mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	NFC. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219061 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			603 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			603 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass identifies expensive constants to hoist and coalesces them to
 | 
						|
// better prepare it for SelectionDAG-based code generation. This works around
 | 
						|
// the limitations of the basic-block-at-a-time approach.
 | 
						|
//
 | 
						|
// First it scans all instructions for integer constants and calculates its
 | 
						|
// cost. If the constant can be folded into the instruction (the cost is
 | 
						|
// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
 | 
						|
// consider it expensive and leave it alone. This is the default behavior and
 | 
						|
// the default implementation of getIntImmCost will always return TCC_Free.
 | 
						|
//
 | 
						|
// If the cost is more than TCC_BASIC, then the integer constant can't be folded
 | 
						|
// into the instruction and it might be beneficial to hoist the constant.
 | 
						|
// Similar constants are coalesced to reduce register pressure and
 | 
						|
// materialization code.
 | 
						|
//
 | 
						|
// When a constant is hoisted, it is also hidden behind a bitcast to force it to
 | 
						|
// be live-out of the basic block. Otherwise the constant would be just
 | 
						|
// duplicated and each basic block would have its own copy in the SelectionDAG.
 | 
						|
// The SelectionDAG recognizes such constants as opaque and doesn't perform
 | 
						|
// certain transformations on them, which would create a new expensive constant.
 | 
						|
//
 | 
						|
// This optimization is only applied to integer constants in instructions and
 | 
						|
// simple (this means not nested) constant cast expressions. For example:
 | 
						|
// %0 = load i64* inttoptr (i64 big_constant to i64*)
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include <tuple>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "consthoist"
 | 
						|
 | 
						|
STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
 | 
						|
STATISTIC(NumConstantsRebased, "Number of constants rebased");
 | 
						|
 | 
						|
namespace {
 | 
						|
struct ConstantUser;
 | 
						|
struct RebasedConstantInfo;
 | 
						|
 | 
						|
typedef SmallVector<ConstantUser, 8> ConstantUseListType;
 | 
						|
typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
 | 
						|
 | 
						|
/// \brief Keeps track of the user of a constant and the operand index where the
 | 
						|
/// constant is used.
 | 
						|
struct ConstantUser {
 | 
						|
  Instruction *Inst;
 | 
						|
  unsigned OpndIdx;
 | 
						|
 | 
						|
  ConstantUser(Instruction *Inst, unsigned Idx) : Inst(Inst), OpndIdx(Idx) { }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Keeps track of a constant candidate and its uses.
 | 
						|
struct ConstantCandidate {
 | 
						|
  ConstantUseListType Uses;
 | 
						|
  ConstantInt *ConstInt;
 | 
						|
  unsigned CumulativeCost;
 | 
						|
 | 
						|
  ConstantCandidate(ConstantInt *ConstInt)
 | 
						|
    : ConstInt(ConstInt), CumulativeCost(0) { }
 | 
						|
 | 
						|
  /// \brief Add the user to the use list and update the cost.
 | 
						|
  void addUser(Instruction *Inst, unsigned Idx, unsigned Cost) {
 | 
						|
    CumulativeCost += Cost;
 | 
						|
    Uses.push_back(ConstantUser(Inst, Idx));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief This represents a constant that has been rebased with respect to a
 | 
						|
/// base constant. The difference to the base constant is recorded in Offset.
 | 
						|
struct RebasedConstantInfo {
 | 
						|
  ConstantUseListType Uses;
 | 
						|
  Constant *Offset;
 | 
						|
 | 
						|
  RebasedConstantInfo(ConstantUseListType &&Uses, Constant *Offset)
 | 
						|
    : Uses(std::move(Uses)), Offset(Offset) { }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief A base constant and all its rebased constants.
 | 
						|
struct ConstantInfo {
 | 
						|
  ConstantInt *BaseConstant;
 | 
						|
  RebasedConstantListType RebasedConstants;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief The constant hoisting pass.
 | 
						|
class ConstantHoisting : public FunctionPass {
 | 
						|
  typedef DenseMap<ConstantInt *, unsigned> ConstCandMapType;
 | 
						|
  typedef std::vector<ConstantCandidate> ConstCandVecType;
 | 
						|
 | 
						|
  const TargetTransformInfo *TTI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  BasicBlock *Entry;
 | 
						|
 | 
						|
  /// Keeps track of constant candidates found in the function.
 | 
						|
  ConstCandVecType ConstCandVec;
 | 
						|
 | 
						|
  /// Keep track of cast instructions we already cloned.
 | 
						|
  SmallDenseMap<Instruction *, Instruction *> ClonedCastMap;
 | 
						|
 | 
						|
  /// These are the final constants we decided to hoist.
 | 
						|
  SmallVector<ConstantInfo, 8> ConstantVec;
 | 
						|
public:
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  ConstantHoisting() : FunctionPass(ID), TTI(nullptr), DT(nullptr),
 | 
						|
                       Entry(nullptr) {
 | 
						|
    initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &Fn) override;
 | 
						|
 | 
						|
  const char *getPassName() const override { return "Constant Hoisting"; }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfo>();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// \brief Initialize the pass.
 | 
						|
  void setup(Function &Fn) {
 | 
						|
    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    TTI = &getAnalysis<TargetTransformInfo>();
 | 
						|
    Entry = &Fn.getEntryBlock();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Cleanup.
 | 
						|
  void cleanup() {
 | 
						|
    ConstantVec.clear();
 | 
						|
    ClonedCastMap.clear();
 | 
						|
    ConstCandVec.clear();
 | 
						|
 | 
						|
    TTI = nullptr;
 | 
						|
    DT = nullptr;
 | 
						|
    Entry = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *findMatInsertPt(Instruction *Inst, unsigned Idx = ~0U) const;
 | 
						|
  Instruction *findConstantInsertionPoint(const ConstantInfo &ConstInfo) const;
 | 
						|
  void collectConstantCandidates(ConstCandMapType &ConstCandMap,
 | 
						|
                                 Instruction *Inst, unsigned Idx,
 | 
						|
                                 ConstantInt *ConstInt);
 | 
						|
  void collectConstantCandidates(ConstCandMapType &ConstCandMap,
 | 
						|
                                 Instruction *Inst);
 | 
						|
  void collectConstantCandidates(Function &Fn);
 | 
						|
  void findAndMakeBaseConstant(ConstCandVecType::iterator S,
 | 
						|
                               ConstCandVecType::iterator E);
 | 
						|
  void findBaseConstants();
 | 
						|
  void emitBaseConstants(Instruction *Base, Constant *Offset,
 | 
						|
                         const ConstantUser &ConstUser);
 | 
						|
  bool emitBaseConstants();
 | 
						|
  void deleteDeadCastInst() const;
 | 
						|
  bool optimizeConstants(Function &Fn);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char ConstantHoisting::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | 
						|
INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createConstantHoistingPass() {
 | 
						|
  return new ConstantHoisting();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Perform the constant hoisting optimization for the given function.
 | 
						|
bool ConstantHoisting::runOnFunction(Function &Fn) {
 | 
						|
  DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
 | 
						|
  DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
 | 
						|
 | 
						|
  setup(Fn);
 | 
						|
 | 
						|
  bool MadeChange = optimizeConstants(Fn);
 | 
						|
 | 
						|
  if (MadeChange) {
 | 
						|
    DEBUG(dbgs() << "********** Function after Constant Hoisting: "
 | 
						|
                 << Fn.getName() << '\n');
 | 
						|
    DEBUG(dbgs() << Fn);
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
 | 
						|
 | 
						|
  cleanup();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Find the constant materialization insertion point.
 | 
						|
Instruction *ConstantHoisting::findMatInsertPt(Instruction *Inst,
 | 
						|
                                               unsigned Idx) const {
 | 
						|
  // If the operand is a cast instruction, then we have to materialize the
 | 
						|
  // constant before the cast instruction.
 | 
						|
  if (Idx != ~0U) {
 | 
						|
    Value *Opnd = Inst->getOperand(Idx);
 | 
						|
    if (auto CastInst = dyn_cast<Instruction>(Opnd))
 | 
						|
      if (CastInst->isCast())
 | 
						|
        return CastInst;
 | 
						|
  }
 | 
						|
 | 
						|
  // The simple and common case. This also includes constant expressions.
 | 
						|
  if (!isa<PHINode>(Inst) && !isa<LandingPadInst>(Inst))
 | 
						|
    return Inst;
 | 
						|
 | 
						|
  // We can't insert directly before a phi node or landing pad. Insert before
 | 
						|
  // the terminator of the incoming or dominating block.
 | 
						|
  assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
 | 
						|
  if (Idx != ~0U && isa<PHINode>(Inst))
 | 
						|
    return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
 | 
						|
 | 
						|
  BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
 | 
						|
  return IDom->getTerminator();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find an insertion point that dominates all uses.
 | 
						|
Instruction *ConstantHoisting::
 | 
						|
findConstantInsertionPoint(const ConstantInfo &ConstInfo) const {
 | 
						|
  assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
 | 
						|
  // Collect all basic blocks.
 | 
						|
  SmallPtrSet<BasicBlock *, 8> BBs;
 | 
						|
  for (auto const &RCI : ConstInfo.RebasedConstants)
 | 
						|
    for (auto const &U : RCI.Uses)
 | 
						|
      BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
 | 
						|
 | 
						|
  if (BBs.count(Entry))
 | 
						|
    return &Entry->front();
 | 
						|
 | 
						|
  while (BBs.size() >= 2) {
 | 
						|
    BasicBlock *BB, *BB1, *BB2;
 | 
						|
    BB1 = *BBs.begin();
 | 
						|
    BB2 = *std::next(BBs.begin());
 | 
						|
    BB = DT->findNearestCommonDominator(BB1, BB2);
 | 
						|
    if (BB == Entry)
 | 
						|
      return &Entry->front();
 | 
						|
    BBs.erase(BB1);
 | 
						|
    BBs.erase(BB2);
 | 
						|
    BBs.insert(BB);
 | 
						|
  }
 | 
						|
  assert((BBs.size() == 1) && "Expected only one element.");
 | 
						|
  Instruction &FirstInst = (*BBs.begin())->front();
 | 
						|
  return findMatInsertPt(&FirstInst);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// \brief Record constant integer ConstInt for instruction Inst at operand
 | 
						|
/// index Idx.
 | 
						|
///
 | 
						|
/// The operand at index Idx is not necessarily the constant integer itself. It
 | 
						|
/// could also be a cast instruction or a constant expression that uses the
 | 
						|
// constant integer.
 | 
						|
void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
 | 
						|
                                                 Instruction *Inst,
 | 
						|
                                                 unsigned Idx,
 | 
						|
                                                 ConstantInt *ConstInt) {
 | 
						|
  unsigned Cost;
 | 
						|
  // Ask the target about the cost of materializing the constant for the given
 | 
						|
  // instruction and operand index.
 | 
						|
  if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
 | 
						|
    Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
 | 
						|
                              ConstInt->getValue(), ConstInt->getType());
 | 
						|
  else
 | 
						|
    Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
 | 
						|
                              ConstInt->getType());
 | 
						|
 | 
						|
  // Ignore cheap integer constants.
 | 
						|
  if (Cost > TargetTransformInfo::TCC_Basic) {
 | 
						|
    ConstCandMapType::iterator Itr;
 | 
						|
    bool Inserted;
 | 
						|
    std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
 | 
						|
    if (Inserted) {
 | 
						|
      ConstCandVec.push_back(ConstantCandidate(ConstInt));
 | 
						|
      Itr->second = ConstCandVec.size() - 1;
 | 
						|
    }
 | 
						|
    ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
 | 
						|
    DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
 | 
						|
            dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
 | 
						|
                   << " with cost " << Cost << '\n';
 | 
						|
          else
 | 
						|
          dbgs() << "Collect constant " << *ConstInt << " indirectly from "
 | 
						|
                 << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
 | 
						|
                 << Cost << '\n';
 | 
						|
    );
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Scan the instruction for expensive integer constants and record them
 | 
						|
/// in the constant candidate vector.
 | 
						|
void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
 | 
						|
                                                 Instruction *Inst) {
 | 
						|
  // Skip all cast instructions. They are visited indirectly later on.
 | 
						|
  if (Inst->isCast())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Can't handle inline asm. Skip it.
 | 
						|
  if (auto Call = dyn_cast<CallInst>(Inst))
 | 
						|
    if (isa<InlineAsm>(Call->getCalledValue()))
 | 
						|
      return;
 | 
						|
 | 
						|
  // Scan all operands.
 | 
						|
  for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
 | 
						|
    Value *Opnd = Inst->getOperand(Idx);
 | 
						|
 | 
						|
    // Visit constant integers.
 | 
						|
    if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
 | 
						|
      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Visit cast instructions that have constant integers.
 | 
						|
    if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
 | 
						|
      // Only visit cast instructions, which have been skipped. All other
 | 
						|
      // instructions should have already been visited.
 | 
						|
      if (!CastInst->isCast())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
 | 
						|
        // Pretend the constant is directly used by the instruction and ignore
 | 
						|
        // the cast instruction.
 | 
						|
        collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Visit constant expressions that have constant integers.
 | 
						|
    if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
 | 
						|
      // Only visit constant cast expressions.
 | 
						|
      if (!ConstExpr->isCast())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
 | 
						|
        // Pretend the constant is directly used by the instruction and ignore
 | 
						|
        // the constant expression.
 | 
						|
        collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } // end of for all operands
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Collect all integer constants in the function that cannot be folded
 | 
						|
/// into an instruction itself.
 | 
						|
void ConstantHoisting::collectConstantCandidates(Function &Fn) {
 | 
						|
  ConstCandMapType ConstCandMap;
 | 
						|
  for (Function::iterator BB : Fn)
 | 
						|
    for (BasicBlock::iterator Inst : *BB)
 | 
						|
      collectConstantCandidates(ConstCandMap, Inst);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Find the base constant within the given range and rebase all other
 | 
						|
/// constants with respect to the base constant.
 | 
						|
void ConstantHoisting::findAndMakeBaseConstant(ConstCandVecType::iterator S,
 | 
						|
                                               ConstCandVecType::iterator E) {
 | 
						|
  auto MaxCostItr = S;
 | 
						|
  unsigned NumUses = 0;
 | 
						|
  // Use the constant that has the maximum cost as base constant.
 | 
						|
  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
 | 
						|
    NumUses += ConstCand->Uses.size();
 | 
						|
    if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
 | 
						|
      MaxCostItr = ConstCand;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't hoist constants that have only one use.
 | 
						|
  if (NumUses <= 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  ConstantInfo ConstInfo;
 | 
						|
  ConstInfo.BaseConstant = MaxCostItr->ConstInt;
 | 
						|
  Type *Ty = ConstInfo.BaseConstant->getType();
 | 
						|
 | 
						|
  // Rebase the constants with respect to the base constant.
 | 
						|
  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
 | 
						|
    APInt Diff = ConstCand->ConstInt->getValue() -
 | 
						|
                 ConstInfo.BaseConstant->getValue();
 | 
						|
    Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
 | 
						|
    ConstInfo.RebasedConstants.push_back(
 | 
						|
      RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
 | 
						|
  }
 | 
						|
  ConstantVec.push_back(std::move(ConstInfo));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Finds and combines constant candidates that can be easily
 | 
						|
/// rematerialized with an add from a common base constant.
 | 
						|
void ConstantHoisting::findBaseConstants() {
 | 
						|
  // Sort the constants by value and type. This invalidates the mapping!
 | 
						|
  std::sort(ConstCandVec.begin(), ConstCandVec.end(),
 | 
						|
            [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
 | 
						|
    if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
 | 
						|
      return LHS.ConstInt->getType()->getBitWidth() <
 | 
						|
             RHS.ConstInt->getType()->getBitWidth();
 | 
						|
    return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
 | 
						|
  });
 | 
						|
 | 
						|
  // Simple linear scan through the sorted constant candidate vector for viable
 | 
						|
  // merge candidates.
 | 
						|
  auto MinValItr = ConstCandVec.begin();
 | 
						|
  for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
 | 
						|
       CC != E; ++CC) {
 | 
						|
    if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
 | 
						|
      // Check if the constant is in range of an add with immediate.
 | 
						|
      APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
 | 
						|
      if ((Diff.getBitWidth() <= 64) &&
 | 
						|
          TTI->isLegalAddImmediate(Diff.getSExtValue()))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    // We either have now a different constant type or the constant is not in
 | 
						|
    // range of an add with immediate anymore.
 | 
						|
    findAndMakeBaseConstant(MinValItr, CC);
 | 
						|
    // Start a new base constant search.
 | 
						|
    MinValItr = CC;
 | 
						|
  }
 | 
						|
  // Finalize the last base constant search.
 | 
						|
  findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Updates the operand at Idx in instruction Inst with the result of
 | 
						|
///        instruction Mat. If the instruction is a PHI node then special
 | 
						|
///        handling for duplicate values form the same incomming basic block is
 | 
						|
///        required.
 | 
						|
/// \return The update will always succeed, but the return value indicated if
 | 
						|
///         Mat was used for the update or not.
 | 
						|
static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
 | 
						|
  if (auto PHI = dyn_cast<PHINode>(Inst)) {
 | 
						|
    // Check if any previous operand of the PHI node has the same incoming basic
 | 
						|
    // block. This is a very odd case that happens when the incoming basic block
 | 
						|
    // has a switch statement. In this case use the same value as the previous
 | 
						|
    // operand(s), otherwise we will fail verification due to different values.
 | 
						|
    // The values are actually the same, but the variable names are different
 | 
						|
    // and the verifier doesn't like that.
 | 
						|
    BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
 | 
						|
    for (unsigned i = 0; i < Idx; ++i) {
 | 
						|
      if (PHI->getIncomingBlock(i) == IncomingBB) {
 | 
						|
        Value *IncomingVal = PHI->getIncomingValue(i);
 | 
						|
        Inst->setOperand(Idx, IncomingVal);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Inst->setOperand(Idx, Mat);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Emit materialization code for all rebased constants and update their
 | 
						|
/// users.
 | 
						|
void ConstantHoisting::emitBaseConstants(Instruction *Base, Constant *Offset,
 | 
						|
                                         const ConstantUser &ConstUser) {
 | 
						|
  Instruction *Mat = Base;
 | 
						|
  if (Offset) {
 | 
						|
    Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
 | 
						|
                                               ConstUser.OpndIdx);
 | 
						|
    Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
 | 
						|
                                 "const_mat", InsertionPt);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
 | 
						|
                 << " + " << *Offset << ") in BB "
 | 
						|
                 << Mat->getParent()->getName() << '\n' << *Mat << '\n');
 | 
						|
    Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
 | 
						|
  }
 | 
						|
  Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
 | 
						|
 | 
						|
  // Visit constant integer.
 | 
						|
  if (isa<ConstantInt>(Opnd)) {
 | 
						|
    DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
 | 
						|
    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
 | 
						|
      Mat->eraseFromParent();
 | 
						|
    DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit cast instruction.
 | 
						|
  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
 | 
						|
    assert(CastInst->isCast() && "Expected an cast instruction!");
 | 
						|
    // Check if we already have visited this cast instruction before to avoid
 | 
						|
    // unnecessary cloning.
 | 
						|
    Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
 | 
						|
    if (!ClonedCastInst) {
 | 
						|
      ClonedCastInst = CastInst->clone();
 | 
						|
      ClonedCastInst->setOperand(0, Mat);
 | 
						|
      ClonedCastInst->insertAfter(CastInst);
 | 
						|
      // Use the same debug location as the original cast instruction.
 | 
						|
      ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
 | 
						|
      DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
 | 
						|
                   << "To               : " << *ClonedCastInst << '\n');
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
 | 
						|
    updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
 | 
						|
    DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit constant expression.
 | 
						|
  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
 | 
						|
    Instruction *ConstExprInst = ConstExpr->getAsInstruction();
 | 
						|
    ConstExprInst->setOperand(0, Mat);
 | 
						|
    ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
 | 
						|
                                                ConstUser.OpndIdx));
 | 
						|
 | 
						|
    // Use the same debug location as the instruction we are about to update.
 | 
						|
    ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
 | 
						|
                 << "From              : " << *ConstExpr << '\n');
 | 
						|
    DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
 | 
						|
    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
 | 
						|
      ConstExprInst->eraseFromParent();
 | 
						|
      if (Offset)
 | 
						|
        Mat->eraseFromParent();
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Hoist and hide the base constant behind a bitcast and emit
 | 
						|
/// materialization code for derived constants.
 | 
						|
bool ConstantHoisting::emitBaseConstants() {
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (auto const &ConstInfo : ConstantVec) {
 | 
						|
    // Hoist and hide the base constant behind a bitcast.
 | 
						|
    Instruction *IP = findConstantInsertionPoint(ConstInfo);
 | 
						|
    IntegerType *Ty = ConstInfo.BaseConstant->getType();
 | 
						|
    Instruction *Base =
 | 
						|
      new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
 | 
						|
    DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
 | 
						|
                 << IP->getParent()->getName() << '\n' << *Base << '\n');
 | 
						|
    NumConstantsHoisted++;
 | 
						|
 | 
						|
    // Emit materialization code for all rebased constants.
 | 
						|
    for (auto const &RCI : ConstInfo.RebasedConstants) {
 | 
						|
      NumConstantsRebased++;
 | 
						|
      for (auto const &U : RCI.Uses)
 | 
						|
        emitBaseConstants(Base, RCI.Offset, U);
 | 
						|
    }
 | 
						|
 | 
						|
    // Use the same debug location as the last user of the constant.
 | 
						|
    assert(!Base->use_empty() && "The use list is empty!?");
 | 
						|
    assert(isa<Instruction>(Base->user_back()) &&
 | 
						|
           "All uses should be instructions.");
 | 
						|
    Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
 | 
						|
 | 
						|
    // Correct for base constant, which we counted above too.
 | 
						|
    NumConstantsRebased--;
 | 
						|
    MadeChange = true;
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Check all cast instructions we made a copy of and remove them if they
 | 
						|
/// have no more users.
 | 
						|
void ConstantHoisting::deleteDeadCastInst() const {
 | 
						|
  for (auto const &I : ClonedCastMap)
 | 
						|
    if (I.first->use_empty())
 | 
						|
      I.first->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Optimize expensive integer constants in the given function.
 | 
						|
bool ConstantHoisting::optimizeConstants(Function &Fn) {
 | 
						|
  // Collect all constant candidates.
 | 
						|
  collectConstantCandidates(Fn);
 | 
						|
 | 
						|
  // There are no constant candidates to worry about.
 | 
						|
  if (ConstCandVec.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Combine constants that can be easily materialized with an add from a common
 | 
						|
  // base constant.
 | 
						|
  findBaseConstants();
 | 
						|
 | 
						|
  // There are no constants to emit.
 | 
						|
  if (ConstantVec.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Finally hoist the base constant and emit materialization code for dependent
 | 
						|
  // constants.
 | 
						|
  bool MadeChange = emitBaseConstants();
 | 
						|
 | 
						|
  // Cleanup dead instructions.
 | 
						|
  deleteDeadCastInst();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 |