mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Removed vzeroupper from AVX-512 mode - our optimization gude does not recommend to insert vzeroupper at all. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198557 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			318 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass which inserts x86 AVX vzeroupper instructions
 | |
| // before calls to SSE encoded functions. This avoids transition latency
 | |
| // penalty when tranfering control between AVX encoded instructions and old
 | |
| // SSE encoding mode.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-vzeroupper"
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
 | |
| 
 | |
| namespace {
 | |
|   struct VZeroUpperInserter : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     VZeroUpperInserter() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
 | |
| 
 | |
|     virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
 | |
| 
 | |
|   private:
 | |
|     const TargetInstrInfo *TII; // Machine instruction info.
 | |
| 
 | |
|     // Any YMM register live-in to this function?
 | |
|     bool FnHasLiveInYmm;
 | |
| 
 | |
|     // BBState - Contains the state of each MBB: unknown, clean, dirty
 | |
|     SmallVector<uint8_t, 8> BBState;
 | |
| 
 | |
|     // BBSolved - Keep track of all MBB which had been already analyzed
 | |
|     // and there is no further processing required.
 | |
|     BitVector BBSolved;
 | |
| 
 | |
|     // Machine Basic Blocks are classified according this pass:
 | |
|     //
 | |
|     //  ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
 | |
|     //    until the MBB exit there isn't a instruction using YMM to change
 | |
|     //    the state to dirty, or one of the incoming predecessors is unknown
 | |
|     //    and there's not a dirty predecessor between them.
 | |
|     //
 | |
|     //  ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
 | |
|     //    instructions using YMM and be marked ST_CLEAN, as long as the state
 | |
|     //    is cleaned by a vzeroupper before any call.
 | |
|     //
 | |
|     //  ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
 | |
|     //    vzeroupper instruction.
 | |
|     //
 | |
|     //  ST_INIT - Placeholder for an empty state set
 | |
|     //
 | |
|     enum {
 | |
|       ST_UNKNOWN = 0,
 | |
|       ST_CLEAN   = 1,
 | |
|       ST_DIRTY   = 2,
 | |
|       ST_INIT    = 3
 | |
|     };
 | |
| 
 | |
|     // computeState - Given two states, compute the resulting state, in
 | |
|     // the following way
 | |
|     //
 | |
|     //  1) One dirty state yields another dirty state
 | |
|     //  2) All states must be clean for the result to be clean
 | |
|     //  3) If none above and one unknown, the result state is also unknown
 | |
|     //
 | |
|     static unsigned computeState(unsigned PrevState, unsigned CurState) {
 | |
|       if (PrevState == ST_INIT)
 | |
|         return CurState;
 | |
| 
 | |
|       if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
 | |
|         return ST_DIRTY;
 | |
| 
 | |
|       if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
 | |
|         return ST_CLEAN;
 | |
| 
 | |
|       return ST_UNKNOWN;
 | |
|     }
 | |
| 
 | |
|   };
 | |
|   char VZeroUpperInserter::ID = 0;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86IssueVZeroUpperPass() {
 | |
|   return new VZeroUpperInserter();
 | |
| }
 | |
| 
 | |
| static bool isYmmReg(unsigned Reg) {
 | |
|   return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
 | |
| }
 | |
| 
 | |
| static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
 | |
|   for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
 | |
|        E = MRI.livein_end(); I != E; ++I)
 | |
|     if (isYmmReg(I->first))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool clobbersAllYmmRegs(const MachineOperand &MO) {
 | |
|   for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
 | |
|     if (!MO.clobbersPhysReg(reg))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool hasYmmReg(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
 | |
|       return true;
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (MO.isDebug())
 | |
|       continue;
 | |
|     if (isYmmReg(MO.getReg()))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
 | |
| /// instruction.
 | |
| static bool clobbersAnyYmmReg(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isRegMask())
 | |
|       continue;
 | |
|     for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
 | |
|       if (MO.clobbersPhysReg(reg))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Loop over all of the basic blocks, inserting
 | |
| /// vzero upper instructions before function calls.
 | |
| bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (MF.getTarget().getSubtarget<X86Subtarget>().hasAVX512())
 | |
|     return false;
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   bool EverMadeChange = false;
 | |
| 
 | |
|   // Fast check: if the function doesn't use any ymm registers, we don't need
 | |
|   // to insert any VZEROUPPER instructions.  This is constant-time, so it is
 | |
|   // cheap in the common case of no ymm use.
 | |
|   bool YMMUsed = false;
 | |
|   const TargetRegisterClass *RC = &X86::VR256RegClass;
 | |
|   for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
 | |
|        i != e; i++) {
 | |
|     if (!MRI.reg_nodbg_empty(*i)) {
 | |
|       YMMUsed = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!YMMUsed)
 | |
|     return EverMadeChange;
 | |
| 
 | |
|   // Pre-compute the existence of any live-in YMM registers to this function
 | |
|   FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
 | |
| 
 | |
|   assert(BBState.empty());
 | |
|   BBState.resize(MF.getNumBlockIDs(), 0);
 | |
|   BBSolved.resize(MF.getNumBlockIDs(), 0);
 | |
| 
 | |
|   // Each BB state depends on all predecessors, loop over until everything
 | |
|   // converges.  (Once we converge, we can implicitly mark everything that is
 | |
|   // still ST_UNKNOWN as ST_CLEAN.)
 | |
|   while (1) {
 | |
|     bool MadeChange = false;
 | |
| 
 | |
|     // Process all basic blocks.
 | |
|     for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
 | |
|       MadeChange |= processBasicBlock(MF, *I);
 | |
| 
 | |
|     // If this iteration over the code changed anything, keep iterating.
 | |
|     if (!MadeChange) break;
 | |
|     EverMadeChange = true;
 | |
|   }
 | |
| 
 | |
|   BBState.clear();
 | |
|   BBSolved.clear();
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| /// processBasicBlock - Loop over all of the instructions in the basic block,
 | |
| /// inserting vzero upper instructions before function calls.
 | |
| bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
 | |
|                                            MachineBasicBlock &BB) {
 | |
|   bool Changed = false;
 | |
|   unsigned BBNum = BB.getNumber();
 | |
| 
 | |
|   // Don't process already solved BBs
 | |
|   if (BBSolved[BBNum])
 | |
|     return false; // No changes
 | |
| 
 | |
|   // Check the state of all predecessors
 | |
|   unsigned EntryState = ST_INIT;
 | |
|   for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
 | |
|        PE = BB.pred_end(); PI != PE; ++PI) {
 | |
|     EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
 | |
|     if (EntryState == ST_DIRTY)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // The entry MBB for the function may set the initial state to dirty if
 | |
|   // the function receives any YMM incoming arguments
 | |
|   if (&BB == MF.begin()) {
 | |
|     EntryState = ST_CLEAN;
 | |
|     if (FnHasLiveInYmm)
 | |
|       EntryState = ST_DIRTY;
 | |
|   }
 | |
| 
 | |
|   // The current state is initialized according to the predecessors
 | |
|   unsigned CurState = EntryState;
 | |
|   bool BBHasCall = false;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
 | |
|     DebugLoc dl = I->getDebugLoc();
 | |
|     MachineInstr *MI = I;
 | |
| 
 | |
|     bool isControlFlow = MI->isCall() || MI->isReturn();
 | |
| 
 | |
|     // Shortcut: don't need to check regular instructions in dirty state.
 | |
|     if (!isControlFlow && CurState == ST_DIRTY)
 | |
|       continue;
 | |
| 
 | |
|     if (hasYmmReg(MI)) {
 | |
|       // We found a ymm-using instruction; this could be an AVX instruction,
 | |
|       // or it could be control flow.
 | |
|       CurState = ST_DIRTY;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check for control-flow out of the current function (which might
 | |
|     // indirectly execute SSE instructions).
 | |
|     if (!isControlFlow)
 | |
|       continue;
 | |
| 
 | |
|     // If the call won't clobber any YMM register, skip it as well. It usually
 | |
|     // happens on helper function calls (such as '_chkstk', '_ftol2') where
 | |
|     // standard calling convention is not used (RegMask is not used to mark
 | |
|     // register clobbered and register usage (def/imp-def/use) is well-dfined
 | |
|     // and explicitly specified.
 | |
|     if (MI->isCall() && !clobbersAnyYmmReg(MI))
 | |
|       continue;
 | |
| 
 | |
|     BBHasCall = true;
 | |
| 
 | |
|     // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
 | |
|     // registers. This instruction has zero latency. In addition, the processor
 | |
|     // changes back to Clean state, after which execution of Intel SSE
 | |
|     // instructions or Intel AVX instructions has no transition penalty. Add
 | |
|     // the VZEROUPPER instruction before any function call/return that might
 | |
|     // execute SSE code.
 | |
|     // FIXME: In some cases, we may want to move the VZEROUPPER into a
 | |
|     // predecessor block.
 | |
|     if (CurState == ST_DIRTY) {
 | |
|       // Only insert the VZEROUPPER in case the entry state isn't unknown.
 | |
|       // When unknown, only compute the information within the block to have
 | |
|       // it available in the exit if possible, but don't change the block.
 | |
|       if (EntryState != ST_UNKNOWN) {
 | |
|         BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
 | |
|         ++NumVZU;
 | |
|       }
 | |
| 
 | |
|       // After the inserted VZEROUPPER the state becomes clean again, but
 | |
|       // other YMM may appear before other subsequent calls or even before
 | |
|       // the end of the BB.
 | |
|       CurState = ST_CLEAN;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "MBB #" << BBNum
 | |
|                << ", current state: " << CurState << '\n');
 | |
| 
 | |
|   // A BB can only be considered solved when we both have done all the
 | |
|   // necessary transformations, and have computed the exit state.  This happens
 | |
|   // in two cases:
 | |
|   //  1) We know the entry state: this immediately implies the exit state and
 | |
|   //     all the necessary transformations.
 | |
|   //  2) There are no calls, and and a non-call instruction marks this block:
 | |
|   //     no transformations are necessary, and we know the exit state.
 | |
|   if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
 | |
|     BBSolved[BBNum] = true;
 | |
| 
 | |
|   if (CurState != BBState[BBNum])
 | |
|     Changed = true;
 | |
| 
 | |
|   BBState[BBNum] = CurState;
 | |
|   return Changed;
 | |
| }
 |