mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-01 00:33:09 +00:00
d0fde30ce8
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9903 91177308-0d34-0410-b5e6-96231b3b80d8
337 lines
12 KiB
C++
337 lines
12 KiB
C++
//===-- InstrForest.cpp - Build instruction forest for inst selection -----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The key goal is to group instructions into a single
|
|
// tree if one or more of them might be potentially combined into a single
|
|
// complex instruction in the target machine.
|
|
// Since this grouping is completely machine-independent, we do it as
|
|
// aggressive as possible to exploit any possible target instructions.
|
|
// In particular, we group two instructions O and I if:
|
|
// (1) Instruction O computes an operand used by instruction I,
|
|
// and (2) O and I are part of the same basic block,
|
|
// and (3) O has only a single use, viz., I.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/CodeGen/InstrForest.h"
|
|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "Support/STLExtras.h"
|
|
#include "Config/alloca.h"
|
|
|
|
namespace llvm {
|
|
|
|
//------------------------------------------------------------------------
|
|
// class InstrTreeNode
|
|
//------------------------------------------------------------------------
|
|
|
|
void
|
|
InstrTreeNode::dump(int dumpChildren, int indent) const {
|
|
dumpNode(indent);
|
|
|
|
if (dumpChildren) {
|
|
if (LeftChild)
|
|
LeftChild->dump(dumpChildren, indent+1);
|
|
if (RightChild)
|
|
RightChild->dump(dumpChildren, indent+1);
|
|
}
|
|
}
|
|
|
|
|
|
InstructionNode::InstructionNode(Instruction* I)
|
|
: InstrTreeNode(NTInstructionNode, I), codeIsFoldedIntoParent(false)
|
|
{
|
|
opLabel = I->getOpcode();
|
|
|
|
// Distinguish special cases of some instructions such as Ret and Br
|
|
//
|
|
if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue()) {
|
|
opLabel = RetValueOp; // ret(value) operation
|
|
}
|
|
else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
|
|
{
|
|
opLabel = BrCondOp; // br(cond) operation
|
|
} else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT) {
|
|
opLabel = SetCCOp; // common label for all SetCC ops
|
|
} else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0) {
|
|
opLabel = AllocaN; // Alloca(ptr, N) operation
|
|
} else if (opLabel == Instruction::GetElementPtr &&
|
|
cast<GetElementPtrInst>(I)->hasIndices()) {
|
|
opLabel = opLabel + 100; // getElem with index vector
|
|
} else if (opLabel == Instruction::Xor &&
|
|
BinaryOperator::isNot(I)) {
|
|
opLabel = (I->getType() == Type::BoolTy)? NotOp // boolean Not operator
|
|
: BNotOp; // bitwise Not operator
|
|
} else if (opLabel == Instruction::And || opLabel == Instruction::Or ||
|
|
opLabel == Instruction::Xor) {
|
|
// Distinguish bitwise operators from logical operators!
|
|
if (I->getType() != Type::BoolTy)
|
|
opLabel = opLabel + 100; // bitwise operator
|
|
} else if (opLabel == Instruction::Cast) {
|
|
const Type *ITy = I->getType();
|
|
switch(ITy->getPrimitiveID())
|
|
{
|
|
case Type::BoolTyID: opLabel = ToBoolTy; break;
|
|
case Type::UByteTyID: opLabel = ToUByteTy; break;
|
|
case Type::SByteTyID: opLabel = ToSByteTy; break;
|
|
case Type::UShortTyID: opLabel = ToUShortTy; break;
|
|
case Type::ShortTyID: opLabel = ToShortTy; break;
|
|
case Type::UIntTyID: opLabel = ToUIntTy; break;
|
|
case Type::IntTyID: opLabel = ToIntTy; break;
|
|
case Type::ULongTyID: opLabel = ToULongTy; break;
|
|
case Type::LongTyID: opLabel = ToLongTy; break;
|
|
case Type::FloatTyID: opLabel = ToFloatTy; break;
|
|
case Type::DoubleTyID: opLabel = ToDoubleTy; break;
|
|
case Type::ArrayTyID: opLabel = ToArrayTy; break;
|
|
case Type::PointerTyID: opLabel = ToPointerTy; break;
|
|
default:
|
|
// Just use `Cast' opcode otherwise. It's probably ignored.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
InstructionNode::dumpNode(int indent) const {
|
|
for (int i=0; i < indent; i++)
|
|
std::cerr << " ";
|
|
std::cerr << getInstruction()->getOpcodeName()
|
|
<< " [label " << getOpLabel() << "]" << "\n";
|
|
}
|
|
|
|
void
|
|
VRegListNode::dumpNode(int indent) const {
|
|
for (int i=0; i < indent; i++)
|
|
std::cerr << " ";
|
|
|
|
std::cerr << "List" << "\n";
|
|
}
|
|
|
|
|
|
void
|
|
VRegNode::dumpNode(int indent) const {
|
|
for (int i=0; i < indent; i++)
|
|
std::cerr << " ";
|
|
|
|
std::cerr << "VReg " << getValue() << "\t(type "
|
|
<< (int) getValue()->getValueType() << ")" << "\n";
|
|
}
|
|
|
|
void
|
|
ConstantNode::dumpNode(int indent) const {
|
|
for (int i=0; i < indent; i++)
|
|
std::cerr << " ";
|
|
|
|
std::cerr << "Constant " << getValue() << "\t(type "
|
|
<< (int) getValue()->getValueType() << ")" << "\n";
|
|
}
|
|
|
|
void LabelNode::dumpNode(int indent) const {
|
|
for (int i=0; i < indent; i++)
|
|
std::cerr << " ";
|
|
|
|
std::cerr << "Label " << getValue() << "\n";
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// class InstrForest
|
|
//
|
|
// A forest of instruction trees, usually for a single method.
|
|
//------------------------------------------------------------------------
|
|
|
|
InstrForest::InstrForest(Function *F) {
|
|
for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
|
|
for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
buildTreeForInstruction(I);
|
|
}
|
|
}
|
|
|
|
InstrForest::~InstrForest() {
|
|
for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
|
|
}
|
|
|
|
void InstrForest::dump() const {
|
|
for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
|
|
(*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
|
|
}
|
|
|
|
inline void InstrForest::eraseRoot(InstructionNode* node) {
|
|
for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
|
|
RI != RE; ++RI)
|
|
if (*RI == node)
|
|
treeRoots.erase(RI.base()-1);
|
|
}
|
|
|
|
inline void InstrForest::noteTreeNodeForInstr(Instruction *instr,
|
|
InstructionNode *treeNode) {
|
|
(*this)[instr] = treeNode;
|
|
treeRoots.push_back(treeNode); // mark node as root of a new tree
|
|
}
|
|
|
|
|
|
inline void InstrForest::setLeftChild(InstrTreeNode *parent,
|
|
InstrTreeNode *child) {
|
|
parent->LeftChild = child;
|
|
child->Parent = parent;
|
|
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
|
|
eraseRoot(instrNode); // no longer a tree root
|
|
}
|
|
|
|
inline void InstrForest::setRightChild(InstrTreeNode *parent,
|
|
InstrTreeNode *child) {
|
|
parent->RightChild = child;
|
|
child->Parent = parent;
|
|
if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
|
|
eraseRoot(instrNode); // no longer a tree root
|
|
}
|
|
|
|
|
|
InstructionNode* InstrForest::buildTreeForInstruction(Instruction *instr) {
|
|
InstructionNode *treeNode = getTreeNodeForInstr(instr);
|
|
if (treeNode) {
|
|
// treeNode has already been constructed for this instruction
|
|
assert(treeNode->getInstruction() == instr);
|
|
return treeNode;
|
|
}
|
|
|
|
// Otherwise, create a new tree node for this instruction.
|
|
//
|
|
treeNode = new InstructionNode(instr);
|
|
noteTreeNodeForInstr(instr, treeNode);
|
|
|
|
if (instr->getOpcode() == Instruction::Call) {
|
|
// Operands of call instruction
|
|
return treeNode;
|
|
}
|
|
|
|
// If the instruction has more than 2 instruction operands,
|
|
// then we need to create artificial list nodes to hold them.
|
|
// (Note that we only count operands that get tree nodes, and not
|
|
// others such as branch labels for a branch or switch instruction.)
|
|
//
|
|
// To do this efficiently, we'll walk all operands, build treeNodes
|
|
// for all appropriate operands and save them in an array. We then
|
|
// insert children at the end, creating list nodes where needed.
|
|
// As a performance optimization, allocate a child array only
|
|
// if a fixed array is too small.
|
|
//
|
|
int numChildren = 0;
|
|
InstrTreeNode** childArray = new InstrTreeNode*[instr->getNumOperands()];
|
|
|
|
//
|
|
// Walk the operands of the instruction
|
|
//
|
|
for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
|
|
{
|
|
Value* operand = *O;
|
|
|
|
// Check if the operand is a data value, not an branch label, type,
|
|
// method or module. If the operand is an address type (i.e., label
|
|
// or method) that is used in an non-branching operation, e.g., `add'.
|
|
// that should be considered a data value.
|
|
|
|
// Check latter condition here just to simplify the next IF.
|
|
bool includeAddressOperand =
|
|
(isa<BasicBlock>(operand) || isa<Function>(operand))
|
|
&& !instr->isTerminator();
|
|
|
|
if (includeAddressOperand || isa<Instruction>(operand) ||
|
|
isa<Constant>(operand) || isa<Argument>(operand) ||
|
|
isa<GlobalVariable>(operand))
|
|
{
|
|
// This operand is a data value
|
|
|
|
// An instruction that computes the incoming value is added as a
|
|
// child of the current instruction if:
|
|
// the value has only a single use
|
|
// AND both instructions are in the same basic block.
|
|
// AND the current instruction is not a PHI (because the incoming
|
|
// value is conceptually in a predecessor block,
|
|
// even though it may be in the same static block)
|
|
//
|
|
// (Note that if the value has only a single use (viz., `instr'),
|
|
// the def of the value can be safely moved just before instr
|
|
// and therefore it is safe to combine these two instructions.)
|
|
//
|
|
// In all other cases, the virtual register holding the value
|
|
// is used directly, i.e., made a child of the instruction node.
|
|
//
|
|
InstrTreeNode* opTreeNode;
|
|
if (isa<Instruction>(operand) && operand->hasOneUse() &&
|
|
cast<Instruction>(operand)->getParent() == instr->getParent() &&
|
|
instr->getOpcode() != Instruction::PHI &&
|
|
instr->getOpcode() != Instruction::Call)
|
|
{
|
|
// Recursively create a treeNode for it.
|
|
opTreeNode = buildTreeForInstruction((Instruction*)operand);
|
|
} else if (Constant *CPV = dyn_cast<Constant>(operand)) {
|
|
// Create a leaf node for a constant
|
|
opTreeNode = new ConstantNode(CPV);
|
|
} else {
|
|
// Create a leaf node for the virtual register
|
|
opTreeNode = new VRegNode(operand);
|
|
}
|
|
|
|
childArray[numChildren++] = opTreeNode;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------
|
|
// Add any selected operands as children in the tree.
|
|
// Certain instructions can have more than 2 in some instances (viz.,
|
|
// a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
|
|
// array or struct). Make the operands of every such instruction into
|
|
// a right-leaning binary tree with the operand nodes at the leaves
|
|
// and VRegList nodes as internal nodes.
|
|
//--------------------------------------------------------------------
|
|
|
|
InstrTreeNode *parent = treeNode;
|
|
|
|
if (numChildren > 2) {
|
|
unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
|
|
assert(instrOpcode == Instruction::PHI ||
|
|
instrOpcode == Instruction::Call ||
|
|
instrOpcode == Instruction::Load ||
|
|
instrOpcode == Instruction::Store ||
|
|
instrOpcode == Instruction::GetElementPtr);
|
|
}
|
|
|
|
// Insert the first child as a direct child
|
|
if (numChildren >= 1)
|
|
setLeftChild(parent, childArray[0]);
|
|
|
|
int n;
|
|
|
|
// Create a list node for children 2 .. N-1, if any
|
|
for (n = numChildren-1; n >= 2; n--) {
|
|
// We have more than two children
|
|
InstrTreeNode *listNode = new VRegListNode();
|
|
setRightChild(parent, listNode);
|
|
setLeftChild(listNode, childArray[numChildren - n]);
|
|
parent = listNode;
|
|
}
|
|
|
|
// Now insert the last remaining child (if any).
|
|
if (numChildren >= 2) {
|
|
assert(n == 1);
|
|
setRightChild(parent, childArray[numChildren - 1]);
|
|
}
|
|
|
|
delete [] childArray;
|
|
return treeNode;
|
|
}
|
|
|
|
} // End llvm namespace
|