mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76702 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1015 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1015 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the FastISel class.
 | |
| //
 | |
| // "Fast" instruction selection is designed to emit very poor code quickly.
 | |
| // Also, it is not designed to be able to do much lowering, so most illegal
 | |
| // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
 | |
| // also not intended to be able to do much optimization, except in a few cases
 | |
| // where doing optimizations reduces overall compile time.  For example, folding
 | |
| // constants into immediate fields is often done, because it's cheap and it
 | |
| // reduces the number of instructions later phases have to examine.
 | |
| //
 | |
| // "Fast" instruction selection is able to fail gracefully and transfer
 | |
| // control to the SelectionDAG selector for operations that it doesn't
 | |
| // support.  In many cases, this allows us to avoid duplicating a lot of
 | |
| // the complicated lowering logic that SelectionDAG currently has.
 | |
| //
 | |
| // The intended use for "fast" instruction selection is "-O0" mode
 | |
| // compilation, where the quality of the generated code is irrelevant when
 | |
| // weighed against the speed at which the code can be generated.  Also,
 | |
| // at -O0, the LLVM optimizers are not running, and this makes the
 | |
| // compile time of codegen a much higher portion of the overall compile
 | |
| // time.  Despite its limitations, "fast" instruction selection is able to
 | |
| // handle enough code on its own to provide noticeable overall speedups
 | |
| // in -O0 compiles.
 | |
| //
 | |
| // Basic operations are supported in a target-independent way, by reading
 | |
| // the same instruction descriptions that the SelectionDAG selector reads,
 | |
| // and identifying simple arithmetic operations that can be directly selected
 | |
| // from simple operators.  More complicated operations currently require
 | |
| // target-specific code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/CodeGen/FastISel.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/DwarfWriter.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "SelectionDAGBuild.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| unsigned FastISel::getRegForValue(Value *V) {
 | |
|   MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
 | |
|   // Don't handle non-simple values in FastISel.
 | |
|   if (!RealVT.isSimple())
 | |
|     return 0;
 | |
| 
 | |
|   // Ignore illegal types. We must do this before looking up the value
 | |
|   // in ValueMap because Arguments are given virtual registers regardless
 | |
|   // of whether FastISel can handle them.
 | |
|   MVT::SimpleValueType VT = RealVT.getSimpleVT();
 | |
|   if (!TLI.isTypeLegal(VT)) {
 | |
|     // Promote MVT::i1 to a legal type though, because it's common and easy.
 | |
|     if (VT == MVT::i1)
 | |
|       VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
 | |
|     else
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // Look up the value to see if we already have a register for it. We
 | |
|   // cache values defined by Instructions across blocks, and other values
 | |
|   // only locally. This is because Instructions already have the SSA
 | |
|   // def-dominatess-use requirement enforced.
 | |
|   if (ValueMap.count(V))
 | |
|     return ValueMap[V];
 | |
|   unsigned Reg = LocalValueMap[V];
 | |
|   if (Reg != 0)
 | |
|     return Reg;
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     if (CI->getValue().getActiveBits() <= 64)
 | |
|       Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
 | |
|   } else if (isa<AllocaInst>(V)) {
 | |
|     Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
 | |
|   } else if (isa<ConstantPointerNull>(V)) {
 | |
|     // Translate this as an integer zero so that it can be
 | |
|     // local-CSE'd with actual integer zeros.
 | |
|     Reg = getRegForValue(V->getContext().getNullValue(TD.getIntPtrType()));
 | |
|   } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | |
|     Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
 | |
| 
 | |
|     if (!Reg) {
 | |
|       const APFloat &Flt = CF->getValueAPF();
 | |
|       MVT IntVT = TLI.getPointerTy();
 | |
| 
 | |
|       uint64_t x[2];
 | |
|       uint32_t IntBitWidth = IntVT.getSizeInBits();
 | |
|       bool isExact;
 | |
|       (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | |
|                                 APFloat::rmTowardZero, &isExact);
 | |
|       if (isExact) {
 | |
|         APInt IntVal(IntBitWidth, 2, x);
 | |
| 
 | |
|         unsigned IntegerReg =
 | |
|           getRegForValue(V->getContext().getConstantInt(IntVal));
 | |
|         if (IntegerReg != 0)
 | |
|           Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (!SelectOperator(CE, CE->getOpcode())) return 0;
 | |
|     Reg = LocalValueMap[CE];
 | |
|   } else if (isa<UndefValue>(V)) {
 | |
|     Reg = createResultReg(TLI.getRegClassFor(VT));
 | |
|     BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
 | |
|   }
 | |
|   
 | |
|   // If target-independent code couldn't handle the value, give target-specific
 | |
|   // code a try.
 | |
|   if (!Reg && isa<Constant>(V))
 | |
|     Reg = TargetMaterializeConstant(cast<Constant>(V));
 | |
|   
 | |
|   // Don't cache constant materializations in the general ValueMap.
 | |
|   // To do so would require tracking what uses they dominate.
 | |
|   if (Reg != 0)
 | |
|     LocalValueMap[V] = Reg;
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::lookUpRegForValue(Value *V) {
 | |
|   // Look up the value to see if we already have a register for it. We
 | |
|   // cache values defined by Instructions across blocks, and other values
 | |
|   // only locally. This is because Instructions already have the SSA
 | |
|   // def-dominatess-use requirement enforced.
 | |
|   if (ValueMap.count(V))
 | |
|     return ValueMap[V];
 | |
|   return LocalValueMap[V];
 | |
| }
 | |
| 
 | |
| /// UpdateValueMap - Update the value map to include the new mapping for this
 | |
| /// instruction, or insert an extra copy to get the result in a previous
 | |
| /// determined register.
 | |
| /// NOTE: This is only necessary because we might select a block that uses
 | |
| /// a value before we select the block that defines the value.  It might be
 | |
| /// possible to fix this by selecting blocks in reverse postorder.
 | |
| unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
 | |
|   if (!isa<Instruction>(I)) {
 | |
|     LocalValueMap[I] = Reg;
 | |
|     return Reg;
 | |
|   }
 | |
|   
 | |
|   unsigned &AssignedReg = ValueMap[I];
 | |
|   if (AssignedReg == 0)
 | |
|     AssignedReg = Reg;
 | |
|   else if (Reg != AssignedReg) {
 | |
|     const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
 | |
|     TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
 | |
|                      Reg, RegClass, RegClass);
 | |
|   }
 | |
|   return AssignedReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::getRegForGEPIndex(Value *Idx) {
 | |
|   unsigned IdxN = getRegForValue(Idx);
 | |
|   if (IdxN == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return 0;
 | |
| 
 | |
|   // If the index is smaller or larger than intptr_t, truncate or extend it.
 | |
|   MVT PtrVT = TLI.getPointerTy();
 | |
|   MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
 | |
|   if (IdxVT.bitsLT(PtrVT))
 | |
|     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
 | |
|                       ISD::SIGN_EXTEND, IdxN);
 | |
|   else if (IdxVT.bitsGT(PtrVT))
 | |
|     IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
 | |
|                       ISD::TRUNCATE, IdxN);
 | |
|   return IdxN;
 | |
| }
 | |
| 
 | |
| /// SelectBinaryOp - Select and emit code for a binary operator instruction,
 | |
| /// which has an opcode which directly corresponds to the given ISD opcode.
 | |
| ///
 | |
| bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
 | |
|   MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
 | |
|   if (VT == MVT::Other || !VT.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // We only handle legal types. For example, on x86-32 the instruction
 | |
|   // selector contains all of the 64-bit instructions from x86-64,
 | |
|   // under the assumption that i64 won't be used if the target doesn't
 | |
|   // support it.
 | |
|   if (!TLI.isTypeLegal(VT)) {
 | |
|     // MVT::i1 is special. Allow AND, OR, or XOR because they
 | |
|     // don't require additional zeroing, which makes them easy.
 | |
|     if (VT == MVT::i1 &&
 | |
|         (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
 | |
|          ISDOpcode == ISD::XOR))
 | |
|       VT = TLI.getTypeToTransformTo(VT);
 | |
|     else
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Op0 = getRegForValue(I->getOperand(0));
 | |
|   if (Op0 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // Check if the second operand is a constant and handle it appropriately.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|     unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                      ISDOpcode, Op0, CI->getZExtValue());
 | |
|     if (ResultReg != 0) {
 | |
|       // We successfully emitted code for the given LLVM Instruction.
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if the second operand is a constant float.
 | |
|   if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
 | |
|     unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                      ISDOpcode, Op0, CF);
 | |
|     if (ResultReg != 0) {
 | |
|       // We successfully emitted code for the given LLVM Instruction.
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Op1 = getRegForValue(I->getOperand(1));
 | |
|   if (Op1 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // Now we have both operands in registers. Emit the instruction.
 | |
|   unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
 | |
|                                    ISDOpcode, Op0, Op1);
 | |
|   if (ResultReg == 0)
 | |
|     // Target-specific code wasn't able to find a machine opcode for
 | |
|     // the given ISD opcode and type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // We successfully emitted code for the given LLVM Instruction.
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectGetElementPtr(User *I) {
 | |
|   unsigned N = getRegForValue(I->getOperand(0));
 | |
|   if (N == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   const Type *Ty = I->getOperand(0)->getType();
 | |
|   MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
 | |
|   for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
 | |
|        OI != E; ++OI) {
 | |
|     Value *Idx = *OI;
 | |
|     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
 | |
|       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
 | |
|       if (Field) {
 | |
|         // N = N + Offset
 | |
|         uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
 | |
|         // FIXME: This can be optimized by combining the add with a
 | |
|         // subsequent one.
 | |
|         N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
 | |
|         if (N == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|       }
 | |
|       Ty = StTy->getElementType(Field);
 | |
|     } else {
 | |
|       Ty = cast<SequentialType>(Ty)->getElementType();
 | |
| 
 | |
|       // If this is a constant subscript, handle it quickly.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
 | |
|         if (CI->getZExtValue() == 0) continue;
 | |
|         uint64_t Offs = 
 | |
|           TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
 | |
|         N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
 | |
|         if (N == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // N = N + Idx * ElementSize;
 | |
|       uint64_t ElementSize = TD.getTypeAllocSize(Ty);
 | |
|       unsigned IdxN = getRegForGEPIndex(Idx);
 | |
|       if (IdxN == 0)
 | |
|         // Unhandled operand. Halt "fast" selection and bail.
 | |
|         return false;
 | |
| 
 | |
|       if (ElementSize != 1) {
 | |
|         IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
 | |
|         if (IdxN == 0)
 | |
|           // Unhandled operand. Halt "fast" selection and bail.
 | |
|           return false;
 | |
|       }
 | |
|       N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
 | |
|       if (N == 0)
 | |
|         // Unhandled operand. Halt "fast" selection and bail.
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We successfully emitted code for the given LLVM Instruction.
 | |
|   UpdateValueMap(I, N);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectCall(User *I) {
 | |
|   Function *F = cast<CallInst>(I)->getCalledFunction();
 | |
|   if (!F) return false;
 | |
| 
 | |
|   unsigned IID = F->getIntrinsicID();
 | |
|   switch (IID) {
 | |
|   default: break;
 | |
|   case Intrinsic::dbg_stoppoint: {
 | |
|     DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
 | |
|     if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::None))
 | |
|       setCurDebugLoc(ExtractDebugLocation(*SPI, MF.getDebugLocInfo()));
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_region_start: {
 | |
|     DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
 | |
|     if (isValidDebugInfoIntrinsic(*RSI, CodeGenOpt::None) && DW
 | |
|         && DW->ShouldEmitDwarfDebug()) {
 | |
|       unsigned ID = 
 | |
|         DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
 | |
|       const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
 | |
|       BuildMI(MBB, DL, II).addImm(ID);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_region_end: {
 | |
|     DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
 | |
|     if (isValidDebugInfoIntrinsic(*REI, CodeGenOpt::None) && DW
 | |
|         && DW->ShouldEmitDwarfDebug()) {
 | |
|      unsigned ID = 0;
 | |
|      DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
 | |
|      if (isInlinedFnEnd(*REI, MF.getFunction())) {
 | |
|         // This is end of an inlined function.
 | |
|         const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
 | |
|         ID = DW->RecordInlinedFnEnd(Subprogram);
 | |
|         if (ID)
 | |
|           // Returned ID is 0 if this is unbalanced "end of inlined
 | |
|           // scope". This could happen if optimizer eats dbg intrinsics
 | |
|           // or "beginning of inlined scope" is not recoginized due to
 | |
|           // missing location info. In such cases, ignore this region.end.
 | |
|           BuildMI(MBB, DL, II).addImm(ID);
 | |
|       } else {
 | |
|         const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
 | |
|         ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
 | |
|         BuildMI(MBB, DL, II).addImm(ID);
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_func_start: {
 | |
|     DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
 | |
|     if (!isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::None) || !DW
 | |
|         || !DW->ShouldEmitDwarfDebug()) 
 | |
|       return true;
 | |
| 
 | |
|     if (isInlinedFnStart(*FSI, MF.getFunction())) {
 | |
|       // This is a beginning of an inlined function.
 | |
|       
 | |
|       // If llvm.dbg.func.start is seen in a new block before any
 | |
|       // llvm.dbg.stoppoint intrinsic then the location info is unknown.
 | |
|       // FIXME : Why DebugLoc is reset at the beginning of each block ?
 | |
|       DebugLoc PrevLoc = DL;
 | |
|       if (PrevLoc.isUnknown())
 | |
|         return true;
 | |
|       // Record the source line.
 | |
|       setCurDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
 | |
|       
 | |
|       DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
 | |
|       DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
 | |
|       unsigned LabelID = DW->RecordInlinedFnStart(SP,
 | |
|                                                   DICompileUnit(PrevLocTpl.CompileUnit),
 | |
|                                                   PrevLocTpl.Line,
 | |
|                                                   PrevLocTpl.Col);
 | |
|       const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
 | |
|       BuildMI(MBB, DL, II).addImm(LabelID);
 | |
|       return true;
 | |
|     }
 | |
|     
 | |
|     // This is a beginning of a new function.
 | |
|     MF.setDefaultDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
 | |
|     
 | |
|     // llvm.dbg.func_start also defines beginning of function scope.
 | |
|     DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::dbg_declare: {
 | |
|     DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
 | |
|     if (!isValidDebugInfoIntrinsic(*DI, CodeGenOpt::None) || !DW
 | |
|         || !DW->ShouldEmitDwarfDebug())
 | |
|       return true;
 | |
| 
 | |
|     Value *Variable = DI->getVariable();
 | |
|     Value *Address = DI->getAddress();
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | |
|       Address = BCI->getOperand(0);
 | |
|     AllocaInst *AI = dyn_cast<AllocaInst>(Address);
 | |
|     // Don't handle byval struct arguments or VLAs, for example.
 | |
|     if (!AI) break;
 | |
|     DenseMap<const AllocaInst*, int>::iterator SI =
 | |
|       StaticAllocaMap.find(AI);
 | |
|     if (SI == StaticAllocaMap.end()) break; // VLAs.
 | |
|     int FI = SI->second;
 | |
|     
 | |
|     // Determine the debug globalvariable.
 | |
|     GlobalValue *GV = cast<GlobalVariable>(Variable);
 | |
|     
 | |
|     // Build the DECLARE instruction.
 | |
|     const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
 | |
|     MachineInstr *DeclareMI 
 | |
|       = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
 | |
|     DIVariable DV(cast<GlobalVariable>(GV));
 | |
|     DW->RecordVariableScope(DV, DeclareMI);
 | |
|     return true;
 | |
|   }
 | |
|   case Intrinsic::eh_exception: {
 | |
|     MVT VT = TLI.getValueType(I->getType());
 | |
|     switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
 | |
|     default: break;
 | |
|     case TargetLowering::Expand: {
 | |
|       assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
 | |
|       unsigned Reg = TLI.getExceptionAddressRegister();
 | |
|       const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
 | |
|       unsigned ResultReg = createResultReg(RC);
 | |
|       bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                            Reg, RC, RC);
 | |
|       assert(InsertedCopy && "Can't copy address registers!");
 | |
|       InsertedCopy = InsertedCopy;
 | |
|       UpdateValueMap(I, ResultReg);
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Intrinsic::eh_selector_i32:
 | |
|   case Intrinsic::eh_selector_i64: {
 | |
|     MVT VT = TLI.getValueType(I->getType());
 | |
|     switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
 | |
|     default: break;
 | |
|     case TargetLowering::Expand: {
 | |
|       MVT VT = (IID == Intrinsic::eh_selector_i32 ?
 | |
|                            MVT::i32 : MVT::i64);
 | |
| 
 | |
|       if (MMI) {
 | |
|         if (MBB->isLandingPad())
 | |
|           AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
 | |
|         else {
 | |
| #ifndef NDEBUG
 | |
|           CatchInfoLost.insert(cast<CallInst>(I));
 | |
| #endif
 | |
|           // FIXME: Mark exception selector register as live in.  Hack for PR1508.
 | |
|           unsigned Reg = TLI.getExceptionSelectorRegister();
 | |
|           if (Reg) MBB->addLiveIn(Reg);
 | |
|         }
 | |
| 
 | |
|         unsigned Reg = TLI.getExceptionSelectorRegister();
 | |
|         const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
 | |
|         unsigned ResultReg = createResultReg(RC);
 | |
|         bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                              Reg, RC, RC);
 | |
|         assert(InsertedCopy && "Can't copy address registers!");
 | |
|         InsertedCopy = InsertedCopy;
 | |
|         UpdateValueMap(I, ResultReg);
 | |
|       } else {
 | |
|         unsigned ResultReg =
 | |
|           getRegForValue(I->getContext().getNullValue(I->getType()));
 | |
|         UpdateValueMap(I, ResultReg);
 | |
|       }
 | |
|       return true;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
 | |
|   MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   MVT DstVT = TLI.getValueType(I->getType());
 | |
|     
 | |
|   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
 | |
|       DstVT == MVT::Other || !DstVT.isSimple())
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|     
 | |
|   // Check if the destination type is legal. Or as a special case,
 | |
|   // it may be i1 if we're doing a truncate because that's
 | |
|   // easy and somewhat common.
 | |
|   if (!TLI.isTypeLegal(DstVT))
 | |
|     if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
 | |
|       // Unhandled type. Halt "fast" selection and bail.
 | |
|       return false;
 | |
| 
 | |
|   // Check if the source operand is legal. Or as a special case,
 | |
|   // it may be i1 if we're doing zero-extension because that's
 | |
|   // easy and somewhat common.
 | |
|   if (!TLI.isTypeLegal(SrcVT))
 | |
|     if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
 | |
|       // Unhandled type. Halt "fast" selection and bail.
 | |
|       return false;
 | |
| 
 | |
|   unsigned InputReg = getRegForValue(I->getOperand(0));
 | |
|   if (!InputReg)
 | |
|     // Unhandled operand.  Halt "fast" selection and bail.
 | |
|     return false;
 | |
| 
 | |
|   // If the operand is i1, arrange for the high bits in the register to be zero.
 | |
|   if (SrcVT == MVT::i1) {
 | |
|    SrcVT = TLI.getTypeToTransformTo(SrcVT);
 | |
|    InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
 | |
|    if (!InputReg)
 | |
|      return false;
 | |
|   }
 | |
|   // If the result is i1, truncate to the target's type for i1 first.
 | |
|   if (DstVT == MVT::i1)
 | |
|     DstVT = TLI.getTypeToTransformTo(DstVT);
 | |
| 
 | |
|   unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
 | |
|                                   DstVT.getSimpleVT(),
 | |
|                                   Opcode,
 | |
|                                   InputReg);
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
|     
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool FastISel::SelectBitCast(User *I) {
 | |
|   // If the bitcast doesn't change the type, just use the operand value.
 | |
|   if (I->getType() == I->getOperand(0)->getType()) {
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0)
 | |
|       return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
 | |
|   MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|   MVT DstVT = TLI.getValueType(I->getType());
 | |
|   
 | |
|   if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
 | |
|       DstVT == MVT::Other || !DstVT.isSimple() ||
 | |
|       !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
 | |
|     // Unhandled type. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   
 | |
|   unsigned Op0 = getRegForValue(I->getOperand(0));
 | |
|   if (Op0 == 0)
 | |
|     // Unhandled operand. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   
 | |
|   // First, try to perform the bitcast by inserting a reg-reg copy.
 | |
|   unsigned ResultReg = 0;
 | |
|   if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
 | |
|     TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
 | |
|     TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
 | |
|     ResultReg = createResultReg(DstClass);
 | |
|     
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          Op0, DstClass, SrcClass);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   
 | |
|   // If the reg-reg copy failed, select a BIT_CONVERT opcode.
 | |
|   if (!ResultReg)
 | |
|     ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
 | |
|                            ISD::BIT_CONVERT, Op0);
 | |
|   
 | |
|   if (!ResultReg)
 | |
|     return false;
 | |
|   
 | |
|   UpdateValueMap(I, ResultReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectInstruction(Instruction *I) {
 | |
|   return SelectOperator(I, I->getOpcode());
 | |
| }
 | |
| 
 | |
| /// FastEmitBranch - Emit an unconditional branch to the given block,
 | |
| /// unless it is the immediate (fall-through) successor, and update
 | |
| /// the CFG.
 | |
| void
 | |
| FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
 | |
|   MachineFunction::iterator NextMBB =
 | |
|      next(MachineFunction::iterator(MBB));
 | |
| 
 | |
|   if (MBB->isLayoutSuccessor(MSucc)) {
 | |
|     // The unconditional fall-through case, which needs no instructions.
 | |
|   } else {
 | |
|     // The unconditional branch case.
 | |
|     TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
 | |
|   }
 | |
|   MBB->addSuccessor(MSucc);
 | |
| }
 | |
| 
 | |
| bool
 | |
| FastISel::SelectOperator(User *I, unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     return SelectBinaryOp(I, ISD::ADD);
 | |
|   case Instruction::FAdd:
 | |
|     return SelectBinaryOp(I, ISD::FADD);
 | |
|   case Instruction::Sub:
 | |
|     return SelectBinaryOp(I, ISD::SUB);
 | |
|   case Instruction::FSub:
 | |
|     return SelectBinaryOp(I, ISD::FSUB);
 | |
|   case Instruction::Mul:
 | |
|     return SelectBinaryOp(I, ISD::MUL);
 | |
|   case Instruction::FMul:
 | |
|     return SelectBinaryOp(I, ISD::FMUL);
 | |
|   case Instruction::SDiv:
 | |
|     return SelectBinaryOp(I, ISD::SDIV);
 | |
|   case Instruction::UDiv:
 | |
|     return SelectBinaryOp(I, ISD::UDIV);
 | |
|   case Instruction::FDiv:
 | |
|     return SelectBinaryOp(I, ISD::FDIV);
 | |
|   case Instruction::SRem:
 | |
|     return SelectBinaryOp(I, ISD::SREM);
 | |
|   case Instruction::URem:
 | |
|     return SelectBinaryOp(I, ISD::UREM);
 | |
|   case Instruction::FRem:
 | |
|     return SelectBinaryOp(I, ISD::FREM);
 | |
|   case Instruction::Shl:
 | |
|     return SelectBinaryOp(I, ISD::SHL);
 | |
|   case Instruction::LShr:
 | |
|     return SelectBinaryOp(I, ISD::SRL);
 | |
|   case Instruction::AShr:
 | |
|     return SelectBinaryOp(I, ISD::SRA);
 | |
|   case Instruction::And:
 | |
|     return SelectBinaryOp(I, ISD::AND);
 | |
|   case Instruction::Or:
 | |
|     return SelectBinaryOp(I, ISD::OR);
 | |
|   case Instruction::Xor:
 | |
|     return SelectBinaryOp(I, ISD::XOR);
 | |
| 
 | |
|   case Instruction::GetElementPtr:
 | |
|     return SelectGetElementPtr(I);
 | |
| 
 | |
|   case Instruction::Br: {
 | |
|     BranchInst *BI = cast<BranchInst>(I);
 | |
| 
 | |
|     if (BI->isUnconditional()) {
 | |
|       BasicBlock *LLVMSucc = BI->getSuccessor(0);
 | |
|       MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
 | |
|       FastEmitBranch(MSucc);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Conditional branches are not handed yet.
 | |
|     // Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Unreachable:
 | |
|     // Nothing to emit.
 | |
|     return true;
 | |
| 
 | |
|   case Instruction::PHI:
 | |
|     // PHI nodes are already emitted.
 | |
|     return true;
 | |
| 
 | |
|   case Instruction::Alloca:
 | |
|     // FunctionLowering has the static-sized case covered.
 | |
|     if (StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|       return true;
 | |
| 
 | |
|     // Dynamic-sized alloca is not handled yet.
 | |
|     return false;
 | |
|     
 | |
|   case Instruction::Call:
 | |
|     return SelectCall(I);
 | |
|   
 | |
|   case Instruction::BitCast:
 | |
|     return SelectBitCast(I);
 | |
| 
 | |
|   case Instruction::FPToSI:
 | |
|     return SelectCast(I, ISD::FP_TO_SINT);
 | |
|   case Instruction::ZExt:
 | |
|     return SelectCast(I, ISD::ZERO_EXTEND);
 | |
|   case Instruction::SExt:
 | |
|     return SelectCast(I, ISD::SIGN_EXTEND);
 | |
|   case Instruction::Trunc:
 | |
|     return SelectCast(I, ISD::TRUNCATE);
 | |
|   case Instruction::SIToFP:
 | |
|     return SelectCast(I, ISD::SINT_TO_FP);
 | |
| 
 | |
|   case Instruction::IntToPtr: // Deliberate fall-through.
 | |
|   case Instruction::PtrToInt: {
 | |
|     MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
 | |
|     MVT DstVT = TLI.getValueType(I->getType());
 | |
|     if (DstVT.bitsGT(SrcVT))
 | |
|       return SelectCast(I, ISD::ZERO_EXTEND);
 | |
|     if (DstVT.bitsLT(SrcVT))
 | |
|       return SelectCast(I, ISD::TRUNCATE);
 | |
|     unsigned Reg = getRegForValue(I->getOperand(0));
 | |
|     if (Reg == 0) return false;
 | |
|     UpdateValueMap(I, Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     // Unhandled instruction. Halt "fast" selection and bail.
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| FastISel::FastISel(MachineFunction &mf,
 | |
|                    MachineModuleInfo *mmi,
 | |
|                    DwarfWriter *dw,
 | |
|                    DenseMap<const Value *, unsigned> &vm,
 | |
|                    DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
 | |
|                    DenseMap<const AllocaInst *, int> &am
 | |
| #ifndef NDEBUG
 | |
|                    , SmallSet<Instruction*, 8> &cil
 | |
| #endif
 | |
|                    )
 | |
|   : MBB(0),
 | |
|     ValueMap(vm),
 | |
|     MBBMap(bm),
 | |
|     StaticAllocaMap(am),
 | |
| #ifndef NDEBUG
 | |
|     CatchInfoLost(cil),
 | |
| #endif
 | |
|     MF(mf),
 | |
|     MMI(mmi),
 | |
|     DW(dw),
 | |
|     MRI(MF.getRegInfo()),
 | |
|     MFI(*MF.getFrameInfo()),
 | |
|     MCP(*MF.getConstantPool()),
 | |
|     TM(MF.getTarget()),
 | |
|     TD(*TM.getTargetData()),
 | |
|     TII(*TM.getInstrInfo()),
 | |
|     TLI(*TM.getTargetLowering()) {
 | |
| }
 | |
| 
 | |
| FastISel::~FastISel() {}
 | |
| 
 | |
| unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
 | |
|                              ISD::NodeType) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
 | |
|                               ISD::NodeType, unsigned /*Op0*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType, 
 | |
|                                ISD::NodeType, unsigned /*Op0*/,
 | |
|                                unsigned /*Op0*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
 | |
|                               ISD::NodeType, uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
 | |
|                               ISD::NodeType, ConstantFP * /*FPImm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
 | |
|                                ISD::NodeType, unsigned /*Op0*/,
 | |
|                                uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
 | |
|                                ISD::NodeType, unsigned /*Op0*/,
 | |
|                                ConstantFP * /*FPImm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
 | |
|                                 ISD::NodeType,
 | |
|                                 unsigned /*Op0*/, unsigned /*Op1*/,
 | |
|                                 uint64_t /*Imm*/) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
 | |
| /// to emit an instruction with an immediate operand using FastEmit_ri.
 | |
| /// If that fails, it materializes the immediate into a register and try
 | |
| /// FastEmit_rr instead.
 | |
| unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
 | |
|                                 unsigned Op0, uint64_t Imm,
 | |
|                                 MVT::SimpleValueType ImmType) {
 | |
|   // First check if immediate type is legal. If not, we can't use the ri form.
 | |
|   unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
 | |
|   if (ResultReg != 0)
 | |
|     return ResultReg;
 | |
|   unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
 | |
|   if (MaterialReg == 0)
 | |
|     return 0;
 | |
|   return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
 | |
| }
 | |
| 
 | |
| /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
 | |
| /// to emit an instruction with a floating-point immediate operand using
 | |
| /// FastEmit_rf. If that fails, it materializes the immediate into a register
 | |
| /// and try FastEmit_rr instead.
 | |
| unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
 | |
|                                 unsigned Op0, ConstantFP *FPImm,
 | |
|                                 MVT::SimpleValueType ImmType) {
 | |
|   // First check if immediate type is legal. If not, we can't use the rf form.
 | |
|   unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
 | |
|   if (ResultReg != 0)
 | |
|     return ResultReg;
 | |
| 
 | |
|   // Materialize the constant in a register.
 | |
|   unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
 | |
|   if (MaterialReg == 0) {
 | |
|     // If the target doesn't have a way to directly enter a floating-point
 | |
|     // value into a register, use an alternate approach.
 | |
|     // TODO: The current approach only supports floating-point constants
 | |
|     // that can be constructed by conversion from integer values. This should
 | |
|     // be replaced by code that creates a load from a constant-pool entry,
 | |
|     // which will require some target-specific work.
 | |
|     const APFloat &Flt = FPImm->getValueAPF();
 | |
|     MVT IntVT = TLI.getPointerTy();
 | |
| 
 | |
|     uint64_t x[2];
 | |
|     uint32_t IntBitWidth = IntVT.getSizeInBits();
 | |
|     bool isExact;
 | |
|     (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
 | |
|                              APFloat::rmTowardZero, &isExact);
 | |
|     if (!isExact)
 | |
|       return 0;
 | |
|     APInt IntVal(IntBitWidth, 2, x);
 | |
| 
 | |
|     unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
 | |
|                                      ISD::Constant, IntVal.getZExtValue());
 | |
|     if (IntegerReg == 0)
 | |
|       return 0;
 | |
|     MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
 | |
|                              ISD::SINT_TO_FP, IntegerReg);
 | |
|     if (MaterialReg == 0)
 | |
|       return 0;
 | |
|   }
 | |
|   return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
 | |
| }
 | |
| 
 | |
| unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
 | |
|   return MRI.createVirtualRegister(RC);
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
 | |
|                                  const TargetRegisterClass* RC) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   BuildMI(MBB, DL, II, ResultReg);
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   unsigned Op0) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
 | |
|   else {
 | |
|     BuildMI(MBB, DL, II).addReg(Op0);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          II.ImplicitDefs[0], RC, RC);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
| 
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, unsigned Op1) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
 | |
|   else {
 | |
|     BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          II.ImplicitDefs[0], RC, RC);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          II.ImplicitDefs[0], RC, RC);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
 | |
|                                    const TargetRegisterClass *RC,
 | |
|                                    unsigned Op0, ConstantFP *FPImm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
 | |
|   else {
 | |
|     BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          II.ImplicitDefs[0], RC, RC);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
 | |
|                                     const TargetRegisterClass *RC,
 | |
|                                     unsigned Op0, unsigned Op1, uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
| 
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          II.ImplicitDefs[0], RC, RC);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   uint64_t Imm) {
 | |
|   unsigned ResultReg = createResultReg(RC);
 | |
|   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
 | |
|   
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
 | |
|   else {
 | |
|     BuildMI(MBB, DL, II).addImm(Imm);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          II.ImplicitDefs[0], RC, RC);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
 | |
|                                               unsigned Op0, uint32_t Idx) {
 | |
|   const TargetRegisterClass* RC = MRI.getRegClass(Op0);
 | |
|   
 | |
|   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
 | |
|   const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
 | |
|   
 | |
|   if (II.getNumDefs() >= 1)
 | |
|     BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
 | |
|   else {
 | |
|     BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
 | |
|     bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
 | |
|                                          II.ImplicitDefs[0], RC, RC);
 | |
|     if (!InsertedCopy)
 | |
|       ResultReg = 0;
 | |
|   }
 | |
|   return ResultReg;
 | |
| }
 | |
| 
 | |
| /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
 | |
| /// with all but the least significant bit set to zero.
 | |
| unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
 | |
|   return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
 | |
| }
 |