mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3694 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			502 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- InstrSelectionSupport.cpp -----------------------------------------===//
 | 
						|
//
 | 
						|
// Target-independent instruction selection code.  See SparcInstrSelection.cpp
 | 
						|
// for usage.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/InstrSelectionSupport.h"
 | 
						|
#include "llvm/CodeGen/InstrSelection.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrAnnot.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForMethod.h"
 | 
						|
#include "llvm/CodeGen/InstrForest.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/MachineRegInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
using std::vector;
 | 
						|
 | 
						|
//*************************** Local Functions ******************************/
 | 
						|
 | 
						|
 | 
						|
// Generate code to load the constant into a TmpInstruction (virtual reg) and
 | 
						|
// returns the virtual register.
 | 
						|
// 
 | 
						|
static TmpInstruction*
 | 
						|
InsertCodeToLoadConstant(Function *F,
 | 
						|
                         Value* opValue,
 | 
						|
                         Instruction* vmInstr,
 | 
						|
                         vector<MachineInstr*>& loadConstVec,
 | 
						|
                         TargetMachine& target)
 | 
						|
{
 | 
						|
  // Create a tmp virtual register to hold the constant.
 | 
						|
  TmpInstruction* tmpReg = new TmpInstruction(opValue);
 | 
						|
  MachineCodeForInstruction &mcfi = MachineCodeForInstruction::get(vmInstr);
 | 
						|
  mcfi.addTemp(tmpReg);
 | 
						|
  
 | 
						|
  target.getInstrInfo().CreateCodeToLoadConst(target, F, opValue, tmpReg,
 | 
						|
                                              loadConstVec, mcfi);
 | 
						|
  
 | 
						|
  // Record the mapping from the tmp VM instruction to machine instruction.
 | 
						|
  // Do this for all machine instructions that were not mapped to any
 | 
						|
  // other temp values created by 
 | 
						|
  // tmpReg->addMachineInstruction(loadConstVec.back());
 | 
						|
  
 | 
						|
  return tmpReg;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Function GetConstantValueAsUnsignedInt
 | 
						|
// Function GetConstantValueAsSignedInt
 | 
						|
// 
 | 
						|
// Convenience functions to get the value of an integral constant, for an
 | 
						|
// appropriate integer or non-integer type that can be held in a signed
 | 
						|
// or unsigned integer respectively.  The type of the argument must be
 | 
						|
// the following:
 | 
						|
//      Signed or unsigned integer
 | 
						|
//      Boolean
 | 
						|
//      Pointer
 | 
						|
// 
 | 
						|
// isValidConstant is set to true if a valid constant was found.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
uint64_t
 | 
						|
GetConstantValueAsUnsignedInt(const Value *V,
 | 
						|
                              bool &isValidConstant)
 | 
						|
{
 | 
						|
  isValidConstant = true;
 | 
						|
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    if (const ConstantBool *CB = dyn_cast<ConstantBool>(V))
 | 
						|
      return (int64_t)CB->getValue();
 | 
						|
    else if (const ConstantSInt *CS = dyn_cast<ConstantSInt>(V))
 | 
						|
      return (uint64_t)CS->getValue();
 | 
						|
    else if (const ConstantUInt *CU = dyn_cast<ConstantUInt>(V))
 | 
						|
      return CU->getValue();
 | 
						|
 | 
						|
  isValidConstant = false;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
int64_t
 | 
						|
GetConstantValueAsSignedInt(const Value *V,
 | 
						|
                            bool &isValidConstant)
 | 
						|
{
 | 
						|
  uint64_t C = GetConstantValueAsUnsignedInt(V, isValidConstant);
 | 
						|
  if (isValidConstant) {
 | 
						|
    if (V->getType()->isSigned() || C < INT64_MAX) // safe to cast to signed
 | 
						|
      return (int64_t) C;
 | 
						|
    else
 | 
						|
      isValidConstant = false;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Function: FoldGetElemChain
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//   Fold a chain of GetElementPtr instructions containing only
 | 
						|
//   constant offsets into an equivalent (Pointer, IndexVector) pair.
 | 
						|
//   Returns the pointer Value, and stores the resulting IndexVector
 | 
						|
//   in argument chainIdxVec. This is a helper function for
 | 
						|
//   FoldConstantIndices that does the actual folding. 
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
static Value*
 | 
						|
FoldGetElemChain(InstrTreeNode* ptrNode, vector<Value*>& chainIdxVec)
 | 
						|
{
 | 
						|
  InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
 | 
						|
  GetElementPtrInst* gepInst =
 | 
						|
    dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
 | 
						|
 | 
						|
  // ptr value is not computed in this tree or ptr value does not come from GEP
 | 
						|
  // instruction
 | 
						|
  if (gepInst == NULL)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // Return NULL if we don't fold any instructions in.
 | 
						|
  Value* ptrVal = NULL;
 | 
						|
 | 
						|
  // Remember if the last instruction had a leading [0] index.
 | 
						|
  bool hasLeadingZero = false;
 | 
						|
 | 
						|
  // Now chase the chain of getElementInstr instructions, if any.
 | 
						|
  // Check for any non-constant indices and stop there.
 | 
						|
  // 
 | 
						|
  InstructionNode* ptrChild = gepNode;
 | 
						|
  while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
 | 
						|
                      ptrChild->getOpLabel() == GetElemPtrIdx))
 | 
						|
    {
 | 
						|
      // Child is a GetElemPtr instruction
 | 
						|
      gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
 | 
						|
      User::op_iterator OI, firstIdx = gepInst->idx_begin();
 | 
						|
      User::op_iterator lastIdx = gepInst->idx_end();
 | 
						|
      bool allConstantOffsets = true;
 | 
						|
 | 
						|
      // Check that all offsets are constant for this instruction
 | 
						|
      for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
 | 
						|
        allConstantOffsets = isa<ConstantInt>(*OI);
 | 
						|
 | 
						|
      if (allConstantOffsets)
 | 
						|
        { // Get pointer value out of ptrChild.
 | 
						|
          ptrVal = gepInst->getPointerOperand();
 | 
						|
 | 
						|
          // Check for a leading [0] index, if any.  It will be discarded later.
 | 
						|
          hasLeadingZero = (*firstIdx ==
 | 
						|
                              Constant::getNullValue((*firstIdx)->getType()));
 | 
						|
 | 
						|
          // Insert its index vector at the start, skipping any leading [0]
 | 
						|
          chainIdxVec.insert(chainIdxVec.begin(),
 | 
						|
                             firstIdx + hasLeadingZero, lastIdx);
 | 
						|
 | 
						|
          // Mark the folded node so no code is generated for it.
 | 
						|
          ((InstructionNode*) ptrChild)->markFoldedIntoParent();
 | 
						|
        }
 | 
						|
      else // cannot fold this getElementPtr instr. or any further ones
 | 
						|
        break;
 | 
						|
 | 
						|
      ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
 | 
						|
    }
 | 
						|
 | 
						|
  // If the first getElementPtr instruction had a leading [0], add it back.
 | 
						|
  // Note that this instruction is the *last* one successfully folded above.
 | 
						|
  if (ptrVal && hasLeadingZero) 
 | 
						|
    chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
 | 
						|
 | 
						|
  return ptrVal;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Function: GetMemInstArgs
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//   Get the pointer value and the index vector for a memory operation
 | 
						|
//   (GetElementPtr, Load, or Store).  If all indices of the given memory
 | 
						|
//   operation are constant, fold in constant indices in a chain of
 | 
						|
//   preceding GetElementPtr instructions (if any), and return the
 | 
						|
//   pointer value of the first instruction in the chain.
 | 
						|
//   All folded instructions are marked so no code is generated for them.
 | 
						|
//
 | 
						|
// Return values:
 | 
						|
//   Returns the pointer Value to use.
 | 
						|
//   Returns the resulting IndexVector in idxVec.
 | 
						|
//   Returns true/false in allConstantIndices if all indices are/aren't const.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
// Check for a constant (uint) 0.
 | 
						|
inline bool
 | 
						|
IsZero(Value* idx)
 | 
						|
{
 | 
						|
  return (isa<ConstantInt>(idx) && cast<ConstantInt>(idx)->isNullValue());
 | 
						|
}
 | 
						|
 | 
						|
Value*
 | 
						|
GetMemInstArgs(const InstructionNode* memInstrNode,
 | 
						|
               vector<Value*>& idxVec,
 | 
						|
               bool& allConstantIndices)
 | 
						|
{
 | 
						|
  allConstantIndices = true;
 | 
						|
  Instruction* memInst = memInstrNode->getInstruction();
 | 
						|
 | 
						|
  // If there is a GetElemPtr instruction to fold in to this instr,
 | 
						|
  // it must be in the left child for Load and GetElemPtr, and in the
 | 
						|
  // right child for Store instructions.
 | 
						|
  InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
 | 
						|
                             ? memInstrNode->rightChild()
 | 
						|
                             : memInstrNode->leftChild()); 
 | 
						|
 | 
						|
  // Default pointer is the one from the current instruction.
 | 
						|
  Value* ptrVal = ptrChild->getValue(); 
 | 
						|
 | 
						|
  // GEP is the only indexed memory instruction.  gepI is used below.
 | 
						|
  GetElementPtrInst* gepI = dyn_cast<GetElementPtrInst>(memInst);
 | 
						|
 | 
						|
  // If memInst is a GEP, check if all indices are constant for this instruction
 | 
						|
  if (gepI)
 | 
						|
    for (User::op_iterator OI=gepI->idx_begin(), OE=gepI->idx_end();
 | 
						|
         allConstantIndices && OI != OE; ++OI)
 | 
						|
      if (! isa<Constant>(*OI))
 | 
						|
        allConstantIndices = false;     // note: this also terminates loop!
 | 
						|
 | 
						|
  // If we have only constant indices, fold chains of constant indices
 | 
						|
  // in this and any preceding GetElemPtr instructions.
 | 
						|
  bool foldedGEPs = false;
 | 
						|
  if (allConstantIndices)
 | 
						|
    if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec))
 | 
						|
      {
 | 
						|
        ptrVal = newPtr;
 | 
						|
        foldedGEPs = true;
 | 
						|
        assert((!gepI || IsZero(*gepI->idx_begin())) && "1st index not 0");
 | 
						|
      }
 | 
						|
 | 
						|
  // Append the index vector of the current instruction, if any.
 | 
						|
  // Skip the leading [0] index if preceding GEPs were folded into this.
 | 
						|
  if (gepI)
 | 
						|
    idxVec.insert(idxVec.end(), gepI->idx_begin() +foldedGEPs, gepI->idx_end());
 | 
						|
 | 
						|
  return ptrVal;
 | 
						|
}
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// Function Set2OperandsFromInstr
 | 
						|
// Function Set3OperandsFromInstr
 | 
						|
// 
 | 
						|
// For the common case of 2- and 3-operand arithmetic/logical instructions,
 | 
						|
// set the m/c instr. operands directly from the VM instruction's operands.
 | 
						|
// Check whether the first or second operand is 0 and can use a dedicated "0"
 | 
						|
// register.
 | 
						|
// Check whether the second operand should use an immediate field or register.
 | 
						|
// (First and third operands are never immediates for such instructions.)
 | 
						|
// 
 | 
						|
// Arguments:
 | 
						|
// canDiscardResult: Specifies that the result operand can be discarded
 | 
						|
//		     by using the dedicated "0"
 | 
						|
// 
 | 
						|
// op1position, op2position and resultPosition: Specify in which position
 | 
						|
//		     in the machine instruction the 3 operands (arg1, arg2
 | 
						|
//		     and result) should go.
 | 
						|
// 
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
void
 | 
						|
Set2OperandsFromInstr(MachineInstr* minstr,
 | 
						|
		      InstructionNode* vmInstrNode,
 | 
						|
		      const TargetMachine& target,
 | 
						|
		      bool canDiscardResult,
 | 
						|
		      int op1Position,
 | 
						|
		      int resultPosition)
 | 
						|
{
 | 
						|
  Set3OperandsFromInstr(minstr, vmInstrNode, target,
 | 
						|
			canDiscardResult, op1Position,
 | 
						|
			/*op2Position*/ -1, resultPosition);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void
 | 
						|
Set3OperandsFromInstr(MachineInstr* minstr,
 | 
						|
		      InstructionNode* vmInstrNode,
 | 
						|
		      const TargetMachine& target,
 | 
						|
		      bool canDiscardResult,
 | 
						|
		      int op1Position,
 | 
						|
		      int op2Position,
 | 
						|
		      int resultPosition)
 | 
						|
{
 | 
						|
  assert(op1Position >= 0);
 | 
						|
  assert(resultPosition >= 0);
 | 
						|
  
 | 
						|
  // operand 1
 | 
						|
  minstr->SetMachineOperandVal(op1Position, MachineOperand::MO_VirtualRegister,
 | 
						|
			    vmInstrNode->leftChild()->getValue());   
 | 
						|
  
 | 
						|
  // operand 2 (if any)
 | 
						|
  if (op2Position >= 0)
 | 
						|
    minstr->SetMachineOperandVal(op2Position, MachineOperand::MO_VirtualRegister,
 | 
						|
			      vmInstrNode->rightChild()->getValue());   
 | 
						|
  
 | 
						|
  // result operand: if it can be discarded, use a dead register if one exists
 | 
						|
  if (canDiscardResult && target.getRegInfo().getZeroRegNum() >= 0)
 | 
						|
    minstr->SetMachineOperandReg(resultPosition,
 | 
						|
			      target.getRegInfo().getZeroRegNum());
 | 
						|
  else
 | 
						|
    minstr->SetMachineOperandVal(resultPosition,
 | 
						|
			      MachineOperand::MO_VirtualRegister, vmInstrNode->getValue());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
MachineOperand::MachineOperandType
 | 
						|
ChooseRegOrImmed(Value* val,
 | 
						|
		 MachineOpCode opCode,
 | 
						|
		 const TargetMachine& target,
 | 
						|
		 bool canUseImmed,
 | 
						|
		 unsigned int& getMachineRegNum,
 | 
						|
		 int64_t& getImmedValue)
 | 
						|
{
 | 
						|
  MachineOperand::MachineOperandType opType =
 | 
						|
    MachineOperand::MO_VirtualRegister;
 | 
						|
  getMachineRegNum = 0;
 | 
						|
  getImmedValue = 0;
 | 
						|
  
 | 
						|
  // Check for the common case first: argument is not constant
 | 
						|
  // 
 | 
						|
  Constant *CPV = dyn_cast<Constant>(val);
 | 
						|
  if (!CPV) return opType;
 | 
						|
 | 
						|
  if (ConstantBool *CPB = dyn_cast<ConstantBool>(CPV))
 | 
						|
    {
 | 
						|
      if (!CPB->getValue() && target.getRegInfo().getZeroRegNum() >= 0)
 | 
						|
	{
 | 
						|
	  getMachineRegNum = target.getRegInfo().getZeroRegNum();
 | 
						|
	  return MachineOperand::MO_MachineRegister;
 | 
						|
	}
 | 
						|
 | 
						|
      getImmedValue = 1;
 | 
						|
      return MachineOperand::MO_SignExtendedImmed;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Otherwise it needs to be an integer or a NULL pointer
 | 
						|
  if (! CPV->getType()->isInteger() &&
 | 
						|
      ! (isa<PointerType>(CPV->getType()) &&
 | 
						|
         CPV->isNullValue()))
 | 
						|
    return opType;
 | 
						|
  
 | 
						|
  // Now get the constant value and check if it fits in the IMMED field.
 | 
						|
  // Take advantage of the fact that the max unsigned value will rarely
 | 
						|
  // fit into any IMMED field and ignore that case (i.e., cast smaller
 | 
						|
  // unsigned constants to signed).
 | 
						|
  // 
 | 
						|
  int64_t intValue;
 | 
						|
  if (isa<PointerType>(CPV->getType()))
 | 
						|
    {
 | 
						|
      intValue = 0;
 | 
						|
    }
 | 
						|
  else if (CPV->getType()->isSigned())
 | 
						|
    {
 | 
						|
      intValue = cast<ConstantSInt>(CPV)->getValue();
 | 
						|
    }
 | 
						|
  else
 | 
						|
    {
 | 
						|
      uint64_t V = cast<ConstantUInt>(CPV)->getValue();
 | 
						|
      if (V >= INT64_MAX) return opType;
 | 
						|
      intValue = (int64_t)V;
 | 
						|
    }
 | 
						|
 | 
						|
  if (intValue == 0 && target.getRegInfo().getZeroRegNum() >= 0)
 | 
						|
    {
 | 
						|
      opType = MachineOperand::MO_MachineRegister;
 | 
						|
      getMachineRegNum = target.getRegInfo().getZeroRegNum();
 | 
						|
    }
 | 
						|
  else if (canUseImmed &&
 | 
						|
	   target.getInstrInfo().constantFitsInImmedField(opCode, intValue))
 | 
						|
    {
 | 
						|
      opType = CPV->getType()->isSigned()
 | 
						|
        ? MachineOperand::MO_SignExtendedImmed
 | 
						|
        : MachineOperand::MO_UnextendedImmed;
 | 
						|
      getImmedValue = intValue;
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opType;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Function: FixConstantOperandsForInstr
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
// Special handling for constant operands of a machine instruction
 | 
						|
// -- if the constant is 0, use the hardwired 0 register, if any;
 | 
						|
// -- if the constant fits in the IMMEDIATE field, use that field;
 | 
						|
// -- else create instructions to put the constant into a register, either
 | 
						|
//    directly or by loading explicitly from the constant pool.
 | 
						|
// 
 | 
						|
// In the first 2 cases, the operand of `minstr' is modified in place.
 | 
						|
// Returns a vector of machine instructions generated for operands that
 | 
						|
// fall under case 3; these must be inserted before `minstr'.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
vector<MachineInstr*>
 | 
						|
FixConstantOperandsForInstr(Instruction* vmInstr,
 | 
						|
                            MachineInstr* minstr,
 | 
						|
                            TargetMachine& target)
 | 
						|
{
 | 
						|
  vector<MachineInstr*> loadConstVec;
 | 
						|
  
 | 
						|
  const MachineInstrDescriptor& instrDesc =
 | 
						|
    target.getInstrInfo().getDescriptor(minstr->getOpCode());
 | 
						|
  
 | 
						|
  Function *F = vmInstr->getParent()->getParent();
 | 
						|
  
 | 
						|
  for (unsigned op=0; op < minstr->getNumOperands(); op++)
 | 
						|
    {
 | 
						|
      const MachineOperand& mop = minstr->getOperand(op);
 | 
						|
          
 | 
						|
      // skip the result position (for efficiency below) and any other
 | 
						|
      // positions already marked as not a virtual register
 | 
						|
      if (instrDesc.resultPos == (int) op || 
 | 
						|
          mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
 | 
						|
          mop.getVRegValue() == NULL)
 | 
						|
        {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
          
 | 
						|
      Value* opValue = mop.getVRegValue();
 | 
						|
      bool constantThatMustBeLoaded = false;
 | 
						|
      
 | 
						|
      if (Constant *opConst = dyn_cast<Constant>(opValue))
 | 
						|
        {
 | 
						|
          unsigned int machineRegNum;
 | 
						|
          int64_t immedValue;
 | 
						|
          MachineOperand::MachineOperandType opType =
 | 
						|
            ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
 | 
						|
                             (target.getInstrInfo().getImmedConstantPos(minstr->getOpCode()) == (int) op),
 | 
						|
                             machineRegNum, immedValue);
 | 
						|
          
 | 
						|
          if (opType == MachineOperand::MO_MachineRegister)
 | 
						|
            minstr->SetMachineOperandReg(op, machineRegNum);
 | 
						|
          else if (opType == MachineOperand::MO_VirtualRegister)
 | 
						|
            constantThatMustBeLoaded = true; // load is generated below
 | 
						|
          else
 | 
						|
            minstr->SetMachineOperandConst(op, opType, immedValue);
 | 
						|
        }
 | 
						|
      
 | 
						|
      if (constantThatMustBeLoaded || isa<GlobalValue>(opValue))
 | 
						|
        { // opValue is a constant that must be explicitly loaded into a reg.
 | 
						|
          TmpInstruction* tmpReg = InsertCodeToLoadConstant(F, opValue,vmInstr,
 | 
						|
                                                            loadConstVec,
 | 
						|
                                                            target);
 | 
						|
          minstr->SetMachineOperandVal(op, MachineOperand::MO_VirtualRegister,
 | 
						|
                                       tmpReg);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  
 | 
						|
  // 
 | 
						|
  // Also, check for implicit operands used by the machine instruction
 | 
						|
  // (no need to check those defined since they cannot be constants).
 | 
						|
  // These include:
 | 
						|
  // -- arguments to a Call
 | 
						|
  // -- return value of a Return
 | 
						|
  // Any such operand that is a constant value needs to be fixed also.
 | 
						|
  // The current instructions with implicit refs (viz., Call and Return)
 | 
						|
  // have no immediate fields, so the constant always needs to be loaded
 | 
						|
  // into a register.
 | 
						|
  // 
 | 
						|
  bool isCall = target.getInstrInfo().isCall(minstr->getOpCode());
 | 
						|
  unsigned lastCallArgNum = 0;          // unused if not a call
 | 
						|
  CallArgsDescriptor* argDesc = NULL;   // unused if not a call
 | 
						|
  if (isCall)
 | 
						|
    argDesc = CallArgsDescriptor::get(minstr);
 | 
						|
  
 | 
						|
  for (unsigned i=0, N=minstr->getNumImplicitRefs(); i < N; ++i)
 | 
						|
    if (isa<Constant>(minstr->getImplicitRef(i)) ||
 | 
						|
        isa<GlobalValue>(minstr->getImplicitRef(i)))
 | 
						|
      {
 | 
						|
        Value* oldVal = minstr->getImplicitRef(i);
 | 
						|
        TmpInstruction* tmpReg =
 | 
						|
          InsertCodeToLoadConstant(F, oldVal, vmInstr, loadConstVec, target);
 | 
						|
        minstr->setImplicitRef(i, tmpReg);
 | 
						|
        
 | 
						|
        if (isCall)
 | 
						|
          { // find and replace the argument in the CallArgsDescriptor
 | 
						|
            unsigned i=lastCallArgNum;
 | 
						|
            while (argDesc->getArgInfo(i).getArgVal() != oldVal)
 | 
						|
              ++i;
 | 
						|
            assert(i < argDesc->getNumArgs() &&
 | 
						|
                   "Constant operands to a call *must* be in the arg list");
 | 
						|
            lastCallArgNum = i;
 | 
						|
            argDesc->getArgInfo(i).replaceArgVal(tmpReg);
 | 
						|
          }
 | 
						|
      }
 | 
						|
  
 | 
						|
  return loadConstVec;
 | 
						|
}
 | 
						|
 | 
						|
 |