llvm-6502/lib/Target/Sparc/SparcV8ISelSimple.cpp
Brian Gaeke 50094edf96 Fix whitespace and wrap some long lines.
Deal with allocating stack space for outgoing args and copying them into the
correct stack slots (at least, we can copy <=32-bit int args).
We now correctly generate ADJCALLSTACK* instructions.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16881 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-10 19:57:18 +00:00

1230 lines
47 KiB
C++

//===-- InstSelectSimple.cpp - A simple instruction selector for SparcV8 --===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a simple peephole instruction selector for the V8 target
//
//===----------------------------------------------------------------------===//
#include "SparcV8.h"
#include "SparcV8InstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Support/CFG.h"
using namespace llvm;
namespace {
struct V8ISel : public FunctionPass, public InstVisitor<V8ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
// MBBMap - Mapping between LLVM BB -> Machine BB
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
V8ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn);
virtual const char *getPassName() const {
return "SparcV8 Simple Instruction Selection";
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg);
/// emitCastOperation - Common code shared between visitCastInst and
/// constant expression cast support.
///
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy, unsigned TargetReg);
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = MBBMap[&LLVM_BB];
}
void visitBinaryOperator(Instruction &I);
void visitShiftInst (ShiftInst &SI) { visitBinaryOperator (SI); }
void visitSetCondInst(SetCondInst &I);
void visitCallInst(CallInst &I);
void visitReturnInst(ReturnInst &I);
void visitBranchInst(BranchInst &I);
void visitCastInst(CastInst &I);
void visitLoadInst(LoadInst &I);
void visitStoreInst(StoreInst &I);
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
void visitGetElementPtrInst(GetElementPtrInst &I);
void visitAllocaInst(AllocaInst &I);
void visitInstruction(Instruction &I) {
std::cerr << "Unhandled instruction: " << I;
abort();
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void LowerUnknownIntrinsicFunctionCalls(Function &F);
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI);
void LoadArgumentsToVirtualRegs(Function *F);
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
/// because we have to generate our sources into the source basic blocks,
/// not the current one.
///
void SelectPHINodes();
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R);
/// makeAnotherReg - This method returns the next register number we haven't
/// yet used.
///
/// Long values are handled somewhat specially. They are always allocated
/// as pairs of 32 bit integer values. The register number returned is the
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
/// of the long value.
///
unsigned makeAnotherReg(const Type *Ty) {
assert(dynamic_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo()) &&
"Current target doesn't have SparcV8 reg info??");
const SparcV8RegisterInfo *MRI =
static_cast<const SparcV8RegisterInfo*>(TM.getRegisterInfo());
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
// Create the lower part
F->getSSARegMap()->createVirtualRegister(RC);
// Create the upper part.
return F->getSSARegMap()->createVirtualRegister(RC)-1;
}
// Add the mapping of regnumber => reg class to MachineFunction
const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
return F->getSSARegMap()->createVirtualRegister(RC);
}
unsigned getReg(Value &V) { return getReg (&V); } // allow refs.
unsigned getReg(Value *V) {
// Just append to the end of the current bb.
MachineBasicBlock::iterator It = BB->end();
return getReg(V, BB, It);
}
unsigned getReg(Value *V, MachineBasicBlock *MBB,
MachineBasicBlock::iterator IPt) {
unsigned &Reg = RegMap[V];
if (Reg == 0) {
Reg = makeAnotherReg(V->getType());
RegMap[V] = Reg;
}
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V)) {
copyConstantToRegister(MBB, IPt, C, Reg);
RegMap.erase(V); // Assign a new name to this constant if ref'd again
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
// Move the address of the global into the register
unsigned TmpReg = makeAnotherReg(V->getType());
BuildMI (*MBB, IPt, V8::SETHIi, 1, TmpReg).addGlobalAddress (GV);
BuildMI (*MBB, IPt, V8::ORri, 2, Reg).addReg (TmpReg)
.addGlobalAddress (GV);
RegMap.erase(V); // Assign a new name to this address if ref'd again
}
return Reg;
}
};
}
FunctionPass *llvm::createSparcV8SimpleInstructionSelector(TargetMachine &TM) {
return new V8ISel(TM);
}
enum TypeClass {
cByte, cShort, cInt, cLong, cFloat, cDouble
};
static TypeClass getClass (const Type *T) {
switch (T->getTypeID()) {
case Type::UByteTyID: case Type::SByteTyID: return cByte;
case Type::UShortTyID: case Type::ShortTyID: return cShort;
case Type::PointerTyID:
case Type::UIntTyID: case Type::IntTyID: return cInt;
case Type::ULongTyID: case Type::LongTyID: return cLong;
case Type::FloatTyID: return cFloat;
case Type::DoubleTyID: return cDouble;
default:
assert (0 && "Type of unknown class passed to getClass?");
return cByte;
}
}
static TypeClass getClassB(const Type *T) {
if (T == Type::BoolTy) return cByte;
return getClass(T);
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void V8ISel::copyConstantToRegister(MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Constant *C, unsigned R) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
emitGEPOperation(MBB, IP, CE->getOperand(0),
CE->op_begin()+1, CE->op_end(), R);
return;
case Instruction::Cast:
emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
return;
default:
std::cerr << "Copying this constant expr not yet handled: " << *CE;
abort();
}
}
if (C->getType()->isIntegral ()) {
uint64_t Val;
unsigned Class = getClassB (C->getType ());
if (Class == cLong) {
unsigned TmpReg = makeAnotherReg (Type::IntTy);
unsigned TmpReg2 = makeAnotherReg (Type::IntTy);
// Copy the value into the register pair.
// R = top(more-significant) half, R+1 = bottom(less-significant) half
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy,
Val >> 32), R);
copyConstantToRegister(MBB, IP, ConstantUInt::get(Type::UIntTy,
Val & 0xffffffffU), R+1);
return;
}
assert(Class <= cInt && "Type not handled yet!");
if (C->getType() == Type::BoolTy) {
Val = (C == ConstantBool::True);
} else {
ConstantInt *CI = cast<ConstantInt> (C);
Val = CI->getRawValue ();
}
switch (Class) {
case cByte: Val = (int8_t) Val; break;
case cShort: Val = (int16_t) Val; break;
case cInt: Val = (int32_t) Val; break;
default:
std::cerr << "Offending constant: " << *C << "\n";
assert (0 && "Can't copy this kind of constant into register yet");
return;
}
if (Val == 0) {
BuildMI (*MBB, IP, V8::ORrr, 2, R).addReg (V8::G0).addReg(V8::G0);
} else if (((int64_t)Val >= -4096) && ((int64_t)Val <= 4095)) {
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm(Val);
} else {
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg)
.addSImm (((uint32_t) Val) >> 10);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (TmpReg)
.addSImm (((uint32_t) Val) & 0x03ff);
return;
}
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
// We need to spill the constant to memory...
MachineConstantPool *CP = F->getConstantPool();
unsigned CPI = CP->getConstantPoolIndex(CFP);
const Type *Ty = CFP->getType();
unsigned TmpReg = makeAnotherReg (Type::UIntTy);
unsigned AddrReg = makeAnotherReg (Type::UIntTy);
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
unsigned LoadOpcode = Ty == Type::FloatTy ? V8::LDFri : V8::LDDFri;
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addConstantPoolIndex (CPI);
BuildMI (*MBB, IP, V8::ORri, 2, AddrReg).addReg (TmpReg)
.addConstantPoolIndex (CPI);
BuildMI (*MBB, IP, LoadOpcode, 2, R).addReg (AddrReg).addSImm (0);
} else if (isa<ConstantPointerNull>(C)) {
// Copy zero (null pointer) to the register.
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg (V8::G0).addSImm (0);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
// Copy it with a SETHI/OR pair; the JIT + asmwriter should recognize
// that SETHI %reg,global == SETHI %reg,%hi(global) and
// OR %reg,global,%reg == OR %reg,%lo(global),%reg.
unsigned TmpReg = makeAnotherReg (C->getType ());
BuildMI (*MBB, IP, V8::SETHIi, 1, TmpReg).addGlobalAddress(GV);
BuildMI (*MBB, IP, V8::ORri, 2, R).addReg(TmpReg).addGlobalAddress(GV);
} else {
std::cerr << "Offending constant: " << *C << "\n";
assert (0 && "Can't copy this kind of constant into register yet");
}
}
void V8ISel::LoadArgumentsToVirtualRegs (Function *LF) {
unsigned ArgOffset;
static const unsigned IncomingArgRegs[] = { V8::I0, V8::I1, V8::I2,
V8::I3, V8::I4, V8::I5 };
// Add IMPLICIT_DEFs of input regs.
ArgOffset = 0;
for (Function::aiterator I = LF->abegin(), E = LF->aend();
I != E && ArgOffset < 6; ++I, ++ArgOffset) {
unsigned Reg = getReg(*I);
switch (getClassB(I->getType())) {
case cByte:
case cShort:
case cInt:
case cFloat:
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgOffset]);
break;
case cDouble:
case cLong:
// Double and Long use register pairs.
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgOffset]);
++ArgOffset;
if (ArgOffset < 6)
BuildMI(BB, V8::IMPLICIT_DEF, 0, IncomingArgRegs[ArgOffset]);
break;
default:
assert (0 && "type not handled");
return;
}
}
ArgOffset = 0;
for (Function::aiterator I = LF->abegin(), E = LF->aend(); I != E;
++I, ++ArgOffset) {
unsigned Reg = getReg(*I);
if (ArgOffset < 6) {
switch (getClassB(I->getType())) {
case cByte:
case cShort:
case cInt:
BuildMI(BB, V8::ORrr, 2, Reg).addReg (V8::G0)
.addReg (IncomingArgRegs[ArgOffset]);
break;
case cFloat: {
// Single-fp args are passed in integer registers; go through
// memory to get them into FP registers. (Bleh!)
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (IncomingArgRegs[ArgOffset]);
BuildMI (BB, V8::LDFri, 2, Reg).addFrameIndex (FI).addSImm (0);
break;
}
case cDouble: {
// Double-fp args are passed in pairs of integer registers; go through
// memory to get them into FP registers. (Double bleh!)
unsigned DblAlign = TM.getTargetData().getDoubleAlignment();
int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign);
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (IncomingArgRegs[ArgOffset]);
++ArgOffset;
BuildMI (BB, V8::ST, 3).addFrameIndex (FI).addSImm (4)
.addReg (IncomingArgRegs[ArgOffset]);
BuildMI (BB, V8::LDDFri, 2, Reg).addFrameIndex (FI).addSImm (0);
break;
}
default:
// FIXME: handle cLong
assert (0 && "64-bit int (long/ulong) function args not handled");
return;
}
} else {
switch (getClassB(I->getType())) {
case cByte:
case cShort:
case cInt: {
int FI = F->getFrameInfo()->CreateFixedObject(4, 68 + (4 * ArgOffset));
BuildMI (BB, V8::LD, 2, Reg).addFrameIndex (FI).addSImm(0);
break;
}
case cFloat: {
int FI = F->getFrameInfo()->CreateFixedObject(4, 68 + (4 * ArgOffset));
BuildMI (BB, V8::LDFri, 2, Reg).addFrameIndex (FI).addSImm(0);
break;
}
case cDouble: {
int FI = F->getFrameInfo()->CreateFixedObject(8, 68 + (4 * ArgOffset));
BuildMI (BB, V8::LDDFri, 2, Reg).addFrameIndex (FI).addSImm(0);
break;
}
default:
// FIXME: handle cLong
assert (0 && "64-bit integer (long/ulong) function args not handled");
return;
}
}
}
}
void V8ISel::SelectPHINodes() {
const TargetInstrInfo &TII = *TM.getInstrInfo();
const Function &LF = *F->getFunction(); // The LLVM function...
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
const BasicBlock *BB = I;
MachineBasicBlock &MBB = *MBBMap[I];
// Loop over all of the PHI nodes in the LLVM basic block...
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
for (BasicBlock::const_iterator I = BB->begin();
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
// Create a new machine instr PHI node, and insert it.
unsigned PHIReg = getReg(*PN);
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
V8::PHI, PN->getNumOperands(), PHIReg);
MachineInstr *LongPhiMI = 0;
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
V8::PHI, PN->getNumOperands(), PHIReg+1);
// PHIValues - Map of blocks to incoming virtual registers. We use this
// so that we only initialize one incoming value for a particular block,
// even if the block has multiple entries in the PHI node.
//
std::map<MachineBasicBlock*, unsigned> PHIValues;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
MachineBasicBlock *PredMBB = 0;
for (MachineBasicBlock::pred_iterator PI = MBB.pred_begin (),
PE = MBB.pred_end (); PI != PE; ++PI)
if (PN->getIncomingBlock(i) == (*PI)->getBasicBlock()) {
PredMBB = *PI;
break;
}
assert (PredMBB && "Couldn't find incoming machine-cfg edge for phi");
unsigned ValReg;
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
PHIValues.lower_bound(PredMBB);
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
// We already inserted an initialization of the register for this
// predecessor. Recycle it.
ValReg = EntryIt->second;
} else {
// Get the incoming value into a virtual register.
//
Value *Val = PN->getIncomingValue(i);
// If this is a constant or GlobalValue, we may have to insert code
// into the basic block to compute it into a virtual register.
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
isa<GlobalValue>(Val)) {
// Simple constants get emitted at the end of the basic block,
// before any terminator instructions. We "know" that the code to
// move a constant into a register will never clobber any flags.
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
} else {
// Because we don't want to clobber any values which might be in
// physical registers with the computation of this constant (which
// might be arbitrarily complex if it is a constant expression),
// just insert the computation at the top of the basic block.
MachineBasicBlock::iterator PI = PredMBB->begin();
// Skip over any PHI nodes though!
while (PI != PredMBB->end() && PI->getOpcode() == V8::PHI)
++PI;
ValReg = getReg(Val, PredMBB, PI);
}
// Remember that we inserted a value for this PHI for this predecessor
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
}
PhiMI->addRegOperand(ValReg);
PhiMI->addMachineBasicBlockOperand(PredMBB);
if (LongPhiMI) {
LongPhiMI->addRegOperand(ValReg+1);
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
}
}
// Now that we emitted all of the incoming values for the PHI node, make
// sure to reposition the InsertPoint after the PHI that we just added.
// This is needed because we might have inserted a constant into this
// block, right after the PHI's which is before the old insert point!
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
++PHIInsertPoint;
}
}
}
bool V8ISel::runOnFunction(Function &Fn) {
// First pass over the function, lower any unknown intrinsic functions
// with the IntrinsicLowering class.
LowerUnknownIntrinsicFunctionCalls(Fn);
F = &MachineFunction::construct(&Fn, TM);
// Create all of the machine basic blocks for the function...
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
BB = &F->front();
// Set up a frame object for the return address. This is used by the
// llvm.returnaddress & llvm.frameaddress intrinisics.
//ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
// Copy incoming arguments off of the stack and out of fixed registers.
LoadArgumentsToVirtualRegs(&Fn);
// Instruction select everything except PHI nodes
visit(Fn);
// Select the PHI nodes
SelectPHINodes();
RegMap.clear();
MBBMap.clear();
F = 0;
// We always build a machine code representation for the function
return true;
}
void V8ISel::visitCastInst(CastInst &I) {
Value *Op = I.getOperand(0);
unsigned DestReg = getReg(I);
MachineBasicBlock::iterator MI = BB->end();
emitCastOperation(BB, MI, Op, I.getType(), DestReg);
}
/// emitCastOperation - Common code shared between visitCastInst and constant
/// expression cast support.
///
void V8ISel::emitCastOperation(MachineBasicBlock *BB,
MachineBasicBlock::iterator IP,
Value *Src, const Type *DestTy,
unsigned DestReg) {
const Type *SrcTy = Src->getType();
unsigned SrcClass = getClassB(SrcTy);
unsigned DestClass = getClassB(DestTy);
unsigned SrcReg = getReg(Src, BB, IP);
const Type *oldTy = SrcTy;
const Type *newTy = DestTy;
unsigned oldTyClass = SrcClass;
unsigned newTyClass = DestClass;
if (oldTyClass < cLong && newTyClass < cLong) {
if (oldTyClass >= newTyClass) {
// Emit a reg->reg copy to do a equal-size or narrowing cast,
// and do sign/zero extension (necessary if we change signedness).
unsigned TmpReg1 = makeAnotherReg (newTy);
unsigned TmpReg2 = makeAnotherReg (newTy);
BuildMI (*BB, IP, V8::ORrr, 2, TmpReg1).addReg (V8::G0).addReg (SrcReg);
unsigned shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (newTy));
BuildMI (*BB, IP, V8::SLLri, 2, TmpReg2).addZImm (shiftWidth).addReg(TmpReg1);
if (newTy->isSigned ()) { // sign-extend with SRA
BuildMI(*BB, IP, V8::SRAri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg2);
} else { // zero-extend with SRL
BuildMI(*BB, IP, V8::SRLri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg2);
}
} else {
unsigned TmpReg1 = makeAnotherReg (oldTy);
unsigned TmpReg2 = makeAnotherReg (newTy);
unsigned TmpReg3 = makeAnotherReg (newTy);
// Widening integer cast. Make sure it's fully sign/zero-extended
// wrt the input type, then make sure it's fully sign/zero-extended wrt
// the output type. Kind of stupid, but simple...
unsigned shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (oldTy));
BuildMI (*BB, IP, V8::SLLri, 2, TmpReg1).addZImm (shiftWidth).addReg(SrcReg);
if (oldTy->isSigned ()) { // sign-extend with SRA
BuildMI(*BB, IP, V8::SRAri, 2, TmpReg2).addZImm (shiftWidth).addReg(TmpReg1);
} else { // zero-extend with SRL
BuildMI(*BB, IP, V8::SRLri, 2, TmpReg2).addZImm (shiftWidth).addReg(TmpReg1);
}
shiftWidth = 32 - (8 * TM.getTargetData ().getTypeSize (newTy));
BuildMI (*BB, IP, V8::SLLri, 2, TmpReg3).addZImm (shiftWidth).addReg(TmpReg2);
if (newTy->isSigned ()) { // sign-extend with SRA
BuildMI(*BB, IP, V8::SRAri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg3);
} else { // zero-extend with SRL
BuildMI(*BB, IP, V8::SRLri, 2, DestReg).addZImm (shiftWidth).addReg(TmpReg3);
}
}
} else {
if (newTyClass == cFloat) {
assert (oldTyClass != cLong && "cast long to float not implemented yet");
switch (oldTyClass) {
case cFloat:
BuildMI (*BB, IP, V8::FMOVS, 1, DestReg).addReg (SrcReg);
break;
case cDouble:
BuildMI (*BB, IP, V8::FDTOS, 1, DestReg).addReg (SrcReg);
break;
default: {
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
// cast int to float. Store it to a stack slot and then load
// it using ldf into a floating point register. then do fitos.
unsigned TmpReg = makeAnotherReg (newTy);
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (SrcReg);
BuildMI (*BB, IP, V8::LDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0);
BuildMI (*BB, IP, V8::FITOS, 1, DestReg).addReg(TmpReg);
break;
}
}
} else if (newTyClass == cDouble) {
assert (oldTyClass != cLong && "cast long to double not implemented yet");
switch (oldTyClass) {
case cFloat:
BuildMI (*BB, IP, V8::FSTOD, 1, DestReg).addReg (SrcReg);
break;
case cDouble: // use double move pseudo-instr
BuildMI (*BB, IP, V8::FpMOVD, 1, DestReg).addReg (SrcReg);
break;
default: {
unsigned DoubleAlignment = TM.getTargetData().getDoubleAlignment();
unsigned TmpReg = makeAnotherReg (newTy);
int FI = F->getFrameInfo()->CreateStackObject(8, DoubleAlignment);
BuildMI (*BB, IP, V8::ST, 3).addFrameIndex (FI).addSImm (0)
.addReg (SrcReg);
BuildMI (*BB, IP, V8::LDDFri, 2, TmpReg).addFrameIndex (FI).addSImm (0);
BuildMI (*BB, IP, V8::FITOD, 1, DestReg).addReg(TmpReg);
break;
}
}
} else if (newTyClass == cLong) {
if (oldTyClass == cLong) {
// Just copy it
BuildMI (*BB, IP, V8::ORrr, 2, DestReg).addReg (V8::G0).addReg (SrcReg);
BuildMI (*BB, IP, V8::ORrr, 2, DestReg+1).addReg (V8::G0)
.addReg (SrcReg+1);
} else {
std::cerr << "Cast still unsupported: SrcTy = "
<< *SrcTy << ", DestTy = " << *DestTy << "\n";
abort ();
}
} else {
std::cerr << "Cast still unsupported: SrcTy = "
<< *SrcTy << ", DestTy = " << *DestTy << "\n";
abort ();
}
}
}
void V8ISel::visitLoadInst(LoadInst &I) {
unsigned DestReg = getReg (I);
unsigned PtrReg = getReg (I.getOperand (0));
switch (getClassB (I.getType ())) {
case cByte:
if (I.getType ()->isSigned ())
BuildMI (BB, V8::LDSB, 2, DestReg).addReg (PtrReg).addSImm(0);
else
BuildMI (BB, V8::LDUB, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cShort:
if (I.getType ()->isSigned ())
BuildMI (BB, V8::LDSH, 2, DestReg).addReg (PtrReg).addSImm(0);
else
BuildMI (BB, V8::LDUH, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cInt:
BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cLong:
BuildMI (BB, V8::LD, 2, DestReg).addReg (PtrReg).addSImm(0);
BuildMI (BB, V8::LD, 2, DestReg+1).addReg (PtrReg).addSImm(4);
return;
case cFloat:
BuildMI (BB, V8::LDFri, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
case cDouble:
BuildMI (BB, V8::LDDFri, 2, DestReg).addReg (PtrReg).addSImm(0);
return;
default:
std::cerr << "Load instruction not handled: " << I;
abort ();
return;
}
}
void V8ISel::visitStoreInst(StoreInst &I) {
Value *SrcVal = I.getOperand (0);
unsigned SrcReg = getReg (SrcVal);
unsigned PtrReg = getReg (I.getOperand (1));
switch (getClassB (SrcVal->getType ())) {
case cByte:
BuildMI (BB, V8::STB, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cShort:
BuildMI (BB, V8::STH, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cInt:
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cLong:
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
BuildMI (BB, V8::ST, 3).addReg (PtrReg).addSImm (4).addReg (SrcReg+1);
return;
case cFloat:
BuildMI (BB, V8::STFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
case cDouble:
BuildMI (BB, V8::STDFri, 3).addReg (PtrReg).addSImm (0).addReg (SrcReg);
return;
default:
std::cerr << "Store instruction not handled: " << I;
abort ();
return;
}
}
void V8ISel::visitCallInst(CallInst &I) {
MachineInstr *TheCall;
// Is it an intrinsic function call?
if (Function *F = I.getCalledFunction()) {
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
visitIntrinsicCall(ID, I); // Special intrinsics are not handled here
return;
}
}
unsigned extraStack = 0;
// How much extra call stack will we need?
for (unsigned i = 7; i < I.getNumOperands (); ++i) {
switch (getClassB (I.getOperand (i)->getType ())) {
case cLong: extraStack += 8; break;
case cFloat: extraStack += 4; break;
case cDouble: extraStack += 8; break;
default: extraStack += 4; break;
}
}
// Deal with args
static const unsigned OutgoingArgRegs[] = { V8::O0, V8::O1, V8::O2, V8::O3,
V8::O4, V8::O5 };
for (unsigned i = 1; i < I.getNumOperands (); ++i) {
unsigned ArgReg = getReg (I.getOperand (i));
if (i < 7) {
if (getClassB (I.getOperand (i)->getType ()) < cLong) {
// Schlep it over into the incoming arg register
BuildMI (BB, V8::ORrr, 2, OutgoingArgRegs[i - 1]).addReg (V8::G0)
.addReg (ArgReg);
} else if (getClassB (I.getOperand (i)->getType ()) == cFloat) {
// Single-fp args are passed in integer registers; go through
// memory to get them out of FP registers. (Bleh!)
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
int FI = F->getFrameInfo()->CreateStackObject(4, FltAlign);
BuildMI (BB, V8::STFri, 3).addFrameIndex (FI).addSImm (0)
.addReg (ArgReg);
BuildMI (BB, V8::LD, 2, OutgoingArgRegs[i - 1]).addFrameIndex (FI)
.addSImm (0);
} else if (getClassB (I.getOperand (i)->getType ()) == cDouble) {
// Double-fp args are passed in pairs of integer registers; go through
// memory to get them out of FP registers. (Bleh!)
assert (i <= 5 && "Can't deal with double-fp args past #5 yet");
unsigned DblAlign = TM.getTargetData().getDoubleAlignment();
int FI = F->getFrameInfo()->CreateStackObject(8, DblAlign);
BuildMI (BB, V8::STDFri, 3).addFrameIndex (FI).addSImm (0)
.addReg (ArgReg);
BuildMI (BB, V8::LD, 2, OutgoingArgRegs[i - 1]).addFrameIndex (FI)
.addSImm (0);
BuildMI (BB, V8::LD, 2, OutgoingArgRegs[i]).addFrameIndex (FI)
.addSImm (4);
} else {
assert (0 && "64-bit (double, long, etc.) 'call' opnds not handled");
}
} else {
if (i == 7 && extraStack)
BuildMI (BB, V8::ADJCALLSTACKDOWN, 1).addImm (extraStack);
// Store arg into designated outgoing-arg stack slot
if (getClassB (I.getOperand (i)->getType ()) < cLong) {
BuildMI (BB, V8::ST, 3).addReg (V8::SP).addSImm (64+4*i)
.addReg (ArgReg);
} else {
assert (0 && "can't push this kind of excess arg on stack yet");
}
}
}
// Emit call instruction
if (Function *F = I.getCalledFunction ()) {
BuildMI (BB, V8::CALL, 1).addGlobalAddress (F, true);
} else { // Emit an indirect call...
unsigned Reg = getReg (I.getCalledValue ());
BuildMI (BB, V8::JMPLrr, 3, V8::O7).addReg (Reg).addReg (V8::G0);
}
if (extraStack) BuildMI (BB, V8::ADJCALLSTACKUP, 1).addImm (extraStack);
// Deal w/ return value: schlep it over into the destination register
if (I.getType () == Type::VoidTy)
return;
unsigned DestReg = getReg (I);
switch (getClass (I.getType ())) {
case cByte:
case cShort:
case cInt:
BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0);
break;
case cFloat:
BuildMI (BB, V8::FMOVS, 2, DestReg).addReg(V8::F0);
break;
case cDouble:
BuildMI (BB, V8::FpMOVD, 2, DestReg).addReg(V8::D0);
break;
case cLong:
BuildMI (BB, V8::ORrr, 2, DestReg).addReg(V8::G0).addReg(V8::O0);
BuildMI (BB, V8::ORrr, 2, DestReg+1).addReg(V8::G0).addReg(V8::O1);
break;
default:
std::cerr << "Return type of call instruction not handled: " << I;
abort ();
}
}
void V8ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands () == 1) {
unsigned RetValReg = getReg (I.getOperand (0));
switch (getClass (I.getOperand (0)->getType ())) {
case cByte:
case cShort:
case cInt:
// Schlep it over into i0 (where it will become o0 after restore).
BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg);
break;
case cFloat:
BuildMI (BB, V8::FMOVS, 1, V8::F0).addReg(RetValReg);
break;
case cDouble:
BuildMI (BB, V8::FpMOVD, 1, V8::D0).addReg(RetValReg);
break;
case cLong:
BuildMI (BB, V8::ORrr, 2, V8::I0).addReg(V8::G0).addReg(RetValReg);
BuildMI (BB, V8::ORrr, 2, V8::I1).addReg(V8::G0).addReg(RetValReg+1);
break;
default:
std::cerr << "Return instruction of this type not handled: " << I;
abort ();
}
}
// Just emit a 'retl' instruction to return.
BuildMI(BB, V8::RETL, 0);
return;
}
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
Function::iterator I = BB; ++I; // Get iterator to next block
return I != BB->getParent()->end() ? &*I : 0;
}
/// visitBranchInst - Handles conditional and unconditional branches.
///
void V8ISel::visitBranchInst(BranchInst &I) {
BasicBlock *takenSucc = I.getSuccessor (0);
MachineBasicBlock *takenSuccMBB = MBBMap[takenSucc];
BB->addSuccessor (takenSuccMBB);
if (I.isConditional()) { // conditional branch
BasicBlock *notTakenSucc = I.getSuccessor (1);
MachineBasicBlock *notTakenSuccMBB = MBBMap[notTakenSucc];
BB->addSuccessor (notTakenSuccMBB);
// CondReg=(<condition>);
// If (CondReg==0) goto notTakenSuccMBB;
unsigned CondReg = getReg (I.getCondition ());
BuildMI (BB, V8::CMPri, 2).addSImm (0).addReg (CondReg);
BuildMI (BB, V8::BE, 1).addMBB (notTakenSuccMBB);
}
// goto takenSuccMBB;
BuildMI (BB, V8::BA, 1).addMBB (takenSuccMBB);
}
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
/// constant expression GEP support.
///
void V8ISel::emitGEPOperation (MachineBasicBlock *MBB,
MachineBasicBlock::iterator IP,
Value *Src, User::op_iterator IdxBegin,
User::op_iterator IdxEnd, unsigned TargetReg) {
const TargetData &TD = TM.getTargetData ();
const Type *Ty = Src->getType ();
unsigned basePtrReg = getReg (Src, MBB, IP);
// GEPs have zero or more indices; we must perform a struct access
// or array access for each one.
for (GetElementPtrInst::op_iterator oi = IdxBegin, oe = IdxEnd; oi != oe;
++oi) {
Value *idx = *oi;
unsigned nextBasePtrReg = makeAnotherReg (Type::UIntTy);
if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
// It's a struct access. idx is the index into the structure,
// which names the field. Use the TargetData structure to
// pick out what the layout of the structure is in memory.
// Use the (constant) structure index's value to find the
// right byte offset from the StructLayout class's list of
// structure member offsets.
unsigned fieldIndex = cast<ConstantUInt> (idx)->getValue ();
unsigned memberOffset =
TD.getStructLayout (StTy)->MemberOffsets[fieldIndex];
// Emit an ADD to add memberOffset to the basePtr.
BuildMI (*MBB, IP, V8::ADDri, 2,
nextBasePtrReg).addReg (basePtrReg).addZImm (memberOffset);
// The next type is the member of the structure selected by the
// index.
Ty = StTy->getElementType (fieldIndex);
} else if (const SequentialType *SqTy = dyn_cast<SequentialType> (Ty)) {
// It's an array or pointer access: [ArraySize x ElementType].
// We want to add basePtrReg to (idxReg * sizeof ElementType). First, we
// must find the size of the pointed-to type (Not coincidentally, the next
// type is the type of the elements in the array).
Ty = SqTy->getElementType ();
unsigned elementSize = TD.getTypeSize (Ty);
unsigned idxReg = getReg (idx, MBB, IP);
unsigned OffsetReg = makeAnotherReg (Type::IntTy);
unsigned elementSizeReg = makeAnotherReg (Type::UIntTy);
copyConstantToRegister (MBB, IP,
ConstantUInt::get(Type::UIntTy, elementSize), elementSizeReg);
// Emit a SMUL to multiply the register holding the index by
// elementSize, putting the result in OffsetReg.
BuildMI (*MBB, IP, V8::SMULrr, 2,
OffsetReg).addReg (elementSizeReg).addReg (idxReg);
// Emit an ADD to add OffsetReg to the basePtr.
BuildMI (*MBB, IP, V8::ADDrr, 2,
nextBasePtrReg).addReg (basePtrReg).addReg (OffsetReg);
}
basePtrReg = nextBasePtrReg;
}
// After we have processed all the indices, the result is left in
// basePtrReg. Move it to the register where we were expected to
// put the answer.
BuildMI (BB, V8::ORrr, 1, TargetReg).addReg (V8::G0).addReg (basePtrReg);
}
void V8ISel::visitGetElementPtrInst (GetElementPtrInst &I) {
unsigned outputReg = getReg (I);
emitGEPOperation (BB, BB->end (), I.getOperand (0),
I.op_begin ()+1, I.op_end (), outputReg);
}
void V8ISel::visitBinaryOperator (Instruction &I) {
unsigned DestReg = getReg (I);
unsigned Op0Reg = getReg (I.getOperand (0));
unsigned Op1Reg = getReg (I.getOperand (1));
unsigned Class = getClassB (I.getType());
unsigned OpCase = ~0;
if (Class > cLong) {
switch (I.getOpcode ()) {
case Instruction::Add: OpCase = 0; break;
case Instruction::Sub: OpCase = 1; break;
case Instruction::Mul: OpCase = 2; break;
case Instruction::Div: OpCase = 3; break;
default: visitInstruction (I); return;
}
static unsigned Opcodes[] = { V8::FADDS, V8::FADDD,
V8::FSUBS, V8::FSUBD,
V8::FMULS, V8::FMULD,
V8::FDIVS, V8::FDIVD };
BuildMI (BB, Opcodes[2*OpCase + (Class - cFloat)], 2, DestReg)
.addReg (Op0Reg).addReg (Op1Reg);
return;
}
unsigned ResultReg = DestReg;
if (Class != cInt && Class != cLong)
ResultReg = makeAnotherReg (I.getType ());
if (Class == cLong) {
DEBUG (std::cerr << "Class = cLong\n");
DEBUG (std::cerr << "Op0Reg = " << Op0Reg << ", " << Op0Reg+1 << "\n");
DEBUG (std::cerr << "Op1Reg = " << Op1Reg << ", " << Op1Reg+1 << "\n");
DEBUG (std::cerr << "ResultReg = " << ResultReg << ", " << ResultReg+1 << "\n");
DEBUG (std::cerr << "DestReg = " << DestReg << ", " << DestReg+1 << "\n");
}
// FIXME: support long, ulong.
switch (I.getOpcode ()) {
case Instruction::Add: OpCase = 0; break;
case Instruction::Sub: OpCase = 1; break;
case Instruction::Mul: OpCase = 2; break;
case Instruction::And: OpCase = 3; break;
case Instruction::Or: OpCase = 4; break;
case Instruction::Xor: OpCase = 5; break;
case Instruction::Shl: OpCase = 6; break;
case Instruction::Shr: OpCase = 7+I.getType()->isSigned(); break;
case Instruction::Div:
case Instruction::Rem: {
unsigned Dest = ResultReg;
if (I.getOpcode() == Instruction::Rem)
Dest = makeAnotherReg(I.getType());
// FIXME: this is probably only right for 32 bit operands.
if (I.getType ()->isSigned()) {
unsigned Tmp = makeAnotherReg (I.getType ());
// Sign extend into the Y register
BuildMI (BB, V8::SRAri, 2, Tmp).addReg (Op0Reg).addZImm (31);
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (Tmp).addReg (V8::G0);
BuildMI (BB, V8::SDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
} else {
// Zero extend into the Y register, ie, just set it to zero
BuildMI (BB, V8::WRrr, 2, V8::Y).addReg (V8::G0).addReg (V8::G0);
BuildMI (BB, V8::UDIVrr, 2, Dest).addReg (Op0Reg).addReg (Op1Reg);
}
if (I.getOpcode() == Instruction::Rem) {
unsigned Tmp = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SMULrr, 2, Tmp).addReg(Dest).addReg(Op1Reg);
BuildMI (BB, V8::SUBrr, 2, ResultReg).addReg(Op0Reg).addReg(Tmp);
}
break;
}
default:
visitInstruction (I);
return;
}
static const unsigned Opcodes[] = {
V8::ADDrr, V8::SUBrr, V8::SMULrr, V8::ANDrr, V8::ORrr, V8::XORrr,
V8::SLLrr, V8::SRLrr, V8::SRArr
};
if (OpCase != ~0U) {
BuildMI (BB, Opcodes[OpCase], 2, ResultReg).addReg (Op0Reg).addReg (Op1Reg);
}
switch (getClassB (I.getType ())) {
case cByte:
if (I.getType ()->isSigned ()) { // add byte
BuildMI (BB, V8::ANDri, 2, DestReg).addReg (ResultReg).addZImm (0xff);
} else { // add ubyte
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (24);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (24);
}
break;
case cShort:
if (I.getType ()->isSigned ()) { // add short
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRAri, 2, DestReg).addReg (TmpReg).addZImm (16);
} else { // add ushort
unsigned TmpReg = makeAnotherReg (I.getType ());
BuildMI (BB, V8::SLLri, 2, TmpReg).addReg (ResultReg).addZImm (16);
BuildMI (BB, V8::SRLri, 2, DestReg).addReg (TmpReg).addZImm (16);
}
break;
case cInt:
// Nothing to do here.
break;
case cLong:
// Only support and, or, xor.
if (OpCase < 3 || OpCase > 5) {
visitInstruction (I);
return;
}
// Do the other half of the value:
BuildMI (BB, Opcodes[OpCase], 2, ResultReg+1).addReg (Op0Reg+1)
.addReg (Op1Reg+1);
break;
default:
visitInstruction (I);
}
}
void V8ISel::visitSetCondInst(SetCondInst &I) {
unsigned Op0Reg = getReg (I.getOperand (0));
unsigned Op1Reg = getReg (I.getOperand (1));
unsigned DestReg = getReg (I);
const Type *Ty = I.getOperand (0)->getType ();
// Compare the two values.
assert (getClass (Ty) != cLong && "can't setcc on longs yet");
if (getClass (Ty) < cLong) {
BuildMI(BB, V8::SUBCCrr, 2, V8::G0).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cFloat) {
BuildMI(BB, V8::FCMPS, 2).addReg(Op0Reg).addReg(Op1Reg);
} else if (getClass (Ty) == cDouble) {
BuildMI(BB, V8::FCMPD, 2).addReg(Op0Reg).addReg(Op1Reg);
}
unsigned BranchIdx;
switch (I.getOpcode()) {
default: assert(0 && "Unknown setcc instruction!");
case Instruction::SetEQ: BranchIdx = 0; break;
case Instruction::SetNE: BranchIdx = 1; break;
case Instruction::SetLT: BranchIdx = 2; break;
case Instruction::SetGT: BranchIdx = 3; break;
case Instruction::SetLE: BranchIdx = 4; break;
case Instruction::SetGE: BranchIdx = 5; break;
}
unsigned Column = 0;
if (Ty->isSigned()) ++Column;
if (Ty->isFloatingPoint()) ++Column;
static unsigned OpcodeTab[3*6] = {
// LLVM SparcV8
// unsigned signed fp
V8::BE, V8::BE, V8::FBE, // seteq = be be fbe
V8::BNE, V8::BNE, V8::FBNE, // setne = bne bne fbne
V8::BCS, V8::BL, V8::FBL, // setlt = bcs bl fbl
V8::BGU, V8::BG, V8::FBG, // setgt = bgu bg fbg
V8::BLEU, V8::BLE, V8::FBLE, // setle = bleu ble fble
V8::BCC, V8::BGE, V8::FBGE // setge = bcc bge fbge
};
unsigned Opcode = OpcodeTab[3*BranchIdx + Column];
MachineBasicBlock *thisMBB = BB;
const BasicBlock *LLVM_BB = BB->getBasicBlock ();
// thisMBB:
// ...
// subcc %reg0, %reg1, %g0
// bCC copy1MBB
// ba copy0MBB
// FIXME: we wouldn't need copy0MBB (we could fold it into thisMBB)
// if we could insert other, non-terminator instructions after the
// bCC. But MBB->getFirstTerminator() can't understand this.
MachineBasicBlock *copy1MBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (copy1MBB);
BuildMI (BB, Opcode, 1).addMBB (copy1MBB);
MachineBasicBlock *copy0MBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (copy0MBB);
BuildMI (BB, V8::BA, 1).addMBB (copy0MBB);
// Update machine-CFG edges
BB->addSuccessor (copy1MBB);
BB->addSuccessor (copy0MBB);
// copy0MBB:
// %FalseValue = or %G0, 0
// ba sinkMBB
BB = copy0MBB;
unsigned FalseValue = makeAnotherReg (I.getType ());
BuildMI (BB, V8::ORri, 2, FalseValue).addReg (V8::G0).addZImm (0);
MachineBasicBlock *sinkMBB = new MachineBasicBlock (LLVM_BB);
F->getBasicBlockList ().push_back (sinkMBB);
BuildMI (BB, V8::BA, 1).addMBB (sinkMBB);
// Update machine-CFG edges
BB->addSuccessor (sinkMBB);
DEBUG (std::cerr << "thisMBB is at " << (void*)thisMBB << "\n");
DEBUG (std::cerr << "copy1MBB is at " << (void*)copy1MBB << "\n");
DEBUG (std::cerr << "copy0MBB is at " << (void*)copy0MBB << "\n");
DEBUG (std::cerr << "sinkMBB is at " << (void*)sinkMBB << "\n");
// copy1MBB:
// %TrueValue = or %G0, 1
// ba sinkMBB
BB = copy1MBB;
unsigned TrueValue = makeAnotherReg (I.getType ());
BuildMI (BB, V8::ORri, 2, TrueValue).addReg (V8::G0).addZImm (1);
BuildMI (BB, V8::BA, 1).addMBB (sinkMBB);
// Update machine-CFG edges
BB->addSuccessor (sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, copy1MBB ]
// ...
BB = sinkMBB;
BuildMI (BB, V8::PHI, 4, DestReg).addReg (FalseValue)
.addMBB (copy0MBB).addReg (TrueValue).addMBB (copy1MBB);
}
void V8ISel::visitAllocaInst(AllocaInst &I) {
// Find the data size of the alloca inst's getAllocatedType.
const Type *Ty = I.getAllocatedType();
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
unsigned ArraySizeReg = getReg (I.getArraySize ());
unsigned TySizeReg = getReg (ConstantUInt::get (Type::UIntTy, TySize));
unsigned TmpReg1 = makeAnotherReg (Type::UIntTy);
unsigned TmpReg2 = makeAnotherReg (Type::UIntTy);
unsigned StackAdjReg = makeAnotherReg (Type::UIntTy);
// StackAdjReg = (ArraySize * TySize) rounded up to nearest doubleword boundary
BuildMI (BB, V8::UMULrr, 2, TmpReg1).addReg (ArraySizeReg).addReg (TySizeReg);
// Round up TmpReg1 to nearest doubleword boundary:
BuildMI (BB, V8::ADDri, 2, TmpReg2).addReg (TmpReg1).addSImm (7);
BuildMI (BB, V8::ANDri, 2, StackAdjReg).addReg (TmpReg2).addSImm (-8);
// Subtract size from stack pointer, thereby allocating some space.
BuildMI (BB, V8::SUBrr, 2, V8::SP).addReg (V8::SP).addReg (StackAdjReg);
// Put a pointer to the space into the result register, by copying
// the stack pointer.
BuildMI (BB, V8::ADDri, 2, getReg(I)).addReg (V8::SP).addSImm (96);
// Inform the Frame Information that we have just allocated a variable-sized
// object.
F->getFrameInfo()->CreateVariableSizedObject();
}
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
/// function, lowering any calls to unknown intrinsic functions into the
/// equivalent LLVM code.
void V8ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
if (CallInst *CI = dyn_cast<CallInst>(I++))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic: break;
default:
// All other intrinsic calls we must lower.
Instruction *Before = CI->getPrev();
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
if (Before) { // Move iterator to instruction after call
I = Before; ++I;
} else {
I = BB->begin();
}
}
}
void V8ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
unsigned TmpReg1, TmpReg2;
switch (ID) {
default: assert(0 && "Intrinsic not supported!");
}
}