mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
cafe9bba32
a convention (shadowing the setter with private forwarding function) to prevent subclasses from accidentally using it. This exposed some bogosity in ConstantExprs, which was propaging the opcode of the constant expr into the NUW/NSW/Exact field in the getWithOperands/getWithOperandReplaced methods. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92239 91177308-0d34-0410-b5e6-96231b3b80d8
903 lines
37 KiB
C++
903 lines
37 KiB
C++
//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// @file
|
|
/// This file contains the declarations for the subclasses of Constant,
|
|
/// which represent the different flavors of constant values that live in LLVM.
|
|
/// Note that Constants are immutable (once created they never change) and are
|
|
/// fully shared by structural equivalence. This means that two structurally
|
|
/// equivalent constants will always have the same address. Constant's are
|
|
/// created on demand as needed and never deleted: thus clients don't have to
|
|
/// worry about the lifetime of the objects.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CONSTANTS_H
|
|
#define LLVM_CONSTANTS_H
|
|
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/OperandTraits.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
class ArrayType;
|
|
class IntegerType;
|
|
class StructType;
|
|
class PointerType;
|
|
class VectorType;
|
|
|
|
template<class ConstantClass, class TypeClass, class ValType>
|
|
struct ConstantCreator;
|
|
template<class ConstantClass, class TypeClass>
|
|
struct ConvertConstantType;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// This is the shared class of boolean and integer constants. This class
|
|
/// represents both boolean and integral constants.
|
|
/// @brief Class for constant integers.
|
|
class ConstantInt : public Constant {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
ConstantInt(const ConstantInt &); // DO NOT IMPLEMENT
|
|
ConstantInt(const IntegerType *Ty, const APInt& V);
|
|
APInt Val;
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
static ConstantInt *getTrue(LLVMContext &Context);
|
|
static ConstantInt *getFalse(LLVMContext &Context);
|
|
|
|
/// If Ty is a vector type, return a Constant with a splat of the given
|
|
/// value. Otherwise return a ConstantInt for the given value.
|
|
static Constant *get(const Type *Ty, uint64_t V, bool isSigned = false);
|
|
|
|
/// Return a ConstantInt with the specified integer value for the specified
|
|
/// type. If the type is wider than 64 bits, the value will be zero-extended
|
|
/// to fit the type, unless isSigned is true, in which case the value will
|
|
/// be interpreted as a 64-bit signed integer and sign-extended to fit
|
|
/// the type.
|
|
/// @brief Get a ConstantInt for a specific value.
|
|
static ConstantInt *get(const IntegerType *Ty, uint64_t V,
|
|
bool isSigned = false);
|
|
|
|
/// Return a ConstantInt with the specified value for the specified type. The
|
|
/// value V will be canonicalized to a an unsigned APInt. Accessing it with
|
|
/// either getSExtValue() or getZExtValue() will yield a correctly sized and
|
|
/// signed value for the type Ty.
|
|
/// @brief Get a ConstantInt for a specific signed value.
|
|
static ConstantInt *getSigned(const IntegerType *Ty, int64_t V);
|
|
static Constant *getSigned(const Type *Ty, int64_t V);
|
|
|
|
/// Return a ConstantInt with the specified value and an implied Type. The
|
|
/// type is the integer type that corresponds to the bit width of the value.
|
|
static ConstantInt *get(LLVMContext &Context, const APInt &V);
|
|
|
|
/// Return a ConstantInt constructed from the string strStart with the given
|
|
/// radix.
|
|
static ConstantInt *get(const IntegerType *Ty, StringRef Str,
|
|
uint8_t radix);
|
|
|
|
/// If Ty is a vector type, return a Constant with a splat of the given
|
|
/// value. Otherwise return a ConstantInt for the given value.
|
|
static Constant *get(const Type* Ty, const APInt& V);
|
|
|
|
/// Return the constant as an APInt value reference. This allows clients to
|
|
/// obtain a copy of the value, with all its precision in tact.
|
|
/// @brief Return the constant's value.
|
|
inline const APInt &getValue() const {
|
|
return Val;
|
|
}
|
|
|
|
/// getBitWidth - Return the bitwidth of this constant.
|
|
unsigned getBitWidth() const { return Val.getBitWidth(); }
|
|
|
|
/// Return the constant as a 64-bit unsigned integer value after it
|
|
/// has been zero extended as appropriate for the type of this constant. Note
|
|
/// that this method can assert if the value does not fit in 64 bits.
|
|
/// @deprecated
|
|
/// @brief Return the zero extended value.
|
|
inline uint64_t getZExtValue() const {
|
|
return Val.getZExtValue();
|
|
}
|
|
|
|
/// Return the constant as a 64-bit integer value after it has been sign
|
|
/// extended as appropriate for the type of this constant. Note that
|
|
/// this method can assert if the value does not fit in 64 bits.
|
|
/// @deprecated
|
|
/// @brief Return the sign extended value.
|
|
inline int64_t getSExtValue() const {
|
|
return Val.getSExtValue();
|
|
}
|
|
|
|
/// A helper method that can be used to determine if the constant contained
|
|
/// within is equal to a constant. This only works for very small values,
|
|
/// because this is all that can be represented with all types.
|
|
/// @brief Determine if this constant's value is same as an unsigned char.
|
|
bool equalsInt(uint64_t V) const {
|
|
return Val == V;
|
|
}
|
|
|
|
/// getType - Specialize the getType() method to always return an IntegerType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline const IntegerType *getType() const {
|
|
return reinterpret_cast<const IntegerType*>(Value::getType());
|
|
}
|
|
|
|
/// This static method returns true if the type Ty is big enough to
|
|
/// represent the value V. This can be used to avoid having the get method
|
|
/// assert when V is larger than Ty can represent. Note that there are two
|
|
/// versions of this method, one for unsigned and one for signed integers.
|
|
/// Although ConstantInt canonicalizes everything to an unsigned integer,
|
|
/// the signed version avoids callers having to convert a signed quantity
|
|
/// to the appropriate unsigned type before calling the method.
|
|
/// @returns true if V is a valid value for type Ty
|
|
/// @brief Determine if the value is in range for the given type.
|
|
static bool isValueValidForType(const Type *Ty, uint64_t V);
|
|
static bool isValueValidForType(const Type *Ty, int64_t V);
|
|
|
|
/// This function will return true iff this constant represents the "null"
|
|
/// value that would be returned by the getNullValue method.
|
|
/// @returns true if this is the null integer value.
|
|
/// @brief Determine if the value is null.
|
|
virtual bool isNullValue() const {
|
|
return Val == 0;
|
|
}
|
|
|
|
/// This is just a convenience method to make client code smaller for a
|
|
/// common code. It also correctly performs the comparison without the
|
|
/// potential for an assertion from getZExtValue().
|
|
bool isZero() const {
|
|
return Val == 0;
|
|
}
|
|
|
|
/// This is just a convenience method to make client code smaller for a
|
|
/// common case. It also correctly performs the comparison without the
|
|
/// potential for an assertion from getZExtValue().
|
|
/// @brief Determine if the value is one.
|
|
bool isOne() const {
|
|
return Val == 1;
|
|
}
|
|
|
|
/// This function will return true iff every bit in this constant is set
|
|
/// to true.
|
|
/// @returns true iff this constant's bits are all set to true.
|
|
/// @brief Determine if the value is all ones.
|
|
bool isAllOnesValue() const {
|
|
return Val.isAllOnesValue();
|
|
}
|
|
|
|
/// This function will return true iff this constant represents the largest
|
|
/// value that may be represented by the constant's type.
|
|
/// @returns true iff this is the largest value that may be represented
|
|
/// by this type.
|
|
/// @brief Determine if the value is maximal.
|
|
bool isMaxValue(bool isSigned) const {
|
|
if (isSigned)
|
|
return Val.isMaxSignedValue();
|
|
else
|
|
return Val.isMaxValue();
|
|
}
|
|
|
|
/// This function will return true iff this constant represents the smallest
|
|
/// value that may be represented by this constant's type.
|
|
/// @returns true if this is the smallest value that may be represented by
|
|
/// this type.
|
|
/// @brief Determine if the value is minimal.
|
|
bool isMinValue(bool isSigned) const {
|
|
if (isSigned)
|
|
return Val.isMinSignedValue();
|
|
else
|
|
return Val.isMinValue();
|
|
}
|
|
|
|
/// This function will return true iff this constant represents a value with
|
|
/// active bits bigger than 64 bits or a value greater than the given uint64_t
|
|
/// value.
|
|
/// @returns true iff this constant is greater or equal to the given number.
|
|
/// @brief Determine if the value is greater or equal to the given number.
|
|
bool uge(uint64_t Num) {
|
|
return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
|
|
}
|
|
|
|
/// getLimitedValue - If the value is smaller than the specified limit,
|
|
/// return it, otherwise return the limit value. This causes the value
|
|
/// to saturate to the limit.
|
|
/// @returns the min of the value of the constant and the specified value
|
|
/// @brief Get the constant's value with a saturation limit
|
|
uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
|
|
return Val.getLimitedValue(Limit);
|
|
}
|
|
|
|
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
|
|
static inline bool classof(const ConstantInt *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantIntVal;
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantFP - Floating Point Values [float, double]
|
|
///
|
|
class ConstantFP : public Constant {
|
|
APFloat Val;
|
|
void *operator new(size_t, unsigned);// DO NOT IMPLEMENT
|
|
ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT
|
|
friend class LLVMContextImpl;
|
|
protected:
|
|
ConstantFP(const Type *Ty, const APFloat& V);
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
/// Floating point negation must be implemented with f(x) = -0.0 - x. This
|
|
/// method returns the negative zero constant for floating point or vector
|
|
/// floating point types; for all other types, it returns the null value.
|
|
static Constant *getZeroValueForNegation(const Type *Ty);
|
|
|
|
/// get() - This returns a ConstantFP, or a vector containing a splat of a
|
|
/// ConstantFP, for the specified value in the specified type. This should
|
|
/// only be used for simple constant values like 2.0/1.0 etc, that are
|
|
/// known-valid both as host double and as the target format.
|
|
static Constant *get(const Type* Ty, double V);
|
|
static Constant *get(const Type* Ty, StringRef Str);
|
|
static ConstantFP *get(LLVMContext &Context, const APFloat &V);
|
|
static ConstantFP *getNegativeZero(const Type* Ty);
|
|
static ConstantFP *getInfinity(const Type *Ty, bool Negative = false);
|
|
|
|
/// isValueValidForType - return true if Ty is big enough to represent V.
|
|
static bool isValueValidForType(const Type *Ty, const APFloat &V);
|
|
inline const APFloat& getValueAPF() const { return Val; }
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue. Don't depend on == for doubles to tell us it's zero, it
|
|
/// considers -0.0 to be null as well as 0.0. :(
|
|
virtual bool isNullValue() const;
|
|
|
|
/// isNegativeZeroValue - Return true if the value is what would be returned
|
|
/// by getZeroValueForNegation.
|
|
virtual bool isNegativeZeroValue() const {
|
|
return Val.isZero() && Val.isNegative();
|
|
}
|
|
|
|
/// isExactlyValue - We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values. The version with a double operand is retained
|
|
/// because it's so convenient to write isExactlyValue(2.0), but please use
|
|
/// it only for simple constants.
|
|
bool isExactlyValue(const APFloat &V) const;
|
|
|
|
bool isExactlyValue(double V) const {
|
|
bool ignored;
|
|
// convert is not supported on this type
|
|
if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
|
|
return false;
|
|
APFloat FV(V);
|
|
FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
|
|
return isExactlyValue(FV);
|
|
}
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ConstantFP *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantFPVal;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantAggregateZero - All zero aggregate value
|
|
///
|
|
class ConstantAggregateZero : public Constant {
|
|
friend struct ConstantCreator<ConstantAggregateZero, Type, char>;
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
ConstantAggregateZero(const ConstantAggregateZero &); // DO NOT IMPLEMENT
|
|
protected:
|
|
explicit ConstantAggregateZero(const Type *ty)
|
|
: Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
static ConstantAggregateZero* get(const Type *Ty);
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue.
|
|
virtual bool isNullValue() const { return true; }
|
|
|
|
virtual void destroyConstant();
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
///
|
|
static bool classof(const ConstantAggregateZero *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantAggregateZeroVal;
|
|
}
|
|
};
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantArray - Constant Array Declarations
|
|
///
|
|
class ConstantArray : public Constant {
|
|
friend struct ConstantCreator<ConstantArray, ArrayType,
|
|
std::vector<Constant*> >;
|
|
ConstantArray(const ConstantArray &); // DO NOT IMPLEMENT
|
|
protected:
|
|
ConstantArray(const ArrayType *T, const std::vector<Constant*> &Val);
|
|
public:
|
|
// ConstantArray accessors
|
|
static Constant *get(const ArrayType *T, const std::vector<Constant*> &V);
|
|
static Constant *get(const ArrayType *T, Constant *const *Vals,
|
|
unsigned NumVals);
|
|
|
|
/// This method constructs a ConstantArray and initializes it with a text
|
|
/// string. The default behavior (AddNull==true) causes a null terminator to
|
|
/// be placed at the end of the array. This effectively increases the length
|
|
/// of the array by one (you've been warned). However, in some situations
|
|
/// this is not desired so if AddNull==false then the string is copied without
|
|
/// null termination.
|
|
static Constant *get(LLVMContext &Context, StringRef Initializer,
|
|
bool AddNull = true);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
/// getType - Specialize the getType() method to always return an ArrayType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline const ArrayType *getType() const {
|
|
return reinterpret_cast<const ArrayType*>(Value::getType());
|
|
}
|
|
|
|
/// isString - This method returns true if the array is an array of i8 and
|
|
/// the elements of the array are all ConstantInt's.
|
|
bool isString() const;
|
|
|
|
/// isCString - This method returns true if the array is a string (see
|
|
/// @verbatim
|
|
/// isString) and it ends in a null byte \0 and does not contains any other
|
|
/// @endverbatim
|
|
/// null bytes except its terminator.
|
|
bool isCString() const;
|
|
|
|
/// getAsString - If this array is isString(), then this method converts the
|
|
/// array to an std::string and returns it. Otherwise, it asserts out.
|
|
///
|
|
std::string getAsString() const;
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue. This always returns false because zero arrays are always
|
|
/// created as ConstantAggregateZero objects.
|
|
virtual bool isNullValue() const { return false; }
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ConstantArray *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantArrayVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantArray> : public VariadicOperandTraits<> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantArray, Constant)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantStruct - Constant Struct Declarations
|
|
//
|
|
class ConstantStruct : public Constant {
|
|
friend struct ConstantCreator<ConstantStruct, StructType,
|
|
std::vector<Constant*> >;
|
|
ConstantStruct(const ConstantStruct &); // DO NOT IMPLEMENT
|
|
protected:
|
|
ConstantStruct(const StructType *T, const std::vector<Constant*> &Val);
|
|
public:
|
|
// ConstantStruct accessors
|
|
static Constant *get(const StructType *T, const std::vector<Constant*> &V);
|
|
static Constant *get(LLVMContext &Context,
|
|
const std::vector<Constant*> &V, bool Packed);
|
|
static Constant *get(LLVMContext &Context,
|
|
Constant *const *Vals, unsigned NumVals, bool Packed);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
/// getType() specialization - Reduce amount of casting...
|
|
///
|
|
inline const StructType *getType() const {
|
|
return reinterpret_cast<const StructType*>(Value::getType());
|
|
}
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue. This always returns false because zero structs are always
|
|
/// created as ConstantAggregateZero objects.
|
|
virtual bool isNullValue() const {
|
|
return false;
|
|
}
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ConstantStruct *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantStructVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantStruct> : public VariadicOperandTraits<> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantStruct, Constant)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantVector - Constant Vector Declarations
|
|
///
|
|
class ConstantVector : public Constant {
|
|
friend struct ConstantCreator<ConstantVector, VectorType,
|
|
std::vector<Constant*> >;
|
|
ConstantVector(const ConstantVector &); // DO NOT IMPLEMENT
|
|
protected:
|
|
ConstantVector(const VectorType *T, const std::vector<Constant*> &Val);
|
|
public:
|
|
// ConstantVector accessors
|
|
static Constant *get(const VectorType *T, const std::vector<Constant*> &V);
|
|
static Constant *get(const std::vector<Constant*> &V);
|
|
static Constant *get(Constant *const *Vals, unsigned NumVals);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
/// getType - Specialize the getType() method to always return a VectorType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline const VectorType *getType() const {
|
|
return reinterpret_cast<const VectorType*>(Value::getType());
|
|
}
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue. This always returns false because zero vectors are always
|
|
/// created as ConstantAggregateZero objects.
|
|
virtual bool isNullValue() const { return false; }
|
|
|
|
/// This function will return true iff every element in this vector constant
|
|
/// is set to all ones.
|
|
/// @returns true iff this constant's emements are all set to all ones.
|
|
/// @brief Determine if the value is all ones.
|
|
bool isAllOnesValue() const;
|
|
|
|
/// getSplatValue - If this is a splat constant, meaning that all of the
|
|
/// elements have the same value, return that value. Otherwise return NULL.
|
|
Constant *getSplatValue();
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ConstantVector *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantVectorVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantVector> : public VariadicOperandTraits<> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantVector, Constant)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantPointerNull - a constant pointer value that points to null
|
|
///
|
|
class ConstantPointerNull : public Constant {
|
|
friend struct ConstantCreator<ConstantPointerNull, PointerType, char>;
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
ConstantPointerNull(const ConstantPointerNull &); // DO NOT IMPLEMENT
|
|
protected:
|
|
explicit ConstantPointerNull(const PointerType *T)
|
|
: Constant(reinterpret_cast<const Type*>(T),
|
|
Value::ConstantPointerNullVal, 0, 0) {}
|
|
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
/// get() - Static factory methods - Return objects of the specified value
|
|
static ConstantPointerNull *get(const PointerType *T);
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue.
|
|
virtual bool isNullValue() const { return true; }
|
|
|
|
virtual void destroyConstant();
|
|
|
|
/// getType - Specialize the getType() method to always return an PointerType,
|
|
/// which reduces the amount of casting needed in parts of the compiler.
|
|
///
|
|
inline const PointerType *getType() const {
|
|
return reinterpret_cast<const PointerType*>(Value::getType());
|
|
}
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ConstantPointerNull *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantPointerNullVal;
|
|
}
|
|
};
|
|
|
|
/// BlockAddress - The address of a basic block.
|
|
///
|
|
class BlockAddress : public Constant {
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
void *operator new(size_t s) { return User::operator new(s, 2); }
|
|
BlockAddress(Function *F, BasicBlock *BB);
|
|
public:
|
|
/// get - Return a BlockAddress for the specified function and basic block.
|
|
static BlockAddress *get(Function *F, BasicBlock *BB);
|
|
|
|
/// get - Return a BlockAddress for the specified basic block. The basic
|
|
/// block must be embedded into a function.
|
|
static BlockAddress *get(BasicBlock *BB);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
|
|
|
|
Function *getFunction() const { return (Function*)Op<0>().get(); }
|
|
BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue.
|
|
virtual bool isNullValue() const { return false; }
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const BlockAddress *) { return true; }
|
|
static inline bool classof(const Value *V) {
|
|
return V->getValueID() == BlockAddressVal;
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<BlockAddress> : public FixedNumOperandTraits<2> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(BlockAddress, Value)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ConstantExpr - a constant value that is initialized with an expression using
|
|
/// other constant values.
|
|
///
|
|
/// This class uses the standard Instruction opcodes to define the various
|
|
/// constant expressions. The Opcode field for the ConstantExpr class is
|
|
/// maintained in the Value::SubclassData field.
|
|
class ConstantExpr : public Constant {
|
|
friend struct ConstantCreator<ConstantExpr,Type,
|
|
std::pair<unsigned, std::vector<Constant*> > >;
|
|
friend struct ConvertConstantType<ConstantExpr, Type>;
|
|
|
|
protected:
|
|
ConstantExpr(const Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
|
|
: Constant(ty, ConstantExprVal, Ops, NumOps) {
|
|
// Operation type (an Instruction opcode) is stored as the SubclassData.
|
|
setValueSubclassData(Opcode);
|
|
}
|
|
|
|
// These private methods are used by the type resolution code to create
|
|
// ConstantExprs in intermediate forms.
|
|
static Constant *getTy(const Type *Ty, unsigned Opcode,
|
|
Constant *C1, Constant *C2,
|
|
unsigned Flags = 0);
|
|
static Constant *getCompareTy(unsigned short pred, Constant *C1,
|
|
Constant *C2);
|
|
static Constant *getSelectTy(const Type *Ty,
|
|
Constant *C1, Constant *C2, Constant *C3);
|
|
static Constant *getGetElementPtrTy(const Type *Ty, Constant *C,
|
|
Value* const *Idxs, unsigned NumIdxs);
|
|
static Constant *getInBoundsGetElementPtrTy(const Type *Ty, Constant *C,
|
|
Value* const *Idxs,
|
|
unsigned NumIdxs);
|
|
static Constant *getExtractElementTy(const Type *Ty, Constant *Val,
|
|
Constant *Idx);
|
|
static Constant *getInsertElementTy(const Type *Ty, Constant *Val,
|
|
Constant *Elt, Constant *Idx);
|
|
static Constant *getShuffleVectorTy(const Type *Ty, Constant *V1,
|
|
Constant *V2, Constant *Mask);
|
|
static Constant *getExtractValueTy(const Type *Ty, Constant *Agg,
|
|
const unsigned *Idxs, unsigned NumIdxs);
|
|
static Constant *getInsertValueTy(const Type *Ty, Constant *Agg,
|
|
Constant *Val,
|
|
const unsigned *Idxs, unsigned NumIdxs);
|
|
|
|
public:
|
|
// Static methods to construct a ConstantExpr of different kinds. Note that
|
|
// these methods may return a object that is not an instance of the
|
|
// ConstantExpr class, because they will attempt to fold the constant
|
|
// expression into something simpler if possible.
|
|
|
|
/// Cast constant expr
|
|
///
|
|
|
|
/// getAlignOf constant expr - computes the alignment of a type in a target
|
|
/// independent way (Note: the return type is an i32; Note: assumes that i8
|
|
/// is byte aligned).
|
|
static Constant *getAlignOf(const Type* Ty);
|
|
|
|
/// getSizeOf constant expr - computes the size of a type in a target
|
|
/// independent way (Note: the return type is an i64).
|
|
///
|
|
static Constant *getSizeOf(const Type* Ty);
|
|
|
|
/// getOffsetOf constant expr - computes the offset of a field in a target
|
|
/// independent way (Note: the return type is an i64).
|
|
///
|
|
static Constant *getOffsetOf(const StructType* Ty, unsigned FieldNo);
|
|
|
|
static Constant *getNeg(Constant *C);
|
|
static Constant *getFNeg(Constant *C);
|
|
static Constant *getNot(Constant *C);
|
|
static Constant *getAdd(Constant *C1, Constant *C2);
|
|
static Constant *getFAdd(Constant *C1, Constant *C2);
|
|
static Constant *getSub(Constant *C1, Constant *C2);
|
|
static Constant *getFSub(Constant *C1, Constant *C2);
|
|
static Constant *getMul(Constant *C1, Constant *C2);
|
|
static Constant *getFMul(Constant *C1, Constant *C2);
|
|
static Constant *getUDiv(Constant *C1, Constant *C2);
|
|
static Constant *getSDiv(Constant *C1, Constant *C2);
|
|
static Constant *getFDiv(Constant *C1, Constant *C2);
|
|
static Constant *getURem(Constant *C1, Constant *C2);
|
|
static Constant *getSRem(Constant *C1, Constant *C2);
|
|
static Constant *getFRem(Constant *C1, Constant *C2);
|
|
static Constant *getAnd(Constant *C1, Constant *C2);
|
|
static Constant *getOr(Constant *C1, Constant *C2);
|
|
static Constant *getXor(Constant *C1, Constant *C2);
|
|
static Constant *getShl(Constant *C1, Constant *C2);
|
|
static Constant *getLShr(Constant *C1, Constant *C2);
|
|
static Constant *getAShr(Constant *C1, Constant *C2);
|
|
static Constant *getTrunc (Constant *C, const Type *Ty);
|
|
static Constant *getSExt (Constant *C, const Type *Ty);
|
|
static Constant *getZExt (Constant *C, const Type *Ty);
|
|
static Constant *getFPTrunc (Constant *C, const Type *Ty);
|
|
static Constant *getFPExtend(Constant *C, const Type *Ty);
|
|
static Constant *getUIToFP (Constant *C, const Type *Ty);
|
|
static Constant *getSIToFP (Constant *C, const Type *Ty);
|
|
static Constant *getFPToUI (Constant *C, const Type *Ty);
|
|
static Constant *getFPToSI (Constant *C, const Type *Ty);
|
|
static Constant *getPtrToInt(Constant *C, const Type *Ty);
|
|
static Constant *getIntToPtr(Constant *C, const Type *Ty);
|
|
static Constant *getBitCast (Constant *C, const Type *Ty);
|
|
|
|
static Constant *getNSWNeg(Constant *C);
|
|
static Constant *getNSWAdd(Constant *C1, Constant *C2);
|
|
static Constant *getNSWSub(Constant *C1, Constant *C2);
|
|
static Constant *getNSWMul(Constant *C1, Constant *C2);
|
|
static Constant *getExactSDiv(Constant *C1, Constant *C2);
|
|
|
|
/// Transparently provide more efficient getOperand methods.
|
|
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
|
|
|
|
// @brief Convenience function for getting one of the casting operations
|
|
// using a CastOps opcode.
|
|
static Constant *getCast(
|
|
unsigned ops, ///< The opcode for the conversion
|
|
Constant *C, ///< The constant to be converted
|
|
const Type *Ty ///< The type to which the constant is converted
|
|
);
|
|
|
|
// @brief Create a ZExt or BitCast cast constant expression
|
|
static Constant *getZExtOrBitCast(
|
|
Constant *C, ///< The constant to zext or bitcast
|
|
const Type *Ty ///< The type to zext or bitcast C to
|
|
);
|
|
|
|
// @brief Create a SExt or BitCast cast constant expression
|
|
static Constant *getSExtOrBitCast(
|
|
Constant *C, ///< The constant to sext or bitcast
|
|
const Type *Ty ///< The type to sext or bitcast C to
|
|
);
|
|
|
|
// @brief Create a Trunc or BitCast cast constant expression
|
|
static Constant *getTruncOrBitCast(
|
|
Constant *C, ///< The constant to trunc or bitcast
|
|
const Type *Ty ///< The type to trunc or bitcast C to
|
|
);
|
|
|
|
/// @brief Create a BitCast or a PtrToInt cast constant expression
|
|
static Constant *getPointerCast(
|
|
Constant *C, ///< The pointer value to be casted (operand 0)
|
|
const Type *Ty ///< The type to which cast should be made
|
|
);
|
|
|
|
/// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
|
|
static Constant *getIntegerCast(
|
|
Constant *C, ///< The integer constant to be casted
|
|
const Type *Ty, ///< The integer type to cast to
|
|
bool isSigned ///< Whether C should be treated as signed or not
|
|
);
|
|
|
|
/// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
|
|
static Constant *getFPCast(
|
|
Constant *C, ///< The integer constant to be casted
|
|
const Type *Ty ///< The integer type to cast to
|
|
);
|
|
|
|
/// @brief Return true if this is a convert constant expression
|
|
bool isCast() const;
|
|
|
|
/// @brief Return true if this is a compare constant expression
|
|
bool isCompare() const;
|
|
|
|
/// @brief Return true if this is an insertvalue or extractvalue expression,
|
|
/// and the getIndices() method may be used.
|
|
bool hasIndices() const;
|
|
|
|
/// @brief Return true if this is a getelementptr expression and all
|
|
/// the index operands are compile-time known integers within the
|
|
/// corresponding notional static array extents. Note that this is
|
|
/// not equivalant to, a subset of, or a superset of the "inbounds"
|
|
/// property.
|
|
bool isGEPWithNoNotionalOverIndexing() const;
|
|
|
|
/// Select constant expr
|
|
///
|
|
static Constant *getSelect(Constant *C, Constant *V1, Constant *V2) {
|
|
return getSelectTy(V1->getType(), C, V1, V2);
|
|
}
|
|
|
|
/// get - Return a binary or shift operator constant expression,
|
|
/// folding if possible.
|
|
///
|
|
static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
|
|
unsigned Flags = 0);
|
|
|
|
/// @brief Return an ICmp or FCmp comparison operator constant expression.
|
|
static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
|
|
|
|
/// get* - Return some common constants without having to
|
|
/// specify the full Instruction::OPCODE identifier.
|
|
///
|
|
static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
|
|
static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
|
|
|
|
/// Getelementptr form. std::vector<Value*> is only accepted for convenience:
|
|
/// all elements must be Constant's.
|
|
///
|
|
static Constant *getGetElementPtr(Constant *C,
|
|
Constant *const *IdxList, unsigned NumIdx);
|
|
static Constant *getGetElementPtr(Constant *C,
|
|
Value* const *IdxList, unsigned NumIdx);
|
|
|
|
/// Create an "inbounds" getelementptr. See the documentation for the
|
|
/// "inbounds" flag in LangRef.html for details.
|
|
static Constant *getInBoundsGetElementPtr(Constant *C,
|
|
Constant *const *IdxList,
|
|
unsigned NumIdx);
|
|
static Constant *getInBoundsGetElementPtr(Constant *C,
|
|
Value* const *IdxList,
|
|
unsigned NumIdx);
|
|
|
|
static Constant *getExtractElement(Constant *Vec, Constant *Idx);
|
|
static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
|
|
static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
|
|
static Constant *getExtractValue(Constant *Agg,
|
|
const unsigned *IdxList, unsigned NumIdx);
|
|
static Constant *getInsertValue(Constant *Agg, Constant *Val,
|
|
const unsigned *IdxList, unsigned NumIdx);
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue.
|
|
virtual bool isNullValue() const { return false; }
|
|
|
|
/// getOpcode - Return the opcode at the root of this constant expression
|
|
unsigned getOpcode() const { return getSubclassDataFromValue(); }
|
|
|
|
/// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
|
|
/// not an ICMP or FCMP constant expression.
|
|
unsigned getPredicate() const;
|
|
|
|
/// getIndices - Assert that this is an insertvalue or exactvalue
|
|
/// expression and return the list of indices.
|
|
const SmallVector<unsigned, 4> &getIndices() const;
|
|
|
|
/// getOpcodeName - Return a string representation for an opcode.
|
|
const char *getOpcodeName() const;
|
|
|
|
/// getWithOperandReplaced - Return a constant expression identical to this
|
|
/// one, but with the specified operand set to the specified value.
|
|
Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
|
|
|
|
/// getWithOperands - This returns the current constant expression with the
|
|
/// operands replaced with the specified values. The specified operands must
|
|
/// match count and type with the existing ones.
|
|
Constant *getWithOperands(const std::vector<Constant*> &Ops) const {
|
|
return getWithOperands(&Ops[0], (unsigned)Ops.size());
|
|
}
|
|
Constant *getWithOperands(Constant *const *Ops, unsigned NumOps) const;
|
|
|
|
virtual void destroyConstant();
|
|
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ConstantExpr *) { return true; }
|
|
static inline bool classof(const Value *V) {
|
|
return V->getValueID() == ConstantExprVal;
|
|
}
|
|
|
|
private:
|
|
// Shadow Value::setValueSubclassData with a private forwarding method so that
|
|
// subclasses cannot accidentally use it.
|
|
void setValueSubclassData(unsigned short D) {
|
|
Value::setValueSubclassData(D);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct OperandTraits<ConstantExpr> : public VariadicOperandTraits<1> {
|
|
};
|
|
|
|
DEFINE_TRANSPARENT_CASTED_OPERAND_ACCESSORS(ConstantExpr, Constant)
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// UndefValue - 'undef' values are things that do not have specified contents.
|
|
/// These are used for a variety of purposes, including global variable
|
|
/// initializers and operands to instructions. 'undef' values can occur with
|
|
/// any type.
|
|
///
|
|
class UndefValue : public Constant {
|
|
friend struct ConstantCreator<UndefValue, Type, char>;
|
|
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
|
|
UndefValue(const UndefValue &); // DO NOT IMPLEMENT
|
|
protected:
|
|
explicit UndefValue(const Type *T) : Constant(T, UndefValueVal, 0, 0) {}
|
|
protected:
|
|
// allocate space for exactly zero operands
|
|
void *operator new(size_t s) {
|
|
return User::operator new(s, 0);
|
|
}
|
|
public:
|
|
/// get() - Static factory methods - Return an 'undef' object of the specified
|
|
/// type.
|
|
///
|
|
static UndefValue *get(const Type *T);
|
|
|
|
/// isNullValue - Return true if this is the value that would be returned by
|
|
/// getNullValue.
|
|
virtual bool isNullValue() const { return false; }
|
|
|
|
virtual void destroyConstant();
|
|
|
|
/// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const UndefValue *) { return true; }
|
|
static bool classof(const Value *V) {
|
|
return V->getValueID() == UndefValueVal;
|
|
}
|
|
};
|
|
} // End llvm namespace
|
|
|
|
#endif
|