mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@27151 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1254 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1254 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by Chris Lattner and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a pattern matching instruction selector for PowerPC,
 | 
						|
// converting from a legalized dag to a PPC dag.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "PPCISelLowering.h"
 | 
						|
#include "PPCHazardRecognizers.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <iostream>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
 | 
						|
    
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// PPCDAGToDAGISel - PPC specific code to select PPC machine
 | 
						|
  /// instructions for SelectionDAG operations.
 | 
						|
  ///
 | 
						|
  class PPCDAGToDAGISel : public SelectionDAGISel {
 | 
						|
    PPCTargetMachine &TM;
 | 
						|
    PPCTargetLowering PPCLowering;
 | 
						|
    unsigned GlobalBaseReg;
 | 
						|
  public:
 | 
						|
    PPCDAGToDAGISel(PPCTargetMachine &tm)
 | 
						|
      : SelectionDAGISel(PPCLowering), TM(tm),
 | 
						|
        PPCLowering(*TM.getTargetLowering()) {}
 | 
						|
    
 | 
						|
    virtual bool runOnFunction(Function &Fn) {
 | 
						|
      // Make sure we re-emit a set of the global base reg if necessary
 | 
						|
      GlobalBaseReg = 0;
 | 
						|
      SelectionDAGISel::runOnFunction(Fn);
 | 
						|
      
 | 
						|
      InsertVRSaveCode(Fn);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
   
 | 
						|
    /// getI32Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i32.
 | 
						|
    inline SDOperand getI32Imm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | 
						|
    /// base register.  Return the virtual register that holds this value.
 | 
						|
    SDOperand getGlobalBaseReg();
 | 
						|
    
 | 
						|
    // Select - Convert the specified operand from a target-independent to a
 | 
						|
    // target-specific node if it hasn't already been changed.
 | 
						|
    void Select(SDOperand &Result, SDOperand Op);
 | 
						|
    
 | 
						|
    SDNode *SelectBitfieldInsert(SDNode *N);
 | 
						|
 | 
						|
    /// SelectCC - Select a comparison of the specified values with the
 | 
						|
    /// specified condition code, returning the CR# of the expression.
 | 
						|
    SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
 | 
						|
 | 
						|
    /// SelectAddrImm - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 16-bit displacement [r+imm].
 | 
						|
    bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base);
 | 
						|
      
 | 
						|
    /// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | 
						|
    /// represented as an indexed [r+r] operation.  Returns false if it can
 | 
						|
    /// be represented by [r+imm], which are preferred.
 | 
						|
    bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index);
 | 
						|
    
 | 
						|
    /// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | 
						|
    /// represented as an indexed [r+r] operation.
 | 
						|
    bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index);
 | 
						|
 | 
						|
    /// SelectAddrImmShift - Returns true if the address N can be represented by
 | 
						|
    /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
 | 
						|
    /// for use by STD and friends.
 | 
						|
    bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base);
 | 
						|
    
 | 
						|
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | 
						|
    /// inline asm expressions.
 | 
						|
    virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
 | 
						|
                                              char ConstraintCode,
 | 
						|
                                              std::vector<SDOperand> &OutOps,
 | 
						|
                                              SelectionDAG &DAG) {
 | 
						|
      SDOperand Op0, Op1;
 | 
						|
      switch (ConstraintCode) {
 | 
						|
      default: return true;
 | 
						|
      case 'm':   // memory
 | 
						|
        if (!SelectAddrIdx(Op, Op0, Op1))
 | 
						|
          SelectAddrImm(Op, Op0, Op1);
 | 
						|
        break;
 | 
						|
      case 'o':   // offsetable
 | 
						|
        if (!SelectAddrImm(Op, Op0, Op1)) {
 | 
						|
          Select(Op0, Op);     // r+0.
 | 
						|
          Op1 = getI32Imm(0);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case 'v':   // not offsetable
 | 
						|
        SelectAddrIdxOnly(Op, Op0, Op1);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      OutOps.push_back(Op0);
 | 
						|
      OutOps.push_back(Op1);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    
 | 
						|
    SDOperand BuildSDIVSequence(SDNode *N);
 | 
						|
    SDOperand BuildUDIVSequence(SDNode *N);
 | 
						|
    
 | 
						|
    /// InstructionSelectBasicBlock - This callback is invoked by
 | 
						|
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
    virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
 | 
						|
    
 | 
						|
    void InsertVRSaveCode(Function &Fn);
 | 
						|
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "PowerPC DAG->DAG Pattern Instruction Selection";
 | 
						|
    } 
 | 
						|
    
 | 
						|
    /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for this
 | 
						|
    /// target when scheduling the DAG.
 | 
						|
    virtual HazardRecognizer *CreateTargetHazardRecognizer() {
 | 
						|
      // Should use subtarget info to pick the right hazard recognizer.  For
 | 
						|
      // now, always return a PPC970 recognizer.
 | 
						|
      const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
 | 
						|
      assert(II && "No InstrInfo?");
 | 
						|
      return new PPCHazardRecognizer970(*II); 
 | 
						|
    }
 | 
						|
 | 
						|
// Include the pieces autogenerated from the target description.
 | 
						|
#include "PPCGenDAGISel.inc"
 | 
						|
    
 | 
						|
private:
 | 
						|
    SDOperand SelectSETCC(SDOperand Op);
 | 
						|
    SDOperand SelectCALL(SDOperand Op);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// InstructionSelectBasicBlock - This callback is invoked by
 | 
						|
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
 | 
						|
  DEBUG(BB->dump());
 | 
						|
  
 | 
						|
  // The selection process is inherently a bottom-up recursive process (users
 | 
						|
  // select their uses before themselves).  Given infinite stack space, we
 | 
						|
  // could just start selecting on the root and traverse the whole graph.  In
 | 
						|
  // practice however, this causes us to run out of stack space on large basic
 | 
						|
  // blocks.  To avoid this problem, select the entry node, then all its uses,
 | 
						|
  // iteratively instead of recursively.
 | 
						|
  std::vector<SDOperand> Worklist;
 | 
						|
  Worklist.push_back(DAG.getEntryNode());
 | 
						|
  
 | 
						|
  // Note that we can do this in the PPC target (scanning forward across token
 | 
						|
  // chain edges) because no nodes ever get folded across these edges.  On a
 | 
						|
  // target like X86 which supports load/modify/store operations, this would
 | 
						|
  // have to be more careful.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    SDOperand Node = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
    
 | 
						|
    // Chose from the least deep of the top two nodes.
 | 
						|
    if (!Worklist.empty() &&
 | 
						|
        Worklist.back().Val->getNodeDepth() < Node.Val->getNodeDepth())
 | 
						|
      std::swap(Worklist.back(), Node);
 | 
						|
    
 | 
						|
    if ((Node.Val->getOpcode() >= ISD::BUILTIN_OP_END &&
 | 
						|
         Node.Val->getOpcode() < PPCISD::FIRST_NUMBER) ||
 | 
						|
        CodeGenMap.count(Node)) continue;
 | 
						|
    
 | 
						|
    for (SDNode::use_iterator UI = Node.Val->use_begin(),
 | 
						|
         E = Node.Val->use_end(); UI != E; ++UI) {
 | 
						|
      // Scan the values.  If this use has a value that is a token chain, add it
 | 
						|
      // to the worklist.
 | 
						|
      SDNode *User = *UI;
 | 
						|
      for (unsigned i = 0, e = User->getNumValues(); i != e; ++i)
 | 
						|
        if (User->getValueType(i) == MVT::Other) {
 | 
						|
          Worklist.push_back(SDOperand(User, i));
 | 
						|
          break; 
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, legalize this node.
 | 
						|
    SDOperand Dummy;
 | 
						|
    Select(Dummy, Node);
 | 
						|
  }
 | 
						|
    
 | 
						|
  // Select target instructions for the DAG.
 | 
						|
  DAG.setRoot(SelectRoot(DAG.getRoot()));
 | 
						|
  CodeGenMap.clear();
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
  
 | 
						|
  // Emit machine code to BB.
 | 
						|
  ScheduleAndEmitDAG(DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// InsertVRSaveCode - Once the entire function has been instruction selected,
 | 
						|
/// all virtual registers are created and all machine instructions are built,
 | 
						|
/// check to see if we need to save/restore VRSAVE.  If so, do it.
 | 
						|
void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
 | 
						|
  // Check to see if this function uses vector registers, which means we have to
 | 
						|
  // save and restore the VRSAVE register and update it with the regs we use.  
 | 
						|
  //
 | 
						|
  // In this case, there will be virtual registers of vector type type created
 | 
						|
  // by the scheduler.  Detect them now.
 | 
						|
  MachineFunction &Fn = MachineFunction::get(&F);
 | 
						|
  SSARegMap *RegMap = Fn.getSSARegMap();
 | 
						|
  bool HasVectorVReg = false;
 | 
						|
  for (unsigned i = MRegisterInfo::FirstVirtualRegister, 
 | 
						|
       e = RegMap->getLastVirtReg()+1; i != e; ++i)
 | 
						|
    if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
 | 
						|
      HasVectorVReg = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  if (!HasVectorVReg) return;  // nothing to do.
 | 
						|
      
 | 
						|
  // If we have a vector register, we want to emit code into the entry and exit
 | 
						|
  // blocks to save and restore the VRSAVE register.  We do this here (instead
 | 
						|
  // of marking all vector instructions as clobbering VRSAVE) for two reasons:
 | 
						|
  //
 | 
						|
  // 1. This (trivially) reduces the load on the register allocator, by not
 | 
						|
  //    having to represent the live range of the VRSAVE register.
 | 
						|
  // 2. This (more significantly) allows us to create a temporary virtual
 | 
						|
  //    register to hold the saved VRSAVE value, allowing this temporary to be
 | 
						|
  //    register allocated, instead of forcing it to be spilled to the stack.
 | 
						|
 | 
						|
  // Create two vregs - one to hold the VRSAVE register that is live-in to the
 | 
						|
  // function and one for the value after having bits or'd into it.
 | 
						|
  unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
  unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
 | 
						|
  
 | 
						|
  MachineBasicBlock &EntryBB = *Fn.begin();
 | 
						|
  // Emit the following code into the entry block:
 | 
						|
  // InVRSAVE = MFVRSAVE
 | 
						|
  // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
 | 
						|
  // MTVRSAVE UpdatedVRSAVE
 | 
						|
  MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
 | 
						|
  BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE);
 | 
						|
  BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE);
 | 
						|
  
 | 
						|
  // Find all return blocks, outputting a restore in each epilog.
 | 
						|
  const TargetInstrInfo &TII = *TM.getInstrInfo();
 | 
						|
  for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
 | 
						|
    if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
 | 
						|
      IP = BB->end(); --IP;
 | 
						|
      
 | 
						|
      // Skip over all terminator instructions, which are part of the return
 | 
						|
      // sequence.
 | 
						|
      MachineBasicBlock::iterator I2 = IP;
 | 
						|
      while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
 | 
						|
        IP = I2;
 | 
						|
      
 | 
						|
      // Emit: MTVRSAVE InVRSave
 | 
						|
      BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE);
 | 
						|
    }        
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getGlobalBaseReg - Output the instructions required to put the
 | 
						|
/// base address to use for accessing globals into a register.
 | 
						|
///
 | 
						|
SDOperand PPCDAGToDAGISel::getGlobalBaseReg() {
 | 
						|
  if (!GlobalBaseReg) {
 | 
						|
    // Insert the set of GlobalBaseReg into the first MBB of the function
 | 
						|
    MachineBasicBlock &FirstMBB = BB->getParent()->front();
 | 
						|
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | 
						|
    SSARegMap *RegMap = BB->getParent()->getSSARegMap();
 | 
						|
    // FIXME: when we get to LP64, we will need to create the appropriate
 | 
						|
    // type of register here.
 | 
						|
    GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
 | 
						|
    BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
 | 
						|
    BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
 | 
						|
  }
 | 
						|
  return CurDAG->getRegister(GlobalBaseReg, MVT::i32);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// isIntImmediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isIntImmediate(SDNode *N, unsigned& Imm) {
 | 
						|
  if (N->getOpcode() == ISD::Constant) {
 | 
						|
    Imm = cast<ConstantSDNode>(N)->getValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | 
						|
// any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | 
						|
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | 
						|
// not, since all 1s are not contiguous.
 | 
						|
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
 | 
						|
  if (isShiftedMask_32(Val)) {
 | 
						|
    // look for the first non-zero bit
 | 
						|
    MB = CountLeadingZeros_32(Val);
 | 
						|
    // look for the first zero bit after the run of ones
 | 
						|
    ME = CountLeadingZeros_32((Val - 1) ^ Val);
 | 
						|
    return true;
 | 
						|
  } else {
 | 
						|
    Val = ~Val; // invert mask
 | 
						|
    if (isShiftedMask_32(Val)) {
 | 
						|
      // effectively look for the first zero bit
 | 
						|
      ME = CountLeadingZeros_32(Val) - 1;
 | 
						|
      // effectively look for the first one bit after the run of zeros
 | 
						|
      MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // no run present
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
 | 
						|
// and mask opcode and mask operation.
 | 
						|
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
 | 
						|
                            unsigned &SH, unsigned &MB, unsigned &ME) {
 | 
						|
  // Don't even go down this path for i64, since different logic will be
 | 
						|
  // necessary for rldicl/rldicr/rldimi.
 | 
						|
  if (N->getValueType(0) != MVT::i32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Shift  = 32;
 | 
						|
  unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
 | 
						|
  unsigned Opcode = N->getOpcode();
 | 
						|
  if (N->getNumOperands() != 2 ||
 | 
						|
      !isIntImmediate(N->getOperand(1).Val, Shift) || (Shift > 31))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (Opcode == ISD::SHL) {
 | 
						|
    // apply shift left to mask if it comes first
 | 
						|
    if (IsShiftMask) Mask = Mask << Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu << Shift);
 | 
						|
  } else if (Opcode == ISD::SRL) { 
 | 
						|
    // apply shift right to mask if it comes first
 | 
						|
    if (IsShiftMask) Mask = Mask >> Shift;
 | 
						|
    // determine which bits are made indeterminant by shift
 | 
						|
    Indeterminant = ~(0xFFFFFFFFu >> Shift);
 | 
						|
    // adjust for the left rotate
 | 
						|
    Shift = 32 - Shift;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // if the mask doesn't intersect any Indeterminant bits
 | 
						|
  if (Mask && !(Mask & Indeterminant)) {
 | 
						|
    SH = Shift;
 | 
						|
    // make sure the mask is still a mask (wrap arounds may not be)
 | 
						|
    return isRunOfOnes(Mask, MB, ME);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
 | 
						|
// opcode and that it has a immediate integer right operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
 | 
						|
  return N->getOpcode() == Opc && isIntImmediate(N->getOperand(1).Val, Imm);
 | 
						|
}
 | 
						|
 | 
						|
// isIntImmediate - This method tests to see if a constant operand.
 | 
						|
// If so Imm will receive the 32 bit value.
 | 
						|
static bool isIntImmediate(SDOperand N, unsigned& Imm) {
 | 
						|
  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    Imm = (unsigned)CN->getSignExtended();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectBitfieldInsert - turn an or of two masked values into
 | 
						|
/// the rotate left word immediate then mask insert (rlwimi) instruction.
 | 
						|
/// Returns true on success, false if the caller still needs to select OR.
 | 
						|
///
 | 
						|
/// Patterns matched:
 | 
						|
/// 1. or shl, and   5. or and, and
 | 
						|
/// 2. or and, shl   6. or shl, shr
 | 
						|
/// 3. or shr, and   7. or shr, shl
 | 
						|
/// 4. or and, shr
 | 
						|
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
 | 
						|
  bool IsRotate = false;
 | 
						|
  unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, SH = 0;
 | 
						|
  unsigned Value;
 | 
						|
  
 | 
						|
  SDOperand Op0 = N->getOperand(0);
 | 
						|
  SDOperand Op1 = N->getOperand(1);
 | 
						|
  
 | 
						|
  unsigned Op0Opc = Op0.getOpcode();
 | 
						|
  unsigned Op1Opc = Op1.getOpcode();
 | 
						|
  
 | 
						|
  // Verify that we have the correct opcodes
 | 
						|
  if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc)
 | 
						|
    return false;
 | 
						|
  if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Generate Mask value for Target
 | 
						|
  if (isIntImmediate(Op0.getOperand(1), Value)) {
 | 
						|
    switch(Op0Opc) {
 | 
						|
    case ISD::SHL: TgtMask <<= Value; break;
 | 
						|
    case ISD::SRL: TgtMask >>= Value; break;
 | 
						|
    case ISD::AND: TgtMask &= Value; break;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Generate Mask value for Insert
 | 
						|
  if (!isIntImmediate(Op1.getOperand(1), Value))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  switch(Op1Opc) {
 | 
						|
  case ISD::SHL:
 | 
						|
    SH = Value;
 | 
						|
    InsMask <<= SH;
 | 
						|
    if (Op0Opc == ISD::SRL) IsRotate = true;
 | 
						|
    break;
 | 
						|
  case ISD::SRL:
 | 
						|
    SH = Value;
 | 
						|
    InsMask >>= SH;
 | 
						|
    SH = 32-SH;
 | 
						|
    if (Op0Opc == ISD::SHL) IsRotate = true;
 | 
						|
    break;
 | 
						|
  case ISD::AND:
 | 
						|
    InsMask &= Value;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If both of the inputs are ANDs and one of them has a logical shift by
 | 
						|
  // constant as its input, make that AND the inserted value so that we can
 | 
						|
  // combine the shift into the rotate part of the rlwimi instruction
 | 
						|
  bool IsAndWithShiftOp = false;
 | 
						|
  if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
 | 
						|
    if (Op1.getOperand(0).getOpcode() == ISD::SHL ||
 | 
						|
        Op1.getOperand(0).getOpcode() == ISD::SRL) {
 | 
						|
      if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) {
 | 
						|
        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
 | 
						|
        IsAndWithShiftOp = true;
 | 
						|
      }
 | 
						|
    } else if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
 | 
						|
               Op0.getOperand(0).getOpcode() == ISD::SRL) {
 | 
						|
      if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) {
 | 
						|
        std::swap(Op0, Op1);
 | 
						|
        std::swap(TgtMask, InsMask);
 | 
						|
        SH = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value;
 | 
						|
        IsAndWithShiftOp = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Verify that the Target mask and Insert mask together form a full word mask
 | 
						|
  // and that the Insert mask is a run of set bits (which implies both are runs
 | 
						|
  // of set bits).  Given that, Select the arguments and generate the rlwimi
 | 
						|
  // instruction.
 | 
						|
  unsigned MB, ME;
 | 
						|
  if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) {
 | 
						|
    bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF;
 | 
						|
    bool Op0IsAND = Op0Opc == ISD::AND;
 | 
						|
    // Check for rotlwi / rotrwi here, a special case of bitfield insert
 | 
						|
    // where both bitfield halves are sourced from the same value.
 | 
						|
    if (IsRotate && fullMask &&
 | 
						|
        N->getOperand(0).getOperand(0) == N->getOperand(1).getOperand(0)) {
 | 
						|
      SDOperand Tmp;
 | 
						|
      Select(Tmp, N->getOperand(0).getOperand(0));
 | 
						|
      return CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Tmp,
 | 
						|
                                   getI32Imm(SH), getI32Imm(0), getI32Imm(31));
 | 
						|
    }
 | 
						|
    SDOperand Tmp1, Tmp2;
 | 
						|
    Select(Tmp1, ((Op0IsAND && fullMask) ? Op0.getOperand(0) : Op0));
 | 
						|
    Select(Tmp2, (IsAndWithShiftOp ? Op1.getOperand(0).getOperand(0)
 | 
						|
                                   : Op1.getOperand(0)));
 | 
						|
    return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Tmp1, Tmp2,
 | 
						|
                                 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddrImm - Returns true if the address N can be represented by
 | 
						|
/// a base register plus a signed 16-bit displacement [r+imm].
 | 
						|
bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp, 
 | 
						|
                                    SDOperand &Base) {
 | 
						|
  // If this can be more profitably realized as r+r, fail.
 | 
						|
  if (SelectAddrIdx(N, Disp, Base))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    unsigned imm = 0;
 | 
						|
    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
 | 
						|
      Disp = getI32Imm(imm & 0xFFFF);
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | 
						|
      } else {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
      }
 | 
						|
      return true; // [r+i]
 | 
						|
    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | 
						|
      // Match LOAD (ADD (X, Lo(G))).
 | 
						|
      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
 | 
						|
             && "Cannot handle constant offsets yet!");
 | 
						|
      Disp = N.getOperand(1).getOperand(0);  // The global address.
 | 
						|
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetConstantPool);
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      return true;  // [&g+r]
 | 
						|
    }
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    unsigned imm = 0;
 | 
						|
    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) {
 | 
						|
      // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
      // (for better address arithmetic) if the LHS and RHS of the OR are
 | 
						|
      // provably disjoint.
 | 
						|
      uint64_t LHSKnownZero, LHSKnownOne;
 | 
						|
      PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
 | 
						|
                                    LHSKnownZero, LHSKnownOne);
 | 
						|
      if ((LHSKnownZero|~imm) == ~0U) {
 | 
						|
        // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
        // carry.
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Disp = getI32Imm(imm & 0xFFFF);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    // Loading from a constant address.
 | 
						|
    int Addr = (int)CN->getValue();
 | 
						|
    
 | 
						|
    // If this address fits entirely in a 16-bit sext immediate field, codegen
 | 
						|
    // this as "d, 0"
 | 
						|
    if (Addr == (short)Addr) {
 | 
						|
      Disp = getI32Imm(Addr);
 | 
						|
      Base = CurDAG->getRegister(PPC::R0, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, break this down into an LIS + disp.
 | 
						|
    Disp = getI32Imm((short)Addr);
 | 
						|
    Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Disp = getI32Imm(0);
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | 
						|
    Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | 
						|
  else
 | 
						|
    Base = N;
 | 
						|
  return true;      // [r+0]
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddrIdx - Given the specified addressed, check to see if it can be
 | 
						|
/// represented as an indexed [r+r] operation.  Returns false if it can
 | 
						|
/// be represented by [r+imm], which are preferred.
 | 
						|
bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base, 
 | 
						|
                                    SDOperand &Index) {
 | 
						|
  unsigned imm = 0;
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
 | 
						|
      return false;    // r+i
 | 
						|
    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | 
						|
      return false;    // r+i
 | 
						|
    
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm))
 | 
						|
      return false;    // r+i can fold it if we can.
 | 
						|
    
 | 
						|
    // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
    // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | 
						|
    // disjoint.
 | 
						|
    uint64_t LHSKnownZero, LHSKnownOne;
 | 
						|
    uint64_t RHSKnownZero, RHSKnownOne;
 | 
						|
    PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
 | 
						|
                                  LHSKnownZero, LHSKnownOne);
 | 
						|
    
 | 
						|
    if (LHSKnownZero) {
 | 
						|
      PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U,
 | 
						|
                                    RHSKnownZero, RHSKnownOne);
 | 
						|
      // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
      // carry.
 | 
						|
      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Index = N.getOperand(1);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddrIdxOnly - Given the specified addressed, force it to be
 | 
						|
/// represented as an indexed [r+r] operation.
 | 
						|
bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base, 
 | 
						|
                                        SDOperand &Index) {
 | 
						|
  // Check to see if we can easily represent this as an [r+r] address.  This
 | 
						|
  // will fail if it thinks that the address is more profitably represented as
 | 
						|
  // reg+imm, e.g. where imm = 0.
 | 
						|
  if (SelectAddrIdx(N, Base, Index))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // If the operand is an addition, always emit this as [r+r], since this is
 | 
						|
  // better (for code size, and execution, as the memop does the add for free)
 | 
						|
  // than emitting an explicit add.
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    Base = N.getOperand(0);
 | 
						|
    Index = N.getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, do it the hard way, using R0 as the base register.
 | 
						|
  Base = CurDAG->getRegister(PPC::R0, MVT::i32);
 | 
						|
  Index = N;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddrImmShift - Returns true if the address N can be represented by
 | 
						|
/// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
 | 
						|
/// for use by STD and friends.
 | 
						|
bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp, 
 | 
						|
                                         SDOperand &Base) {
 | 
						|
  // If this can be more profitably realized as r+r, fail.
 | 
						|
  if (SelectAddrIdx(N, Disp, Base))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  if (N.getOpcode() == ISD::ADD) {
 | 
						|
    unsigned imm = 0;
 | 
						|
    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
 | 
						|
        (imm & 3) == 0) {
 | 
						|
      Disp = getI32Imm((imm & 0xFFFF) >> 2);
 | 
						|
      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | 
						|
      } else {
 | 
						|
        Base = N.getOperand(0);
 | 
						|
      }
 | 
						|
      return true; // [r+i]
 | 
						|
    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | 
						|
      // Match LOAD (ADD (X, Lo(G))).
 | 
						|
      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
 | 
						|
             && "Cannot handle constant offsets yet!");
 | 
						|
      Disp = N.getOperand(1).getOperand(0);  // The global address.
 | 
						|
      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | 
						|
             Disp.getOpcode() == ISD::TargetConstantPool);
 | 
						|
      Base = N.getOperand(0);
 | 
						|
      return true;  // [&g+r]
 | 
						|
    }
 | 
						|
  } else if (N.getOpcode() == ISD::OR) {
 | 
						|
    unsigned imm = 0;
 | 
						|
    if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm) &&
 | 
						|
        (imm & 3) == 0) {
 | 
						|
      // If this is an or of disjoint bitfields, we can codegen this as an add
 | 
						|
      // (for better address arithmetic) if the LHS and RHS of the OR are
 | 
						|
      // provably disjoint.
 | 
						|
      uint64_t LHSKnownZero, LHSKnownOne;
 | 
						|
      PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
 | 
						|
                                    LHSKnownZero, LHSKnownOne);
 | 
						|
      if ((LHSKnownZero|~imm) == ~0U) {
 | 
						|
        // If all of the bits are known zero on the LHS or RHS, the add won't
 | 
						|
        // carry.
 | 
						|
        Base = N.getOperand(0);
 | 
						|
        Disp = getI32Imm((imm & 0xFFFF) >> 2);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						|
    // Loading from a constant address.
 | 
						|
    int Addr = (int)CN->getValue();
 | 
						|
    if ((Addr & 3) == 0) {
 | 
						|
      // If this address fits entirely in a 16-bit sext immediate field, codegen
 | 
						|
      // this as "d, 0"
 | 
						|
      if (Addr == (short)Addr) {
 | 
						|
        Disp = getI32Imm(Addr >> 2);
 | 
						|
        Base = CurDAG->getRegister(PPC::R0, MVT::i32);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Otherwise, break this down into an LIS + disp.
 | 
						|
      Disp = getI32Imm((short)Addr >> 2);
 | 
						|
      Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  Disp = getI32Imm(0);
 | 
						|
  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | 
						|
    Base = CurDAG->getTargetFrameIndex(FI->getIndex(), MVT::i32);
 | 
						|
  else
 | 
						|
    Base = N;
 | 
						|
  return true;      // [r+0]
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SelectCC - Select a comparison of the specified values with the specified
 | 
						|
/// condition code, returning the CR# of the expression.
 | 
						|
SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
 | 
						|
                                    ISD::CondCode CC) {
 | 
						|
  // Always select the LHS.
 | 
						|
  Select(LHS, LHS);
 | 
						|
 | 
						|
  // Use U to determine whether the SETCC immediate range is signed or not.
 | 
						|
  if (MVT::isInteger(LHS.getValueType())) {
 | 
						|
    bool U = ISD::isUnsignedIntSetCC(CC);
 | 
						|
    unsigned Imm;
 | 
						|
    if (isIntImmediate(RHS, Imm) && 
 | 
						|
        ((U && isUInt16(Imm)) || (!U && isInt16(Imm))))
 | 
						|
      return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLWI : PPC::CMPWI,
 | 
						|
                                    MVT::i32, LHS, getI32Imm(Imm & 0xFFFF)), 0);
 | 
						|
    Select(RHS, RHS);
 | 
						|
    return SDOperand(CurDAG->getTargetNode(U ? PPC::CMPLW : PPC::CMPW, MVT::i32,
 | 
						|
                                           LHS, RHS), 0);
 | 
						|
  } else if (LHS.getValueType() == MVT::f32) {
 | 
						|
    Select(RHS, RHS);
 | 
						|
    return SDOperand(CurDAG->getTargetNode(PPC::FCMPUS, MVT::i32, LHS, RHS), 0);
 | 
						|
  } else {
 | 
						|
    Select(RHS, RHS);
 | 
						|
    return SDOperand(CurDAG->getTargetNode(PPC::FCMPUD, MVT::i32, LHS, RHS), 0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
 | 
						|
/// to Condition.
 | 
						|
static unsigned getBCCForSetCC(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Unknown condition!"); abort();
 | 
						|
  case ISD::SETOEQ:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETEQ:  return PPC::BEQ;
 | 
						|
  case ISD::SETONE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETNE:  return PPC::BNE;
 | 
						|
  case ISD::SETOLT:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:  return PPC::BLT;
 | 
						|
  case ISD::SETOLE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  return PPC::BLE;
 | 
						|
  case ISD::SETOGT:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:  return PPC::BGT;
 | 
						|
  case ISD::SETOGE:    // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  return PPC::BGE;
 | 
						|
    
 | 
						|
  case ISD::SETO:   return PPC::BUN;
 | 
						|
  case ISD::SETUO:  return PPC::BNU;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getCRIdxForSetCC - Return the index of the condition register field
 | 
						|
/// associated with the SetCC condition, and whether or not the field is
 | 
						|
/// treated as inverted.  That is, lt = 0; ge = 0 inverted.
 | 
						|
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
 | 
						|
  switch (CC) {
 | 
						|
  default: assert(0 && "Unknown condition!"); abort();
 | 
						|
  case ISD::SETOLT:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULT:
 | 
						|
  case ISD::SETLT:  Inv = false;  return 0;
 | 
						|
  case ISD::SETOGE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGE:
 | 
						|
  case ISD::SETGE:  Inv = true;   return 0;
 | 
						|
  case ISD::SETOGT:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETUGT:
 | 
						|
  case ISD::SETGT:  Inv = false;  return 1;
 | 
						|
  case ISD::SETOLE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETULE:
 | 
						|
  case ISD::SETLE:  Inv = true;   return 1;
 | 
						|
  case ISD::SETOEQ:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETEQ:  Inv = false;  return 2;
 | 
						|
  case ISD::SETONE:  // FIXME: This is incorrect see PR642.
 | 
						|
  case ISD::SETNE:  Inv = true;   return 2;
 | 
						|
  case ISD::SETO:   Inv = true;   return 3;
 | 
						|
  case ISD::SETUO:  Inv = false;  return 3;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
SDOperand PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  unsigned Imm;
 | 
						|
  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
 | 
						|
  if (isIntImmediate(N->getOperand(1), Imm)) {
 | 
						|
    // We can codegen setcc op, imm very efficiently compared to a brcond.
 | 
						|
    // Check for those cases here.
 | 
						|
    // setcc op, 0
 | 
						|
    if (Imm == 0) {
 | 
						|
      SDOperand Op;
 | 
						|
      Select(Op, N->getOperand(0));
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ:
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(27),
 | 
						|
                                    getI32Imm(5), getI32Imm(31));
 | 
						|
      case ISD::SETNE: {
 | 
						|
        SDOperand AD =
 | 
						|
          SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                          Op, getI32Imm(~0U)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, 
 | 
						|
                                    AD.getValue(1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT:
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Op, getI32Imm(1),
 | 
						|
                                    getI32Imm(31), getI32Imm(31));
 | 
						|
      case ISD::SETGT: {
 | 
						|
        SDOperand T =
 | 
						|
          SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
 | 
						|
        T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, T, getI32Imm(1),
 | 
						|
                                    getI32Imm(31), getI32Imm(31));
 | 
						|
      }
 | 
						|
      }
 | 
						|
    } else if (Imm == ~0U) {        // setcc op, -1
 | 
						|
      SDOperand Op;
 | 
						|
      Select(Op, N->getOperand(0));
 | 
						|
      switch (CC) {
 | 
						|
      default: break;
 | 
						|
      case ISD::SETEQ:
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                             Op, getI32Imm(1)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | 
						|
                              SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
 | 
						|
                                                              getI32Imm(0)), 0),
 | 
						|
                                    Op.getValue(1));
 | 
						|
      case ISD::SETNE: {
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
 | 
						|
        SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                           Op, getI32Imm(~0U));
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0), Op, 
 | 
						|
                                    SDOperand(AD, 1));
 | 
						|
      }
 | 
						|
      case ISD::SETLT: {
 | 
						|
        SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
 | 
						|
                                                       getI32Imm(1)), 0);
 | 
						|
        SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
 | 
						|
                                                       Op), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, AN, getI32Imm(1),
 | 
						|
                                    getI32Imm(31), getI32Imm(31));
 | 
						|
      }
 | 
						|
      case ISD::SETGT:
 | 
						|
        Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Op,
 | 
						|
                                             getI32Imm(1), getI32Imm(31),
 | 
						|
                                             getI32Imm(31)), 0);
 | 
						|
        return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool Inv;
 | 
						|
  unsigned Idx = getCRIdxForSetCC(CC, Inv);
 | 
						|
  SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | 
						|
  SDOperand IntCR;
 | 
						|
  
 | 
						|
  // Force the ccreg into CR7.
 | 
						|
  SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
 | 
						|
  
 | 
						|
  SDOperand InFlag(0, 0);  // Null incoming flag value.
 | 
						|
  CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg, 
 | 
						|
                               InFlag).getValue(1);
 | 
						|
  
 | 
						|
  if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
 | 
						|
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
 | 
						|
                                            CCReg), 0);
 | 
						|
  else
 | 
						|
    IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
 | 
						|
  
 | 
						|
  if (!Inv) {
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, IntCR,
 | 
						|
                                getI32Imm((32-(3-Idx)) & 31),
 | 
						|
                                getI32Imm(31), getI32Imm(31));
 | 
						|
  } else {
 | 
						|
    SDOperand Tmp =
 | 
						|
      SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, IntCR,
 | 
						|
                                      getI32Imm((32-(3-Idx)) & 31),
 | 
						|
                                      getI32Imm(31),getI32Imm(31)), 0);
 | 
						|
    return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isCallCompatibleAddress - Return true if the specified 32-bit value is
 | 
						|
/// representable in the immediate field of a Bx instruction.
 | 
						|
static bool isCallCompatibleAddress(ConstantSDNode *C) {
 | 
						|
  int Addr = C->getValue();
 | 
						|
  if (Addr & 3) return false;  // Low 2 bits are implicitly zero.
 | 
						|
  return (Addr << 6 >> 6) == Addr;  // Top 6 bits have to be sext of immediate.
 | 
						|
}
 | 
						|
 | 
						|
SDOperand PPCDAGToDAGISel::SelectCALL(SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  SDOperand Chain;
 | 
						|
  Select(Chain, N->getOperand(0));
 | 
						|
  
 | 
						|
  unsigned CallOpcode;
 | 
						|
  std::vector<SDOperand> CallOperands;
 | 
						|
  
 | 
						|
  if (GlobalAddressSDNode *GASD =
 | 
						|
      dyn_cast<GlobalAddressSDNode>(N->getOperand(1))) {
 | 
						|
    CallOpcode = PPC::BL;
 | 
						|
    CallOperands.push_back(N->getOperand(1));
 | 
						|
  } else if (ExternalSymbolSDNode *ESSDN =
 | 
						|
             dyn_cast<ExternalSymbolSDNode>(N->getOperand(1))) {
 | 
						|
    CallOpcode = PPC::BL;
 | 
						|
    CallOperands.push_back(N->getOperand(1));
 | 
						|
  } else if (isa<ConstantSDNode>(N->getOperand(1)) &&
 | 
						|
             isCallCompatibleAddress(cast<ConstantSDNode>(N->getOperand(1)))) {
 | 
						|
    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(1));
 | 
						|
    CallOpcode = PPC::BLA;
 | 
						|
    CallOperands.push_back(getI32Imm((int)C->getValue() >> 2));
 | 
						|
  } else {
 | 
						|
    // Copy the callee address into the CTR register.
 | 
						|
    SDOperand Callee;
 | 
						|
    Select(Callee, N->getOperand(1));
 | 
						|
    Chain = SDOperand(CurDAG->getTargetNode(PPC::MTCTR, MVT::Other, Callee,
 | 
						|
                                            Chain), 0);
 | 
						|
    
 | 
						|
    // Copy the callee address into R12 on darwin.
 | 
						|
    SDOperand R12 = CurDAG->getRegister(PPC::R12, MVT::i32);
 | 
						|
    Chain = CurDAG->getNode(ISD::CopyToReg, MVT::Other, Chain, R12, Callee);
 | 
						|
 | 
						|
    CallOperands.push_back(R12);
 | 
						|
    CallOpcode = PPC::BCTRL;
 | 
						|
  }
 | 
						|
  
 | 
						|
  unsigned GPR_idx = 0, FPR_idx = 0;
 | 
						|
  static const unsigned GPR[] = {
 | 
						|
    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | 
						|
    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | 
						|
  };
 | 
						|
  static const unsigned FPR[] = {
 | 
						|
    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | 
						|
    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | 
						|
  };
 | 
						|
  
 | 
						|
  SDOperand InFlag;  // Null incoming flag value.
 | 
						|
  
 | 
						|
  for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    unsigned DestReg = 0;
 | 
						|
    MVT::ValueType RegTy = N->getOperand(i).getValueType();
 | 
						|
    if (RegTy == MVT::i32) {
 | 
						|
      assert(GPR_idx < 8 && "Too many int args");
 | 
						|
      DestReg = GPR[GPR_idx++];
 | 
						|
    } else {
 | 
						|
      assert(MVT::isFloatingPoint(N->getOperand(i).getValueType()) &&
 | 
						|
             "Unpromoted integer arg?");
 | 
						|
      assert(FPR_idx < 13 && "Too many fp args");
 | 
						|
      DestReg = FPR[FPR_idx++];
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (N->getOperand(i).getOpcode() != ISD::UNDEF) {
 | 
						|
      SDOperand Val;
 | 
						|
      Select(Val, N->getOperand(i));
 | 
						|
      Chain = CurDAG->getCopyToReg(Chain, DestReg, Val, InFlag);
 | 
						|
      InFlag = Chain.getValue(1);
 | 
						|
      CallOperands.push_back(CurDAG->getRegister(DestReg, RegTy));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Finally, once everything is in registers to pass to the call, emit the
 | 
						|
  // call itself.
 | 
						|
  if (InFlag.Val)
 | 
						|
    CallOperands.push_back(InFlag);   // Strong dep on register copies.
 | 
						|
  else
 | 
						|
    CallOperands.push_back(Chain);    // Weak dep on whatever occurs before
 | 
						|
  Chain = SDOperand(CurDAG->getTargetNode(CallOpcode, MVT::Other, MVT::Flag,
 | 
						|
                                          CallOperands), 0);
 | 
						|
  
 | 
						|
  std::vector<SDOperand> CallResults;
 | 
						|
  
 | 
						|
  // If the call has results, copy the values out of the ret val registers.
 | 
						|
  switch (N->getValueType(0)) {
 | 
						|
    default: assert(0 && "Unexpected ret value!");
 | 
						|
    case MVT::Other: break;
 | 
						|
    case MVT::i32:
 | 
						|
      if (N->getValueType(1) == MVT::i32) {
 | 
						|
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R4, MVT::i32, 
 | 
						|
                                       Chain.getValue(1)).getValue(1);
 | 
						|
        CallResults.push_back(Chain.getValue(0));
 | 
						|
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
 | 
						|
                                       Chain.getValue(2)).getValue(1);
 | 
						|
        CallResults.push_back(Chain.getValue(0));
 | 
						|
      } else {
 | 
						|
        Chain = CurDAG->getCopyFromReg(Chain, PPC::R3, MVT::i32,
 | 
						|
                                       Chain.getValue(1)).getValue(1);
 | 
						|
        CallResults.push_back(Chain.getValue(0));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case MVT::f32:
 | 
						|
    case MVT::f64:
 | 
						|
      Chain = CurDAG->getCopyFromReg(Chain, PPC::F1, N->getValueType(0),
 | 
						|
                                     Chain.getValue(1)).getValue(1);
 | 
						|
      CallResults.push_back(Chain.getValue(0));
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  CallResults.push_back(Chain);
 | 
						|
  for (unsigned i = 0, e = CallResults.size(); i != e; ++i)
 | 
						|
    CodeGenMap[Op.getValue(i)] = CallResults[i];
 | 
						|
  return CallResults[Op.ResNo];
 | 
						|
}
 | 
						|
 | 
						|
// Select - Convert the specified operand from a target-independent to a
 | 
						|
// target-specific node if it hasn't already been changed.
 | 
						|
void PPCDAGToDAGISel::Select(SDOperand &Result, SDOperand Op) {
 | 
						|
  SDNode *N = Op.Val;
 | 
						|
  if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
 | 
						|
      N->getOpcode() < PPCISD::FIRST_NUMBER) {
 | 
						|
    Result = Op;
 | 
						|
    return;   // Already selected.
 | 
						|
  }
 | 
						|
 | 
						|
  // If this has already been converted, use it.
 | 
						|
  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(Op);
 | 
						|
  if (CGMI != CodeGenMap.end()) {
 | 
						|
    Result = CGMI->second;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::SETCC:
 | 
						|
    Result = SelectSETCC(Op);
 | 
						|
    return;
 | 
						|
  case PPCISD::CALL:
 | 
						|
    Result = SelectCALL(Op);
 | 
						|
    return;
 | 
						|
  case PPCISD::GlobalBaseReg:
 | 
						|
    Result = getGlobalBaseReg();
 | 
						|
    return;
 | 
						|
    
 | 
						|
  case ISD::FrameIndex: {
 | 
						|
    int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
    if (N->hasOneUse()) {
 | 
						|
      Result = CurDAG->SelectNodeTo(N, PPC::ADDI, MVT::i32,
 | 
						|
                                    CurDAG->getTargetFrameIndex(FI, MVT::i32),
 | 
						|
                                    getI32Imm(0));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Result = CodeGenMap[Op] = 
 | 
						|
      SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32,
 | 
						|
                                      CurDAG->getTargetFrameIndex(FI, MVT::i32),
 | 
						|
                                      getI32Imm(0)), 0);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  case PPCISD::MFCR: {
 | 
						|
    SDOperand InFlag;
 | 
						|
    Select(InFlag, N->getOperand(1));
 | 
						|
    // Use MFOCRF if supported.
 | 
						|
    if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
 | 
						|
      Result = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
 | 
						|
                                               N->getOperand(0), InFlag), 0);
 | 
						|
    else
 | 
						|
      Result = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag), 0);
 | 
						|
    CodeGenMap[Op] = Result;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
    
 | 
						|
  case ISD::SDIV: {
 | 
						|
    // FIXME: since this depends on the setting of the carry flag from the srawi
 | 
						|
    //        we should really be making notes about that for the scheduler.
 | 
						|
    // FIXME: It sure would be nice if we could cheaply recognize the 
 | 
						|
    //        srl/add/sra pattern the dag combiner will generate for this as
 | 
						|
    //        sra/addze rather than having to handle sdiv ourselves.  oh well.
 | 
						|
    unsigned Imm;
 | 
						|
    if (isIntImmediate(N->getOperand(1), Imm)) {
 | 
						|
      SDOperand N0;
 | 
						|
      Select(N0, N->getOperand(0));
 | 
						|
      if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
 | 
						|
        SDNode *Op =
 | 
						|
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | 
						|
                                N0, getI32Imm(Log2_32(Imm)));
 | 
						|
        Result = CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, 
 | 
						|
                                      SDOperand(Op, 0), SDOperand(Op, 1));
 | 
						|
      } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
 | 
						|
        SDNode *Op =
 | 
						|
          CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
 | 
						|
                                N0, getI32Imm(Log2_32(-Imm)));
 | 
						|
        SDOperand PT =
 | 
						|
          SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
 | 
						|
                                          SDOperand(Op, 0), SDOperand(Op, 1)),
 | 
						|
                    0);
 | 
						|
        Result = CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::AND: {
 | 
						|
    unsigned Imm, Imm2;
 | 
						|
    // If this is an and of a value rotated between 0 and 31 bits and then and'd
 | 
						|
    // with a mask, emit rlwinm
 | 
						|
    if (isIntImmediate(N->getOperand(1), Imm) && (isShiftedMask_32(Imm) ||
 | 
						|
                                                  isShiftedMask_32(~Imm))) {
 | 
						|
      SDOperand Val;
 | 
						|
      unsigned SH, MB, ME;
 | 
						|
      if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
 | 
						|
        Select(Val, N->getOperand(0).getOperand(0));
 | 
						|
      } else if (Imm == 0) {
 | 
						|
        // AND X, 0 -> 0, not "rlwinm 32".
 | 
						|
        Select(Result, N->getOperand(1));
 | 
						|
        return ;
 | 
						|
      } else {        
 | 
						|
        Select(Val, N->getOperand(0));
 | 
						|
        isRunOfOnes(Imm, MB, ME);
 | 
						|
        SH = 0;
 | 
						|
      }
 | 
						|
      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Val,
 | 
						|
                                    getI32Imm(SH), getI32Imm(MB),
 | 
						|
                                    getI32Imm(ME));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // ISD::OR doesn't get all the bitfield insertion fun.
 | 
						|
    // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
 | 
						|
    if (isIntImmediate(N->getOperand(1), Imm) && 
 | 
						|
        N->getOperand(0).getOpcode() == ISD::OR &&
 | 
						|
        isIntImmediate(N->getOperand(0).getOperand(1), Imm2)) {
 | 
						|
      unsigned MB, ME;
 | 
						|
      Imm = ~(Imm^Imm2);
 | 
						|
      if (isRunOfOnes(Imm, MB, ME)) {
 | 
						|
        SDOperand Tmp1, Tmp2;
 | 
						|
        Select(Tmp1, N->getOperand(0).getOperand(0));
 | 
						|
        Select(Tmp2, N->getOperand(0).getOperand(1));
 | 
						|
        Result = SDOperand(CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32,
 | 
						|
                                                 Tmp1, Tmp2,
 | 
						|
                                                 getI32Imm(0), getI32Imm(MB),
 | 
						|
                                                 getI32Imm(ME)), 0);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::OR:
 | 
						|
    if (SDNode *I = SelectBitfieldInsert(N)) {
 | 
						|
      Result = CodeGenMap[Op] = SDOperand(I, 0);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
      
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  case ISD::SHL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) {
 | 
						|
      SDOperand Val;
 | 
						|
      Select(Val, N->getOperand(0).getOperand(0));
 | 
						|
      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
 | 
						|
                                    Val, getI32Imm(SH), getI32Imm(MB),
 | 
						|
                                    getI32Imm(ME));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SRL: {
 | 
						|
    unsigned Imm, SH, MB, ME;
 | 
						|
    if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
 | 
						|
        isRotateAndMask(N, Imm, true, SH, MB, ME)) { 
 | 
						|
      SDOperand Val;
 | 
						|
      Select(Val, N->getOperand(0).getOperand(0));
 | 
						|
      Result = CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, 
 | 
						|
                                    Val, getI32Imm(SH & 0x1F), getI32Imm(MB),
 | 
						|
                                    getI32Imm(ME));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Other cases are autogenerated.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SELECT_CC: {
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
 | 
						|
    
 | 
						|
    // handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
 | 
						|
    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
 | 
						|
      if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
 | 
						|
        if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
 | 
						|
          if (N1C->isNullValue() && N3C->isNullValue() &&
 | 
						|
              N2C->getValue() == 1ULL && CC == ISD::SETNE) {
 | 
						|
            SDOperand LHS;
 | 
						|
            Select(LHS, N->getOperand(0));
 | 
						|
            SDNode *Tmp =
 | 
						|
              CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
 | 
						|
                                    LHS, getI32Imm(~0U));
 | 
						|
            Result = CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
 | 
						|
                                          SDOperand(Tmp, 0), LHS,
 | 
						|
                                          SDOperand(Tmp, 1));
 | 
						|
            return;
 | 
						|
          }
 | 
						|
 | 
						|
    SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
 | 
						|
    unsigned BROpc = getBCCForSetCC(CC);
 | 
						|
 | 
						|
    bool isFP = MVT::isFloatingPoint(N->getValueType(0));
 | 
						|
    unsigned SelectCCOp;
 | 
						|
    if (MVT::isInteger(N->getValueType(0)))
 | 
						|
      SelectCCOp = PPC::SELECT_CC_Int;
 | 
						|
    else if (N->getValueType(0) == MVT::f32)
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F4;
 | 
						|
    else
 | 
						|
      SelectCCOp = PPC::SELECT_CC_F8;
 | 
						|
    SDOperand N2, N3;
 | 
						|
    Select(N2, N->getOperand(2));
 | 
						|
    Select(N3, N->getOperand(3));
 | 
						|
    Result = CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), CCReg,
 | 
						|
                                  N2, N3, getI32Imm(BROpc));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::BR_CC: {
 | 
						|
    SDOperand Chain;
 | 
						|
    Select(Chain, N->getOperand(0));
 | 
						|
    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | 
						|
    SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
 | 
						|
    Result = CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, 
 | 
						|
                                  CondCode, getI32Imm(getBCCForSetCC(CC)), 
 | 
						|
                                  N->getOperand(4), Chain);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  
 | 
						|
  SelectCode(Result, Op);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// createPPCISelDag - This pass converts a legalized DAG into a 
 | 
						|
/// PowerPC-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
 | 
						|
  return new PPCDAGToDAGISel(TM);
 | 
						|
}
 | 
						|
 |