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
|
|
unsigned CurSize[], const unsigned NewSize[]) {
|
|
// Move elements right.
|
|
for (int n = Nodes - 1; n; --n) {
|
|
if (CurSize[n] == NewSize[n])
|
|
continue;
|
|
for (int m = n - 1; m != -1; --m) {
|
|
int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
|
|
NewSize[n] - CurSize[n]);
|
|
CurSize[m] -= d;
|
|
CurSize[n] += d;
|
|
// Keep going if the current node was exhausted.
|
|
if (CurSize[n] >= NewSize[n])
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Nodes == 0)
|
|
return;
|
|
|
|
// Move elements left.
|
|
for (unsigned n = 0; n != Nodes - 1; ++n) {
|
|
if (CurSize[n] == NewSize[n])
|
|
continue;
|
|
for (unsigned m = n + 1; m != Nodes; ++m) {
|
|
int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
|
|
CurSize[n] - NewSize[n]);
|
|
CurSize[m] += d;
|
|
CurSize[n] -= d;
|
|
// Keep going if the current node was exhausted.
|
|
if (CurSize[n] >= NewSize[n])
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned n = 0; n != Nodes; n++)
|
|
assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
|
|
#endif
|
|
}
|
|
|
|
/// IntervalMapImpl::distribute - Compute a new distribution of node elements
|
|
/// after an overflow or underflow. Reserve space for a new element at Position,
|
|
/// and compute the node that will hold Position after redistributing node
|
|
/// elements.
|
|
///
|
|
/// It is required that
|
|
///
|
|
/// Elements == sum(CurSize), and
|
|
/// Elements + Grow <= Nodes * Capacity.
|
|
///
|
|
/// NewSize[] will be filled in such that:
|
|
///
|
|
/// sum(NewSize) == Elements, and
|
|
/// NewSize[i] <= Capacity.
|
|
///
|
|
/// The returned index is the node where Position will go, so:
|
|
///
|
|
/// sum(NewSize[0..idx-1]) <= Position
|
|
/// sum(NewSize[0..idx]) >= Position
|
|
///
|
|
/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
|
|
/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
|
|
/// before the one holding the Position'th element where there is room for an
|
|
/// insertion.
|
|
///
|
|
/// @param Nodes The number of nodes.
|
|
/// @param Elements Total elements in all nodes.
|
|
/// @param Capacity The capacity of each node.
|
|
/// @param CurSize Array[Nodes] of current node sizes, or NULL.
|
|
/// @param NewSize Array[Nodes] to receive the new node sizes.
|
|
/// @param Position Insert position.
|
|
/// @param Grow Reserve space for a new element at Position.
|
|
/// @return (node, offset) for Position.
|
|
IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
|
|
const unsigned *CurSize, unsigned NewSize[],
|
|
unsigned Position, bool Grow);
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMapImpl::NodeSizer ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Compute node sizes from key and value types.
|
|
//
|
|
// The branching factors are chosen to make nodes fit in three cache lines.
|
|
// This may not be possible if keys or values are very large. Such large objects
|
|
// are handled correctly, but a std::map would probably give better performance.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
enum {
|
|
// Cache line size. Most architectures have 32 or 64 byte cache lines.
|
|
// We use 64 bytes here because it provides good branching factors.
|
|
Log2CacheLine = 6,
|
|
CacheLineBytes = 1 << Log2CacheLine,
|
|
DesiredNodeBytes = 3 * CacheLineBytes
|
|
};
|
|
|
|
template <typename KeyT, typename ValT>
|
|
struct NodeSizer {
|
|
enum {
|
|
// Compute the leaf node branching factor that makes a node fit in three
|
|
// cache lines. The branching factor must be at least 3, or some B+-tree
|
|
// balancing algorithms won't work.
|
|
// LeafSize can't be larger than CacheLineBytes. This is required by the
|
|
// PointerIntPair used by NodeRef.
|
|
DesiredLeafSize = DesiredNodeBytes /
|
|
static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
|
|
MinLeafSize = 3,
|
|
LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
|
|
};
|
|
|
|
typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
|
|
|
|
enum {
|
|
// Now that we have the leaf branching factor, compute the actual allocation
|
|
// unit size by rounding up to a whole number of cache lines.
|
|
AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
|
|
|
|
// Determine the branching factor for branch nodes.
|
|
BranchSize = AllocBytes /
|
|
static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
|
|
};
|
|
|
|
/// Allocator - The recycling allocator used for both branch and leaf nodes.
|
|
/// This typedef is very likely to be identical for all IntervalMaps with
|
|
/// reasonably sized entries, so the same allocator can be shared among
|
|
/// different kinds of maps.
|
|
typedef RecyclingAllocator<BumpPtrAllocator, char,
|
|
AllocBytes, CacheLineBytes> Allocator;
|
|
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMapImpl::NodeRef ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// B+-tree nodes can be leaves or branches, so we need a polymorphic node
|
|
// pointer that can point to both kinds.
|
|
//
|
|
// All nodes are cache line aligned and the low 6 bits of a node pointer are
|
|
// always 0. These bits are used to store the number of elements in the
|
|
// referenced node. Besides saving space, placing node sizes in the parents
|
|
// allow tree balancing algorithms to run without faulting cache lines for nodes
|
|
// that may not need to be modified.
|
|
//
|
|
// A NodeRef doesn't know whether it references a leaf node or a branch node.
|
|
// It is the responsibility of the caller to use the correct types.
|
|
//
|
|
// Nodes are never supposed to be empty, and it is invalid to store a node size
|
|
// of 0 in a NodeRef. The valid range of sizes is 1-64.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class NodeRef {
|
|
struct CacheAlignedPointerTraits {
|
|
static inline void *getAsVoidPointer(void *P) { return P; }
|
|
static inline void *getFromVoidPointer(void *P) { return P; }
|
|
enum { NumLowBitsAvailable = Log2CacheLine };
|
|
};
|
|
PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
|
|
|
|
public:
|
|
/// NodeRef - Create a null ref.
|
|
NodeRef() {}
|
|
|
|
/// operator bool - Detect a null ref.
|
|
LLVM_EXPLICIT operator bool() const { return pip.getOpaqueValue(); }
|
|
|
|
/// NodeRef - Create a reference to the node p with n elements.
|
|
template <typename NodeT>
|
|
NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
|
|
assert(n <= NodeT::Capacity && "Size too big for node");
|
|
}
|
|
|
|
/// size - Return the number of elements in the referenced node.
|
|
unsigned size() const { return pip.getInt() + 1; }
|
|
|
|
/// setSize - Update the node size.
|
|
void setSize(unsigned n) { pip.setInt(n - 1); }
|
|
|
|
/// subtree - Access the i'th subtree reference in a branch node.
|
|
/// This depends on branch nodes storing the NodeRef array as their first
|
|
/// member.
|
|
NodeRef &subtree(unsigned i) const {
|
|
return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
|
|
}
|
|
|
|
/// get - Dereference as a NodeT reference.
|
|
template <typename NodeT>
|
|
NodeT &get() const {
|
|
return *reinterpret_cast<NodeT*>(pip.getPointer());
|
|
}
|
|
|
|
bool operator==(const NodeRef &RHS) const {
|
|
if (pip == RHS.pip)
|
|
return true;
|
|
assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
|
|
return false;
|
|
}
|
|
|
|
bool operator!=(const NodeRef &RHS) const {
|
|
return !operator==(RHS);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMapImpl::LeafNode ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Leaf nodes store up to N disjoint intervals with corresponding values.
|
|
//
|
|
// The intervals are kept sorted and fully coalesced so there are no adjacent
|
|
// intervals mapping to the same value.
|
|
//
|
|
// These constraints are always satisfied:
|
|
//
|
|
// - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
|
|
//
|
|
// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
|
|
//
|
|
// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
|
|
// - Fully coalesced.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
|
|
public:
|
|
const KeyT &start(unsigned i) const { return this->first[i].first; }
|
|
const KeyT &stop(unsigned i) const { return this->first[i].second; }
|
|
const ValT &value(unsigned i) const { return this->second[i]; }
|
|
|
|
KeyT &start(unsigned i) { return this->first[i].first; }
|
|
KeyT &stop(unsigned i) { return this->first[i].second; }
|
|
ValT &value(unsigned i) { return this->second[i]; }
|
|
|
|
/// findFrom - Find the first interval after i that may contain x.
|
|
/// @param i Starting index for the search.
|
|
/// @param Size Number of elements in node.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i].stop, x), or size.
|
|
/// This is the first interval that can possibly contain x.
|
|
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
|
|
assert(i <= Size && Size <= N && "Bad indices");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index is past the needed point");
|
|
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
|
|
return i;
|
|
}
|
|
|
|
/// safeFind - Find an interval that is known to exist. This is the same as
|
|
/// findFrom except is it assumed that x is at least within range of the last
|
|
/// interval.
|
|
/// @param i Starting index for the search.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i].stop, x), never size.
|
|
/// This is the first interval that can possibly contain x.
|
|
unsigned safeFind(unsigned i, KeyT x) const {
|
|
assert(i < N && "Bad index");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index is past the needed point");
|
|
while (Traits::stopLess(stop(i), x)) ++i;
|
|
assert(i < N && "Unsafe intervals");
|
|
return i;
|
|
}
|
|
|
|
/// safeLookup - Lookup mapped value for a safe key.
|
|
/// It is assumed that x is within range of the last entry.
|
|
/// @param x Key to search for.
|
|
/// @param NotFound Value to return if x is not in any interval.
|
|
/// @return The mapped value at x or NotFound.
|
|
ValT safeLookup(KeyT x, ValT NotFound) const {
|
|
unsigned i = safeFind(0, x);
|
|
return Traits::startLess(x, start(i)) ? NotFound : value(i);
|
|
}
|
|
|
|
unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
|
|
};
|
|
|
|
/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
|
|
/// possible. This may cause the node to grow by 1, or it may cause the node
|
|
/// to shrink because of coalescing.
|
|
/// @param Pos Starting index = insertFrom(0, size, a)
|
|
/// @param Size Number of elements in node.
|
|
/// @param a Interval start.
|
|
/// @param b Interval stop.
|
|
/// @param y Value be mapped.
|
|
/// @return (insert position, new size), or (i, Capacity+1) on overflow.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
unsigned LeafNode<KeyT, ValT, N, Traits>::
|
|
insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
|
|
unsigned i = Pos;
|
|
assert(i <= Size && Size <= N && "Invalid index");
|
|
assert(!Traits::stopLess(b, a) && "Invalid interval");
|
|
|
|
// Verify the findFrom invariant.
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
|
|
assert((i == Size || !Traits::stopLess(stop(i), a)));
|
|
assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
|
|
|
|
// Coalesce with previous interval.
|
|
if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
|
|
Pos = i - 1;
|
|
// Also coalesce with next interval?
|
|
if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
|
|
stop(i - 1) = stop(i);
|
|
this->erase(i, Size);
|
|
return Size - 1;
|
|
}
|
|
stop(i - 1) = b;
|
|
return Size;
|
|
}
|
|
|
|
// Detect overflow.
|
|
if (i == N)
|
|
return N + 1;
|
|
|
|
// Add new interval at end.
|
|
if (i == Size) {
|
|
start(i) = a;
|
|
stop(i) = b;
|
|
value(i) = y;
|
|
return Size + 1;
|
|
}
|
|
|
|
// Try to coalesce with following interval.
|
|
if (value(i) == y && Traits::adjacent(b, start(i))) {
|
|
start(i) = a;
|
|
return Size;
|
|
}
|
|
|
|
// We must insert before i. Detect overflow.
|
|
if (Size == N)
|
|
return N + 1;
|
|
|
|
// Insert before i.
|
|
this->shift(i, Size);
|
|
start(i) = a;
|
|
stop(i) = b;
|
|
value(i) = y;
|
|
return Size + 1;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMapImpl::BranchNode ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A branch node stores references to 1--N subtrees all of the same height.
|
|
//
|
|
// The key array in a branch node holds the rightmost stop key of each subtree.
|
|
// It is redundant to store the last stop key since it can be found in the
|
|
// parent node, but doing so makes tree balancing a lot simpler.
|
|
//
|
|
// It is unusual for a branch node to only have one subtree, but it can happen
|
|
// in the root node if it is smaller than the normal nodes.
|
|
//
|
|
// When all of the leaf nodes from all the subtrees are concatenated, they must
|
|
// satisfy the same constraints as a single leaf node. They must be sorted,
|
|
// sane, and fully coalesced.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class BranchNode : public NodeBase<NodeRef, KeyT, N> {
|
|
public:
|
|
const KeyT &stop(unsigned i) const { return this->second[i]; }
|
|
const NodeRef &subtree(unsigned i) const { return this->first[i]; }
|
|
|
|
KeyT &stop(unsigned i) { return this->second[i]; }
|
|
NodeRef &subtree(unsigned i) { return this->first[i]; }
|
|
|
|
/// findFrom - Find the first subtree after i that may contain x.
|
|
/// @param i Starting index for the search.
|
|
/// @param Size Number of elements in node.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i], x), or size.
|
|
/// This is the first subtree that can possibly contain x.
|
|
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
|
|
assert(i <= Size && Size <= N && "Bad indices");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index to findFrom is past the needed point");
|
|
while (i != Size && Traits::stopLess(stop(i), x)) ++i;
|
|
return i;
|
|
}
|
|
|
|
/// safeFind - Find a subtree that is known to exist. This is the same as
|
|
/// findFrom except is it assumed that x is in range.
|
|
/// @param i Starting index for the search.
|
|
/// @param x Key to search for.
|
|
/// @return First index with !stopLess(key[i], x), never size.
|
|
/// This is the first subtree that can possibly contain x.
|
|
unsigned safeFind(unsigned i, KeyT x) const {
|
|
assert(i < N && "Bad index");
|
|
assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
|
|
"Index is past the needed point");
|
|
while (Traits::stopLess(stop(i), x)) ++i;
|
|
assert(i < N && "Unsafe intervals");
|
|
return i;
|
|
}
|
|
|
|
/// safeLookup - Get the subtree containing x, Assuming that x is in range.
|
|
/// @param x Key to search for.
|
|
/// @return Subtree containing x
|
|
NodeRef safeLookup(KeyT x) const {
|
|
return subtree(safeFind(0, x));
|
|
}
|
|
|
|
/// insert - Insert a new (subtree, stop) pair.
|
|
/// @param i Insert position, following entries will be shifted.
|
|
/// @param Size Number of elements in node.
|
|
/// @param Node Subtree to insert.
|
|
/// @param Stop Last key in subtree.
|
|
void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
|
|
assert(Size < N && "branch node overflow");
|
|
assert(i <= Size && "Bad insert position");
|
|
this->shift(i, Size);
|
|
subtree(i) = Node;
|
|
stop(i) = Stop;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMapImpl::Path ---//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A Path is used by iterators to represent a position in a B+-tree, and the
|
|
// path to get there from the root.
|
|
//
|
|
// The Path class also contains the tree navigation code that doesn't have to
|
|
// be templatized.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class Path {
|
|
/// Entry - Each step in the path is a node pointer and an offset into that
|
|
/// node.
|
|
struct Entry {
|
|
void *node;
|
|
unsigned size;
|
|
unsigned offset;
|
|
|
|
Entry(void *Node, unsigned Size, unsigned Offset)
|
|
: node(Node), size(Size), offset(Offset) {}
|
|
|
|
Entry(NodeRef Node, unsigned Offset)
|
|
: node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
|
|
|
|
NodeRef &subtree(unsigned i) const {
|
|
return reinterpret_cast<NodeRef*>(node)[i];
|
|
}
|
|
};
|
|
|
|
/// path - The path entries, path[0] is the root node, path.back() is a leaf.
|
|
SmallVector<Entry, 4> path;
|
|
|
|
public:
|
|
// Node accessors.
|
|
template <typename NodeT> NodeT &node(unsigned Level) const {
|
|
return *reinterpret_cast<NodeT*>(path[Level].node);
|
|
}
|
|
unsigned size(unsigned Level) const { return path[Level].size; }
|
|
unsigned offset(unsigned Level) const { return path[Level].offset; }
|
|
unsigned &offset(unsigned Level) { return path[Level].offset; }
|
|
|
|
// Leaf accessors.
|
|
template <typename NodeT> NodeT &leaf() const {
|
|
return *reinterpret_cast<NodeT*>(path.back().node);
|
|
}
|
|
unsigned leafSize() const { return path.back().size; }
|
|
unsigned leafOffset() const { return path.back().offset; }
|
|
unsigned &leafOffset() { return path.back().offset; }
|
|
|
|
/// valid - Return true if path is at a valid node, not at end().
|
|
bool valid() const {
|
|
return !path.empty() && path.front().offset < path.front().size;
|
|
}
|
|
|
|
/// height - Return the height of the tree corresponding to this path.
|
|
/// This matches map->height in a full path.
|
|
unsigned height() const { return path.size() - 1; }
|
|
|
|
/// subtree - Get the subtree referenced from Level. When the path is
|
|
/// consistent, node(Level + 1) == subtree(Level).
|
|
/// @param Level 0..height-1. The leaves have no subtrees.
|
|
NodeRef &subtree(unsigned Level) const {
|
|
return path[Level].subtree(path[Level].offset);
|
|
}
|
|
|
|
/// reset - Reset cached information about node(Level) from subtree(Level -1).
|
|
/// @param Level 1..height. THe node to update after parent node changed.
|
|
void reset(unsigned Level) {
|
|
path[Level] = Entry(subtree(Level - 1), offset(Level));
|
|
}
|
|
|
|
/// push - Add entry to path.
|
|
/// @param Node Node to add, should be subtree(path.size()-1).
|
|
/// @param Offset Offset into Node.
|
|
void push(NodeRef Node, unsigned Offset) {
|
|
path.push_back(Entry(Node, Offset));
|
|
}
|
|
|
|
/// pop - Remove the last path entry.
|
|
void pop() {
|
|
path.pop_back();
|
|
}
|
|
|
|
/// setSize - Set the size of a node both in the path and in the tree.
|
|
/// @param Level 0..height. Note that setting the root size won't change
|
|
/// map->rootSize.
|
|
/// @param Size New node size.
|
|
void setSize(unsigned Level, unsigned Size) {
|
|
path[Level].size = Size;
|
|
if (Level)
|
|
subtree(Level - 1).setSize(Size);
|
|
}
|
|
|
|
/// setRoot - Clear the path and set a new root node.
|
|
/// @param Node New root node.
|
|
/// @param Size New root size.
|
|
/// @param Offset Offset into root node.
|
|
void setRoot(void *Node, unsigned Size, unsigned Offset) {
|
|
path.clear();
|
|
path.push_back(Entry(Node, Size, Offset));
|
|
}
|
|
|
|
/// replaceRoot - Replace the current root node with two new entries after the
|
|
/// tree height has increased.
|
|
/// @param Root The new root node.
|
|
/// @param Size Number of entries in the new root.
|
|
/// @param Offsets Offsets into the root and first branch nodes.
|
|
void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
|
|
|
|
/// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
|
|
/// @param Level Get the sibling to node(Level).
|
|
/// @return Left sibling, or NodeRef().
|
|
NodeRef getLeftSibling(unsigned Level) const;
|
|
|
|
/// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
|
|
/// unaltered.
|
|
/// @param Level Move node(Level).
|
|
void moveLeft(unsigned Level);
|
|
|
|
/// fillLeft - Grow path to Height by taking leftmost branches.
|
|
/// @param Height The target height.
|
|
void fillLeft(unsigned Height) {
|
|
while (height() < Height)
|
|
push(subtree(height()), 0);
|
|
}
|
|
|
|
/// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
|
|
/// @param Level Get the sinbling to node(Level).
|
|
/// @return Left sibling, or NodeRef().
|
|
NodeRef getRightSibling(unsigned Level) const;
|
|
|
|
/// moveRight - Move path to the left sibling at Level. Leave nodes below
|
|
/// Level unaltered.
|
|
/// @param Level Move node(Level).
|
|
void moveRight(unsigned Level);
|
|
|
|
/// atBegin - Return true if path is at begin().
|
|
bool atBegin() const {
|
|
for (unsigned i = 0, e = path.size(); i != e; ++i)
|
|
if (path[i].offset != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// atLastEntry - Return true if the path is at the last entry of the node at
|
|
/// Level.
|
|
/// @param Level Node to examine.
|
|
bool atLastEntry(unsigned Level) const {
|
|
return path[Level].offset == path[Level].size - 1;
|
|
}
|
|
|
|
/// legalizeForInsert - Prepare the path for an insertion at Level. When the
|
|
/// path is at end(), node(Level) may not be a legal node. legalizeForInsert
|
|
/// ensures that node(Level) is real by moving back to the last node at Level,
|
|
/// and setting offset(Level) to size(Level) if required.
|
|
/// @param Level The level where an insertion is about to take place.
|
|
void legalizeForInsert(unsigned Level) {
|
|
if (valid())
|
|
return;
|
|
moveLeft(Level);
|
|
++path[Level].offset;
|
|
}
|
|
};
|
|
|
|
} // namespace IntervalMapImpl
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMap ----//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT,
|
|
unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
|
|
typename Traits = IntervalMapInfo<KeyT> >
|
|
class IntervalMap {
|
|
typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
|
|
typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
|
|
typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
|
|
Branch;
|
|
typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
|
|
typedef IntervalMapImpl::IdxPair IdxPair;
|
|
|
|
// The RootLeaf capacity is given as a template parameter. We must compute the
|
|
// corresponding RootBranch capacity.
|
|
enum {
|
|
DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
|
|
(sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
|
|
RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
|
|
};
|
|
|
|
typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
|
|
RootBranch;
|
|
|
|
// When branched, we store a global start key as well as the branch node.
|
|
struct RootBranchData {
|
|
KeyT start;
|
|
RootBranch node;
|
|
};
|
|
|
|
enum {
|
|
RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
|
|
sizeof(RootBranchData) : sizeof(RootLeaf)
|
|
};
|
|
|
|
public:
|
|
typedef typename Sizer::Allocator Allocator;
|
|
typedef KeyT KeyType;
|
|
typedef ValT ValueType;
|
|
typedef Traits KeyTraits;
|
|
|
|
private:
|
|
// The root data is either a RootLeaf or a RootBranchData instance.
|
|
// We can't put them in a union since C++03 doesn't allow non-trivial
|
|
// constructors in unions.
|
|
// Instead, we use a char array with pointer alignment. The alignment is
|
|
// ensured by the allocator member in the class, but still verified in the
|
|
// constructor. We don't support keys or values that are more aligned than a
|
|
// pointer.
|
|
char data[RootDataSize];
|
|
|
|
// Tree height.
|
|
// 0: Leaves in root.
|
|
// 1: Root points to leaf.
|
|
// 2: root->branch->leaf ...
|
|
unsigned height;
|
|
|
|
// Number of entries in the root node.
|
|
unsigned rootSize;
|
|
|
|
// Allocator used for creating external nodes.
|
|
Allocator &allocator;
|
|
|
|
/// dataAs - Represent data as a node type without breaking aliasing rules.
|
|
template <typename T>
|
|
T &dataAs() const {
|
|
union {
|
|
const char *d;
|
|
T *t;
|
|
} u;
|
|
u.d = data;
|
|
return *u.t;
|
|
}
|
|
|
|
const RootLeaf &rootLeaf() const {
|
|
assert(!branched() && "Cannot acces leaf data in branched root");
|
|
return dataAs<RootLeaf>();
|
|
}
|
|
RootLeaf &rootLeaf() {
|
|
assert(!branched() && "Cannot acces leaf data in branched root");
|
|
return dataAs<RootLeaf>();
|
|
}
|
|
RootBranchData &rootBranchData() const {
|
|
assert(branched() && "Cannot access branch data in non-branched root");
|
|
return dataAs<RootBranchData>();
|
|
}
|
|
RootBranchData &rootBranchData() {
|
|
assert(branched() && "Cannot access branch data in non-branched root");
|
|
return dataAs<RootBranchData>();
|
|
}
|
|
const RootBranch &rootBranch() const { return rootBranchData().node; }
|
|
RootBranch &rootBranch() { return rootBranchData().node; }
|
|
KeyT rootBranchStart() const { return rootBranchData().start; }
|
|
KeyT &rootBranchStart() { return rootBranchData().start; }
|
|
|
|
template <typename NodeT> NodeT *newNode() {
|
|
return new(allocator.template Allocate<NodeT>()) NodeT();
|
|
}
|
|
|
|
template <typename NodeT> void deleteNode(NodeT *P) {
|
|
P->~NodeT();
|
|
allocator.Deallocate(P);
|
|
}
|
|
|
|
IdxPair branchRoot(unsigned Position);
|
|
IdxPair splitRoot(unsigned Position);
|
|
|
|
void switchRootToBranch() {
|
|
rootLeaf().~RootLeaf();
|
|
height = 1;
|
|
new (&rootBranchData()) RootBranchData();
|
|
}
|
|
|
|
void switchRootToLeaf() {
|
|
rootBranchData().~RootBranchData();
|
|
height = 0;
|
|
new(&rootLeaf()) RootLeaf();
|
|
}
|
|
|
|
bool branched() const { return height > 0; }
|
|
|
|
ValT treeSafeLookup(KeyT x, ValT NotFound) const;
|
|
void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
|
|
unsigned Level));
|
|
void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
|
|
|
|
public:
|
|
explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
|
|
assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
|
|
"Insufficient alignment");
|
|
new(&rootLeaf()) RootLeaf();
|
|
}
|
|
|
|
~IntervalMap() {
|
|
clear();
|
|
rootLeaf().~RootLeaf();
|
|
}
|
|
|
|
/// empty - Return true when no intervals are mapped.
|
|
bool empty() const {
|
|
return rootSize == 0;
|
|
}
|
|
|
|
/// start - Return the smallest mapped key in a non-empty map.
|
|
KeyT start() const {
|
|
assert(!empty() && "Empty IntervalMap has no start");
|
|
return !branched() ? rootLeaf().start(0) : rootBranchStart();
|
|
}
|
|
|
|
/// stop - Return the largest mapped key in a non-empty map.
|
|
KeyT stop() const {
|
|
assert(!empty() && "Empty IntervalMap has no stop");
|
|
return !branched() ? rootLeaf().stop(rootSize - 1) :
|
|
rootBranch().stop(rootSize - 1);
|
|
}
|
|
|
|
/// lookup - Return the mapped value at x or NotFound.
|
|
ValT lookup(KeyT x, ValT NotFound = ValT()) const {
|
|
if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
|
|
return NotFound;
|
|
return branched() ? treeSafeLookup(x, NotFound) :
|
|
rootLeaf().safeLookup(x, NotFound);
|
|
}
|
|
|
|
/// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
|
|
/// It is assumed that no key in the interval is mapped to another value, but
|
|
/// overlapping intervals already mapped to y will be coalesced.
|
|
void insert(KeyT a, KeyT b, ValT y) {
|
|
if (branched() || rootSize == RootLeaf::Capacity)
|
|
return find(a).insert(a, b, y);
|
|
|
|
// Easy insert into root leaf.
|
|
unsigned p = rootLeaf().findFrom(0, rootSize, a);
|
|
rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
|
|
}
|
|
|
|
/// clear - Remove all entries.
|
|
void clear();
|
|
|
|
class const_iterator;
|
|
class iterator;
|
|
friend class const_iterator;
|
|
friend class iterator;
|
|
|
|
const_iterator begin() const {
|
|
const_iterator I(*this);
|
|
I.goToBegin();
|
|
return I;
|
|
}
|
|
|
|
iterator begin() {
|
|
iterator I(*this);
|
|
I.goToBegin();
|
|
return I;
|
|
}
|
|
|
|
const_iterator end() const {
|
|
const_iterator I(*this);
|
|
I.goToEnd();
|
|
return I;
|
|
}
|
|
|
|
iterator end() {
|
|
iterator I(*this);
|
|
I.goToEnd();
|
|
return I;
|
|
}
|
|
|
|
/// find - Return an iterator pointing to the first interval ending at or
|
|
/// after x, or end().
|
|
const_iterator find(KeyT x) const {
|
|
const_iterator I(*this);
|
|
I.find(x);
|
|
return I;
|
|
}
|
|
|
|
iterator find(KeyT x) {
|
|
iterator I(*this);
|
|
I.find(x);
|
|
return I;
|
|
}
|
|
};
|
|
|
|
/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
|
|
/// branched root.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
ValT IntervalMap<KeyT, ValT, N, Traits>::
|
|
treeSafeLookup(KeyT x, ValT NotFound) const {
|
|
assert(branched() && "treeLookup assumes a branched root");
|
|
|
|
IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
|
|
for (unsigned h = height-1; h; --h)
|
|
NR = NR.get<Branch>().safeLookup(x);
|
|
return NR.get<Leaf>().safeLookup(x, NotFound);
|
|
}
|
|
|
|
|
|
// branchRoot - Switch from a leaf root to a branched root.
|
|
// Return the new (root offset, node offset) corresponding to Position.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
|
|
branchRoot(unsigned Position) {
|
|
using namespace IntervalMapImpl;
|
|
// How many external leaf nodes to hold RootLeaf+1?
|
|
const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
|
|
|
|
// Compute element distribution among new nodes.
|
|
unsigned size[Nodes];
|
|
IdxPair NewOffset(0, Position);
|
|
|
|
// Is is very common for the root node to be smaller than external nodes.
|
|
if (Nodes == 1)
|
|
size[0] = rootSize;
|
|
else
|
|
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
|
|
Position, true);
|
|
|
|
// Allocate new nodes.
|
|
unsigned pos = 0;
|
|
NodeRef node[Nodes];
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
Leaf *L = newNode<Leaf>();
|
|
L->copy(rootLeaf(), pos, 0, size[n]);
|
|
node[n] = NodeRef(L, size[n]);
|
|
pos += size[n];
|
|
}
|
|
|
|
// Destroy the old leaf node, construct branch node instead.
|
|
switchRootToBranch();
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
|
|
rootBranch().subtree(n) = node[n];
|
|
}
|
|
rootBranchStart() = node[0].template get<Leaf>().start(0);
|
|
rootSize = Nodes;
|
|
return NewOffset;
|
|
}
|
|
|
|
// splitRoot - Split the current BranchRoot into multiple Branch nodes.
|
|
// Return the new (root offset, node offset) corresponding to Position.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
|
|
splitRoot(unsigned Position) {
|
|
using namespace IntervalMapImpl;
|
|
// How many external leaf nodes to hold RootBranch+1?
|
|
const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
|
|
|
|
// Compute element distribution among new nodes.
|
|
unsigned Size[Nodes];
|
|
IdxPair NewOffset(0, Position);
|
|
|
|
// Is is very common for the root node to be smaller than external nodes.
|
|
if (Nodes == 1)
|
|
Size[0] = rootSize;
|
|
else
|
|
NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size,
|
|
Position, true);
|
|
|
|
// Allocate new nodes.
|
|
unsigned Pos = 0;
|
|
NodeRef Node[Nodes];
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
Branch *B = newNode<Branch>();
|
|
B->copy(rootBranch(), Pos, 0, Size[n]);
|
|
Node[n] = NodeRef(B, Size[n]);
|
|
Pos += Size[n];
|
|
}
|
|
|
|
for (unsigned n = 0; n != Nodes; ++n) {
|
|
rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
|
|
rootBranch().subtree(n) = Node[n];
|
|
}
|
|
rootSize = Nodes;
|
|
++height;
|
|
return NewOffset;
|
|
}
|
|
|
|
/// visitNodes - Visit each external node.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
|
|
if (!branched())
|
|
return;
|
|
SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
|
|
|
|
// Collect level 0 nodes from the root.
|
|
for (unsigned i = 0; i != rootSize; ++i)
|
|
Refs.push_back(rootBranch().subtree(i));
|
|
|
|
// Visit all branch nodes.
|
|
for (unsigned h = height - 1; h; --h) {
|
|
for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
|
|
for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
|
|
NextRefs.push_back(Refs[i].subtree(j));
|
|
(this->*f)(Refs[i], h);
|
|
}
|
|
Refs.clear();
|
|
Refs.swap(NextRefs);
|
|
}
|
|
|
|
// Visit all leaf nodes.
|
|
for (unsigned i = 0, e = Refs.size(); i != e; ++i)
|
|
(this->*f)(Refs[i], 0);
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
|
|
if (Level)
|
|
deleteNode(&Node.get<Branch>());
|
|
else
|
|
deleteNode(&Node.get<Leaf>());
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
clear() {
|
|
if (branched()) {
|
|
visitNodes(&IntervalMap::deleteNode);
|
|
switchRootToLeaf();
|
|
}
|
|
rootSize = 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMap::const_iterator ----//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
|
|
public std::iterator<std::bidirectional_iterator_tag, ValT> {
|
|
protected:
|
|
friend class IntervalMap;
|
|
|
|
// The map referred to.
|
|
IntervalMap *map;
|
|
|
|
// We store a full path from the root to the current position.
|
|
// The path may be partially filled, but never between iterator calls.
|
|
IntervalMapImpl::Path path;
|
|
|
|
explicit const_iterator(const IntervalMap &map) :
|
|
map(const_cast<IntervalMap*>(&map)) {}
|
|
|
|
bool branched() const {
|
|
assert(map && "Invalid iterator");
|
|
return map->branched();
|
|
}
|
|
|
|
void setRoot(unsigned Offset) {
|
|
if (branched())
|
|
path.setRoot(&map->rootBranch(), map->rootSize, Offset);
|
|
else
|
|
path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
|
|
}
|
|
|
|
void pathFillFind(KeyT x);
|
|
void treeFind(KeyT x);
|
|
void treeAdvanceTo(KeyT x);
|
|
|
|
/// unsafeStart - Writable access to start() for iterator.
|
|
KeyT &unsafeStart() const {
|
|
assert(valid() && "Cannot access invalid iterator");
|
|
return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
|
|
path.leaf<RootLeaf>().start(path.leafOffset());
|
|
}
|
|
|
|
/// unsafeStop - Writable access to stop() for iterator.
|
|
KeyT &unsafeStop() const {
|
|
assert(valid() && "Cannot access invalid iterator");
|
|
return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
|
|
path.leaf<RootLeaf>().stop(path.leafOffset());
|
|
}
|
|
|
|
/// unsafeValue - Writable access to value() for iterator.
|
|
ValT &unsafeValue() const {
|
|
assert(valid() && "Cannot access invalid iterator");
|
|
return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
|
|
path.leaf<RootLeaf>().value(path.leafOffset());
|
|
}
|
|
|
|
public:
|
|
/// const_iterator - Create an iterator that isn't pointing anywhere.
|
|
const_iterator() : map(0) {}
|
|
|
|
/// setMap - Change the map iterated over. This call must be followed by a
|
|
/// call to goToBegin(), goToEnd(), or find()
|
|
void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
|
|
|
|
/// valid - Return true if the current position is valid, false for end().
|
|
bool valid() const { return path.valid(); }
|
|
|
|
/// atBegin - Return true if the current position is the first map entry.
|
|
bool atBegin() const { return path.atBegin(); }
|
|
|
|
/// start - Return the beginning of the current interval.
|
|
const KeyT &start() const { return unsafeStart(); }
|
|
|
|
/// stop - Return the end of the current interval.
|
|
const KeyT &stop() const { return unsafeStop(); }
|
|
|
|
/// value - Return the mapped value at the current interval.
|
|
const ValT &value() const { return unsafeValue(); }
|
|
|
|
const ValT &operator*() const { return value(); }
|
|
|
|
bool operator==(const const_iterator &RHS) const {
|
|
assert(map == RHS.map && "Cannot compare iterators from different maps");
|
|
if (!valid())
|
|
return !RHS.valid();
|
|
if (path.leafOffset() != RHS.path.leafOffset())
|
|
return false;
|
|
return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
|
|
}
|
|
|
|
bool operator!=(const const_iterator &RHS) const {
|
|
return !operator==(RHS);
|
|
}
|
|
|
|
/// goToBegin - Move to the first interval in map.
|
|
void goToBegin() {
|
|
setRoot(0);
|
|
if (branched())
|
|
path.fillLeft(map->height);
|
|
}
|
|
|
|
/// goToEnd - Move beyond the last interval in map.
|
|
void goToEnd() {
|
|
setRoot(map->rootSize);
|
|
}
|
|
|
|
/// preincrement - move to the next interval.
|
|
const_iterator &operator++() {
|
|
assert(valid() && "Cannot increment end()");
|
|
if (++path.leafOffset() == path.leafSize() && branched())
|
|
path.moveRight(map->height);
|
|
return *this;
|
|
}
|
|
|
|
/// postincrement - Dont do that!
|
|
const_iterator operator++(int) {
|
|
const_iterator tmp = *this;
|
|
operator++();
|
|
return tmp;
|
|
}
|
|
|
|
/// predecrement - move to the previous interval.
|
|
const_iterator &operator--() {
|
|
if (path.leafOffset() && (valid() || !branched()))
|
|
--path.leafOffset();
|
|
else
|
|
path.moveLeft(map->height);
|
|
return *this;
|
|
}
|
|
|
|
/// postdecrement - Dont do that!
|
|
const_iterator operator--(int) {
|
|
const_iterator tmp = *this;
|
|
operator--();
|
|
return tmp;
|
|
}
|
|
|
|
/// find - Move to the first interval with stop >= x, or end().
|
|
/// This is a full search from the root, the current position is ignored.
|
|
void find(KeyT x) {
|
|
if (branched())
|
|
treeFind(x);
|
|
else
|
|
setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
|
|
}
|
|
|
|
/// advanceTo - Move to the first interval with stop >= x, or end().
|
|
/// The search is started from the current position, and no earlier positions
|
|
/// can be found. This is much faster than find() for small moves.
|
|
void advanceTo(KeyT x) {
|
|
if (!valid())
|
|
return;
|
|
if (branched())
|
|
treeAdvanceTo(x);
|
|
else
|
|
path.leafOffset() =
|
|
map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
|
|
}
|
|
|
|
};
|
|
|
|
/// pathFillFind - Complete path by searching for x.
|
|
/// @param x Key to search for.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::pathFillFind(KeyT x) {
|
|
IntervalMapImpl::NodeRef NR = path.subtree(path.height());
|
|
for (unsigned i = map->height - path.height() - 1; i; --i) {
|
|
unsigned p = NR.get<Branch>().safeFind(0, x);
|
|
path.push(NR, p);
|
|
NR = NR.subtree(p);
|
|
}
|
|
path.push(NR, NR.get<Leaf>().safeFind(0, x));
|
|
}
|
|
|
|
/// treeFind - Find in a branched tree.
|
|
/// @param x Key to search for.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::treeFind(KeyT x) {
|
|
setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
|
|
if (valid())
|
|
pathFillFind(x);
|
|
}
|
|
|
|
/// treeAdvanceTo - Find position after the current one.
|
|
/// @param x Key to search for.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
const_iterator::treeAdvanceTo(KeyT x) {
|
|
// Can we stay on the same leaf node?
|
|
if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
|
|
path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
|
|
return;
|
|
}
|
|
|
|
// Drop the current leaf.
|
|
path.pop();
|
|
|
|
// Search towards the root for a usable subtree.
|
|
if (path.height()) {
|
|
for (unsigned l = path.height() - 1; l; --l) {
|
|
if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
|
|
// The branch node at l+1 is usable
|
|
path.offset(l + 1) =
|
|
path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
|
|
return pathFillFind(x);
|
|
}
|
|
path.pop();
|
|
}
|
|
// Is the level-1 Branch usable?
|
|
if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
|
|
path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
|
|
return pathFillFind(x);
|
|
}
|
|
}
|
|
|
|
// We reached the root.
|
|
setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
|
|
if (valid())
|
|
pathFillFind(x);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMap::iterator ----//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
|
|
friend class IntervalMap;
|
|
typedef IntervalMapImpl::IdxPair IdxPair;
|
|
|
|
explicit iterator(IntervalMap &map) : const_iterator(map) {}
|
|
|
|
void setNodeStop(unsigned Level, KeyT Stop);
|
|
bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
|
|
template <typename NodeT> bool overflow(unsigned Level);
|
|
void treeInsert(KeyT a, KeyT b, ValT y);
|
|
void eraseNode(unsigned Level);
|
|
void treeErase(bool UpdateRoot = true);
|
|
bool canCoalesceLeft(KeyT Start, ValT x);
|
|
bool canCoalesceRight(KeyT Stop, ValT x);
|
|
|
|
public:
|
|
/// iterator - Create null iterator.
|
|
iterator() {}
|
|
|
|
/// setStart - Move the start of the current interval.
|
|
/// This may cause coalescing with the previous interval.
|
|
/// @param a New start key, must not overlap the previous interval.
|
|
void setStart(KeyT a);
|
|
|
|
/// setStop - Move the end of the current interval.
|
|
/// This may cause coalescing with the following interval.
|
|
/// @param b New stop key, must not overlap the following interval.
|
|
void setStop(KeyT b);
|
|
|
|
/// setValue - Change the mapped value of the current interval.
|
|
/// This may cause coalescing with the previous and following intervals.
|
|
/// @param x New value.
|
|
void setValue(ValT x);
|
|
|
|
/// setStartUnchecked - Move the start of the current interval without
|
|
/// checking for coalescing or overlaps.
|
|
/// This should only be used when it is known that coalescing is not required.
|
|
/// @param a New start key.
|
|
void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
|
|
|
|
/// setStopUnchecked - Move the end of the current interval without checking
|
|
/// for coalescing or overlaps.
|
|
/// This should only be used when it is known that coalescing is not required.
|
|
/// @param b New stop key.
|
|
void setStopUnchecked(KeyT b) {
|
|
this->unsafeStop() = b;
|
|
// Update keys in branch nodes as well.
|
|
if (this->path.atLastEntry(this->path.height()))
|
|
setNodeStop(this->path.height(), b);
|
|
}
|
|
|
|
/// setValueUnchecked - Change the mapped value of the current interval
|
|
/// without checking for coalescing.
|
|
/// @param x New value.
|
|
void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
|
|
|
|
/// insert - Insert mapping [a;b] -> y before the current position.
|
|
void insert(KeyT a, KeyT b, ValT y);
|
|
|
|
/// erase - Erase the current interval.
|
|
void erase();
|
|
|
|
iterator &operator++() {
|
|
const_iterator::operator++();
|
|
return *this;
|
|
}
|
|
|
|
iterator operator++(int) {
|
|
iterator tmp = *this;
|
|
operator++();
|
|
return tmp;
|
|
}
|
|
|
|
iterator &operator--() {
|
|
const_iterator::operator--();
|
|
return *this;
|
|
}
|
|
|
|
iterator operator--(int) {
|
|
iterator tmp = *this;
|
|
operator--();
|
|
return tmp;
|
|
}
|
|
|
|
};
|
|
|
|
/// canCoalesceLeft - Can the current interval coalesce to the left after
|
|
/// changing start or value?
|
|
/// @param Start New start of current interval.
|
|
/// @param Value New value for current interval.
|
|
/// @return True when updating the current interval would enable coalescing.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
bool IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::canCoalesceLeft(KeyT Start, ValT Value) {
|
|
using namespace IntervalMapImpl;
|
|
Path &P = this->path;
|
|
if (!this->branched()) {
|
|
unsigned i = P.leafOffset();
|
|
RootLeaf &Node = P.leaf<RootLeaf>();
|
|
return i && Node.value(i-1) == Value &&
|
|
Traits::adjacent(Node.stop(i-1), Start);
|
|
}
|
|
// Branched.
|
|
if (unsigned i = P.leafOffset()) {
|
|
Leaf &Node = P.leaf<Leaf>();
|
|
return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
|
|
} else if (NodeRef NR = P.getLeftSibling(P.height())) {
|
|
unsigned i = NR.size() - 1;
|
|
Leaf &Node = NR.get<Leaf>();
|
|
return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// canCoalesceRight - Can the current interval coalesce to the right after
|
|
/// changing stop or value?
|
|
/// @param Stop New stop of current interval.
|
|
/// @param Value New value for current interval.
|
|
/// @return True when updating the current interval would enable coalescing.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
bool IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::canCoalesceRight(KeyT Stop, ValT Value) {
|
|
using namespace IntervalMapImpl;
|
|
Path &P = this->path;
|
|
unsigned i = P.leafOffset() + 1;
|
|
if (!this->branched()) {
|
|
if (i >= P.leafSize())
|
|
return false;
|
|
RootLeaf &Node = P.leaf<RootLeaf>();
|
|
return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
|
|
}
|
|
// Branched.
|
|
if (i < P.leafSize()) {
|
|
Leaf &Node = P.leaf<Leaf>();
|
|
return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
|
|
} else if (NodeRef NR = P.getRightSibling(P.height())) {
|
|
Leaf &Node = NR.get<Leaf>();
|
|
return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// setNodeStop - Update the stop key of the current node at level and above.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::setNodeStop(unsigned Level, KeyT Stop) {
|
|
// There are no references to the root node, so nothing to update.
|
|
if (!Level)
|
|
return;
|
|
IntervalMapImpl::Path &P = this->path;
|
|
// Update nodes pointing to the current node.
|
|
while (--Level) {
|
|
P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
|
|
if (!P.atLastEntry(Level))
|
|
return;
|
|
}
|
|
// Update root separately since it has a different layout.
|
|
P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::setStart(KeyT a) {
|
|
assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
|
|
KeyT &CurStart = this->unsafeStart();
|
|
if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
|
|
CurStart = a;
|
|
return;
|
|
}
|
|
// Coalesce with the interval to the left.
|
|
--*this;
|
|
a = this->start();
|
|
erase();
|
|
setStartUnchecked(a);
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::setStop(KeyT b) {
|
|
assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
|
|
if (Traits::startLess(b, this->stop()) ||
|
|
!canCoalesceRight(b, this->value())) {
|
|
setStopUnchecked(b);
|
|
return;
|
|
}
|
|
// Coalesce with interval to the right.
|
|
KeyT a = this->start();
|
|
erase();
|
|
setStartUnchecked(a);
|
|
}
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::setValue(ValT x) {
|
|
setValueUnchecked(x);
|
|
if (canCoalesceRight(this->stop(), x)) {
|
|
KeyT a = this->start();
|
|
erase();
|
|
setStartUnchecked(a);
|
|
}
|
|
if (canCoalesceLeft(this->start(), x)) {
|
|
--*this;
|
|
KeyT a = this->start();
|
|
erase();
|
|
setStartUnchecked(a);
|
|
}
|
|
}
|
|
|
|
/// insertNode - insert a node before the current path at level.
|
|
/// Leave the current path pointing at the new node.
|
|
/// @param Level path index of the node to be inserted.
|
|
/// @param Node The node to be inserted.
|
|
/// @param Stop The last index in the new node.
|
|
/// @return True if the tree height was increased.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
bool IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
|
|
assert(Level && "Cannot insert next to the root");
|
|
bool SplitRoot = false;
|
|
IntervalMap &IM = *this->map;
|
|
IntervalMapImpl::Path &P = this->path;
|
|
|
|
if (Level == 1) {
|
|
// Insert into the root branch node.
|
|
if (IM.rootSize < RootBranch::Capacity) {
|
|
IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
|
|
P.setSize(0, ++IM.rootSize);
|
|
P.reset(Level);
|
|
return SplitRoot;
|
|
}
|
|
|
|
// We need to split the root while keeping our position.
|
|
SplitRoot = true;
|
|
IdxPair Offset = IM.splitRoot(P.offset(0));
|
|
P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
|
|
|
|
// Fall through to insert at the new higher level.
|
|
++Level;
|
|
}
|
|
|
|
// When inserting before end(), make sure we have a valid path.
|
|
P.legalizeForInsert(--Level);
|
|
|
|
// Insert into the branch node at Level-1.
|
|
if (P.size(Level) == Branch::Capacity) {
|
|
// Branch node is full, handle handle the overflow.
|
|
assert(!SplitRoot && "Cannot overflow after splitting the root");
|
|
SplitRoot = overflow<Branch>(Level);
|
|
Level += SplitRoot;
|
|
}
|
|
P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
|
|
P.setSize(Level, P.size(Level) + 1);
|
|
if (P.atLastEntry(Level))
|
|
setNodeStop(Level, Stop);
|
|
P.reset(Level + 1);
|
|
return SplitRoot;
|
|
}
|
|
|
|
// insert
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::insert(KeyT a, KeyT b, ValT y) {
|
|
if (this->branched())
|
|
return treeInsert(a, b, y);
|
|
IntervalMap &IM = *this->map;
|
|
IntervalMapImpl::Path &P = this->path;
|
|
|
|
// Try simple root leaf insert.
|
|
unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
|
|
|
|
// Was the root node insert successful?
|
|
if (Size <= RootLeaf::Capacity) {
|
|
P.setSize(0, IM.rootSize = Size);
|
|
return;
|
|
}
|
|
|
|
// Root leaf node is full, we must branch.
|
|
IdxPair Offset = IM.branchRoot(P.leafOffset());
|
|
P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
|
|
|
|
// Now it fits in the new leaf.
|
|
treeInsert(a, b, y);
|
|
}
|
|
|
|
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::treeInsert(KeyT a, KeyT b, ValT y) {
|
|
using namespace IntervalMapImpl;
|
|
Path &P = this->path;
|
|
|
|
if (!P.valid())
|
|
P.legalizeForInsert(this->map->height);
|
|
|
|
// Check if this insertion will extend the node to the left.
|
|
if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
|
|
// Node is growing to the left, will it affect a left sibling node?
|
|
if (NodeRef Sib = P.getLeftSibling(P.height())) {
|
|
Leaf &SibLeaf = Sib.get<Leaf>();
|
|
unsigned SibOfs = Sib.size() - 1;
|
|
if (SibLeaf.value(SibOfs) == y &&
|
|
Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
|
|
// This insertion will coalesce with the last entry in SibLeaf. We can
|
|
// handle it in two ways:
|
|
// 1. Extend SibLeaf.stop to b and be done, or
|
|
// 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
|
|
// We prefer 1., but need 2 when coalescing to the right as well.
|
|
Leaf &CurLeaf = P.leaf<Leaf>();
|
|
P.moveLeft(P.height());
|
|
if (Traits::stopLess(b, CurLeaf.start(0)) &&
|
|
(y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
|
|
// Easy, just extend SibLeaf and we're done.
|
|
setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
|
|
return;
|
|
} else {
|
|
// We have both left and right coalescing. Erase the old SibLeaf entry
|
|
// and continue inserting the larger interval.
|
|
a = SibLeaf.start(SibOfs);
|
|
treeErase(/* UpdateRoot= */false);
|
|
}
|
|
}
|
|
} else {
|
|
// No left sibling means we are at begin(). Update cached bound.
|
|
this->map->rootBranchStart() = a;
|
|
}
|
|
}
|
|
|
|
// When we are inserting at the end of a leaf node, we must update stops.
|
|
unsigned Size = P.leafSize();
|
|
bool Grow = P.leafOffset() == Size;
|
|
Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
|
|
|
|
// Leaf insertion unsuccessful? Overflow and try again.
|
|
if (Size > Leaf::Capacity) {
|
|
overflow<Leaf>(P.height());
|
|
Grow = P.leafOffset() == P.leafSize();
|
|
Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
|
|
assert(Size <= Leaf::Capacity && "overflow() didn't make room");
|
|
}
|
|
|
|
// Inserted, update offset and leaf size.
|
|
P.setSize(P.height(), Size);
|
|
|
|
// Insert was the last node entry, update stops.
|
|
if (Grow)
|
|
setNodeStop(P.height(), b);
|
|
}
|
|
|
|
/// erase - erase the current interval and move to the next position.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::erase() {
|
|
IntervalMap &IM = *this->map;
|
|
IntervalMapImpl::Path &P = this->path;
|
|
assert(P.valid() && "Cannot erase end()");
|
|
if (this->branched())
|
|
return treeErase();
|
|
IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
|
|
P.setSize(0, --IM.rootSize);
|
|
}
|
|
|
|
/// treeErase - erase() for a branched tree.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::treeErase(bool UpdateRoot) {
|
|
IntervalMap &IM = *this->map;
|
|
IntervalMapImpl::Path &P = this->path;
|
|
Leaf &Node = P.leaf<Leaf>();
|
|
|
|
// Nodes are not allowed to become empty.
|
|
if (P.leafSize() == 1) {
|
|
IM.deleteNode(&Node);
|
|
eraseNode(IM.height);
|
|
// Update rootBranchStart if we erased begin().
|
|
if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
|
|
IM.rootBranchStart() = P.leaf<Leaf>().start(0);
|
|
return;
|
|
}
|
|
|
|
// Erase current entry.
|
|
Node.erase(P.leafOffset(), P.leafSize());
|
|
unsigned NewSize = P.leafSize() - 1;
|
|
P.setSize(IM.height, NewSize);
|
|
// When we erase the last entry, update stop and move to a legal position.
|
|
if (P.leafOffset() == NewSize) {
|
|
setNodeStop(IM.height, Node.stop(NewSize - 1));
|
|
P.moveRight(IM.height);
|
|
} else if (UpdateRoot && P.atBegin())
|
|
IM.rootBranchStart() = P.leaf<Leaf>().start(0);
|
|
}
|
|
|
|
/// eraseNode - Erase the current node at Level from its parent and move path to
|
|
/// the first entry of the next sibling node.
|
|
/// The node must be deallocated by the caller.
|
|
/// @param Level 1..height, the root node cannot be erased.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
void IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::eraseNode(unsigned Level) {
|
|
assert(Level && "Cannot erase root node");
|
|
IntervalMap &IM = *this->map;
|
|
IntervalMapImpl::Path &P = this->path;
|
|
|
|
if (--Level == 0) {
|
|
IM.rootBranch().erase(P.offset(0), IM.rootSize);
|
|
P.setSize(0, --IM.rootSize);
|
|
// If this cleared the root, switch to height=0.
|
|
if (IM.empty()) {
|
|
IM.switchRootToLeaf();
|
|
this->setRoot(0);
|
|
return;
|
|
}
|
|
} else {
|
|
// Remove node ref from branch node at Level.
|
|
Branch &Parent = P.node<Branch>(Level);
|
|
if (P.size(Level) == 1) {
|
|
// Branch node became empty, remove it recursively.
|
|
IM.deleteNode(&Parent);
|
|
eraseNode(Level);
|
|
} else {
|
|
// Branch node won't become empty.
|
|
Parent.erase(P.offset(Level), P.size(Level));
|
|
unsigned NewSize = P.size(Level) - 1;
|
|
P.setSize(Level, NewSize);
|
|
// If we removed the last branch, update stop and move to a legal pos.
|
|
if (P.offset(Level) == NewSize) {
|
|
setNodeStop(Level, Parent.stop(NewSize - 1));
|
|
P.moveRight(Level);
|
|
}
|
|
}
|
|
}
|
|
// Update path cache for the new right sibling position.
|
|
if (P.valid()) {
|
|
P.reset(Level + 1);
|
|
P.offset(Level + 1) = 0;
|
|
}
|
|
}
|
|
|
|
/// overflow - Distribute entries of the current node evenly among
|
|
/// its siblings and ensure that the current node is not full.
|
|
/// This may require allocating a new node.
|
|
/// @tparam NodeT The type of node at Level (Leaf or Branch).
|
|
/// @param Level path index of the overflowing node.
|
|
/// @return True when the tree height was changed.
|
|
template <typename KeyT, typename ValT, unsigned N, typename Traits>
|
|
template <typename NodeT>
|
|
bool IntervalMap<KeyT, ValT, N, Traits>::
|
|
iterator::overflow(unsigned Level) {
|
|
using namespace IntervalMapImpl;
|
|
Path &P = this->path;
|
|
unsigned CurSize[4];
|
|
NodeT *Node[4];
|
|
unsigned Nodes = 0;
|
|
unsigned Elements = 0;
|
|
unsigned Offset = P.offset(Level);
|
|
|
|
// Do we have a left sibling?
|
|
NodeRef LeftSib = P.getLeftSibling(Level);
|
|
if (LeftSib) {
|
|
Offset += Elements = CurSize[Nodes] = LeftSib.size();
|
|
Node[Nodes++] = &LeftSib.get<NodeT>();
|
|
}
|
|
|
|
// Current node.
|
|
Elements += CurSize[Nodes] = P.size(Level);
|
|
Node[Nodes++] = &P.node<NodeT>(Level);
|
|
|
|
// Do we have a right sibling?
|
|
NodeRef RightSib = P.getRightSibling(Level);
|
|
if (RightSib) {
|
|
Elements += CurSize[Nodes] = RightSib.size();
|
|
Node[Nodes++] = &RightSib.get<NodeT>();
|
|
}
|
|
|
|
// Do we need to allocate a new node?
|
|
unsigned NewNode = 0;
|
|
if (Elements + 1 > Nodes * NodeT::Capacity) {
|
|
// Insert NewNode at the penultimate position, or after a single node.
|
|
NewNode = Nodes == 1 ? 1 : Nodes - 1;
|
|
CurSize[Nodes] = CurSize[NewNode];
|
|
Node[Nodes] = Node[NewNode];
|
|
CurSize[NewNode] = 0;
|
|
Node[NewNode] = this->map->template newNode<NodeT>();
|
|
++Nodes;
|
|
}
|
|
|
|
// Compute the new element distribution.
|
|
unsigned NewSize[4];
|
|
IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
|
|
CurSize, NewSize, Offset, true);
|
|
adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
|
|
|
|
// Move current location to the leftmost node.
|
|
if (LeftSib)
|
|
P.moveLeft(Level);
|
|
|
|
// Elements have been rearranged, now update node sizes and stops.
|
|
bool SplitRoot = false;
|
|
unsigned Pos = 0;
|
|
for (;;) {
|
|
KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
|
|
if (NewNode && Pos == NewNode) {
|
|
SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
|
|
Level += SplitRoot;
|
|
} else {
|
|
P.setSize(Level, NewSize[Pos]);
|
|
setNodeStop(Level, Stop);
|
|
}
|
|
if (Pos + 1 == Nodes)
|
|
break;
|
|
P.moveRight(Level);
|
|
++Pos;
|
|
}
|
|
|
|
// Where was I? Find NewOffset.
|
|
while(Pos != NewOffset.first) {
|
|
P.moveLeft(Level);
|
|
--Pos;
|
|
}
|
|
P.offset(Level) = NewOffset.second;
|
|
return SplitRoot;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//--- IntervalMapOverlaps ----//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
|
|
/// IntervalMaps. The maps may be different, but the KeyT and Traits types
|
|
/// should be the same.
|
|
///
|
|
/// Typical uses:
|
|
///
|
|
/// 1. Test for overlap:
|
|
/// bool overlap = IntervalMapOverlaps(a, b).valid();
|
|
///
|
|
/// 2. Enumerate overlaps:
|
|
/// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
|
|
///
|
|
template <typename MapA, typename MapB>
|
|
class IntervalMapOverlaps {
|
|
typedef typename MapA::KeyType KeyType;
|
|
typedef typename MapA::KeyTraits Traits;
|
|
typename MapA::const_iterator posA;
|
|
typename MapB::const_iterator posB;
|
|
|
|
/// advance - Move posA and posB forward until reaching an overlap, or until
|
|
/// either meets end.
|
|
/// Don't move the iterators if they are already overlapping.
|
|
void advance() {
|
|
if (!valid())
|
|
return;
|
|
|
|
if (Traits::stopLess(posA.stop(), posB.start())) {
|
|
// A ends before B begins. Catch up.
|
|
posA.advanceTo(posB.start());
|
|
if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
|
|
return;
|
|
} else if (Traits::stopLess(posB.stop(), posA.start())) {
|
|
// B ends before A begins. Catch up.
|
|
posB.advanceTo(posA.start());
|
|
if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
|
|
return;
|
|
} else
|
|
// Already overlapping.
|
|
return;
|
|
|
|
for (;;) {
|
|
// Make a.end > b.start.
|
|
posA.advanceTo(posB.start());
|
|
if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
|
|
return;
|
|
// Make b.end > a.start.
|
|
posB.advanceTo(posA.start());
|
|
if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
|
|
return;
|
|
}
|
|
}
|
|
|
|
public:
|
|
/// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
|
|
IntervalMapOverlaps(const MapA &a, const MapB &b)
|
|
: posA(b.empty() ? a.end() : a.find(b.start())),
|
|
posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
|
|
|
|
/// valid - Return true if iterator is at an overlap.
|
|
bool valid() const {
|
|
return posA.valid() && posB.valid();
|
|
}
|
|
|
|
/// a - access the left hand side in the overlap.
|
|
const typename MapA::const_iterator &a() const { return posA; }
|
|
|
|
/// b - access the right hand side in the overlap.
|
|
const typename MapB::const_iterator &b() const { return posB; }
|
|
|
|
/// start - Beginning of the overlapping interval.
|
|
KeyType start() const {
|
|
KeyType ak = a().start();
|
|
KeyType bk = b().start();
|
|
return Traits::startLess(ak, bk) ? bk : ak;
|
|
}
|
|
|
|
/// stop - End of the overlapping interval.
|
|
KeyType stop() const {
|
|
KeyType ak = a().stop();
|
|
KeyType bk = b().stop();
|
|
return Traits::startLess(ak, bk) ? ak : bk;
|
|
}
|
|
|
|
/// skipA - Move to the next overlap that doesn't involve a().
|
|
void skipA() {
|
|
++posA;
|
|
advance();
|
|
}
|
|
|
|
/// skipB - Move to the next overlap that doesn't involve b().
|
|
void skipB() {
|
|
++posB;
|
|
advance();
|
|
}
|
|
|
|
/// Preincrement - Move to the next overlap.
|
|
IntervalMapOverlaps &operator++() {
|
|
// Bump the iterator that ends first. The other one may have more overlaps.
|
|
if (Traits::startLess(posB.stop(), posA.stop()))
|
|
skipB();
|
|
else
|
|
skipA();
|
|
return *this;
|
|
}
|
|
|
|
/// advanceTo - Move to the first overlapping interval with
|
|
/// stopLess(x, stop()).
|
|
void advanceTo(KeyType x) {
|
|
if (!valid())
|
|
return;
|
|
// Make sure advanceTo sees monotonic keys.
|
|
if (Traits::stopLess(posA.stop(), x))
|
|
posA.advanceTo(x);
|
|
if (Traits::stopLess(posB.stop(), x))
|
|
posB.advanceTo(x);
|
|
advance();
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
#endif
|