mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104433 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			907 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			907 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector -*- C++ -*- ===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the SparseBitVector class.  See the doxygen comment for
 | 
						|
// SparseBitVector for more details on the algorithm used.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ADT_SPARSEBITVECTOR_H
 | 
						|
#define LLVM_ADT_SPARSEBITVECTOR_H
 | 
						|
 | 
						|
#include "llvm/ADT/ilist.h"
 | 
						|
#include "llvm/ADT/ilist_node.h"
 | 
						|
#include "llvm/System/DataTypes.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <climits>
 | 
						|
#include <cstring>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// SparseBitVector is an implementation of a bitvector that is sparse by only
 | 
						|
/// storing the elements that have non-zero bits set.  In order to make this
 | 
						|
/// fast for the most common cases, SparseBitVector is implemented as a linked
 | 
						|
/// list of SparseBitVectorElements.  We maintain a pointer to the last
 | 
						|
/// SparseBitVectorElement accessed (in the form of a list iterator), in order
 | 
						|
/// to make multiple in-order test/set constant time after the first one is
 | 
						|
/// executed.  Note that using vectors to store SparseBitVectorElement's does
 | 
						|
/// not work out very well because it causes insertion in the middle to take
 | 
						|
/// enormous amounts of time with a large amount of bits.  Other structures that
 | 
						|
/// have better worst cases for insertion in the middle (various balanced trees,
 | 
						|
/// etc) do not perform as well in practice as a linked list with this iterator
 | 
						|
/// kept up to date.  They are also significantly more memory intensive.
 | 
						|
 | 
						|
 | 
						|
template <unsigned ElementSize = 128>
 | 
						|
struct SparseBitVectorElement
 | 
						|
  : public ilist_node<SparseBitVectorElement<ElementSize> > {
 | 
						|
public:
 | 
						|
  typedef unsigned long BitWord;
 | 
						|
  enum {
 | 
						|
    BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT,
 | 
						|
    BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE,
 | 
						|
    BITS_PER_ELEMENT = ElementSize
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  // Index of Element in terms of where first bit starts.
 | 
						|
  unsigned ElementIndex;
 | 
						|
  BitWord Bits[BITWORDS_PER_ELEMENT];
 | 
						|
  // Needed for sentinels
 | 
						|
  friend struct ilist_sentinel_traits<SparseBitVectorElement>;
 | 
						|
  SparseBitVectorElement() {
 | 
						|
    ElementIndex = ~0U;
 | 
						|
    memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  explicit SparseBitVectorElement(unsigned Idx) {
 | 
						|
    ElementIndex = Idx;
 | 
						|
    memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT);
 | 
						|
  }
 | 
						|
 | 
						|
  // Comparison.
 | 
						|
  bool operator==(const SparseBitVectorElement &RHS) const {
 | 
						|
    if (ElementIndex != RHS.ElementIndex)
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 | 
						|
      if (Bits[i] != RHS.Bits[i])
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const SparseBitVectorElement &RHS) const {
 | 
						|
    return !(*this == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the bits that make up word Idx in our element.
 | 
						|
  BitWord word(unsigned Idx) const {
 | 
						|
    assert (Idx < BITWORDS_PER_ELEMENT);
 | 
						|
    return Bits[Idx];
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned index() const {
 | 
						|
    return ElementIndex;
 | 
						|
  }
 | 
						|
 | 
						|
  bool empty() const {
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 | 
						|
      if (Bits[i])
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  void set(unsigned Idx) {
 | 
						|
    Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
 | 
						|
  }
 | 
						|
 | 
						|
  bool test_and_set (unsigned Idx) {
 | 
						|
    bool old = test(Idx);
 | 
						|
    if (!old) {
 | 
						|
      set(Idx);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void reset(unsigned Idx) {
 | 
						|
    Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
 | 
						|
  }
 | 
						|
 | 
						|
  bool test(unsigned Idx) const {
 | 
						|
    return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE));
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned count() const {
 | 
						|
    unsigned NumBits = 0;
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 | 
						|
      if (sizeof(BitWord) == 4)
 | 
						|
        NumBits += CountPopulation_32(Bits[i]);
 | 
						|
      else if (sizeof(BitWord) == 8)
 | 
						|
        NumBits += CountPopulation_64(Bits[i]);
 | 
						|
      else
 | 
						|
        assert(0 && "Unsupported!");
 | 
						|
    return NumBits;
 | 
						|
  }
 | 
						|
 | 
						|
  /// find_first - Returns the index of the first set bit.
 | 
						|
  int find_first() const {
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i)
 | 
						|
      if (Bits[i] != 0) {
 | 
						|
        if (sizeof(BitWord) == 4)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
 | 
						|
        else if (sizeof(BitWord) == 8)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
 | 
						|
        else
 | 
						|
          assert(0 && "Unsupported!");
 | 
						|
      }
 | 
						|
    assert(0 && "Illegal empty element");
 | 
						|
    return 0; // Not reached
 | 
						|
  }
 | 
						|
 | 
						|
  /// find_next - Returns the index of the next set bit starting from the
 | 
						|
  /// "Curr" bit. Returns -1 if the next set bit is not found.
 | 
						|
  int find_next(unsigned Curr) const {
 | 
						|
    if (Curr >= BITS_PER_ELEMENT)
 | 
						|
      return -1;
 | 
						|
 | 
						|
    unsigned WordPos = Curr / BITWORD_SIZE;
 | 
						|
    unsigned BitPos = Curr % BITWORD_SIZE;
 | 
						|
    BitWord Copy = Bits[WordPos];
 | 
						|
    assert (WordPos <= BITWORDS_PER_ELEMENT
 | 
						|
            && "Word Position outside of element");
 | 
						|
 | 
						|
    // Mask off previous bits.
 | 
						|
    Copy &= ~0L << BitPos;
 | 
						|
 | 
						|
    if (Copy != 0) {
 | 
						|
      if (sizeof(BitWord) == 4)
 | 
						|
        return WordPos * BITWORD_SIZE + CountTrailingZeros_32(Copy);
 | 
						|
      else if (sizeof(BitWord) == 8)
 | 
						|
        return WordPos * BITWORD_SIZE + CountTrailingZeros_64(Copy);
 | 
						|
      else
 | 
						|
        assert(0 && "Unsupported!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Check subsequent words.
 | 
						|
    for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i)
 | 
						|
      if (Bits[i] != 0) {
 | 
						|
        if (sizeof(BitWord) == 4)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_32(Bits[i]);
 | 
						|
        else if (sizeof(BitWord) == 8)
 | 
						|
          return i * BITWORD_SIZE + CountTrailingZeros_64(Bits[i]);
 | 
						|
        else
 | 
						|
          assert(0 && "Unsupported!");
 | 
						|
      }
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Union this element with RHS and return true if this one changed.
 | 
						|
  bool unionWith(const SparseBitVectorElement &RHS) {
 | 
						|
    bool changed = false;
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 | 
						|
      BitWord old = changed ? 0 : Bits[i];
 | 
						|
 | 
						|
      Bits[i] |= RHS.Bits[i];
 | 
						|
      if (!changed && old != Bits[i])
 | 
						|
        changed = true;
 | 
						|
    }
 | 
						|
    return changed;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return true if we have any bits in common with RHS
 | 
						|
  bool intersects(const SparseBitVectorElement &RHS) const {
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 | 
						|
      if (RHS.Bits[i] & Bits[i])
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Intersect this Element with RHS and return true if this one changed.
 | 
						|
  // BecameZero is set to true if this element became all-zero bits.
 | 
						|
  bool intersectWith(const SparseBitVectorElement &RHS,
 | 
						|
                     bool &BecameZero) {
 | 
						|
    bool changed = false;
 | 
						|
    bool allzero = true;
 | 
						|
 | 
						|
    BecameZero = false;
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 | 
						|
      BitWord old = changed ? 0 : Bits[i];
 | 
						|
 | 
						|
      Bits[i] &= RHS.Bits[i];
 | 
						|
      if (Bits[i] != 0)
 | 
						|
        allzero = false;
 | 
						|
 | 
						|
      if (!changed && old != Bits[i])
 | 
						|
        changed = true;
 | 
						|
    }
 | 
						|
    BecameZero = allzero;
 | 
						|
    return changed;
 | 
						|
  }
 | 
						|
  // Intersect this Element with the complement of RHS and return true if this
 | 
						|
  // one changed.  BecameZero is set to true if this element became all-zero
 | 
						|
  // bits.
 | 
						|
  bool intersectWithComplement(const SparseBitVectorElement &RHS,
 | 
						|
                               bool &BecameZero) {
 | 
						|
    bool changed = false;
 | 
						|
    bool allzero = true;
 | 
						|
 | 
						|
    BecameZero = false;
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 | 
						|
      BitWord old = changed ? 0 : Bits[i];
 | 
						|
 | 
						|
      Bits[i] &= ~RHS.Bits[i];
 | 
						|
      if (Bits[i] != 0)
 | 
						|
        allzero = false;
 | 
						|
 | 
						|
      if (!changed && old != Bits[i])
 | 
						|
        changed = true;
 | 
						|
    }
 | 
						|
    BecameZero = allzero;
 | 
						|
    return changed;
 | 
						|
  }
 | 
						|
  // Three argument version of intersectWithComplement that intersects
 | 
						|
  // RHS1 & ~RHS2 into this element
 | 
						|
  void intersectWithComplement(const SparseBitVectorElement &RHS1,
 | 
						|
                               const SparseBitVectorElement &RHS2,
 | 
						|
                               bool &BecameZero) {
 | 
						|
    bool allzero = true;
 | 
						|
 | 
						|
    BecameZero = false;
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 | 
						|
      Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i];
 | 
						|
      if (Bits[i] != 0)
 | 
						|
        allzero = false;
 | 
						|
    }
 | 
						|
    BecameZero = allzero;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get a hash value for this element;
 | 
						|
  uint64_t getHashValue() const {
 | 
						|
    uint64_t HashVal = 0;
 | 
						|
    for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) {
 | 
						|
      HashVal ^= Bits[i];
 | 
						|
    }
 | 
						|
    return HashVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <unsigned ElementSize = 128>
 | 
						|
class SparseBitVector {
 | 
						|
  typedef ilist<SparseBitVectorElement<ElementSize> > ElementList;
 | 
						|
  typedef typename ElementList::iterator ElementListIter;
 | 
						|
  typedef typename ElementList::const_iterator ElementListConstIter;
 | 
						|
  enum {
 | 
						|
    BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE
 | 
						|
  };
 | 
						|
 | 
						|
  // Pointer to our current Element.
 | 
						|
  ElementListIter CurrElementIter;
 | 
						|
  ElementList Elements;
 | 
						|
 | 
						|
  // This is like std::lower_bound, except we do linear searching from the
 | 
						|
  // current position.
 | 
						|
  ElementListIter FindLowerBound(unsigned ElementIndex) {
 | 
						|
 | 
						|
    if (Elements.empty()) {
 | 
						|
      CurrElementIter = Elements.begin();
 | 
						|
      return Elements.begin();
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure our current iterator is valid.
 | 
						|
    if (CurrElementIter == Elements.end())
 | 
						|
      --CurrElementIter;
 | 
						|
 | 
						|
    // Search from our current iterator, either backwards or forwards,
 | 
						|
    // depending on what element we are looking for.
 | 
						|
    ElementListIter ElementIter = CurrElementIter;
 | 
						|
    if (CurrElementIter->index() == ElementIndex) {
 | 
						|
      return ElementIter;
 | 
						|
    } else if (CurrElementIter->index() > ElementIndex) {
 | 
						|
      while (ElementIter != Elements.begin()
 | 
						|
             && ElementIter->index() > ElementIndex)
 | 
						|
        --ElementIter;
 | 
						|
    } else {
 | 
						|
      while (ElementIter != Elements.end() &&
 | 
						|
             ElementIter->index() < ElementIndex)
 | 
						|
        ++ElementIter;
 | 
						|
    }
 | 
						|
    CurrElementIter = ElementIter;
 | 
						|
    return ElementIter;
 | 
						|
  }
 | 
						|
 | 
						|
  // Iterator to walk set bits in the bitmap.  This iterator is a lot uglier
 | 
						|
  // than it would be, in order to be efficient.
 | 
						|
  class SparseBitVectorIterator {
 | 
						|
  private:
 | 
						|
    bool AtEnd;
 | 
						|
 | 
						|
    const SparseBitVector<ElementSize> *BitVector;
 | 
						|
 | 
						|
    // Current element inside of bitmap.
 | 
						|
    ElementListConstIter Iter;
 | 
						|
 | 
						|
    // Current bit number inside of our bitmap.
 | 
						|
    unsigned BitNumber;
 | 
						|
 | 
						|
    // Current word number inside of our element.
 | 
						|
    unsigned WordNumber;
 | 
						|
 | 
						|
    // Current bits from the element.
 | 
						|
    typename SparseBitVectorElement<ElementSize>::BitWord Bits;
 | 
						|
 | 
						|
    // Move our iterator to the first non-zero bit in the bitmap.
 | 
						|
    void AdvanceToFirstNonZero() {
 | 
						|
      if (AtEnd)
 | 
						|
        return;
 | 
						|
      if (BitVector->Elements.empty()) {
 | 
						|
        AtEnd = true;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      Iter = BitVector->Elements.begin();
 | 
						|
      BitNumber = Iter->index() * ElementSize;
 | 
						|
      unsigned BitPos = Iter->find_first();
 | 
						|
      BitNumber += BitPos;
 | 
						|
      WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
 | 
						|
      Bits = Iter->word(WordNumber);
 | 
						|
      Bits >>= BitPos % BITWORD_SIZE;
 | 
						|
    }
 | 
						|
 | 
						|
    // Move our iterator to the next non-zero bit.
 | 
						|
    void AdvanceToNextNonZero() {
 | 
						|
      if (AtEnd)
 | 
						|
        return;
 | 
						|
 | 
						|
      while (Bits && !(Bits & 1)) {
 | 
						|
        Bits >>= 1;
 | 
						|
        BitNumber += 1;
 | 
						|
      }
 | 
						|
 | 
						|
      // See if we ran out of Bits in this word.
 | 
						|
      if (!Bits) {
 | 
						|
        int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ;
 | 
						|
        // If we ran out of set bits in this element, move to next element.
 | 
						|
        if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) {
 | 
						|
          ++Iter;
 | 
						|
          WordNumber = 0;
 | 
						|
 | 
						|
          // We may run out of elements in the bitmap.
 | 
						|
          if (Iter == BitVector->Elements.end()) {
 | 
						|
            AtEnd = true;
 | 
						|
            return;
 | 
						|
          }
 | 
						|
          // Set up for next non zero word in bitmap.
 | 
						|
          BitNumber = Iter->index() * ElementSize;
 | 
						|
          NextSetBitNumber = Iter->find_first();
 | 
						|
          BitNumber += NextSetBitNumber;
 | 
						|
          WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE;
 | 
						|
          Bits = Iter->word(WordNumber);
 | 
						|
          Bits >>= NextSetBitNumber % BITWORD_SIZE;
 | 
						|
        } else {
 | 
						|
          WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE;
 | 
						|
          Bits = Iter->word(WordNumber);
 | 
						|
          Bits >>= NextSetBitNumber % BITWORD_SIZE;
 | 
						|
          BitNumber = Iter->index() * ElementSize;
 | 
						|
          BitNumber += NextSetBitNumber;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  public:
 | 
						|
    // Preincrement.
 | 
						|
    inline SparseBitVectorIterator& operator++() {
 | 
						|
      ++BitNumber;
 | 
						|
      Bits >>= 1;
 | 
						|
      AdvanceToNextNonZero();
 | 
						|
      return *this;
 | 
						|
    }
 | 
						|
 | 
						|
    // Postincrement.
 | 
						|
    inline SparseBitVectorIterator operator++(int) {
 | 
						|
      SparseBitVectorIterator tmp = *this;
 | 
						|
      ++*this;
 | 
						|
      return tmp;
 | 
						|
    }
 | 
						|
 | 
						|
    // Return the current set bit number.
 | 
						|
    unsigned operator*() const {
 | 
						|
      return BitNumber;
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator==(const SparseBitVectorIterator &RHS) const {
 | 
						|
      // If they are both at the end, ignore the rest of the fields.
 | 
						|
      if (AtEnd && RHS.AtEnd)
 | 
						|
        return true;
 | 
						|
      // Otherwise they are the same if they have the same bit number and
 | 
						|
      // bitmap.
 | 
						|
      return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber;
 | 
						|
    }
 | 
						|
    bool operator!=(const SparseBitVectorIterator &RHS) const {
 | 
						|
      return !(*this == RHS);
 | 
						|
    }
 | 
						|
    SparseBitVectorIterator(): BitVector(NULL) {
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS,
 | 
						|
                            bool end = false):BitVector(RHS) {
 | 
						|
      Iter = BitVector->Elements.begin();
 | 
						|
      BitNumber = 0;
 | 
						|
      Bits = 0;
 | 
						|
      WordNumber = ~0;
 | 
						|
      AtEnd = end;
 | 
						|
      AdvanceToFirstNonZero();
 | 
						|
    }
 | 
						|
  };
 | 
						|
public:
 | 
						|
  typedef SparseBitVectorIterator iterator;
 | 
						|
 | 
						|
  SparseBitVector () {
 | 
						|
    CurrElementIter = Elements.begin ();
 | 
						|
  }
 | 
						|
 | 
						|
  ~SparseBitVector() {
 | 
						|
  }
 | 
						|
 | 
						|
  // SparseBitVector copy ctor.
 | 
						|
  SparseBitVector(const SparseBitVector &RHS) {
 | 
						|
    ElementListConstIter ElementIter = RHS.Elements.begin();
 | 
						|
    while (ElementIter != RHS.Elements.end()) {
 | 
						|
      Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
 | 
						|
      ++ElementIter;
 | 
						|
    }
 | 
						|
 | 
						|
    CurrElementIter = Elements.begin ();
 | 
						|
  }
 | 
						|
 | 
						|
  // Clear.
 | 
						|
  void clear() {
 | 
						|
    Elements.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Assignment
 | 
						|
  SparseBitVector& operator=(const SparseBitVector& RHS) {
 | 
						|
    Elements.clear();
 | 
						|
 | 
						|
    ElementListConstIter ElementIter = RHS.Elements.begin();
 | 
						|
    while (ElementIter != RHS.Elements.end()) {
 | 
						|
      Elements.push_back(SparseBitVectorElement<ElementSize>(*ElementIter));
 | 
						|
      ++ElementIter;
 | 
						|
    }
 | 
						|
 | 
						|
    CurrElementIter = Elements.begin ();
 | 
						|
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // Test, Reset, and Set a bit in the bitmap.
 | 
						|
  bool test(unsigned Idx) {
 | 
						|
    if (Elements.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    unsigned ElementIndex = Idx / ElementSize;
 | 
						|
    ElementListIter ElementIter = FindLowerBound(ElementIndex);
 | 
						|
 | 
						|
    // If we can't find an element that is supposed to contain this bit, there
 | 
						|
    // is nothing more to do.
 | 
						|
    if (ElementIter == Elements.end() ||
 | 
						|
        ElementIter->index() != ElementIndex)
 | 
						|
      return false;
 | 
						|
    return ElementIter->test(Idx % ElementSize);
 | 
						|
  }
 | 
						|
 | 
						|
  void reset(unsigned Idx) {
 | 
						|
    if (Elements.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    unsigned ElementIndex = Idx / ElementSize;
 | 
						|
    ElementListIter ElementIter = FindLowerBound(ElementIndex);
 | 
						|
 | 
						|
    // If we can't find an element that is supposed to contain this bit, there
 | 
						|
    // is nothing more to do.
 | 
						|
    if (ElementIter == Elements.end() ||
 | 
						|
        ElementIter->index() != ElementIndex)
 | 
						|
      return;
 | 
						|
    ElementIter->reset(Idx % ElementSize);
 | 
						|
 | 
						|
    // When the element is zeroed out, delete it.
 | 
						|
    if (ElementIter->empty()) {
 | 
						|
      ++CurrElementIter;
 | 
						|
      Elements.erase(ElementIter);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void set(unsigned Idx) {
 | 
						|
    unsigned ElementIndex = Idx / ElementSize;
 | 
						|
    SparseBitVectorElement<ElementSize> *Element;
 | 
						|
    ElementListIter ElementIter;
 | 
						|
    if (Elements.empty()) {
 | 
						|
      Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
 | 
						|
      ElementIter = Elements.insert(Elements.end(), Element);
 | 
						|
 | 
						|
    } else {
 | 
						|
      ElementIter = FindLowerBound(ElementIndex);
 | 
						|
 | 
						|
      if (ElementIter == Elements.end() ||
 | 
						|
          ElementIter->index() != ElementIndex) {
 | 
						|
        Element = new SparseBitVectorElement<ElementSize>(ElementIndex);
 | 
						|
        // We may have hit the beginning of our SparseBitVector, in which case,
 | 
						|
        // we may need to insert right after this element, which requires moving
 | 
						|
        // the current iterator forward one, because insert does insert before.
 | 
						|
        if (ElementIter != Elements.end() &&
 | 
						|
            ElementIter->index() < ElementIndex)
 | 
						|
          ElementIter = Elements.insert(++ElementIter, Element);
 | 
						|
        else
 | 
						|
          ElementIter = Elements.insert(ElementIter, Element);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    CurrElementIter = ElementIter;
 | 
						|
 | 
						|
    ElementIter->set(Idx % ElementSize);
 | 
						|
  }
 | 
						|
 | 
						|
  bool test_and_set (unsigned Idx) {
 | 
						|
    bool old = test(Idx);
 | 
						|
    if (!old) {
 | 
						|
      set(Idx);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const SparseBitVector &RHS) const {
 | 
						|
    return !(*this == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator==(const SparseBitVector &RHS) const {
 | 
						|
    ElementListConstIter Iter1 = Elements.begin();
 | 
						|
    ElementListConstIter Iter2 = RHS.Elements.begin();
 | 
						|
 | 
						|
    for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end();
 | 
						|
         ++Iter1, ++Iter2) {
 | 
						|
      if (*Iter1 != *Iter2)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return Iter1 == Elements.end() && Iter2 == RHS.Elements.end();
 | 
						|
  }
 | 
						|
 | 
						|
  // Union our bitmap with the RHS and return true if we changed.
 | 
						|
  bool operator|=(const SparseBitVector &RHS) {
 | 
						|
    bool changed = false;
 | 
						|
    ElementListIter Iter1 = Elements.begin();
 | 
						|
    ElementListConstIter Iter2 = RHS.Elements.begin();
 | 
						|
 | 
						|
    // If RHS is empty, we are done
 | 
						|
    if (RHS.Elements.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    while (Iter2 != RHS.Elements.end()) {
 | 
						|
      if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) {
 | 
						|
        Elements.insert(Iter1,
 | 
						|
                        new SparseBitVectorElement<ElementSize>(*Iter2));
 | 
						|
        ++Iter2;
 | 
						|
        changed = true;
 | 
						|
      } else if (Iter1->index() == Iter2->index()) {
 | 
						|
        changed |= Iter1->unionWith(*Iter2);
 | 
						|
        ++Iter1;
 | 
						|
        ++Iter2;
 | 
						|
      } else {
 | 
						|
        ++Iter1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    CurrElementIter = Elements.begin();
 | 
						|
    return changed;
 | 
						|
  }
 | 
						|
 | 
						|
  // Intersect our bitmap with the RHS and return true if ours changed.
 | 
						|
  bool operator&=(const SparseBitVector &RHS) {
 | 
						|
    bool changed = false;
 | 
						|
    ElementListIter Iter1 = Elements.begin();
 | 
						|
    ElementListConstIter Iter2 = RHS.Elements.begin();
 | 
						|
 | 
						|
    // Check if both bitmaps are empty.
 | 
						|
    if (Elements.empty() && RHS.Elements.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Loop through, intersecting as we go, erasing elements when necessary.
 | 
						|
    while (Iter2 != RHS.Elements.end()) {
 | 
						|
      if (Iter1 == Elements.end()) {
 | 
						|
        CurrElementIter = Elements.begin();
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Iter1->index() > Iter2->index()) {
 | 
						|
        ++Iter2;
 | 
						|
      } else if (Iter1->index() == Iter2->index()) {
 | 
						|
        bool BecameZero;
 | 
						|
        changed |= Iter1->intersectWith(*Iter2, BecameZero);
 | 
						|
        if (BecameZero) {
 | 
						|
          ElementListIter IterTmp = Iter1;
 | 
						|
          ++Iter1;
 | 
						|
          Elements.erase(IterTmp);
 | 
						|
        } else {
 | 
						|
          ++Iter1;
 | 
						|
        }
 | 
						|
        ++Iter2;
 | 
						|
      } else {
 | 
						|
        ElementListIter IterTmp = Iter1;
 | 
						|
        ++Iter1;
 | 
						|
        Elements.erase(IterTmp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Elements.erase(Iter1, Elements.end());
 | 
						|
    CurrElementIter = Elements.begin();
 | 
						|
    return changed;
 | 
						|
  }
 | 
						|
 | 
						|
  // Intersect our bitmap with the complement of the RHS and return true
 | 
						|
  // if ours changed.
 | 
						|
  bool intersectWithComplement(const SparseBitVector &RHS) {
 | 
						|
    bool changed = false;
 | 
						|
    ElementListIter Iter1 = Elements.begin();
 | 
						|
    ElementListConstIter Iter2 = RHS.Elements.begin();
 | 
						|
 | 
						|
    // If either our bitmap or RHS is empty, we are done
 | 
						|
    if (Elements.empty() || RHS.Elements.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Loop through, intersecting as we go, erasing elements when necessary.
 | 
						|
    while (Iter2 != RHS.Elements.end()) {
 | 
						|
      if (Iter1 == Elements.end()) {
 | 
						|
        CurrElementIter = Elements.begin();
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Iter1->index() > Iter2->index()) {
 | 
						|
        ++Iter2;
 | 
						|
      } else if (Iter1->index() == Iter2->index()) {
 | 
						|
        bool BecameZero;
 | 
						|
        changed |= Iter1->intersectWithComplement(*Iter2, BecameZero);
 | 
						|
        if (BecameZero) {
 | 
						|
          ElementListIter IterTmp = Iter1;
 | 
						|
          ++Iter1;
 | 
						|
          Elements.erase(IterTmp);
 | 
						|
        } else {
 | 
						|
          ++Iter1;
 | 
						|
        }
 | 
						|
        ++Iter2;
 | 
						|
      } else {
 | 
						|
        ++Iter1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    CurrElementIter = Elements.begin();
 | 
						|
    return changed;
 | 
						|
  }
 | 
						|
 | 
						|
  bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const {
 | 
						|
    return intersectWithComplement(*RHS);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  //  Three argument version of intersectWithComplement.
 | 
						|
  //  Result of RHS1 & ~RHS2 is stored into this bitmap.
 | 
						|
  void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1,
 | 
						|
                               const SparseBitVector<ElementSize> &RHS2)
 | 
						|
  {
 | 
						|
    Elements.clear();
 | 
						|
    CurrElementIter = Elements.begin();
 | 
						|
    ElementListConstIter Iter1 = RHS1.Elements.begin();
 | 
						|
    ElementListConstIter Iter2 = RHS2.Elements.begin();
 | 
						|
 | 
						|
    // If RHS1 is empty, we are done
 | 
						|
    // If RHS2 is empty, we still have to copy RHS1
 | 
						|
    if (RHS1.Elements.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    // Loop through, intersecting as we go, erasing elements when necessary.
 | 
						|
    while (Iter2 != RHS2.Elements.end()) {
 | 
						|
      if (Iter1 == RHS1.Elements.end())
 | 
						|
        return;
 | 
						|
 | 
						|
      if (Iter1->index() > Iter2->index()) {
 | 
						|
        ++Iter2;
 | 
						|
      } else if (Iter1->index() == Iter2->index()) {
 | 
						|
        bool BecameZero = false;
 | 
						|
        SparseBitVectorElement<ElementSize> *NewElement =
 | 
						|
          new SparseBitVectorElement<ElementSize>(Iter1->index());
 | 
						|
        NewElement->intersectWithComplement(*Iter1, *Iter2, BecameZero);
 | 
						|
        if (!BecameZero) {
 | 
						|
          Elements.push_back(NewElement);
 | 
						|
        }
 | 
						|
        else
 | 
						|
          delete NewElement;
 | 
						|
        ++Iter1;
 | 
						|
        ++Iter2;
 | 
						|
      } else {
 | 
						|
        SparseBitVectorElement<ElementSize> *NewElement =
 | 
						|
          new SparseBitVectorElement<ElementSize>(*Iter1);
 | 
						|
        Elements.push_back(NewElement);
 | 
						|
        ++Iter1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // copy the remaining elements
 | 
						|
    while (Iter1 != RHS1.Elements.end()) {
 | 
						|
        SparseBitVectorElement<ElementSize> *NewElement =
 | 
						|
          new SparseBitVectorElement<ElementSize>(*Iter1);
 | 
						|
        Elements.push_back(NewElement);
 | 
						|
        ++Iter1;
 | 
						|
      }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1,
 | 
						|
                               const SparseBitVector<ElementSize> *RHS2) {
 | 
						|
    intersectWithComplement(*RHS1, *RHS2);
 | 
						|
  }
 | 
						|
 | 
						|
  bool intersects(const SparseBitVector<ElementSize> *RHS) const {
 | 
						|
    return intersects(*RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return true if we share any bits in common with RHS
 | 
						|
  bool intersects(const SparseBitVector<ElementSize> &RHS) const {
 | 
						|
    ElementListConstIter Iter1 = Elements.begin();
 | 
						|
    ElementListConstIter Iter2 = RHS.Elements.begin();
 | 
						|
 | 
						|
    // Check if both bitmaps are empty.
 | 
						|
    if (Elements.empty() && RHS.Elements.empty())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Loop through, intersecting stopping when we hit bits in common.
 | 
						|
    while (Iter2 != RHS.Elements.end()) {
 | 
						|
      if (Iter1 == Elements.end())
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (Iter1->index() > Iter2->index()) {
 | 
						|
        ++Iter2;
 | 
						|
      } else if (Iter1->index() == Iter2->index()) {
 | 
						|
        if (Iter1->intersects(*Iter2))
 | 
						|
          return true;
 | 
						|
        ++Iter1;
 | 
						|
        ++Iter2;
 | 
						|
      } else {
 | 
						|
        ++Iter1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return true iff all bits set in this SparseBitVector are
 | 
						|
  // also set in RHS.
 | 
						|
  bool contains(const SparseBitVector<ElementSize> &RHS) const {
 | 
						|
    SparseBitVector<ElementSize> Result(*this);
 | 
						|
    Result &= RHS;
 | 
						|
    return (Result == RHS);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the first set bit in the bitmap.  Return -1 if no bits are set.
 | 
						|
  int find_first() const {
 | 
						|
    if (Elements.empty())
 | 
						|
      return -1;
 | 
						|
    const SparseBitVectorElement<ElementSize> &First = *(Elements.begin());
 | 
						|
    return (First.index() * ElementSize) + First.find_first();
 | 
						|
  }
 | 
						|
 | 
						|
  // Return true if the SparseBitVector is empty
 | 
						|
  bool empty() const {
 | 
						|
    return Elements.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned count() const {
 | 
						|
    unsigned BitCount = 0;
 | 
						|
    for (ElementListConstIter Iter = Elements.begin();
 | 
						|
         Iter != Elements.end();
 | 
						|
         ++Iter)
 | 
						|
      BitCount += Iter->count();
 | 
						|
 | 
						|
    return BitCount;
 | 
						|
  }
 | 
						|
  iterator begin() const {
 | 
						|
    return iterator(this);
 | 
						|
  }
 | 
						|
 | 
						|
  iterator end() const {
 | 
						|
    return iterator(this, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get a hash value for this bitmap.
 | 
						|
  uint64_t getHashValue() const {
 | 
						|
    uint64_t HashVal = 0;
 | 
						|
    for (ElementListConstIter Iter = Elements.begin();
 | 
						|
         Iter != Elements.end();
 | 
						|
         ++Iter) {
 | 
						|
      HashVal ^= Iter->index();
 | 
						|
      HashVal ^= Iter->getHashValue();
 | 
						|
    }
 | 
						|
    return HashVal;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Convenience functions to allow Or and And without dereferencing in the user
 | 
						|
// code.
 | 
						|
 | 
						|
template <unsigned ElementSize>
 | 
						|
inline bool operator |=(SparseBitVector<ElementSize> &LHS,
 | 
						|
                        const SparseBitVector<ElementSize> *RHS) {
 | 
						|
  return LHS |= *RHS;
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned ElementSize>
 | 
						|
inline bool operator |=(SparseBitVector<ElementSize> *LHS,
 | 
						|
                        const SparseBitVector<ElementSize> &RHS) {
 | 
						|
  return LHS->operator|=(RHS);
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned ElementSize>
 | 
						|
inline bool operator &=(SparseBitVector<ElementSize> *LHS,
 | 
						|
                        const SparseBitVector<ElementSize> &RHS) {
 | 
						|
  return LHS->operator&=(RHS);
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned ElementSize>
 | 
						|
inline bool operator &=(SparseBitVector<ElementSize> &LHS,
 | 
						|
                        const SparseBitVector<ElementSize> *RHS) {
 | 
						|
  return LHS &= *RHS;
 | 
						|
}
 | 
						|
 | 
						|
// Convenience functions for infix union, intersection, difference operators.
 | 
						|
 | 
						|
template <unsigned ElementSize>
 | 
						|
inline SparseBitVector<ElementSize>
 | 
						|
operator|(const SparseBitVector<ElementSize> &LHS,
 | 
						|
          const SparseBitVector<ElementSize> &RHS) {
 | 
						|
  SparseBitVector<ElementSize> Result(LHS);
 | 
						|
  Result |= RHS;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned ElementSize>
 | 
						|
inline SparseBitVector<ElementSize>
 | 
						|
operator&(const SparseBitVector<ElementSize> &LHS,
 | 
						|
          const SparseBitVector<ElementSize> &RHS) {
 | 
						|
  SparseBitVector<ElementSize> Result(LHS);
 | 
						|
  Result &= RHS;
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
template <unsigned ElementSize>
 | 
						|
inline SparseBitVector<ElementSize>
 | 
						|
operator-(const SparseBitVector<ElementSize> &LHS,
 | 
						|
          const SparseBitVector<ElementSize> &RHS) {
 | 
						|
  SparseBitVector<ElementSize> Result;
 | 
						|
  Result.intersectWithComplement(LHS, RHS);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// Dump a SparseBitVector to a stream
 | 
						|
template <unsigned ElementSize>
 | 
						|
void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) {
 | 
						|
  out << "[";
 | 
						|
 | 
						|
  typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(),
 | 
						|
    be = LHS.end();
 | 
						|
  if (bi != be) {
 | 
						|
    out << *bi;
 | 
						|
    for (++bi; bi != be; ++bi) {
 | 
						|
      out << " " << *bi;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  out << "]\n";
 | 
						|
}
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif
 |