mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	so there is no locking involved in type refinement. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108553 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			573 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the declarations of classes that represent "derived
 | 
						|
// types".  These are things like "arrays of x" or "structure of x, y, z" or
 | 
						|
// "method returning x taking (y,z) as parameters", etc...
 | 
						|
//
 | 
						|
// The implementations of these classes live in the Type.cpp file.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_DERIVED_TYPES_H
 | 
						|
#define LLVM_DERIVED_TYPES_H
 | 
						|
 | 
						|
#include "llvm/Type.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
class Value;
 | 
						|
template<class ValType, class TypeClass> class TypeMap;
 | 
						|
class FunctionValType;
 | 
						|
class ArrayValType;
 | 
						|
class StructValType;
 | 
						|
class UnionValType;
 | 
						|
class PointerValType;
 | 
						|
class VectorValType;
 | 
						|
class IntegerValType;
 | 
						|
class APInt;
 | 
						|
class LLVMContext;
 | 
						|
 | 
						|
class DerivedType : public Type {
 | 
						|
  friend class Type;
 | 
						|
 | 
						|
protected:
 | 
						|
  explicit DerivedType(LLVMContext &C, TypeID id) : Type(C, id) {}
 | 
						|
 | 
						|
  /// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
 | 
						|
  /// that the current type has transitioned from being abstract to being
 | 
						|
  /// concrete.
 | 
						|
  ///
 | 
						|
  void notifyUsesThatTypeBecameConcrete();
 | 
						|
 | 
						|
  /// dropAllTypeUses - When this (abstract) type is resolved to be equal to
 | 
						|
  /// another (more concrete) type, we must eliminate all references to other
 | 
						|
  /// types, to avoid some circular reference problems.
 | 
						|
  ///
 | 
						|
  void dropAllTypeUses();
 | 
						|
 | 
						|
public:
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // Abstract Type handling methods - These types have special lifetimes, which
 | 
						|
  // are managed by (add|remove)AbstractTypeUser. See comments in
 | 
						|
  // AbstractTypeUser.h for more information.
 | 
						|
 | 
						|
  /// refineAbstractTypeTo - This function is used to when it is discovered that
 | 
						|
  /// the 'this' abstract type is actually equivalent to the NewType specified.
 | 
						|
  /// This causes all users of 'this' to switch to reference the more concrete
 | 
						|
  /// type NewType and for 'this' to be deleted.
 | 
						|
  ///
 | 
						|
  void refineAbstractTypeTo(const Type *NewType);
 | 
						|
 | 
						|
  void dump() const { Type::dump(); }
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const DerivedType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->isDerivedType();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Class to represent integer types. Note that this class is also used to
 | 
						|
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
 | 
						|
/// Int64Ty.
 | 
						|
/// @brief Integer representation type
 | 
						|
class IntegerType : public DerivedType {
 | 
						|
  friend class LLVMContextImpl;
 | 
						|
  
 | 
						|
protected:
 | 
						|
  explicit IntegerType(LLVMContext &C, unsigned NumBits) : 
 | 
						|
      DerivedType(C, IntegerTyID) {
 | 
						|
    setSubclassData(NumBits);
 | 
						|
  }
 | 
						|
  friend class TypeMap<IntegerValType, IntegerType>;
 | 
						|
public:
 | 
						|
  /// This enum is just used to hold constants we need for IntegerType.
 | 
						|
  enum {
 | 
						|
    MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
 | 
						|
    MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
 | 
						|
      ///< Note that bit width is stored in the Type classes SubclassData field
 | 
						|
      ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
 | 
						|
  };
 | 
						|
 | 
						|
  /// This static method is the primary way of constructing an IntegerType.
 | 
						|
  /// If an IntegerType with the same NumBits value was previously instantiated,
 | 
						|
  /// that instance will be returned. Otherwise a new one will be created. Only
 | 
						|
  /// one instance with a given NumBits value is ever created.
 | 
						|
  /// @brief Get or create an IntegerType instance.
 | 
						|
  static const IntegerType* get(LLVMContext &C, unsigned NumBits);
 | 
						|
 | 
						|
  /// @brief Get the number of bits in this IntegerType
 | 
						|
  unsigned getBitWidth() const { return getSubclassData(); }
 | 
						|
 | 
						|
  /// getBitMask - Return a bitmask with ones set for all of the bits
 | 
						|
  /// that can be set by an unsigned version of this type.  This is 0xFF for
 | 
						|
  /// i8, 0xFFFF for i16, etc.
 | 
						|
  uint64_t getBitMask() const {
 | 
						|
    return ~uint64_t(0UL) >> (64-getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  /// getSignBit - Return a uint64_t with just the most significant bit set (the
 | 
						|
  /// sign bit, if the value is treated as a signed number).
 | 
						|
  uint64_t getSignBit() const {
 | 
						|
    return 1ULL << (getBitWidth()-1);
 | 
						|
  }
 | 
						|
 | 
						|
  /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
 | 
						|
  /// @returns a bit mask with ones set for all the bits of this type.
 | 
						|
  /// @brief Get a bit mask for this type.
 | 
						|
  APInt getMask() const;
 | 
						|
 | 
						|
  /// This method determines if the width of this IntegerType is a power-of-2
 | 
						|
  /// in terms of 8 bit bytes.
 | 
						|
  /// @returns true if this is a power-of-2 byte width.
 | 
						|
  /// @brief Is this a power-of-2 byte-width IntegerType ?
 | 
						|
  bool isPowerOf2ByteWidth() const;
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const IntegerType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == IntegerTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// FunctionType - Class to represent function types
 | 
						|
///
 | 
						|
class FunctionType : public DerivedType {
 | 
						|
  friend class TypeMap<FunctionValType, FunctionType>;
 | 
						|
  bool isVarArgs;
 | 
						|
 | 
						|
  FunctionType(const FunctionType &);                   // Do not implement
 | 
						|
  const FunctionType &operator=(const FunctionType &);  // Do not implement
 | 
						|
  FunctionType(const Type *Result, const std::vector<const Type*> &Params,
 | 
						|
               bool IsVarArgs);
 | 
						|
 | 
						|
public:
 | 
						|
  /// FunctionType::get - This static method is the primary way of constructing
 | 
						|
  /// a FunctionType.
 | 
						|
  ///
 | 
						|
  static FunctionType *get(
 | 
						|
    const Type *Result, ///< The result type
 | 
						|
    const std::vector<const Type*> &Params, ///< The types of the parameters
 | 
						|
    bool isVarArg  ///< Whether this is a variable argument length function
 | 
						|
  );
 | 
						|
 | 
						|
  /// FunctionType::get - Create a FunctionType taking no parameters.
 | 
						|
  ///
 | 
						|
  static FunctionType *get(
 | 
						|
    const Type *Result, ///< The result type
 | 
						|
    bool isVarArg  ///< Whether this is a variable argument length function
 | 
						|
  ) {
 | 
						|
    return get(Result, std::vector<const Type *>(), isVarArg);
 | 
						|
  }
 | 
						|
 | 
						|
  /// isValidReturnType - Return true if the specified type is valid as a return
 | 
						|
  /// type.
 | 
						|
  static bool isValidReturnType(const Type *RetTy);
 | 
						|
 | 
						|
  /// isValidArgumentType - Return true if the specified type is valid as an
 | 
						|
  /// argument type.
 | 
						|
  static bool isValidArgumentType(const Type *ArgTy);
 | 
						|
 | 
						|
  inline bool isVarArg() const { return isVarArgs; }
 | 
						|
  inline const Type *getReturnType() const { return ContainedTys[0]; }
 | 
						|
 | 
						|
  typedef Type::subtype_iterator param_iterator;
 | 
						|
  param_iterator param_begin() const { return ContainedTys + 1; }
 | 
						|
  param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
 | 
						|
 | 
						|
  // Parameter type accessors...
 | 
						|
  const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
 | 
						|
 | 
						|
  /// getNumParams - Return the number of fixed parameters this function type
 | 
						|
  /// requires.  This does not consider varargs.
 | 
						|
  ///
 | 
						|
  unsigned getNumParams() const { return NumContainedTys - 1; }
 | 
						|
 | 
						|
  // Implement the AbstractTypeUser interface.
 | 
						|
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | 
						|
  virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const FunctionType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == FunctionTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// CompositeType - Common super class of ArrayType, StructType, PointerType
 | 
						|
/// and VectorType
 | 
						|
class CompositeType : public DerivedType {
 | 
						|
protected:
 | 
						|
  inline explicit CompositeType(LLVMContext &C, TypeID id) :
 | 
						|
    DerivedType(C, id) { }
 | 
						|
public:
 | 
						|
 | 
						|
  /// getTypeAtIndex - Given an index value into the type, return the type of
 | 
						|
  /// the element.
 | 
						|
  ///
 | 
						|
  virtual const Type *getTypeAtIndex(const Value *V) const = 0;
 | 
						|
  virtual const Type *getTypeAtIndex(unsigned Idx) const = 0;
 | 
						|
  virtual bool indexValid(const Value *V) const = 0;
 | 
						|
  virtual bool indexValid(unsigned Idx) const = 0;
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const CompositeType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == ArrayTyID ||
 | 
						|
           T->getTypeID() == StructTyID ||
 | 
						|
           T->getTypeID() == PointerTyID ||
 | 
						|
           T->getTypeID() == VectorTyID ||
 | 
						|
           T->getTypeID() == UnionTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// StructType - Class to represent struct types
 | 
						|
///
 | 
						|
class StructType : public CompositeType {
 | 
						|
  friend class TypeMap<StructValType, StructType>;
 | 
						|
  StructType(const StructType &);                   // Do not implement
 | 
						|
  const StructType &operator=(const StructType &);  // Do not implement
 | 
						|
  StructType(LLVMContext &C,
 | 
						|
             const std::vector<const Type*> &Types, bool isPacked);
 | 
						|
public:
 | 
						|
  /// StructType::get - This static method is the primary way to create a
 | 
						|
  /// StructType.
 | 
						|
  ///
 | 
						|
  static StructType *get(LLVMContext &Context, 
 | 
						|
                         const std::vector<const Type*> &Params,
 | 
						|
                         bool isPacked=false);
 | 
						|
 | 
						|
  /// StructType::get - Create an empty structure type.
 | 
						|
  ///
 | 
						|
  static StructType *get(LLVMContext &Context, bool isPacked=false) {
 | 
						|
    return get(Context, std::vector<const Type*>(), isPacked);
 | 
						|
  }
 | 
						|
 | 
						|
  /// StructType::get - This static method is a convenience method for
 | 
						|
  /// creating structure types by specifying the elements as arguments.
 | 
						|
  /// Note that this method always returns a non-packed struct.  To get
 | 
						|
  /// an empty struct, pass NULL, NULL.
 | 
						|
  static StructType *get(LLVMContext &Context, 
 | 
						|
                         const Type *type, ...) END_WITH_NULL;
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(const Type *ElemTy);
 | 
						|
 | 
						|
  // Iterator access to the elements
 | 
						|
  typedef Type::subtype_iterator element_iterator;
 | 
						|
  element_iterator element_begin() const { return ContainedTys; }
 | 
						|
  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
 | 
						|
 | 
						|
  // Random access to the elements
 | 
						|
  unsigned getNumElements() const { return NumContainedTys; }
 | 
						|
  const Type *getElementType(unsigned N) const {
 | 
						|
    assert(N < NumContainedTys && "Element number out of range!");
 | 
						|
    return ContainedTys[N];
 | 
						|
  }
 | 
						|
 | 
						|
  /// getTypeAtIndex - Given an index value into the type, return the type of
 | 
						|
  /// the element.  For a structure type, this must be a constant value...
 | 
						|
  ///
 | 
						|
  virtual const Type *getTypeAtIndex(const Value *V) const;
 | 
						|
  virtual const Type *getTypeAtIndex(unsigned Idx) const;
 | 
						|
  virtual bool indexValid(const Value *V) const;
 | 
						|
  virtual bool indexValid(unsigned Idx) const;
 | 
						|
 | 
						|
  // Implement the AbstractTypeUser interface.
 | 
						|
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | 
						|
  virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const StructType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == StructTyID;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isPacked() const { return (0 != getSubclassData()) ? true : false; }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// UnionType - Class to represent union types. A union type is similar to
 | 
						|
/// a structure, except that all member fields begin at offset 0.
 | 
						|
///
 | 
						|
class UnionType : public CompositeType {
 | 
						|
  friend class TypeMap<UnionValType, UnionType>;
 | 
						|
  UnionType(const UnionType &);                   // Do not implement
 | 
						|
  const UnionType &operator=(const UnionType &);  // Do not implement
 | 
						|
  UnionType(LLVMContext &C, const Type* const* Types, unsigned NumTypes);
 | 
						|
public:
 | 
						|
  /// UnionType::get - This static method is the primary way to create a
 | 
						|
  /// UnionType.
 | 
						|
  static UnionType *get(const Type* const* Types, unsigned NumTypes);
 | 
						|
 | 
						|
  /// UnionType::get - This static method is a convenience method for
 | 
						|
  /// creating union types by specifying the elements as arguments.
 | 
						|
  static UnionType *get(const Type *type, ...) END_WITH_NULL;
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(const Type *ElemTy);
 | 
						|
  
 | 
						|
  /// Given an element type, return the member index of that type, or -1
 | 
						|
  /// if there is no such member type.
 | 
						|
  int getElementTypeIndex(const Type *ElemTy) const;
 | 
						|
 | 
						|
  // Iterator access to the elements
 | 
						|
  typedef Type::subtype_iterator element_iterator;
 | 
						|
  element_iterator element_begin() const { return ContainedTys; }
 | 
						|
  element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
 | 
						|
 | 
						|
  // Random access to the elements
 | 
						|
  unsigned getNumElements() const { return NumContainedTys; }
 | 
						|
  const Type *getElementType(unsigned N) const {
 | 
						|
    assert(N < NumContainedTys && "Element number out of range!");
 | 
						|
    return ContainedTys[N];
 | 
						|
  }
 | 
						|
 | 
						|
  /// getTypeAtIndex - Given an index value into the type, return the type of
 | 
						|
  /// the element.  For a union type, this must be a constant value...
 | 
						|
  ///
 | 
						|
  virtual const Type *getTypeAtIndex(const Value *V) const;
 | 
						|
  virtual const Type *getTypeAtIndex(unsigned Idx) const;
 | 
						|
  virtual bool indexValid(const Value *V) const;
 | 
						|
  virtual bool indexValid(unsigned Idx) const;
 | 
						|
 | 
						|
  // Implement the AbstractTypeUser interface.
 | 
						|
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | 
						|
  virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const UnionType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == UnionTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// SequentialType - This is the superclass of the array, pointer and vector
 | 
						|
/// type classes.  All of these represent "arrays" in memory.  The array type
 | 
						|
/// represents a specifically sized array, pointer types are unsized/unknown
 | 
						|
/// size arrays, vector types represent specifically sized arrays that
 | 
						|
/// allow for use of SIMD instructions.  SequentialType holds the common
 | 
						|
/// features of all, which stem from the fact that all three lay their
 | 
						|
/// components out in memory identically.
 | 
						|
///
 | 
						|
class SequentialType : public CompositeType {
 | 
						|
  PATypeHandle ContainedType; ///< Storage for the single contained type
 | 
						|
  SequentialType(const SequentialType &);                  // Do not implement!
 | 
						|
  const SequentialType &operator=(const SequentialType &); // Do not implement!
 | 
						|
 | 
						|
  // avoiding warning: 'this' : used in base member initializer list
 | 
						|
  SequentialType* this_() { return this; }
 | 
						|
protected:
 | 
						|
  SequentialType(TypeID TID, const Type *ElType)
 | 
						|
    : CompositeType(ElType->getContext(), TID), ContainedType(ElType, this_()) {
 | 
						|
    ContainedTys = &ContainedType;
 | 
						|
    NumContainedTys = 1;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  inline const Type *getElementType() const { return ContainedTys[0]; }
 | 
						|
 | 
						|
  virtual bool indexValid(const Value *V) const;
 | 
						|
  virtual bool indexValid(unsigned) const {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getTypeAtIndex - Given an index value into the type, return the type of
 | 
						|
  /// the element.  For sequential types, there is only one subtype...
 | 
						|
  ///
 | 
						|
  virtual const Type *getTypeAtIndex(const Value *) const {
 | 
						|
    return ContainedTys[0];
 | 
						|
  }
 | 
						|
  virtual const Type *getTypeAtIndex(unsigned) const {
 | 
						|
    return ContainedTys[0];
 | 
						|
  }
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const SequentialType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == ArrayTyID ||
 | 
						|
           T->getTypeID() == PointerTyID ||
 | 
						|
           T->getTypeID() == VectorTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// ArrayType - Class to represent array types
 | 
						|
///
 | 
						|
class ArrayType : public SequentialType {
 | 
						|
  friend class TypeMap<ArrayValType, ArrayType>;
 | 
						|
  uint64_t NumElements;
 | 
						|
 | 
						|
  ArrayType(const ArrayType &);                   // Do not implement
 | 
						|
  const ArrayType &operator=(const ArrayType &);  // Do not implement
 | 
						|
  ArrayType(const Type *ElType, uint64_t NumEl);
 | 
						|
public:
 | 
						|
  /// ArrayType::get - This static method is the primary way to construct an
 | 
						|
  /// ArrayType
 | 
						|
  ///
 | 
						|
  static ArrayType *get(const Type *ElementType, uint64_t NumElements);
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(const Type *ElemTy);
 | 
						|
 | 
						|
  inline uint64_t getNumElements() const { return NumElements; }
 | 
						|
 | 
						|
  // Implement the AbstractTypeUser interface.
 | 
						|
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | 
						|
  virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const ArrayType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == ArrayTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// VectorType - Class to represent vector types
 | 
						|
///
 | 
						|
class VectorType : public SequentialType {
 | 
						|
  friend class TypeMap<VectorValType, VectorType>;
 | 
						|
  unsigned NumElements;
 | 
						|
 | 
						|
  VectorType(const VectorType &);                   // Do not implement
 | 
						|
  const VectorType &operator=(const VectorType &);  // Do not implement
 | 
						|
  VectorType(const Type *ElType, unsigned NumEl);
 | 
						|
public:
 | 
						|
  /// VectorType::get - This static method is the primary way to construct an
 | 
						|
  /// VectorType
 | 
						|
  ///
 | 
						|
  static VectorType *get(const Type *ElementType, unsigned NumElements);
 | 
						|
 | 
						|
  /// VectorType::getInteger - This static method gets a VectorType with the
 | 
						|
  /// same number of elements as the input type, and the element type is an
 | 
						|
  /// integer type of the same width as the input element type.
 | 
						|
  ///
 | 
						|
  static VectorType *getInteger(const VectorType *VTy) {
 | 
						|
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | 
						|
    const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
 | 
						|
    return VectorType::get(EltTy, VTy->getNumElements());
 | 
						|
  }
 | 
						|
 | 
						|
  /// VectorType::getExtendedElementVectorType - This static method is like
 | 
						|
  /// getInteger except that the element types are twice as wide as the
 | 
						|
  /// elements in the input type.
 | 
						|
  ///
 | 
						|
  static VectorType *getExtendedElementVectorType(const VectorType *VTy) {
 | 
						|
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | 
						|
    const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
 | 
						|
    return VectorType::get(EltTy, VTy->getNumElements());
 | 
						|
  }
 | 
						|
 | 
						|
  /// VectorType::getTruncatedElementVectorType - This static method is like
 | 
						|
  /// getInteger except that the element types are half as wide as the
 | 
						|
  /// elements in the input type.
 | 
						|
  ///
 | 
						|
  static VectorType *getTruncatedElementVectorType(const VectorType *VTy) {
 | 
						|
    unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
 | 
						|
    assert((EltBits & 1) == 0 &&
 | 
						|
           "Cannot truncate vector element with odd bit-width");
 | 
						|
    const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
 | 
						|
    return VectorType::get(EltTy, VTy->getNumElements());
 | 
						|
  }
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(const Type *ElemTy);
 | 
						|
 | 
						|
  /// @brief Return the number of elements in the Vector type.
 | 
						|
  inline unsigned getNumElements() const { return NumElements; }
 | 
						|
 | 
						|
  /// @brief Return the number of bits in the Vector type.
 | 
						|
  inline unsigned getBitWidth() const {
 | 
						|
    return NumElements * getElementType()->getPrimitiveSizeInBits();
 | 
						|
  }
 | 
						|
 | 
						|
  // Implement the AbstractTypeUser interface.
 | 
						|
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | 
						|
  virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | 
						|
 | 
						|
  // Methods for support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const VectorType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == VectorTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// PointerType - Class to represent pointers
 | 
						|
///
 | 
						|
class PointerType : public SequentialType {
 | 
						|
  friend class TypeMap<PointerValType, PointerType>;
 | 
						|
  unsigned AddressSpace;
 | 
						|
 | 
						|
  PointerType(const PointerType &);                   // Do not implement
 | 
						|
  const PointerType &operator=(const PointerType &);  // Do not implement
 | 
						|
  explicit PointerType(const Type *ElType, unsigned AddrSpace);
 | 
						|
public:
 | 
						|
  /// PointerType::get - This constructs a pointer to an object of the specified
 | 
						|
  /// type in a numbered address space.
 | 
						|
  static PointerType *get(const Type *ElementType, unsigned AddressSpace);
 | 
						|
 | 
						|
  /// PointerType::getUnqual - This constructs a pointer to an object of the
 | 
						|
  /// specified type in the generic address space (address space zero).
 | 
						|
  static PointerType *getUnqual(const Type *ElementType) {
 | 
						|
    return PointerType::get(ElementType, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  /// isValidElementType - Return true if the specified type is valid as a
 | 
						|
  /// element type.
 | 
						|
  static bool isValidElementType(const Type *ElemTy);
 | 
						|
 | 
						|
  /// @brief Return the address space of the Pointer type.
 | 
						|
  inline unsigned getAddressSpace() const { return AddressSpace; }
 | 
						|
 | 
						|
  // Implement the AbstractTypeUser interface.
 | 
						|
  virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
 | 
						|
  virtual void typeBecameConcrete(const DerivedType *AbsTy);
 | 
						|
 | 
						|
  // Implement support type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const PointerType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == PointerTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// OpaqueType - Class to represent abstract types
 | 
						|
///
 | 
						|
class OpaqueType : public DerivedType {
 | 
						|
  friend class LLVMContextImpl;
 | 
						|
  OpaqueType(const OpaqueType &);                   // DO NOT IMPLEMENT
 | 
						|
  const OpaqueType &operator=(const OpaqueType &);  // DO NOT IMPLEMENT
 | 
						|
  OpaqueType(LLVMContext &C);
 | 
						|
public:
 | 
						|
  /// OpaqueType::get - Static factory method for the OpaqueType class...
 | 
						|
  ///
 | 
						|
  static OpaqueType *get(LLVMContext &C);
 | 
						|
 | 
						|
  // Implement support for type inquiry through isa, cast, and dyn_cast:
 | 
						|
  static inline bool classof(const OpaqueType *) { return true; }
 | 
						|
  static inline bool classof(const Type *T) {
 | 
						|
    return T->getTypeID() == OpaqueTyID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |