mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Summary: In PNaCl, most atomic instructions have their own @llvm.nacl.atomic.* function, each one, with a few exceptions, represents a consistent behaviour across all NaCl-supported targets. Unfortunately, the atomic RMW operations nand, [u]min, and [u]max aren't directly represented by any such @llvm.nacl.atomic.* function. This patch refines shouldExpandAtomicRMWInIR in TargetLowering so that a future `Le32TargetLowering` class can selectively inform the caller how the target desires the atomic RMW instruction to be expanded (ie via load-linked/store-conditional for ARM/AArch64, via cmpxchg for X86/others?, or not at all for Mips) if at all. This does not represent a behavioural change and as such no tests were added. Patch by: Richard Diamond. Reviewers: jfb Reviewed By: jfb Subscribers: jfb, aemerson, t.p.northover, llvm-commits Differential Revision: http://reviews.llvm.org/D7713 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231250 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			565 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			565 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains a pass (at IR level) to replace atomic instructions with
 | 
						|
// either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "atomic-expand"
 | 
						|
 | 
						|
namespace {
 | 
						|
  class AtomicExpand: public FunctionPass {
 | 
						|
    const TargetMachine *TM;
 | 
						|
    const TargetLowering *TLI;
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    explicit AtomicExpand(const TargetMachine *TM = nullptr)
 | 
						|
      : FunctionPass(ID), TM(TM), TLI(nullptr) {
 | 
						|
      initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
  private:
 | 
						|
    bool bracketInstWithFences(Instruction *I, AtomicOrdering Order,
 | 
						|
                               bool IsStore, bool IsLoad);
 | 
						|
    bool expandAtomicLoad(LoadInst *LI);
 | 
						|
    bool expandAtomicLoadToLL(LoadInst *LI);
 | 
						|
    bool expandAtomicLoadToCmpXchg(LoadInst *LI);
 | 
						|
    bool expandAtomicStore(StoreInst *SI);
 | 
						|
    bool tryExpandAtomicRMW(AtomicRMWInst *AI);
 | 
						|
    bool expandAtomicRMWToLLSC(AtomicRMWInst *AI);
 | 
						|
    bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI);
 | 
						|
    bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
 | 
						|
    bool isIdempotentRMW(AtomicRMWInst *AI);
 | 
						|
    bool simplifyIdempotentRMW(AtomicRMWInst *AI);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char AtomicExpand::ID = 0;
 | 
						|
char &llvm::AtomicExpandID = AtomicExpand::ID;
 | 
						|
INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
 | 
						|
    "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
 | 
						|
    false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
 | 
						|
  return new AtomicExpand(TM);
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::runOnFunction(Function &F) {
 | 
						|
  if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand())
 | 
						|
    return false;
 | 
						|
  TLI = TM->getSubtargetImpl(F)->getTargetLowering();
 | 
						|
 | 
						|
  SmallVector<Instruction *, 1> AtomicInsts;
 | 
						|
 | 
						|
  // Changing control-flow while iterating through it is a bad idea, so gather a
 | 
						|
  // list of all atomic instructions before we start.
 | 
						|
  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
 | 
						|
    if (I->isAtomic())
 | 
						|
      AtomicInsts.push_back(&*I);
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (auto I : AtomicInsts) {
 | 
						|
    auto LI = dyn_cast<LoadInst>(I);
 | 
						|
    auto SI = dyn_cast<StoreInst>(I);
 | 
						|
    auto RMWI = dyn_cast<AtomicRMWInst>(I);
 | 
						|
    auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
 | 
						|
    assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
 | 
						|
           "Unknown atomic instruction");
 | 
						|
 | 
						|
    auto FenceOrdering = Monotonic;
 | 
						|
    bool IsStore, IsLoad;
 | 
						|
    if (TLI->getInsertFencesForAtomic()) {
 | 
						|
      if (LI && isAtLeastAcquire(LI->getOrdering())) {
 | 
						|
        FenceOrdering = LI->getOrdering();
 | 
						|
        LI->setOrdering(Monotonic);
 | 
						|
        IsStore = false;
 | 
						|
        IsLoad = true;
 | 
						|
      } else if (SI && isAtLeastRelease(SI->getOrdering())) {
 | 
						|
        FenceOrdering = SI->getOrdering();
 | 
						|
        SI->setOrdering(Monotonic);
 | 
						|
        IsStore = true;
 | 
						|
        IsLoad = false;
 | 
						|
      } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) ||
 | 
						|
                          isAtLeastAcquire(RMWI->getOrdering()))) {
 | 
						|
        FenceOrdering = RMWI->getOrdering();
 | 
						|
        RMWI->setOrdering(Monotonic);
 | 
						|
        IsStore = IsLoad = true;
 | 
						|
      } else if (CASI && !TLI->hasLoadLinkedStoreConditional() &&
 | 
						|
                 (isAtLeastRelease(CASI->getSuccessOrdering()) ||
 | 
						|
                  isAtLeastAcquire(CASI->getSuccessOrdering()))) {
 | 
						|
        // If a compare and swap is lowered to LL/SC, we can do smarter fence
 | 
						|
        // insertion, with a stronger one on the success path than on the
 | 
						|
        // failure path. As a result, fence insertion is directly done by
 | 
						|
        // expandAtomicCmpXchg in that case.
 | 
						|
        FenceOrdering = CASI->getSuccessOrdering();
 | 
						|
        CASI->setSuccessOrdering(Monotonic);
 | 
						|
        CASI->setFailureOrdering(Monotonic);
 | 
						|
        IsStore = IsLoad = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (FenceOrdering != Monotonic) {
 | 
						|
        MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) {
 | 
						|
      MadeChange |= expandAtomicLoad(LI);
 | 
						|
    } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) {
 | 
						|
      MadeChange |= expandAtomicStore(SI);
 | 
						|
    } else if (RMWI) {
 | 
						|
      // There are two different ways of expanding RMW instructions:
 | 
						|
      // - into a load if it is idempotent
 | 
						|
      // - into a Cmpxchg/LL-SC loop otherwise
 | 
						|
      // we try them in that order.
 | 
						|
 | 
						|
      if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
 | 
						|
        MadeChange = true;
 | 
						|
      } else {
 | 
						|
        MadeChange |= tryExpandAtomicRMW(RMWI);
 | 
						|
      }
 | 
						|
    } else if (CASI && TLI->hasLoadLinkedStoreConditional()) {
 | 
						|
      MadeChange |= expandAtomicCmpXchg(CASI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order,
 | 
						|
                                         bool IsStore, bool IsLoad) {
 | 
						|
  IRBuilder<> Builder(I);
 | 
						|
 | 
						|
  auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad);
 | 
						|
 | 
						|
  auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad);
 | 
						|
  // The trailing fence is emitted before the instruction instead of after
 | 
						|
  // because there is no easy way of setting Builder insertion point after
 | 
						|
  // an instruction. So we must erase it from the BB, and insert it back
 | 
						|
  // in the right place.
 | 
						|
  // We have a guard here because not every atomic operation generates a
 | 
						|
  // trailing fence.
 | 
						|
  if (TrailingFence) {
 | 
						|
    TrailingFence->removeFromParent();
 | 
						|
    TrailingFence->insertAfter(I);
 | 
						|
  }
 | 
						|
 | 
						|
  return (LeadingFence || TrailingFence);
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::expandAtomicLoad(LoadInst *LI) {
 | 
						|
  if (TLI->hasLoadLinkedStoreConditional())
 | 
						|
    return expandAtomicLoadToLL(LI);
 | 
						|
  else
 | 
						|
    return expandAtomicLoadToCmpXchg(LI);
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
 | 
						|
  IRBuilder<> Builder(LI);
 | 
						|
 | 
						|
  // On some architectures, load-linked instructions are atomic for larger
 | 
						|
  // sizes than normal loads. For example, the only 64-bit load guaranteed
 | 
						|
  // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
 | 
						|
  Value *Val =
 | 
						|
      TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
 | 
						|
 | 
						|
  LI->replaceAllUsesWith(Val);
 | 
						|
  LI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
 | 
						|
  IRBuilder<> Builder(LI);
 | 
						|
  AtomicOrdering Order = LI->getOrdering();
 | 
						|
  Value *Addr = LI->getPointerOperand();
 | 
						|
  Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
 | 
						|
  Constant *DummyVal = Constant::getNullValue(Ty);
 | 
						|
 | 
						|
  Value *Pair = Builder.CreateAtomicCmpXchg(
 | 
						|
      Addr, DummyVal, DummyVal, Order,
 | 
						|
      AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
 | 
						|
  Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
 | 
						|
 | 
						|
  LI->replaceAllUsesWith(Loaded);
 | 
						|
  LI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
 | 
						|
  // This function is only called on atomic stores that are too large to be
 | 
						|
  // atomic if implemented as a native store. So we replace them by an
 | 
						|
  // atomic swap, that can be implemented for example as a ldrex/strex on ARM
 | 
						|
  // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
 | 
						|
  // It is the responsibility of the target to only signal expansion via
 | 
						|
  // shouldExpandAtomicRMW in cases where this is required and possible.
 | 
						|
  IRBuilder<> Builder(SI);
 | 
						|
  AtomicRMWInst *AI =
 | 
						|
      Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
 | 
						|
                              SI->getValueOperand(), SI->getOrdering());
 | 
						|
  SI->eraseFromParent();
 | 
						|
 | 
						|
  // Now we have an appropriate swap instruction, lower it as usual.
 | 
						|
  return tryExpandAtomicRMW(AI);
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
 | 
						|
  switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
 | 
						|
  case TargetLoweringBase::AtomicRMWExpansionKind::None:
 | 
						|
    return false;
 | 
						|
  case TargetLoweringBase::AtomicRMWExpansionKind::LLSC: {
 | 
						|
    assert(TLI->hasLoadLinkedStoreConditional() &&
 | 
						|
           "TargetLowering requested we expand AtomicRMW instruction into "
 | 
						|
           "load-linked/store-conditional combos, but such instructions aren't "
 | 
						|
           "supported");
 | 
						|
 | 
						|
    return expandAtomicRMWToLLSC(AI);
 | 
						|
  }
 | 
						|
  case TargetLoweringBase::AtomicRMWExpansionKind::CmpXChg: {
 | 
						|
    return expandAtomicRMWToCmpXchg(AI);
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
 | 
						|
}
 | 
						|
 | 
						|
/// Emit IR to implement the given atomicrmw operation on values in registers,
 | 
						|
/// returning the new value.
 | 
						|
static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
 | 
						|
                              Value *Loaded, Value *Inc) {
 | 
						|
  Value *NewVal;
 | 
						|
  switch (Op) {
 | 
						|
  case AtomicRMWInst::Xchg:
 | 
						|
    return Inc;
 | 
						|
  case AtomicRMWInst::Add:
 | 
						|
    return Builder.CreateAdd(Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::Sub:
 | 
						|
    return Builder.CreateSub(Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::And:
 | 
						|
    return Builder.CreateAnd(Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::Nand:
 | 
						|
    return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
 | 
						|
  case AtomicRMWInst::Or:
 | 
						|
    return Builder.CreateOr(Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::Xor:
 | 
						|
    return Builder.CreateXor(Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::Max:
 | 
						|
    NewVal = Builder.CreateICmpSGT(Loaded, Inc);
 | 
						|
    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::Min:
 | 
						|
    NewVal = Builder.CreateICmpSLE(Loaded, Inc);
 | 
						|
    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::UMax:
 | 
						|
    NewVal = Builder.CreateICmpUGT(Loaded, Inc);
 | 
						|
    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | 
						|
  case AtomicRMWInst::UMin:
 | 
						|
    NewVal = Builder.CreateICmpULE(Loaded, Inc);
 | 
						|
    return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unknown atomic op");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) {
 | 
						|
  AtomicOrdering MemOpOrder = AI->getOrdering();
 | 
						|
  Value *Addr = AI->getPointerOperand();
 | 
						|
  BasicBlock *BB = AI->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
  LLVMContext &Ctx = F->getContext();
 | 
						|
 | 
						|
  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
 | 
						|
  //
 | 
						|
  // The standard expansion we produce is:
 | 
						|
  //     [...]
 | 
						|
  //     fence?
 | 
						|
  // atomicrmw.start:
 | 
						|
  //     %loaded = @load.linked(%addr)
 | 
						|
  //     %new = some_op iN %loaded, %incr
 | 
						|
  //     %stored = @store_conditional(%new, %addr)
 | 
						|
  //     %try_again = icmp i32 ne %stored, 0
 | 
						|
  //     br i1 %try_again, label %loop, label %atomicrmw.end
 | 
						|
  // atomicrmw.end:
 | 
						|
  //     fence?
 | 
						|
  //     [...]
 | 
						|
  BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
 | 
						|
  BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
 | 
						|
 | 
						|
  // This grabs the DebugLoc from AI.
 | 
						|
  IRBuilder<> Builder(AI);
 | 
						|
 | 
						|
  // The split call above "helpfully" added a branch at the end of BB (to the
 | 
						|
  // wrong place), but we might want a fence too. It's easiest to just remove
 | 
						|
  // the branch entirely.
 | 
						|
  std::prev(BB->end())->eraseFromParent();
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
 | 
						|
  // Start the main loop block now that we've taken care of the preliminaries.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
 | 
						|
 | 
						|
  Value *NewVal =
 | 
						|
      performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
 | 
						|
 | 
						|
  Value *StoreSuccess =
 | 
						|
      TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
 | 
						|
  Value *TryAgain = Builder.CreateICmpNE(
 | 
						|
      StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
 | 
						|
  Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
 | 
						|
 | 
						|
  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | 
						|
 | 
						|
  AI->replaceAllUsesWith(Loaded);
 | 
						|
  AI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) {
 | 
						|
  AtomicOrdering MemOpOrder =
 | 
						|
      AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
 | 
						|
  Value *Addr = AI->getPointerOperand();
 | 
						|
  BasicBlock *BB = AI->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
  LLVMContext &Ctx = F->getContext();
 | 
						|
 | 
						|
  // Given: atomicrmw some_op iN* %addr, iN %incr ordering
 | 
						|
  //
 | 
						|
  // The standard expansion we produce is:
 | 
						|
  //     [...]
 | 
						|
  //     %init_loaded = load atomic iN* %addr
 | 
						|
  //     br label %loop
 | 
						|
  // loop:
 | 
						|
  //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
 | 
						|
  //     %new = some_op iN %loaded, %incr
 | 
						|
  //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
 | 
						|
  //     %new_loaded = extractvalue { iN, i1 } %pair, 0
 | 
						|
  //     %success = extractvalue { iN, i1 } %pair, 1
 | 
						|
  //     br i1 %success, label %atomicrmw.end, label %loop
 | 
						|
  // atomicrmw.end:
 | 
						|
  //     [...]
 | 
						|
  BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
 | 
						|
  BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
 | 
						|
 | 
						|
  // This grabs the DebugLoc from AI.
 | 
						|
  IRBuilder<> Builder(AI);
 | 
						|
 | 
						|
  // The split call above "helpfully" added a branch at the end of BB (to the
 | 
						|
  // wrong place), but we want a load. It's easiest to just remove
 | 
						|
  // the branch entirely.
 | 
						|
  std::prev(BB->end())->eraseFromParent();
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  LoadInst *InitLoaded = Builder.CreateLoad(Addr);
 | 
						|
  // Atomics require at least natural alignment.
 | 
						|
  InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
 | 
						|
  // Start the main loop block now that we've taken care of the preliminaries.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
 | 
						|
  Loaded->addIncoming(InitLoaded, BB);
 | 
						|
 | 
						|
  Value *NewVal =
 | 
						|
      performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
 | 
						|
 | 
						|
  Value *Pair = Builder.CreateAtomicCmpXchg(
 | 
						|
      Addr, Loaded, NewVal, MemOpOrder,
 | 
						|
      AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
 | 
						|
  Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
 | 
						|
  Loaded->addIncoming(NewLoaded, LoopBB);
 | 
						|
 | 
						|
  Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
 | 
						|
  Builder.CreateCondBr(Success, ExitBB, LoopBB);
 | 
						|
 | 
						|
  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | 
						|
 | 
						|
  AI->replaceAllUsesWith(NewLoaded);
 | 
						|
  AI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
 | 
						|
  AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
 | 
						|
  AtomicOrdering FailureOrder = CI->getFailureOrdering();
 | 
						|
  Value *Addr = CI->getPointerOperand();
 | 
						|
  BasicBlock *BB = CI->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
  LLVMContext &Ctx = F->getContext();
 | 
						|
  // If getInsertFencesForAtomic() returns true, then the target does not want
 | 
						|
  // to deal with memory orders, and emitLeading/TrailingFence should take care
 | 
						|
  // of everything. Otherwise, emitLeading/TrailingFence are no-op and we
 | 
						|
  // should preserve the ordering.
 | 
						|
  AtomicOrdering MemOpOrder =
 | 
						|
      TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;
 | 
						|
 | 
						|
  // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
 | 
						|
  //
 | 
						|
  // The full expansion we produce is:
 | 
						|
  //     [...]
 | 
						|
  //     fence?
 | 
						|
  // cmpxchg.start:
 | 
						|
  //     %loaded = @load.linked(%addr)
 | 
						|
  //     %should_store = icmp eq %loaded, %desired
 | 
						|
  //     br i1 %should_store, label %cmpxchg.trystore,
 | 
						|
  //                          label %cmpxchg.failure
 | 
						|
  // cmpxchg.trystore:
 | 
						|
  //     %stored = @store_conditional(%new, %addr)
 | 
						|
  //     %success = icmp eq i32 %stored, 0
 | 
						|
  //     br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
 | 
						|
  // cmpxchg.success:
 | 
						|
  //     fence?
 | 
						|
  //     br label %cmpxchg.end
 | 
						|
  // cmpxchg.failure:
 | 
						|
  //     fence?
 | 
						|
  //     br label %cmpxchg.end
 | 
						|
  // cmpxchg.end:
 | 
						|
  //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
 | 
						|
  //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
 | 
						|
  //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
 | 
						|
  //     [...]
 | 
						|
  BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
 | 
						|
  auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
 | 
						|
  auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
 | 
						|
  auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
 | 
						|
  auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
 | 
						|
 | 
						|
  // This grabs the DebugLoc from CI
 | 
						|
  IRBuilder<> Builder(CI);
 | 
						|
 | 
						|
  // The split call above "helpfully" added a branch at the end of BB (to the
 | 
						|
  // wrong place), but we might want a fence too. It's easiest to just remove
 | 
						|
  // the branch entirely.
 | 
						|
  std::prev(BB->end())->eraseFromParent();
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
 | 
						|
                        /*IsLoad=*/true);
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
 | 
						|
  // Start the main loop block now that we've taken care of the preliminaries.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
 | 
						|
  Value *ShouldStore =
 | 
						|
      Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
 | 
						|
 | 
						|
  // If the the cmpxchg doesn't actually need any ordering when it fails, we can
 | 
						|
  // jump straight past that fence instruction (if it exists).
 | 
						|
  Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
 | 
						|
 | 
						|
  Builder.SetInsertPoint(TryStoreBB);
 | 
						|
  Value *StoreSuccess = TLI->emitStoreConditional(
 | 
						|
      Builder, CI->getNewValOperand(), Addr, MemOpOrder);
 | 
						|
  StoreSuccess = Builder.CreateICmpEQ(
 | 
						|
      StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
 | 
						|
  Builder.CreateCondBr(StoreSuccess, SuccessBB,
 | 
						|
                       CI->isWeak() ? FailureBB : LoopBB);
 | 
						|
 | 
						|
  // Make sure later instructions don't get reordered with a fence if necessary.
 | 
						|
  Builder.SetInsertPoint(SuccessBB);
 | 
						|
  TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true,
 | 
						|
                         /*IsLoad=*/true);
 | 
						|
  Builder.CreateBr(ExitBB);
 | 
						|
 | 
						|
  Builder.SetInsertPoint(FailureBB);
 | 
						|
  TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true,
 | 
						|
                         /*IsLoad=*/true);
 | 
						|
  Builder.CreateBr(ExitBB);
 | 
						|
 | 
						|
  // Finally, we have control-flow based knowledge of whether the cmpxchg
 | 
						|
  // succeeded or not. We expose this to later passes by converting any
 | 
						|
  // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
 | 
						|
 | 
						|
  // Setup the builder so we can create any PHIs we need.
 | 
						|
  Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | 
						|
  PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
 | 
						|
  Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
 | 
						|
  Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
 | 
						|
 | 
						|
  // Look for any users of the cmpxchg that are just comparing the loaded value
 | 
						|
  // against the desired one, and replace them with the CFG-derived version.
 | 
						|
  SmallVector<ExtractValueInst *, 2> PrunedInsts;
 | 
						|
  for (auto User : CI->users()) {
 | 
						|
    ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
 | 
						|
    if (!EV)
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
 | 
						|
           "weird extraction from { iN, i1 }");
 | 
						|
 | 
						|
    if (EV->getIndices()[0] == 0)
 | 
						|
      EV->replaceAllUsesWith(Loaded);
 | 
						|
    else
 | 
						|
      EV->replaceAllUsesWith(Success);
 | 
						|
 | 
						|
    PrunedInsts.push_back(EV);
 | 
						|
  }
 | 
						|
 | 
						|
  // We can remove the instructions now we're no longer iterating through them.
 | 
						|
  for (auto EV : PrunedInsts)
 | 
						|
    EV->eraseFromParent();
 | 
						|
 | 
						|
  if (!CI->use_empty()) {
 | 
						|
    // Some use of the full struct return that we don't understand has happened,
 | 
						|
    // so we've got to reconstruct it properly.
 | 
						|
    Value *Res;
 | 
						|
    Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
 | 
						|
    Res = Builder.CreateInsertValue(Res, Success, 1);
 | 
						|
 | 
						|
    CI->replaceAllUsesWith(Res);
 | 
						|
  }
 | 
						|
 | 
						|
  CI->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
 | 
						|
  auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
 | 
						|
  if(!C)
 | 
						|
    return false;
 | 
						|
 | 
						|
  AtomicRMWInst::BinOp Op = RMWI->getOperation();
 | 
						|
  switch(Op) {
 | 
						|
    case AtomicRMWInst::Add:
 | 
						|
    case AtomicRMWInst::Sub:
 | 
						|
    case AtomicRMWInst::Or:
 | 
						|
    case AtomicRMWInst::Xor:
 | 
						|
      return C->isZero();
 | 
						|
    case AtomicRMWInst::And:
 | 
						|
      return C->isMinusOne();
 | 
						|
    // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
 | 
						|
  if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
 | 
						|
    if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad))
 | 
						|
      expandAtomicLoad(ResultingLoad);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 |