mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	really does need to be a vector type, because TargetLowering::getOperationAction for SIGN_EXTEND_INREG uses that type, and it needs to be able to distinguish between vectors and scalars. Also, fix some more issues with legalization of vector casts. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93043 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2647 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2647 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the TargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtarget.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
 | |
|   bool isLocal = GV->hasLocalLinkage();
 | |
|   bool isDeclaration = GV->isDeclaration();
 | |
|   // FIXME: what should we do for protected and internal visibility?
 | |
|   // For variables, is internal different from hidden?
 | |
|   bool isHidden = GV->hasHiddenVisibility();
 | |
| 
 | |
|   if (reloc == Reloc::PIC_) {
 | |
|     if (isLocal || isHidden)
 | |
|       return TLSModel::LocalDynamic;
 | |
|     else
 | |
|       return TLSModel::GeneralDynamic;
 | |
|   } else {
 | |
|     if (!isDeclaration || isHidden)
 | |
|       return TLSModel::LocalExec;
 | |
|     else
 | |
|       return TLSModel::InitialExec;
 | |
|   }
 | |
| }
 | |
| }
 | |
| 
 | |
| /// InitLibcallNames - Set default libcall names.
 | |
| ///
 | |
| static void InitLibcallNames(const char **Names) {
 | |
|   Names[RTLIB::SHL_I16] = "__ashlhi3";
 | |
|   Names[RTLIB::SHL_I32] = "__ashlsi3";
 | |
|   Names[RTLIB::SHL_I64] = "__ashldi3";
 | |
|   Names[RTLIB::SHL_I128] = "__ashlti3";
 | |
|   Names[RTLIB::SRL_I16] = "__lshrhi3";
 | |
|   Names[RTLIB::SRL_I32] = "__lshrsi3";
 | |
|   Names[RTLIB::SRL_I64] = "__lshrdi3";
 | |
|   Names[RTLIB::SRL_I128] = "__lshrti3";
 | |
|   Names[RTLIB::SRA_I16] = "__ashrhi3";
 | |
|   Names[RTLIB::SRA_I32] = "__ashrsi3";
 | |
|   Names[RTLIB::SRA_I64] = "__ashrdi3";
 | |
|   Names[RTLIB::SRA_I128] = "__ashrti3";
 | |
|   Names[RTLIB::MUL_I8] = "__mulqi3";
 | |
|   Names[RTLIB::MUL_I16] = "__mulhi3";
 | |
|   Names[RTLIB::MUL_I32] = "__mulsi3";
 | |
|   Names[RTLIB::MUL_I64] = "__muldi3";
 | |
|   Names[RTLIB::MUL_I128] = "__multi3";
 | |
|   Names[RTLIB::SDIV_I8] = "__divqi3";
 | |
|   Names[RTLIB::SDIV_I16] = "__divhi3";
 | |
|   Names[RTLIB::SDIV_I32] = "__divsi3";
 | |
|   Names[RTLIB::SDIV_I64] = "__divdi3";
 | |
|   Names[RTLIB::SDIV_I128] = "__divti3";
 | |
|   Names[RTLIB::UDIV_I8] = "__udivqi3";
 | |
|   Names[RTLIB::UDIV_I16] = "__udivhi3";
 | |
|   Names[RTLIB::UDIV_I32] = "__udivsi3";
 | |
|   Names[RTLIB::UDIV_I64] = "__udivdi3";
 | |
|   Names[RTLIB::UDIV_I128] = "__udivti3";
 | |
|   Names[RTLIB::SREM_I8] = "__modqi3";
 | |
|   Names[RTLIB::SREM_I16] = "__modhi3";
 | |
|   Names[RTLIB::SREM_I32] = "__modsi3";
 | |
|   Names[RTLIB::SREM_I64] = "__moddi3";
 | |
|   Names[RTLIB::SREM_I128] = "__modti3";
 | |
|   Names[RTLIB::UREM_I8] = "__umodqi3";
 | |
|   Names[RTLIB::UREM_I16] = "__umodhi3";
 | |
|   Names[RTLIB::UREM_I32] = "__umodsi3";
 | |
|   Names[RTLIB::UREM_I64] = "__umoddi3";
 | |
|   Names[RTLIB::UREM_I128] = "__umodti3";
 | |
|   Names[RTLIB::NEG_I32] = "__negsi2";
 | |
|   Names[RTLIB::NEG_I64] = "__negdi2";
 | |
|   Names[RTLIB::ADD_F32] = "__addsf3";
 | |
|   Names[RTLIB::ADD_F64] = "__adddf3";
 | |
|   Names[RTLIB::ADD_F80] = "__addxf3";
 | |
|   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
 | |
|   Names[RTLIB::SUB_F32] = "__subsf3";
 | |
|   Names[RTLIB::SUB_F64] = "__subdf3";
 | |
|   Names[RTLIB::SUB_F80] = "__subxf3";
 | |
|   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
 | |
|   Names[RTLIB::MUL_F32] = "__mulsf3";
 | |
|   Names[RTLIB::MUL_F64] = "__muldf3";
 | |
|   Names[RTLIB::MUL_F80] = "__mulxf3";
 | |
|   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
 | |
|   Names[RTLIB::DIV_F32] = "__divsf3";
 | |
|   Names[RTLIB::DIV_F64] = "__divdf3";
 | |
|   Names[RTLIB::DIV_F80] = "__divxf3";
 | |
|   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
 | |
|   Names[RTLIB::REM_F32] = "fmodf";
 | |
|   Names[RTLIB::REM_F64] = "fmod";
 | |
|   Names[RTLIB::REM_F80] = "fmodl";
 | |
|   Names[RTLIB::REM_PPCF128] = "fmodl";
 | |
|   Names[RTLIB::POWI_F32] = "__powisf2";
 | |
|   Names[RTLIB::POWI_F64] = "__powidf2";
 | |
|   Names[RTLIB::POWI_F80] = "__powixf2";
 | |
|   Names[RTLIB::POWI_PPCF128] = "__powitf2";
 | |
|   Names[RTLIB::SQRT_F32] = "sqrtf";
 | |
|   Names[RTLIB::SQRT_F64] = "sqrt";
 | |
|   Names[RTLIB::SQRT_F80] = "sqrtl";
 | |
|   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
 | |
|   Names[RTLIB::LOG_F32] = "logf";
 | |
|   Names[RTLIB::LOG_F64] = "log";
 | |
|   Names[RTLIB::LOG_F80] = "logl";
 | |
|   Names[RTLIB::LOG_PPCF128] = "logl";
 | |
|   Names[RTLIB::LOG2_F32] = "log2f";
 | |
|   Names[RTLIB::LOG2_F64] = "log2";
 | |
|   Names[RTLIB::LOG2_F80] = "log2l";
 | |
|   Names[RTLIB::LOG2_PPCF128] = "log2l";
 | |
|   Names[RTLIB::LOG10_F32] = "log10f";
 | |
|   Names[RTLIB::LOG10_F64] = "log10";
 | |
|   Names[RTLIB::LOG10_F80] = "log10l";
 | |
|   Names[RTLIB::LOG10_PPCF128] = "log10l";
 | |
|   Names[RTLIB::EXP_F32] = "expf";
 | |
|   Names[RTLIB::EXP_F64] = "exp";
 | |
|   Names[RTLIB::EXP_F80] = "expl";
 | |
|   Names[RTLIB::EXP_PPCF128] = "expl";
 | |
|   Names[RTLIB::EXP2_F32] = "exp2f";
 | |
|   Names[RTLIB::EXP2_F64] = "exp2";
 | |
|   Names[RTLIB::EXP2_F80] = "exp2l";
 | |
|   Names[RTLIB::EXP2_PPCF128] = "exp2l";
 | |
|   Names[RTLIB::SIN_F32] = "sinf";
 | |
|   Names[RTLIB::SIN_F64] = "sin";
 | |
|   Names[RTLIB::SIN_F80] = "sinl";
 | |
|   Names[RTLIB::SIN_PPCF128] = "sinl";
 | |
|   Names[RTLIB::COS_F32] = "cosf";
 | |
|   Names[RTLIB::COS_F64] = "cos";
 | |
|   Names[RTLIB::COS_F80] = "cosl";
 | |
|   Names[RTLIB::COS_PPCF128] = "cosl";
 | |
|   Names[RTLIB::POW_F32] = "powf";
 | |
|   Names[RTLIB::POW_F64] = "pow";
 | |
|   Names[RTLIB::POW_F80] = "powl";
 | |
|   Names[RTLIB::POW_PPCF128] = "powl";
 | |
|   Names[RTLIB::CEIL_F32] = "ceilf";
 | |
|   Names[RTLIB::CEIL_F64] = "ceil";
 | |
|   Names[RTLIB::CEIL_F80] = "ceill";
 | |
|   Names[RTLIB::CEIL_PPCF128] = "ceill";
 | |
|   Names[RTLIB::TRUNC_F32] = "truncf";
 | |
|   Names[RTLIB::TRUNC_F64] = "trunc";
 | |
|   Names[RTLIB::TRUNC_F80] = "truncl";
 | |
|   Names[RTLIB::TRUNC_PPCF128] = "truncl";
 | |
|   Names[RTLIB::RINT_F32] = "rintf";
 | |
|   Names[RTLIB::RINT_F64] = "rint";
 | |
|   Names[RTLIB::RINT_F80] = "rintl";
 | |
|   Names[RTLIB::RINT_PPCF128] = "rintl";
 | |
|   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
 | |
|   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
 | |
|   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
 | |
|   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
 | |
|   Names[RTLIB::FLOOR_F32] = "floorf";
 | |
|   Names[RTLIB::FLOOR_F64] = "floor";
 | |
|   Names[RTLIB::FLOOR_F80] = "floorl";
 | |
|   Names[RTLIB::FLOOR_PPCF128] = "floorl";
 | |
|   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
 | |
|   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
 | |
|   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
 | |
|   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
 | |
|   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
 | |
|   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
 | |
|   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
 | |
|   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
 | |
|   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
 | |
|   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
 | |
|   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
 | |
|   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
 | |
|   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
 | |
|   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
 | |
|   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
 | |
|   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
 | |
|   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
 | |
|   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
 | |
|   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
 | |
|   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
 | |
|   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
 | |
|   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
 | |
|   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
 | |
|   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
 | |
|   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
 | |
|   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
 | |
|   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
 | |
|   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
 | |
|   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
 | |
|   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
 | |
|   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
 | |
|   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
 | |
|   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
 | |
|   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
 | |
|   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
 | |
|   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
 | |
|   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
 | |
|   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
 | |
|   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
 | |
|   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
 | |
|   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
 | |
|   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
 | |
|   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
 | |
|   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
 | |
|   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
 | |
|   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
 | |
|   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
 | |
|   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
 | |
|   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
 | |
|   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
 | |
|   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
 | |
|   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
 | |
|   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
 | |
|   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
 | |
|   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
 | |
|   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
 | |
|   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
 | |
|   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
 | |
|   Names[RTLIB::OEQ_F32] = "__eqsf2";
 | |
|   Names[RTLIB::OEQ_F64] = "__eqdf2";
 | |
|   Names[RTLIB::UNE_F32] = "__nesf2";
 | |
|   Names[RTLIB::UNE_F64] = "__nedf2";
 | |
|   Names[RTLIB::OGE_F32] = "__gesf2";
 | |
|   Names[RTLIB::OGE_F64] = "__gedf2";
 | |
|   Names[RTLIB::OLT_F32] = "__ltsf2";
 | |
|   Names[RTLIB::OLT_F64] = "__ltdf2";
 | |
|   Names[RTLIB::OLE_F32] = "__lesf2";
 | |
|   Names[RTLIB::OLE_F64] = "__ledf2";
 | |
|   Names[RTLIB::OGT_F32] = "__gtsf2";
 | |
|   Names[RTLIB::OGT_F64] = "__gtdf2";
 | |
|   Names[RTLIB::UO_F32] = "__unordsf2";
 | |
|   Names[RTLIB::UO_F64] = "__unorddf2";
 | |
|   Names[RTLIB::O_F32] = "__unordsf2";
 | |
|   Names[RTLIB::O_F64] = "__unorddf2";
 | |
|   Names[RTLIB::MEMCPY] = "memcpy";
 | |
|   Names[RTLIB::MEMMOVE] = "memmove";
 | |
|   Names[RTLIB::MEMSET] = "memset";
 | |
|   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
 | |
| }
 | |
| 
 | |
| /// InitLibcallCallingConvs - Set default libcall CallingConvs.
 | |
| ///
 | |
| static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
 | |
|   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
 | |
|     CCs[i] = CallingConv::C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFPEXT - Return the FPEXT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::f64)
 | |
|       return FPEXT_F32_F64;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPROUND - Return the FPROUND_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
 | |
|   if (RetVT == MVT::f32) {
 | |
|     if (OpVT == MVT::f64)
 | |
|       return FPROUND_F64_F32;
 | |
|     if (OpVT == MVT::f80)
 | |
|       return FPROUND_F80_F32;
 | |
|     if (OpVT == MVT::ppcf128)
 | |
|       return FPROUND_PPCF128_F32;
 | |
|   } else if (RetVT == MVT::f64) {
 | |
|     if (OpVT == MVT::f80)
 | |
|       return FPROUND_F80_F64;
 | |
|     if (OpVT == MVT::ppcf128)
 | |
|       return FPROUND_PPCF128_F64;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::i8)
 | |
|       return FPTOSINT_F32_I8;
 | |
|     if (RetVT == MVT::i16)
 | |
|       return FPTOSINT_F32_I16;
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F32_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F32_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F32_I128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F64_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F64_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F64_I128;
 | |
|   } else if (OpVT == MVT::f80) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_F80_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_F80_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_F80_I128;
 | |
|   } else if (OpVT == MVT::ppcf128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOSINT_PPCF128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOSINT_PPCF128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOSINT_PPCF128_I128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::f32) {
 | |
|     if (RetVT == MVT::i8)
 | |
|       return FPTOUINT_F32_I8;
 | |
|     if (RetVT == MVT::i16)
 | |
|       return FPTOUINT_F32_I16;
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F32_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F32_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F32_I128;
 | |
|   } else if (OpVT == MVT::f64) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F64_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F64_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F64_I128;
 | |
|   } else if (OpVT == MVT::f80) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_F80_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_F80_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_F80_I128;
 | |
|   } else if (OpVT == MVT::ppcf128) {
 | |
|     if (RetVT == MVT::i32)
 | |
|       return FPTOUINT_PPCF128_I32;
 | |
|     if (RetVT == MVT::i64)
 | |
|       return FPTOUINT_PPCF128_I64;
 | |
|     if (RetVT == MVT::i128)
 | |
|       return FPTOUINT_PPCF128_I128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::i32) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I32_F32;
 | |
|     else if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I32_F64;
 | |
|     else if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I32_F80;
 | |
|     else if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I32_PPCF128;
 | |
|   } else if (OpVT == MVT::i64) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I64_F32;
 | |
|     else if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I64_F64;
 | |
|     else if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I64_F80;
 | |
|     else if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I64_PPCF128;
 | |
|   } else if (OpVT == MVT::i128) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return SINTTOFP_I128_F32;
 | |
|     else if (RetVT == MVT::f64)
 | |
|       return SINTTOFP_I128_F64;
 | |
|     else if (RetVT == MVT::f80)
 | |
|       return SINTTOFP_I128_F80;
 | |
|     else if (RetVT == MVT::ppcf128)
 | |
|       return SINTTOFP_I128_PPCF128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
 | |
| /// UNKNOWN_LIBCALL if there is none.
 | |
| RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
 | |
|   if (OpVT == MVT::i32) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I32_F32;
 | |
|     else if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I32_F64;
 | |
|     else if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I32_F80;
 | |
|     else if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I32_PPCF128;
 | |
|   } else if (OpVT == MVT::i64) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I64_F32;
 | |
|     else if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I64_F64;
 | |
|     else if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I64_F80;
 | |
|     else if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I64_PPCF128;
 | |
|   } else if (OpVT == MVT::i128) {
 | |
|     if (RetVT == MVT::f32)
 | |
|       return UINTTOFP_I128_F32;
 | |
|     else if (RetVT == MVT::f64)
 | |
|       return UINTTOFP_I128_F64;
 | |
|     else if (RetVT == MVT::f80)
 | |
|       return UINTTOFP_I128_F80;
 | |
|     else if (RetVT == MVT::ppcf128)
 | |
|       return UINTTOFP_I128_PPCF128;
 | |
|   }
 | |
|   return UNKNOWN_LIBCALL;
 | |
| }
 | |
| 
 | |
| /// InitCmpLibcallCCs - Set default comparison libcall CC.
 | |
| ///
 | |
| static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
 | |
|   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
 | |
|   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
 | |
|   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
 | |
|   CCs[RTLIB::UNE_F32] = ISD::SETNE;
 | |
|   CCs[RTLIB::UNE_F64] = ISD::SETNE;
 | |
|   CCs[RTLIB::OGE_F32] = ISD::SETGE;
 | |
|   CCs[RTLIB::OGE_F64] = ISD::SETGE;
 | |
|   CCs[RTLIB::OLT_F32] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLT_F64] = ISD::SETLT;
 | |
|   CCs[RTLIB::OLE_F32] = ISD::SETLE;
 | |
|   CCs[RTLIB::OLE_F64] = ISD::SETLE;
 | |
|   CCs[RTLIB::OGT_F32] = ISD::SETGT;
 | |
|   CCs[RTLIB::OGT_F64] = ISD::SETGT;
 | |
|   CCs[RTLIB::UO_F32] = ISD::SETNE;
 | |
|   CCs[RTLIB::UO_F64] = ISD::SETNE;
 | |
|   CCs[RTLIB::O_F32] = ISD::SETEQ;
 | |
|   CCs[RTLIB::O_F64] = ISD::SETEQ;
 | |
| }
 | |
| 
 | |
| /// NOTE: The constructor takes ownership of TLOF.
 | |
| TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
 | |
|   : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
 | |
|   // All operations default to being supported.
 | |
|   memset(OpActions, 0, sizeof(OpActions));
 | |
|   memset(LoadExtActions, 0, sizeof(LoadExtActions));
 | |
|   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
 | |
|   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
 | |
|   memset(ConvertActions, 0, sizeof(ConvertActions));
 | |
|   memset(CondCodeActions, 0, sizeof(CondCodeActions));
 | |
| 
 | |
|   // Set default actions for various operations.
 | |
|   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
 | |
|     // Default all indexed load / store to expand.
 | |
|     for (unsigned IM = (unsigned)ISD::PRE_INC;
 | |
|          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
 | |
|       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
 | |
|       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
 | |
|     }
 | |
|     
 | |
|     // These operations default to expand.
 | |
|     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
 | |
|     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
 | |
|   }
 | |
| 
 | |
|   // Most targets ignore the @llvm.prefetch intrinsic.
 | |
|   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
 | |
|   
 | |
|   // ConstantFP nodes default to expand.  Targets can either change this to 
 | |
|   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
 | |
|   // to optimize expansions for certain constants.
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
 | |
| 
 | |
|   // These library functions default to expand.
 | |
|   setOperationAction(ISD::FLOG , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FLOG2, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FLOG10,MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FEXP , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FEXP2, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FLOG , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FLOG2, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FLOG10,MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FEXP , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FEXP2, MVT::f32, Expand);
 | |
| 
 | |
|   // Default ISD::TRAP to expand (which turns it into abort).
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Expand);
 | |
|     
 | |
|   IsLittleEndian = TD->isLittleEndian();
 | |
|   UsesGlobalOffsetTable = false;
 | |
|   ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
 | |
|   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
 | |
|   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
 | |
|   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
 | |
|   benefitFromCodePlacementOpt = false;
 | |
|   UseUnderscoreSetJmp = false;
 | |
|   UseUnderscoreLongJmp = false;
 | |
|   SelectIsExpensive = false;
 | |
|   IntDivIsCheap = false;
 | |
|   Pow2DivIsCheap = false;
 | |
|   StackPointerRegisterToSaveRestore = 0;
 | |
|   ExceptionPointerRegister = 0;
 | |
|   ExceptionSelectorRegister = 0;
 | |
|   BooleanContents = UndefinedBooleanContent;
 | |
|   SchedPreferenceInfo = SchedulingForLatency;
 | |
|   JumpBufSize = 0;
 | |
|   JumpBufAlignment = 0;
 | |
|   IfCvtBlockSizeLimit = 2;
 | |
|   IfCvtDupBlockSizeLimit = 0;
 | |
|   PrefLoopAlignment = 0;
 | |
| 
 | |
|   InitLibcallNames(LibcallRoutineNames);
 | |
|   InitCmpLibcallCCs(CmpLibcallCCs);
 | |
|   InitLibcallCallingConvs(LibcallCallingConvs);
 | |
| }
 | |
| 
 | |
| TargetLowering::~TargetLowering() {
 | |
|   delete &TLOF;
 | |
| }
 | |
| 
 | |
| static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
 | |
|                                        unsigned &NumIntermediates,
 | |
|                                        EVT &RegisterVT,
 | |
|                                        TargetLowering* TLI) {
 | |
|   // Figure out the right, legal destination reg to copy into.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   MVT EltTy = VT.getVectorElementType();
 | |
|   
 | |
|   unsigned NumVectorRegs = 1;
 | |
|   
 | |
|   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we 
 | |
|   // could break down into LHS/RHS like LegalizeDAG does.
 | |
|   if (!isPowerOf2_32(NumElts)) {
 | |
|     NumVectorRegs = NumElts;
 | |
|     NumElts = 1;
 | |
|   }
 | |
|   
 | |
|   // Divide the input until we get to a supported size.  This will always
 | |
|   // end with a scalar if the target doesn't support vectors.
 | |
|   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
 | |
|     NumElts >>= 1;
 | |
|     NumVectorRegs <<= 1;
 | |
|   }
 | |
| 
 | |
|   NumIntermediates = NumVectorRegs;
 | |
|   
 | |
|   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
 | |
|   if (!TLI->isTypeLegal(NewVT))
 | |
|     NewVT = EltTy;
 | |
|   IntermediateVT = NewVT;
 | |
| 
 | |
|   EVT DestVT = TLI->getRegisterType(NewVT);
 | |
|   RegisterVT = DestVT;
 | |
|   if (EVT(DestVT).bitsLT(NewVT)) {
 | |
|     // Value is expanded, e.g. i64 -> i16.
 | |
|     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
 | |
|   } else {
 | |
|     // Otherwise, promotion or legal types use the same number of registers as
 | |
|     // the vector decimated to the appropriate level.
 | |
|     return NumVectorRegs;
 | |
|   }
 | |
|   
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// computeRegisterProperties - Once all of the register classes are added,
 | |
| /// this allows us to compute derived properties we expose.
 | |
| void TargetLowering::computeRegisterProperties() {
 | |
|   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
 | |
|          "Too many value types for ValueTypeActions to hold!");
 | |
| 
 | |
|   // Everything defaults to needing one register.
 | |
|   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
 | |
|     NumRegistersForVT[i] = 1;
 | |
|     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
 | |
|   }
 | |
|   // ...except isVoid, which doesn't need any registers.
 | |
|   NumRegistersForVT[MVT::isVoid] = 0;
 | |
| 
 | |
|   // Find the largest integer register class.
 | |
|   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
 | |
|   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
 | |
|     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
 | |
| 
 | |
|   // Every integer value type larger than this largest register takes twice as
 | |
|   // many registers to represent as the previous ValueType.
 | |
|   for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
 | |
|     EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
 | |
|     if (!ExpandedVT.isInteger())
 | |
|       break;
 | |
|     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
 | |
|     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
 | |
|     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
 | |
|     ValueTypeActions.setTypeAction(ExpandedVT, Expand);
 | |
|   }
 | |
| 
 | |
|   // Inspect all of the ValueType's smaller than the largest integer
 | |
|   // register to see which ones need promotion.
 | |
|   unsigned LegalIntReg = LargestIntReg;
 | |
|   for (unsigned IntReg = LargestIntReg - 1;
 | |
|        IntReg >= (unsigned)MVT::i1; --IntReg) {
 | |
|     EVT IVT = (MVT::SimpleValueType)IntReg;
 | |
|     if (isTypeLegal(IVT)) {
 | |
|       LegalIntReg = IntReg;
 | |
|     } else {
 | |
|       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
 | |
|         (MVT::SimpleValueType)LegalIntReg;
 | |
|       ValueTypeActions.setTypeAction(IVT, Promote);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ppcf128 type is really two f64's.
 | |
|   if (!isTypeLegal(MVT::ppcf128)) {
 | |
|     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
 | |
|     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
 | |
|     TransformToType[MVT::ppcf128] = MVT::f64;
 | |
|     ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
 | |
|   }    
 | |
| 
 | |
|   // Decide how to handle f64. If the target does not have native f64 support,
 | |
|   // expand it to i64 and we will be generating soft float library calls.
 | |
|   if (!isTypeLegal(MVT::f64)) {
 | |
|     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
 | |
|     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
 | |
|     TransformToType[MVT::f64] = MVT::i64;
 | |
|     ValueTypeActions.setTypeAction(MVT::f64, Expand);
 | |
|   }
 | |
| 
 | |
|   // Decide how to handle f32. If the target does not have native support for
 | |
|   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
 | |
|   if (!isTypeLegal(MVT::f32)) {
 | |
|     if (isTypeLegal(MVT::f64)) {
 | |
|       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
 | |
|       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
 | |
|       TransformToType[MVT::f32] = MVT::f64;
 | |
|       ValueTypeActions.setTypeAction(MVT::f32, Promote);
 | |
|     } else {
 | |
|       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
 | |
|       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
 | |
|       TransformToType[MVT::f32] = MVT::i32;
 | |
|       ValueTypeActions.setTypeAction(MVT::f32, Expand);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Loop over all of the vector value types to see which need transformations.
 | |
|   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
 | |
|        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|     MVT VT = (MVT::SimpleValueType)i;
 | |
|     if (!isTypeLegal(VT)) {
 | |
|       MVT IntermediateVT;
 | |
|       EVT RegisterVT;
 | |
|       unsigned NumIntermediates;
 | |
|       NumRegistersForVT[i] =
 | |
|         getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
 | |
|                                   RegisterVT, this);
 | |
|       RegisterTypeForVT[i] = RegisterVT;
 | |
|       
 | |
|       // Determine if there is a legal wider type.
 | |
|       bool IsLegalWiderType = false;
 | |
|       EVT EltVT = VT.getVectorElementType();
 | |
|       unsigned NElts = VT.getVectorNumElements();
 | |
|       for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
 | |
|         EVT SVT = (MVT::SimpleValueType)nVT;
 | |
|         if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
 | |
|             SVT.getVectorNumElements() > NElts) {
 | |
|           TransformToType[i] = SVT;
 | |
|           ValueTypeActions.setTypeAction(VT, Promote);
 | |
|           IsLegalWiderType = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!IsLegalWiderType) {
 | |
|         EVT NVT = VT.getPow2VectorType();
 | |
|         if (NVT == VT) {
 | |
|           // Type is already a power of 2.  The default action is to split.
 | |
|           TransformToType[i] = MVT::Other;
 | |
|           ValueTypeActions.setTypeAction(VT, Expand);
 | |
|         } else {
 | |
|           TransformToType[i] = NVT;
 | |
|           ValueTypeActions.setTypeAction(VT, Promote);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
 | |
|   return PointerTy.SimpleTy;
 | |
| }
 | |
| 
 | |
| MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
 | |
|   return MVT::i32; // return the default value
 | |
| }
 | |
| 
 | |
| /// getVectorTypeBreakdown - Vector types are broken down into some number of
 | |
| /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
 | |
| /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
 | |
| /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
 | |
| ///
 | |
| /// This method returns the number of registers needed, and the VT for each
 | |
| /// register.  It also returns the VT and quantity of the intermediate values
 | |
| /// before they are promoted/expanded.
 | |
| ///
 | |
| unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
 | |
|                                                 EVT &IntermediateVT,
 | |
|                                                 unsigned &NumIntermediates,
 | |
|                                                 EVT &RegisterVT) const {
 | |
|   // Figure out the right, legal destination reg to copy into.
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   EVT EltTy = VT.getVectorElementType();
 | |
|   
 | |
|   unsigned NumVectorRegs = 1;
 | |
|   
 | |
|   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we 
 | |
|   // could break down into LHS/RHS like LegalizeDAG does.
 | |
|   if (!isPowerOf2_32(NumElts)) {
 | |
|     NumVectorRegs = NumElts;
 | |
|     NumElts = 1;
 | |
|   }
 | |
|   
 | |
|   // Divide the input until we get to a supported size.  This will always
 | |
|   // end with a scalar if the target doesn't support vectors.
 | |
|   while (NumElts > 1 && !isTypeLegal(
 | |
|                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
 | |
|     NumElts >>= 1;
 | |
|     NumVectorRegs <<= 1;
 | |
|   }
 | |
| 
 | |
|   NumIntermediates = NumVectorRegs;
 | |
|   
 | |
|   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
 | |
|   if (!isTypeLegal(NewVT))
 | |
|     NewVT = EltTy;
 | |
|   IntermediateVT = NewVT;
 | |
| 
 | |
|   EVT DestVT = getRegisterType(Context, NewVT);
 | |
|   RegisterVT = DestVT;
 | |
|   if (DestVT.bitsLT(NewVT)) {
 | |
|     // Value is expanded, e.g. i64 -> i16.
 | |
|     return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
 | |
|   } else {
 | |
|     // Otherwise, promotion or legal types use the same number of registers as
 | |
|     // the vector decimated to the appropriate level.
 | |
|     return NumVectorRegs;
 | |
|   }
 | |
|   
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// getWidenVectorType: given a vector type, returns the type to widen to
 | |
| /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
 | |
| /// If there is no vector type that we want to widen to, returns MVT::Other
 | |
| /// When and where to widen is target dependent based on the cost of
 | |
| /// scalarizing vs using the wider vector type.
 | |
| EVT TargetLowering::getWidenVectorType(EVT VT) const {
 | |
|   assert(VT.isVector());
 | |
|   if (isTypeLegal(VT))
 | |
|     return VT;
 | |
|  
 | |
|   // Default is not to widen until moved to LegalizeTypes
 | |
|   return MVT::Other;
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area.  This is the actual
 | |
| /// alignment, not its logarithm.
 | |
| unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
 | |
|   return TD->getCallFrameTypeAlignment(Ty);
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   if (usesGlobalOffsetTable())
 | |
|     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
 | |
|   return Table;
 | |
| }
 | |
| 
 | |
| bool
 | |
| TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // Assume that everything is safe in static mode.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::Static)
 | |
|     return true;
 | |
| 
 | |
|   // In dynamic-no-pic mode, assume that known defined values are safe.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
 | |
|       GA &&
 | |
|       !GA->getGlobal()->isDeclaration() &&
 | |
|       !GA->getGlobal()->isWeakForLinker())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise assume nothing is safe.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Optimization Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | |
| /// specified instruction is a constant integer.  If so, check to see if there
 | |
| /// are any bits set in the constant that are not demanded.  If so, shrink the
 | |
| /// constant and return true.
 | |
| bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 
 | |
|                                                         const APInt &Demanded) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // FIXME: ISD::SELECT, ISD::SELECT_CC
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::XOR:
 | |
|   case ISD::AND:
 | |
|   case ISD::OR: {
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|     if (!C) return false;
 | |
| 
 | |
|     if (Op.getOpcode() == ISD::XOR &&
 | |
|         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
 | |
|       return false;
 | |
| 
 | |
|     // if we can expand it to have all bits set, do it
 | |
|     if (C->getAPIntValue().intersects(~Demanded)) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
 | |
|                                 DAG.getConstant(Demanded &
 | |
|                                                 C->getAPIntValue(), 
 | |
|                                                 VT));
 | |
|       return CombineTo(Op, New);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
 | |
| /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
 | |
| /// cast, but it could be generalized for targets with other types of
 | |
| /// implicit widening casts.
 | |
| bool
 | |
| TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
 | |
|                                                     unsigned BitWidth,
 | |
|                                                     const APInt &Demanded,
 | |
|                                                     DebugLoc dl) {
 | |
|   assert(Op.getNumOperands() == 2 &&
 | |
|          "ShrinkDemandedOp only supports binary operators!");
 | |
|   assert(Op.getNode()->getNumValues() == 1 &&
 | |
|          "ShrinkDemandedOp only supports nodes with one result!");
 | |
| 
 | |
|   // Don't do this if the node has another user, which may require the
 | |
|   // full value.
 | |
|   if (!Op.getNode()->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Search for the smallest integer type with free casts to and from
 | |
|   // Op's type. For expedience, just check power-of-2 integer types.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
 | |
|   if (!isPowerOf2_32(SmallVTBits))
 | |
|     SmallVTBits = NextPowerOf2(SmallVTBits);
 | |
|   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
 | |
|     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
 | |
|     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
 | |
|         TLI.isZExtFree(SmallVT, Op.getValueType())) {
 | |
|       // We found a type with free casts.
 | |
|       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
 | |
|                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
 | |
|                                           Op.getNode()->getOperand(0)),
 | |
|                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
 | |
|                                           Op.getNode()->getOperand(1)));
 | |
|       SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
 | |
|       return CombineTo(Op, Z);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
 | |
| /// DemandedMask bits of the result of Op are ever used downstream.  If we can
 | |
| /// use this information to simplify Op, create a new simplified DAG node and
 | |
| /// return true, returning the original and new nodes in Old and New. Otherwise,
 | |
| /// analyze the expression and return a mask of KnownOne and KnownZero bits for
 | |
| /// the expression (used to simplify the caller).  The KnownZero/One bits may
 | |
| /// only be accurate for those bits in the DemandedMask.
 | |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op,
 | |
|                                           const APInt &DemandedMask,
 | |
|                                           APInt &KnownZero,
 | |
|                                           APInt &KnownOne,
 | |
|                                           TargetLoweringOpt &TLO,
 | |
|                                           unsigned Depth) const {
 | |
|   unsigned BitWidth = DemandedMask.getBitWidth();
 | |
|   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
 | |
|          "Mask size mismatches value type size!");
 | |
|   APInt NewMask = DemandedMask;
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Don't know anything.
 | |
|   KnownZero = KnownOne = APInt(BitWidth, 0);
 | |
| 
 | |
|   // Other users may use these bits.
 | |
|   if (!Op.getNode()->hasOneUse()) { 
 | |
|     if (Depth != 0) {
 | |
|       // If not at the root, Just compute the KnownZero/KnownOne bits to 
 | |
|       // simplify things downstream.
 | |
|       TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
 | |
|       return false;
 | |
|     }
 | |
|     // If this is the root being simplified, allow it to have multiple uses,
 | |
|     // just set the NewMask to all bits.
 | |
|     NewMask = APInt::getAllOnesValue(BitWidth);
 | |
|   } else if (DemandedMask == 0) {   
 | |
|     // Not demanding any bits from Op.
 | |
|     if (Op.getOpcode() != ISD::UNDEF)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
 | |
|     return false;
 | |
|   } else if (Depth == 6) {        // Limit search depth.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
 | |
|     KnownZero = ~KnownOne & NewMask;
 | |
|     return false;   // Don't fall through, will infinitely loop.
 | |
|   case ISD::AND:
 | |
|     // If the RHS is a constant, check to see if the LHS would be zero without
 | |
|     // using the bits from the RHS.  Below, we use knowledge about the RHS to
 | |
|     // simplify the LHS, here we're using information from the LHS to simplify
 | |
|     // the RHS.
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       APInt LHSZero, LHSOne;
 | |
|       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
 | |
|                                 LHSZero, LHSOne, Depth+1);
 | |
|       // If the LHS already has zeros where RHSC does, this and is dead.
 | |
|       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
 | |
|         return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|       // If any of the set bits in the RHS are known zero on the LHS, shrink
 | |
|       // the constant.
 | |
|       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
 | |
|         return true;
 | |
|     }
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|       
 | |
|     // If all of the demanded bits are known one on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
 | |
|       return true;
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the potentially set bits on one side are known to be set on
 | |
|     // the other side, just use the 'other' side.
 | |
|     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, NewMask))
 | |
|       return true;
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
| 
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     break;
 | |
|   case ISD::XOR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if ((KnownZero & NewMask) == NewMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((KnownZero2 & NewMask) == NewMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
| 
 | |
|     // If all of the unknown bits are known to be zero on one side or the other
 | |
|     // (but not both) turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
 | |
|                                                Op.getOperand(0),
 | |
|                                                Op.getOperand(1)));
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
 | |
|       if ((KnownOne & KnownOne2) == KnownOne) {
 | |
|         EVT VT = Op.getValueType();
 | |
|         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 
 | |
|                                                  Op.getOperand(0), ANDC));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     // for XOR, we prefer to force bits to 1 if they will make a -1.
 | |
|     // if we can't force bits, try to shrink constant
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       APInt Expanded = C->getAPIntValue() | (~NewMask);
 | |
|       // if we can expand it to have all bits set, do it
 | |
|       if (Expanded.isAllOnesValue()) {
 | |
|         if (Expanded != C->getAPIntValue()) {
 | |
|           EVT VT = Op.getValueType();
 | |
|           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
 | |
|                                           TLO.DAG.getConstant(Expanded, VT));
 | |
|           return TLO.CombineTo(Op, New);
 | |
|         }
 | |
|         // if it already has all the bits set, nothing to change
 | |
|         // but don't shrink either!
 | |
|       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     KnownZero = KnownZeroOut;
 | |
|     KnownOne  = KnownOneOut;
 | |
|     break;
 | |
|   case ISD::SELECT:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, NewMask))
 | |
|       return true;
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SELECT_CC:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, NewMask))
 | |
|       return true;
 | |
|       
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
 | |
|       // single shift.  We can do this if the bottom bits (which are shifted
 | |
|       // out) are never demanded.
 | |
|       if (InOp.getOpcode() == ISD::SRL &&
 | |
|           isa<ConstantSDNode>(InOp.getOperand(1))) {
 | |
|         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
 | |
|           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
 | |
|           unsigned Opc = ISD::SHL;
 | |
|           int Diff = ShAmt-C1;
 | |
|           if (Diff < 0) {
 | |
|             Diff = -Diff;
 | |
|             Opc = ISD::SRL;
 | |
|           }          
 | |
|           
 | |
|           SDValue NewSA = 
 | |
|             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
 | |
|           EVT VT = Op.getValueType();
 | |
|           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
 | |
|                                                    InOp.getOperand(0), NewSA));
 | |
|         }
 | |
|       }      
 | |
|       
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       KnownZero <<= SA->getZExtValue();
 | |
|       KnownOne  <<= SA->getZExtValue();
 | |
|       // low bits known zero.
 | |
|       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
|       unsigned VTSize = VT.getSizeInBits();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
|       
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
 | |
|       // single shift.  We can do this if the top bits (which are shifted out)
 | |
|       // are never demanded.
 | |
|       if (InOp.getOpcode() == ISD::SHL &&
 | |
|           isa<ConstantSDNode>(InOp.getOperand(1))) {
 | |
|         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
 | |
|           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
 | |
|           unsigned Opc = ISD::SRL;
 | |
|           int Diff = ShAmt-C1;
 | |
|           if (Diff < 0) {
 | |
|             Diff = -Diff;
 | |
|             Opc = ISD::SHL;
 | |
|           }          
 | |
|           
 | |
|           SDValue NewSA =
 | |
|             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
 | |
|           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
 | |
|                                                    InOp.getOperand(0), NewSA));
 | |
|         }
 | |
|       }      
 | |
|       
 | |
|       // Compute the new bits that are at the top now.
 | |
|       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
| 
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
 | |
|       KnownZero |= HighBits;  // High bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     // If this is an arithmetic shift right and only the low-bit is set, we can
 | |
|     // always convert this into a logical shr, even if the shift amount is
 | |
|     // variable.  The low bit of the shift cannot be an input sign bit unless
 | |
|     // the shift amount is >= the size of the datatype, which is undefined.
 | |
|     if (DemandedMask == 1)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
 | |
|                                                Op.getOperand(0), Op.getOperand(1)));
 | |
| 
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
|       
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       APInt InDemandedMask = (NewMask << ShAmt);
 | |
| 
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
 | |
|       if (HighBits.intersects(NewMask))
 | |
|         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
 | |
|       
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
|       
 | |
|       // Handle the sign bit, adjusted to where it is now in the mask.
 | |
|       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
 | |
|       
 | |
|       // If the input sign bit is known to be zero, or if none of the top bits
 | |
|       // are demanded, turn this into an unsigned shift right.
 | |
|       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 
 | |
|                                                  Op.getOperand(0),
 | |
|                                                  Op.getOperand(1)));
 | |
|       } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
 | |
|         KnownOne |= HighBits;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
| 
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not 
 | |
|     // present in the input.
 | |
|     APInt NewBits =
 | |
|       APInt::getHighBitsSet(BitWidth,
 | |
|                             BitWidth - EVT.getScalarType().getSizeInBits()) &
 | |
|       NewMask;
 | |
|     
 | |
|     // If none of the extended bits are demanded, eliminate the sextinreg.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
| 
 | |
|     APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
 | |
|     InSignBit.zext(BitWidth);
 | |
|     APInt InputDemandedBits =
 | |
|       APInt::getLowBitsSet(BitWidth,
 | |
|                            EVT.getScalarType().getSizeInBits()) &
 | |
|       NewMask;
 | |
|     
 | |
|     // Since the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InputDemandedBits |= InSignBit;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     
 | |
|     // If the input sign bit is known zero, convert this into a zero extension.
 | |
|     if (KnownZero.intersects(InSignBit))
 | |
|       return TLO.CombineTo(Op, 
 | |
|                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
 | |
|     
 | |
|     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
 | |
|       KnownOne |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                       // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     unsigned OperandBitWidth =
 | |
|       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
 | |
|     APInt InMask = NewMask;
 | |
|     InMask.trunc(OperandBitWidth);
 | |
|     
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     APInt NewBits =
 | |
|       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
 | |
|     if (!NewBits.intersects(NewMask))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
 | |
|                                                Op.getValueType(), 
 | |
|                                                Op.getOperand(0)));
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     KnownZero |= NewBits;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarType().getSizeInBits();
 | |
|     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
 | |
|     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
 | |
|     APInt NewBits   = ~InMask & NewMask;
 | |
|     
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
 | |
|                                               Op.getValueType(),
 | |
|                                               Op.getOperand(0)));
 | |
|     
 | |
|     // Since some of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     APInt InDemandedBits = InMask & NewMask;
 | |
|     InDemandedBits |= InSignBit;
 | |
|     InDemandedBits.trunc(InBits);
 | |
|     
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     
 | |
|     // If the sign bit is known zero, convert this to a zero extend.
 | |
|     if (KnownZero.intersects(InSignBit))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
 | |
|                                                Op.getValueType(), 
 | |
|                                                Op.getOperand(0)));
 | |
|     
 | |
|     // If the sign bit is known one, the top bits match.
 | |
|     if (KnownOne.intersects(InSignBit)) {
 | |
|       KnownOne  |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {   // Otherwise, top bits aren't known.
 | |
|       KnownOne  &= ~NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     unsigned OperandBitWidth =
 | |
|       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
 | |
|     APInt InMask = NewMask;
 | |
|     InMask.trunc(OperandBitWidth);
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     // Simplify the input, using demanded bit information, and compute the known
 | |
|     // zero/one bits live out.
 | |
|     APInt TruncMask = NewMask;
 | |
|     TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     KnownZero.trunc(BitWidth);
 | |
|     KnownOne.trunc(BitWidth);
 | |
|     
 | |
|     // If the input is only used by this truncate, see if we can shrink it based
 | |
|     // on the known demanded bits.
 | |
|     if (Op.getOperand(0).getNode()->hasOneUse()) {
 | |
|       SDValue In = Op.getOperand(0);
 | |
|       unsigned InBitWidth = In.getValueSizeInBits();
 | |
|       switch (In.getOpcode()) {
 | |
|       default: break;
 | |
|       case ISD::SRL:
 | |
|         // Shrink SRL by a constant if none of the high bits shifted in are
 | |
|         // demanded.
 | |
|         if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
 | |
|           APInt HighBits = APInt::getHighBitsSet(InBitWidth,
 | |
|                                                  InBitWidth - BitWidth);
 | |
|           HighBits = HighBits.lshr(ShAmt->getZExtValue());
 | |
|           HighBits.trunc(BitWidth);
 | |
|           
 | |
|           if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
 | |
|             // None of the shifted in bits are needed.  Add a truncate of the
 | |
|             // shift input, then shift it.
 | |
|             SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
 | |
|                                                  Op.getValueType(), 
 | |
|                                                  In.getOperand(0));
 | |
|             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
 | |
|                                                      Op.getValueType(),
 | |
|                                                      NewTrunc, 
 | |
|                                                      In.getOperand(1)));
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     APInt InMask = APInt::getLowBitsSet(BitWidth,
 | |
|                                         VT.getSizeInBits());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero |= ~InMask & NewMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BIT_CONVERT:
 | |
| #if 0
 | |
|     // If this is an FP->Int bitcast and if the sign bit is the only thing that
 | |
|     // is demanded, turn this into a FGETSIGN.
 | |
|     if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
 | |
|         MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
 | |
|         !MVT::isVector(Op.getOperand(0).getValueType())) {
 | |
|       // Only do this xform if FGETSIGN is valid or if before legalize.
 | |
|       if (!TLO.AfterLegalize ||
 | |
|           isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
 | |
|         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
 | |
|         // place.  We expect the SHL to be eliminated by other optimizations.
 | |
|         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(), 
 | |
|                                          Op.getOperand(0));
 | |
|         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
 | |
|         SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
 | |
|                                                  Sign, ShAmt));
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::SUB: {
 | |
|     // Add, Sub, and Mul don't demand any bits in positions beyond that
 | |
|     // of the highest bit demanded of them.
 | |
|     APInt LoMask = APInt::getLowBitsSet(BitWidth,
 | |
|                                         BitWidth - NewMask.countLeadingZeros());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     // See if the operation should be performed at a smaller bit width.
 | |
|     if (TLO.ShrinkOps && TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
|   }
 | |
|   // FALL THROUGH
 | |
|   default:
 | |
|     // Just use ComputeMaskedBits to compute output bits.
 | |
|     TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // If we know the value of all of the demanded bits, return this as a
 | |
|   // constant.
 | |
|   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
 | |
|     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// computeMaskedBitsForTargetNode - Determine which of the bits specified 
 | |
| /// in Mask are known to be either zero or one and return them in the 
 | |
| /// KnownZero/KnownOne bitsets.
 | |
| void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 
 | |
|                                                     const APInt &Mask,
 | |
|                                                     APInt &KnownZero, 
 | |
|                                                     APInt &KnownOne,
 | |
|                                                     const SelectionDAG &DAG,
 | |
|                                                     unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
 | |
| }
 | |
| 
 | |
| /// ComputeNumSignBitsForTargetNode - This method can be implemented by
 | |
| /// targets that want to expose additional information about sign bits to the
 | |
| /// DAG Combiner.
 | |
| unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                          unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use ComputeNumSignBits if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
 | |
| /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
 | |
| /// determine which bit is set.
 | |
| ///
 | |
| static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
 | |
|   // A left-shift of a constant one will have exactly one bit set, because
 | |
|   // shifting the bit off the end is undefined.
 | |
|   if (Val.getOpcode() == ISD::SHL)
 | |
|     if (ConstantSDNode *C =
 | |
|          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
 | |
|       if (C->getAPIntValue() == 1)
 | |
|         return true;
 | |
| 
 | |
|   // Similarly, a right-shift of a constant sign-bit will have exactly
 | |
|   // one bit set.
 | |
|   if (Val.getOpcode() == ISD::SRL)
 | |
|     if (ConstantSDNode *C =
 | |
|          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
 | |
|       if (C->getAPIntValue().isSignBit())
 | |
|         return true;
 | |
| 
 | |
|   // More could be done here, though the above checks are enough
 | |
|   // to handle some common cases.
 | |
| 
 | |
|   // Fall back to ComputeMaskedBits to catch other known cases.
 | |
|   EVT OpVT = Val.getValueType();
 | |
|   unsigned BitWidth = OpVT.getSizeInBits();
 | |
|   APInt Mask = APInt::getAllOnesValue(BitWidth);
 | |
|   APInt KnownZero, KnownOne;
 | |
|   DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
 | |
|   return (KnownZero.countPopulation() == BitWidth - 1) &&
 | |
|          (KnownOne.countPopulation() == 1);
 | |
| }
 | |
| 
 | |
| /// SimplifySetCC - Try to simplify a setcc built with the specified operands 
 | |
| /// and cc. If it is unable to simplify it, return a null SDValue.
 | |
| SDValue
 | |
| TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
 | |
|                               ISD::CondCode Cond, bool foldBooleans,
 | |
|                               DAGCombinerInfo &DCI, DebugLoc dl) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   LLVMContext &Context = *DAG.getContext();
 | |
| 
 | |
|   // These setcc operations always fold.
 | |
|   switch (Cond) {
 | |
|   default: break;
 | |
|   case ISD::SETFALSE:
 | |
|   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
 | |
|   case ISD::SETTRUE:
 | |
|   case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantSDNode>(N0.getNode())) {
 | |
|     // Ensure that the constant occurs on the RHS, and fold constant
 | |
|     // comparisons.
 | |
|     return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
 | |
|   }
 | |
| 
 | |
|   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | |
|     const APInt &C1 = N1C->getAPIntValue();
 | |
| 
 | |
|     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
 | |
|     // equality comparison, then we're just comparing whether X itself is
 | |
|     // zero.
 | |
|     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
 | |
|         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
 | |
|         N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|       const APInt &ShAmt
 | |
|         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | |
|       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
 | |
|         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
 | |
|           // (srl (ctlz x), 5) == 0  -> X != 0
 | |
|           // (srl (ctlz x), 5) != 1  -> X != 0
 | |
|           Cond = ISD::SETNE;
 | |
|         } else {
 | |
|           // (srl (ctlz x), 5) != 0  -> X == 0
 | |
|           // (srl (ctlz x), 5) == 1  -> X == 0
 | |
|           Cond = ISD::SETEQ;
 | |
|         }
 | |
|         SDValue Zero = DAG.getConstant(0, N0.getValueType());
 | |
|         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
 | |
|                             Zero, Cond);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the LHS is '(and load, const)', the RHS is 0,
 | |
|     // the test is for equality or unsigned, and all 1 bits of the const are
 | |
|     // in the same partial word, see if we can shorten the load.
 | |
|     if (DCI.isBeforeLegalize() &&
 | |
|         N0.getOpcode() == ISD::AND && C1 == 0 &&
 | |
|         N0.getNode()->hasOneUse() &&
 | |
|         isa<LoadSDNode>(N0.getOperand(0)) &&
 | |
|         N0.getOperand(0).getNode()->hasOneUse() &&
 | |
|         isa<ConstantSDNode>(N0.getOperand(1))) {
 | |
|       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
 | |
|       APInt bestMask;
 | |
|       unsigned bestWidth = 0, bestOffset = 0;
 | |
|       if (!Lod->isVolatile() && Lod->isUnindexed()) {
 | |
|         unsigned origWidth = N0.getValueType().getSizeInBits();
 | |
|         unsigned maskWidth = origWidth;
 | |
|         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 
 | |
|         // 8 bits, but have to be careful...
 | |
|         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
 | |
|           origWidth = Lod->getMemoryVT().getSizeInBits();
 | |
|         const APInt &Mask =
 | |
|           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | |
|         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
 | |
|           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
 | |
|           for (unsigned offset=0; offset<origWidth/width; offset++) {
 | |
|             if ((newMask & Mask) == Mask) {
 | |
|               if (!TD->isLittleEndian())
 | |
|                 bestOffset = (origWidth/width - offset - 1) * (width/8);
 | |
|               else
 | |
|                 bestOffset = (uint64_t)offset * (width/8);
 | |
|               bestMask = Mask.lshr(offset * (width/8) * 8);
 | |
|               bestWidth = width;
 | |
|               break;
 | |
|             }
 | |
|             newMask = newMask << width;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (bestWidth) {
 | |
|         EVT newVT = EVT::getIntegerVT(Context, bestWidth);
 | |
|         if (newVT.isRound()) {
 | |
|           EVT PtrType = Lod->getOperand(1).getValueType();
 | |
|           SDValue Ptr = Lod->getBasePtr();
 | |
|           if (bestOffset != 0)
 | |
|             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
 | |
|                               DAG.getConstant(bestOffset, PtrType));
 | |
|           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
 | |
|           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
 | |
|                                         Lod->getSrcValue(), 
 | |
|                                         Lod->getSrcValueOffset() + bestOffset,
 | |
|                                         false, NewAlign);
 | |
|           return DAG.getSetCC(dl, VT, 
 | |
|                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
 | |
|                                       DAG.getConstant(bestMask.trunc(bestWidth),
 | |
|                                                       newVT)),
 | |
|                               DAG.getConstant(0LL, newVT), Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
 | |
|     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
 | |
|       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
 | |
| 
 | |
|       // If the comparison constant has bits in the upper part, the
 | |
|       // zero-extended value could never match.
 | |
|       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
 | |
|                                               C1.getBitWidth() - InSize))) {
 | |
|         switch (Cond) {
 | |
|         case ISD::SETUGT:
 | |
|         case ISD::SETUGE:
 | |
|         case ISD::SETEQ: return DAG.getConstant(0, VT);
 | |
|         case ISD::SETULT:
 | |
|         case ISD::SETULE:
 | |
|         case ISD::SETNE: return DAG.getConstant(1, VT);
 | |
|         case ISD::SETGT:
 | |
|         case ISD::SETGE:
 | |
|           // True if the sign bit of C1 is set.
 | |
|           return DAG.getConstant(C1.isNegative(), VT);
 | |
|         case ISD::SETLT:
 | |
|         case ISD::SETLE:
 | |
|           // True if the sign bit of C1 isn't set.
 | |
|           return DAG.getConstant(C1.isNonNegative(), VT);
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Otherwise, we can perform the comparison with the low bits.
 | |
|       switch (Cond) {
 | |
|       case ISD::SETEQ:
 | |
|       case ISD::SETNE:
 | |
|       case ISD::SETUGT:
 | |
|       case ISD::SETUGE:
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETULE: {
 | |
|         EVT newVT = N0.getOperand(0).getValueType();
 | |
|         if (DCI.isBeforeLegalizeOps() ||
 | |
|             (isOperationLegal(ISD::SETCC, newVT) &&
 | |
|               getCondCodeAction(Cond, newVT)==Legal))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                               DAG.getConstant(APInt(C1).trunc(InSize), newVT),
 | |
|                               Cond);
 | |
|         break;
 | |
|       }
 | |
|       default:
 | |
|         break;   // todo, be more careful with signed comparisons
 | |
|       }
 | |
|     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | |
|       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
 | |
|       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
 | |
|       EVT ExtDstTy = N0.getValueType();
 | |
|       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
 | |
| 
 | |
|       // If the extended part has any inconsistent bits, it cannot ever
 | |
|       // compare equal.  In other words, they have to be all ones or all
 | |
|       // zeros.
 | |
|       APInt ExtBits =
 | |
|         APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
 | |
|       if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
 | |
|         return DAG.getConstant(Cond == ISD::SETNE, VT);
 | |
|       
 | |
|       SDValue ZextOp;
 | |
|       EVT Op0Ty = N0.getOperand(0).getValueType();
 | |
|       if (Op0Ty == ExtSrcTy) {
 | |
|         ZextOp = N0.getOperand(0);
 | |
|       } else {
 | |
|         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
 | |
|         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
 | |
|                               DAG.getConstant(Imm, Op0Ty));
 | |
|       }
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(ZextOp.getNode());
 | |
|       // Otherwise, make this a use of a zext.
 | |
|       return DAG.getSetCC(dl, VT, ZextOp, 
 | |
|                           DAG.getConstant(C1 & APInt::getLowBitsSet(
 | |
|                                                               ExtDstTyBits,
 | |
|                                                               ExtSrcTyBits), 
 | |
|                                           ExtDstTy),
 | |
|                           Cond);
 | |
|     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
 | |
|                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | |
|       
 | |
|       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
 | |
|       if (N0.getOpcode() == ISD::SETCC) {
 | |
|         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
 | |
|         if (TrueWhenTrue)
 | |
|           return N0;
 | |
|         
 | |
|         // Invert the condition.
 | |
|         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
 | |
|         CC = ISD::getSetCCInverse(CC, 
 | |
|                                   N0.getOperand(0).getValueType().isInteger());
 | |
|         return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
 | |
|       }
 | |
|       
 | |
|       if ((N0.getOpcode() == ISD::XOR ||
 | |
|             (N0.getOpcode() == ISD::AND && 
 | |
|             N0.getOperand(0).getOpcode() == ISD::XOR &&
 | |
|             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
 | |
|           isa<ConstantSDNode>(N0.getOperand(1)) &&
 | |
|           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
 | |
|         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
 | |
|         // can only do this if the top bits are known zero.
 | |
|         unsigned BitWidth = N0.getValueSizeInBits();
 | |
|         if (DAG.MaskedValueIsZero(N0,
 | |
|                                   APInt::getHighBitsSet(BitWidth,
 | |
|                                                         BitWidth-1))) {
 | |
|           // Okay, get the un-inverted input value.
 | |
|           SDValue Val;
 | |
|           if (N0.getOpcode() == ISD::XOR)
 | |
|             Val = N0.getOperand(0);
 | |
|           else {
 | |
|             assert(N0.getOpcode() == ISD::AND && 
 | |
|                     N0.getOperand(0).getOpcode() == ISD::XOR);
 | |
|             // ((X^1)&1)^1 -> X & 1
 | |
|             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
 | |
|                               N0.getOperand(0).getOperand(0),
 | |
|                               N0.getOperand(1));
 | |
|           }
 | |
|           return DAG.getSetCC(dl, VT, Val, N1,
 | |
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     APInt MinVal, MaxVal;
 | |
|     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
 | |
|     if (ISD::isSignedIntSetCC(Cond)) {
 | |
|       MinVal = APInt::getSignedMinValue(OperandBitSize);
 | |
|       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
 | |
|     } else {
 | |
|       MinVal = APInt::getMinValue(OperandBitSize);
 | |
|       MaxVal = APInt::getMaxValue(OperandBitSize);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
 | |
|     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
 | |
|       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
 | |
|       // X >= C0 --> X > (C0-1)
 | |
|       return DAG.getSetCC(dl, VT, N0, 
 | |
|                           DAG.getConstant(C1-1, N1.getValueType()),
 | |
|                           (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
 | |
|     }
 | |
| 
 | |
|     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
 | |
|       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
 | |
|       // X <= C0 --> X < (C0+1)
 | |
|       return DAG.getSetCC(dl, VT, N0, 
 | |
|                           DAG.getConstant(C1+1, N1.getValueType()),
 | |
|                           (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
 | |
|     }
 | |
| 
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
 | |
|       return DAG.getConstant(0, VT);      // X < MIN --> false
 | |
|     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
 | |
|       return DAG.getConstant(1, VT);      // X >= MIN --> true
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
 | |
|       return DAG.getConstant(0, VT);      // X > MAX --> false
 | |
|     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
 | |
|       return DAG.getConstant(1, VT);      // X <= MAX --> true
 | |
| 
 | |
|     // Canonicalize setgt X, Min --> setne X, Min
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | |
|     // Canonicalize setlt X, Max --> setne X, Max
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | |
| 
 | |
|     // If we have setult X, 1, turn it into seteq X, 0
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
 | |
|       return DAG.getSetCC(dl, VT, N0, 
 | |
|                           DAG.getConstant(MinVal, N0.getValueType()), 
 | |
|                           ISD::SETEQ);
 | |
|     // If we have setugt X, Max-1, turn it into seteq X, Max
 | |
|     else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
 | |
|       return DAG.getSetCC(dl, VT, N0, 
 | |
|                           DAG.getConstant(MaxVal, N0.getValueType()),
 | |
|                           ISD::SETEQ);
 | |
| 
 | |
|     // If we have "setcc X, C0", check to see if we can shrink the immediate
 | |
|     // by changing cc.
 | |
| 
 | |
|     // SETUGT X, SINTMAX  -> SETLT X, 0
 | |
|     if (Cond == ISD::SETUGT && 
 | |
|         C1 == APInt::getSignedMaxValue(OperandBitSize))
 | |
|       return DAG.getSetCC(dl, VT, N0, 
 | |
|                           DAG.getConstant(0, N1.getValueType()),
 | |
|                           ISD::SETLT);
 | |
| 
 | |
|     // SETULT X, SINTMIN  -> SETGT X, -1
 | |
|     if (Cond == ISD::SETULT &&
 | |
|         C1 == APInt::getSignedMinValue(OperandBitSize)) {
 | |
|       SDValue ConstMinusOne =
 | |
|           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
 | |
|                           N1.getValueType());
 | |
|       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
 | |
|     }
 | |
| 
 | |
|     // Fold bit comparisons when we can.
 | |
|     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|         (VT == N0.getValueType() ||
 | |
|          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
 | |
|         N0.getOpcode() == ISD::AND)
 | |
|       if (ConstantSDNode *AndRHS =
 | |
|                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|         EVT ShiftTy = DCI.isBeforeLegalize() ?
 | |
|           getPointerTy() : getShiftAmountTy();
 | |
|         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
 | |
|           // Perform the xform if the AND RHS is a single bit.
 | |
|           if (AndRHS->getAPIntValue().isPowerOf2()) {
 | |
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | |
|                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
 | |
|                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
 | |
|           }
 | |
|         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
 | |
|           // (X & 8) == 8  -->  (X & 8) >> 3
 | |
|           // Perform the xform if C1 is a single bit.
 | |
|           if (C1.isPowerOf2()) {
 | |
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | |
|                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
 | |
|                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantFPSDNode>(N0.getNode())) {
 | |
|     // Constant fold or commute setcc.
 | |
|     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
 | |
|     if (O.getNode()) return O;
 | |
|   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
 | |
|     // If the RHS of an FP comparison is a constant, simplify it away in
 | |
|     // some cases.
 | |
|     if (CFP->getValueAPF().isNaN()) {
 | |
|       // If an operand is known to be a nan, we can fold it.
 | |
|       switch (ISD::getUnorderedFlavor(Cond)) {
 | |
|       default: llvm_unreachable("Unknown flavor!");
 | |
|       case 0:  // Known false.
 | |
|         return DAG.getConstant(0, VT);
 | |
|       case 1:  // Known true.
 | |
|         return DAG.getConstant(1, VT);
 | |
|       case 2:  // Undefined.
 | |
|         return DAG.getUNDEF(VT);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
 | |
|     // constant if knowing that the operand is non-nan is enough.  We prefer to
 | |
|     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
 | |
|     // materialize 0.0.
 | |
|     if (Cond == ISD::SETO || Cond == ISD::SETUO)
 | |
|       return DAG.getSetCC(dl, VT, N0, N0, Cond);
 | |
| 
 | |
|     // If the condition is not legal, see if we can find an equivalent one
 | |
|     // which is legal.
 | |
|     if (!isCondCodeLegal(Cond, N0.getValueType())) {
 | |
|       // If the comparison was an awkward floating-point == or != and one of
 | |
|       // the comparison operands is infinity or negative infinity, convert the
 | |
|       // condition to a less-awkward <= or >=.
 | |
|       if (CFP->getValueAPF().isInfinity()) {
 | |
|         if (CFP->getValueAPF().isNegative()) {
 | |
|           if (Cond == ISD::SETOEQ &&
 | |
|               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
 | |
|           if (Cond == ISD::SETUEQ &&
 | |
|               isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
 | |
|           if (Cond == ISD::SETUNE &&
 | |
|               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
 | |
|           if (Cond == ISD::SETONE &&
 | |
|               isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
 | |
|         } else {
 | |
|           if (Cond == ISD::SETOEQ &&
 | |
|               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
 | |
|           if (Cond == ISD::SETUEQ &&
 | |
|               isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
 | |
|           if (Cond == ISD::SETUNE &&
 | |
|               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
 | |
|           if (Cond == ISD::SETONE &&
 | |
|               isCondCodeLegal(ISD::SETULT, N0.getValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N0 == N1) {
 | |
|     // We can always fold X == X for integer setcc's.
 | |
|     if (N0.getValueType().isInteger())
 | |
|       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
 | |
|     unsigned UOF = ISD::getUnorderedFlavor(Cond);
 | |
|     if (UOF == 2)   // FP operators that are undefined on NaNs.
 | |
|       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
 | |
|     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
 | |
|       return DAG.getConstant(UOF, VT);
 | |
|     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
 | |
|     // if it is not already.
 | |
|     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
 | |
|     if (NewCond != Cond)
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
 | |
|   }
 | |
| 
 | |
|   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|       N0.getValueType().isInteger()) {
 | |
|     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
 | |
|         N0.getOpcode() == ISD::XOR) {
 | |
|       // Simplify (X+Y) == (X+Z) -->  Y == Z
 | |
|       if (N0.getOpcode() == N1.getOpcode()) {
 | |
|         if (N0.getOperand(0) == N1.getOperand(0))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
 | |
|         if (N0.getOperand(1) == N1.getOperand(1))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
 | |
|         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
 | |
|           // If X op Y == Y op X, try other combinations.
 | |
|           if (N0.getOperand(0) == N1.getOperand(1))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 
 | |
|                                 Cond);
 | |
|           if (N0.getOperand(1) == N1.getOperand(0))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 
 | |
|                                 Cond);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
 | |
|         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|           // Turn (X+C1) == C2 --> X == C2-C1
 | |
|           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                                 DAG.getConstant(RHSC->getAPIntValue()-
 | |
|                                                 LHSR->getAPIntValue(),
 | |
|                                 N0.getValueType()), Cond);
 | |
|           }
 | |
|           
 | |
|           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
 | |
|           if (N0.getOpcode() == ISD::XOR)
 | |
|             // If we know that all of the inverted bits are zero, don't bother
 | |
|             // performing the inversion.
 | |
|             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
 | |
|               return
 | |
|                 DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                              DAG.getConstant(LHSR->getAPIntValue() ^
 | |
|                                                RHSC->getAPIntValue(),
 | |
|                                              N0.getValueType()),
 | |
|                              Cond);
 | |
|         }
 | |
|         
 | |
|         // Turn (C1-X) == C2 --> X == C1-C2
 | |
|         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
 | |
|           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
 | |
|             return
 | |
|               DAG.getSetCC(dl, VT, N0.getOperand(1),
 | |
|                            DAG.getConstant(SUBC->getAPIntValue() -
 | |
|                                              RHSC->getAPIntValue(),
 | |
|                                            N0.getValueType()),
 | |
|                            Cond);
 | |
|           }
 | |
|         }          
 | |
|       }
 | |
| 
 | |
|       // Simplify (X+Z) == X -->  Z == 0
 | |
|       if (N0.getOperand(0) == N1)
 | |
|         return DAG.getSetCC(dl, VT, N0.getOperand(1),
 | |
|                         DAG.getConstant(0, N0.getValueType()), Cond);
 | |
|       if (N0.getOperand(1) == N1) {
 | |
|         if (DAG.isCommutativeBinOp(N0.getOpcode()))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                           DAG.getConstant(0, N0.getValueType()), Cond);
 | |
|         else if (N0.getNode()->hasOneUse()) {
 | |
|           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
 | |
|           // (Z-X) == X  --> Z == X<<1
 | |
|           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
 | |
|                                      N1, 
 | |
|                                      DAG.getConstant(1, getShiftAmountTy()));
 | |
|           if (!DCI.isCalledByLegalizer())
 | |
|             DCI.AddToWorklist(SH.getNode());
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
 | |
|         N1.getOpcode() == ISD::XOR) {
 | |
|       // Simplify  X == (X+Z) -->  Z == 0
 | |
|       if (N1.getOperand(0) == N0) {
 | |
|         return DAG.getSetCC(dl, VT, N1.getOperand(1),
 | |
|                         DAG.getConstant(0, N1.getValueType()), Cond);
 | |
|       } else if (N1.getOperand(1) == N0) {
 | |
|         if (DAG.isCommutativeBinOp(N1.getOpcode())) {
 | |
|           return DAG.getSetCC(dl, VT, N1.getOperand(0),
 | |
|                           DAG.getConstant(0, N1.getValueType()), Cond);
 | |
|         } else if (N1.getNode()->hasOneUse()) {
 | |
|           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
 | |
|           // X == (Z-X)  --> X<<1 == Z
 | |
|           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 
 | |
|                                      DAG.getConstant(1, getShiftAmountTy()));
 | |
|           if (!DCI.isCalledByLegalizer())
 | |
|             DCI.AddToWorklist(SH.getNode());
 | |
|           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
 | |
|     // Note that where y is variable and is known to have at most
 | |
|     // one bit set (for example, if it is z&1) we cannot do this;
 | |
|     // the expressions are not equivalent when y==0.
 | |
|     if (N0.getOpcode() == ISD::AND)
 | |
|       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
 | |
|         if (ValueHasExactlyOneBitSet(N1, DAG)) {
 | |
|           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
 | |
|           SDValue Zero = DAG.getConstant(0, N1.getValueType());
 | |
|           return DAG.getSetCC(dl, VT, N0, Zero, Cond);
 | |
|         }
 | |
|       }
 | |
|     if (N1.getOpcode() == ISD::AND)
 | |
|       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
 | |
|         if (ValueHasExactlyOneBitSet(N0, DAG)) {
 | |
|           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
 | |
|           SDValue Zero = DAG.getConstant(0, N0.getValueType());
 | |
|           return DAG.getSetCC(dl, VT, N1, Zero, Cond);
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Fold away ALL boolean setcc's.
 | |
|   SDValue Temp;
 | |
|   if (N0.getValueType() == MVT::i1 && foldBooleans) {
 | |
|     switch (Cond) {
 | |
|     default: llvm_unreachable("Unknown integer setcc!");
 | |
|     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
 | |
|       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
 | |
|       N0 = DAG.getNOT(dl, Temp, MVT::i1);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETNE:  // X != Y   -->  (X^Y)
 | |
|       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
 | |
|       break;
 | |
|     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | |
|     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | |
|       Temp = DAG.getNOT(dl, N0, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
 | |
|     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
 | |
|       Temp = DAG.getNOT(dl, N1, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
 | |
|     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
 | |
|       Temp = DAG.getNOT(dl, N0, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
 | |
|     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
 | |
|       Temp = DAG.getNOT(dl, N1, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
 | |
|       break;
 | |
|     }
 | |
|     if (VT != MVT::i1) {
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(N0.getNode());
 | |
|       // FIXME: If running after legalize, we probably can't do this.
 | |
|       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
 | |
|     }
 | |
|     return N0;
 | |
|   }
 | |
| 
 | |
|   // Could not fold it.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
 | |
| /// node is a GlobalAddress + offset.
 | |
| bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
 | |
|                                     int64_t &Offset) const {
 | |
|   if (isa<GlobalAddressSDNode>(N)) {
 | |
|     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
 | |
|     GA = GASD->getGlobal();
 | |
|     Offset += GASD->getOffset();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() == ISD::ADD) {
 | |
|     SDValue N1 = N->getOperand(0);
 | |
|     SDValue N2 = N->getOperand(1);
 | |
|     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
 | |
|       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
 | |
|       if (V) {
 | |
|         Offset += V->getSExtValue();
 | |
|         return true;
 | |
|       }
 | |
|     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
 | |
|       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
 | |
|       if (V) {
 | |
|         Offset += V->getSExtValue();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue TargetLowering::
 | |
| PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   // Default implementation: no optimization.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Inline Assembler Implementation Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| TargetLowering::ConstraintType
 | |
| TargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   // FIXME: lots more standard ones to handle.
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'r': return C_RegisterClass;
 | |
|     case 'm':    // memory
 | |
|     case 'o':    // offsetable
 | |
|     case 'V':    // not offsetable
 | |
|       return C_Memory;
 | |
|     case 'i':    // Simple Integer or Relocatable Constant
 | |
|     case 'n':    // Simple Integer
 | |
|     case 's':    // Relocatable Constant
 | |
|     case 'X':    // Allow ANY value.
 | |
|     case 'I':    // Target registers.
 | |
|     case 'J':
 | |
|     case 'K':
 | |
|     case 'L':
 | |
|     case 'M':
 | |
|     case 'N':
 | |
|     case 'O':
 | |
|     case 'P':
 | |
|       return C_Other;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Constraint.size() > 1 && Constraint[0] == '{' && 
 | |
|       Constraint[Constraint.size()-1] == '}')
 | |
|     return C_Register;
 | |
|   return C_Unknown;
 | |
| }
 | |
| 
 | |
| /// LowerXConstraint - try to replace an X constraint, which matches anything,
 | |
| /// with another that has more specific requirements based on the type of the
 | |
| /// corresponding operand.
 | |
| const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
 | |
|   if (ConstraintVT.isInteger())
 | |
|     return "r";
 | |
|   if (ConstraintVT.isFloatingPoint())
 | |
|     return "f";      // works for many targets
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                   char ConstraintLetter,
 | |
|                                                   bool hasMemory,
 | |
|                                                   std::vector<SDValue> &Ops,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   switch (ConstraintLetter) {
 | |
|   default: break;
 | |
|   case 'X':     // Allows any operand; labels (basic block) use this.
 | |
|     if (Op.getOpcode() == ISD::BasicBlock) {
 | |
|       Ops.push_back(Op);
 | |
|       return;
 | |
|     }
 | |
|     // fall through
 | |
|   case 'i':    // Simple Integer or Relocatable Constant
 | |
|   case 'n':    // Simple Integer
 | |
|   case 's': {  // Relocatable Constant
 | |
|     // These operands are interested in values of the form (GV+C), where C may
 | |
|     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
 | |
|     // is possible and fine if either GV or C are missing.
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
 | |
|     
 | |
|     // If we have "(add GV, C)", pull out GV/C
 | |
|     if (Op.getOpcode() == ISD::ADD) {
 | |
|       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
 | |
|       if (C == 0 || GA == 0) {
 | |
|         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | |
|         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
 | |
|       }
 | |
|       if (C == 0 || GA == 0)
 | |
|         C = 0, GA = 0;
 | |
|     }
 | |
|     
 | |
|     // If we find a valid operand, map to the TargetXXX version so that the
 | |
|     // value itself doesn't get selected.
 | |
|     if (GA) {   // Either &GV   or   &GV+C
 | |
|       if (ConstraintLetter != 'n') {
 | |
|         int64_t Offs = GA->getOffset();
 | |
|         if (C) Offs += C->getZExtValue();
 | |
|         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
 | |
|                                                  Op.getValueType(), Offs));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     if (C) {   // just C, no GV.
 | |
|       // Simple constants are not allowed for 's'.
 | |
|       if (ConstraintLetter != 's') {
 | |
|         // gcc prints these as sign extended.  Sign extend value to 64 bits
 | |
|         // now; without this it would get ZExt'd later in
 | |
|         // ScheduleDAGSDNodes::EmitNode, which is very generic.
 | |
|         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
 | |
|                                             MVT::i64));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::vector<unsigned> TargetLowering::
 | |
| getRegClassForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                   EVT VT) const {
 | |
|   return std::vector<unsigned>();
 | |
| }
 | |
| 
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
 | |
| getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                              EVT VT) const {
 | |
|   if (Constraint[0] != '{')
 | |
|     return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
 | |
|   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
 | |
| 
 | |
|   // Remove the braces from around the name.
 | |
|   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
 | |
| 
 | |
|   // Figure out which register class contains this reg.
 | |
|   const TargetRegisterInfo *RI = TM.getRegisterInfo();
 | |
|   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
 | |
|        E = RI->regclass_end(); RCI != E; ++RCI) {
 | |
|     const TargetRegisterClass *RC = *RCI;
 | |
|     
 | |
|     // If none of the the value types for this register class are valid, we 
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     bool isLegal = false;
 | |
|     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
 | |
|          I != E; ++I) {
 | |
|       if (isTypeLegal(*I)) {
 | |
|         isLegal = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (!isLegal) continue;
 | |
|     
 | |
|     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 
 | |
|          I != E; ++I) {
 | |
|       if (RegName.equals_lower(RI->getName(*I)))
 | |
|         return std::make_pair(*I, RC);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constraint Selection.
 | |
| 
 | |
| /// isMatchingInputConstraint - Return true of this is an input operand that is
 | |
| /// a matching constraint like "4".
 | |
| bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
 | |
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | |
|   return isdigit(ConstraintCode[0]);
 | |
| }
 | |
| 
 | |
| /// getMatchedOperand - If this is an input matching constraint, this method
 | |
| /// returns the output operand it matches.
 | |
| unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
 | |
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | |
|   return atoi(ConstraintCode.c_str());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getConstraintGenerality - Return an integer indicating how general CT
 | |
| /// is.
 | |
| static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
 | |
|   switch (CT) {
 | |
|   default: llvm_unreachable("Unknown constraint type!");
 | |
|   case TargetLowering::C_Other:
 | |
|   case TargetLowering::C_Unknown:
 | |
|     return 0;
 | |
|   case TargetLowering::C_Register:
 | |
|     return 1;
 | |
|   case TargetLowering::C_RegisterClass:
 | |
|     return 2;
 | |
|   case TargetLowering::C_Memory:
 | |
|     return 3;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ChooseConstraint - If there are multiple different constraints that we
 | |
| /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
 | |
| /// This is somewhat tricky: constraints fall into four classes:
 | |
| ///    Other         -> immediates and magic values
 | |
| ///    Register      -> one specific register
 | |
| ///    RegisterClass -> a group of regs
 | |
| ///    Memory        -> memory
 | |
| /// Ideally, we would pick the most specific constraint possible: if we have
 | |
| /// something that fits into a register, we would pick it.  The problem here
 | |
| /// is that if we have something that could either be in a register or in
 | |
| /// memory that use of the register could cause selection of *other*
 | |
| /// operands to fail: they might only succeed if we pick memory.  Because of
 | |
| /// this the heuristic we use is:
 | |
| ///
 | |
| ///  1) If there is an 'other' constraint, and if the operand is valid for
 | |
| ///     that constraint, use it.  This makes us take advantage of 'i'
 | |
| ///     constraints when available.
 | |
| ///  2) Otherwise, pick the most general constraint present.  This prefers
 | |
| ///     'm' over 'r', for example.
 | |
| ///
 | |
| static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
 | |
|                              bool hasMemory,  const TargetLowering &TLI,
 | |
|                              SDValue Op, SelectionDAG *DAG) {
 | |
|   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
 | |
|   unsigned BestIdx = 0;
 | |
|   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
 | |
|   int BestGenerality = -1;
 | |
|   
 | |
|   // Loop over the options, keeping track of the most general one.
 | |
|   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
 | |
|     TargetLowering::ConstraintType CType =
 | |
|       TLI.getConstraintType(OpInfo.Codes[i]);
 | |
|     
 | |
|     // If this is an 'other' constraint, see if the operand is valid for it.
 | |
|     // For example, on X86 we might have an 'rI' constraint.  If the operand
 | |
|     // is an integer in the range [0..31] we want to use I (saving a load
 | |
|     // of a register), otherwise we must use 'r'.
 | |
|     if (CType == TargetLowering::C_Other && Op.getNode()) {
 | |
|       assert(OpInfo.Codes[i].size() == 1 &&
 | |
|              "Unhandled multi-letter 'other' constraint");
 | |
|       std::vector<SDValue> ResultOps;
 | |
|       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
 | |
|                                        ResultOps, *DAG);
 | |
|       if (!ResultOps.empty()) {
 | |
|         BestType = CType;
 | |
|         BestIdx = i;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // This constraint letter is more general than the previous one, use it.
 | |
|     int Generality = getConstraintGenerality(CType);
 | |
|     if (Generality > BestGenerality) {
 | |
|       BestType = CType;
 | |
|       BestIdx = i;
 | |
|       BestGenerality = Generality;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
 | |
|   OpInfo.ConstraintType = BestType;
 | |
| }
 | |
| 
 | |
| /// ComputeConstraintToUse - Determines the constraint code and constraint
 | |
| /// type to use for the specific AsmOperandInfo, setting
 | |
| /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
 | |
| void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | |
|                                             SDValue Op, 
 | |
|                                             bool hasMemory,
 | |
|                                             SelectionDAG *DAG) const {
 | |
|   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
 | |
|   
 | |
|   // Single-letter constraints ('r') are very common.
 | |
|   if (OpInfo.Codes.size() == 1) {
 | |
|     OpInfo.ConstraintCode = OpInfo.Codes[0];
 | |
|     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | |
|   } else {
 | |
|     ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
 | |
|   }
 | |
|   
 | |
|   // 'X' matches anything.
 | |
|   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
 | |
|     // Labels and constants are handled elsewhere ('X' is the only thing
 | |
|     // that matches labels).  For Functions, the type here is the type of
 | |
|     // the result, which is not what we want to look at; leave them alone.
 | |
|     Value *v = OpInfo.CallOperandVal;
 | |
|     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
 | |
|       OpInfo.CallOperandVal = v;
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, try to resolve it to something we know about by looking at
 | |
|     // the actual operand type.
 | |
|     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
 | |
|       OpInfo.ConstraintCode = Repl;
 | |
|       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Loop Strength Reduction hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isLegalAddressingMode - Return true if the addressing mode represented
 | |
| /// by AM is legal for this target, for a load/store of the specified type.
 | |
| bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, 
 | |
|                                            const Type *Ty) const {
 | |
|   // The default implementation of this implements a conservative RISCy, r+r and
 | |
|   // r+i addr mode.
 | |
| 
 | |
|   // Allows a sign-extended 16-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | |
|     return false;
 | |
|   
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
|   
 | |
|   // Only support r+r, 
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | |
|       return false;
 | |
|     // Otherwise we have r+r or r+i.
 | |
|     break;
 | |
|   case 2:
 | |
|     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | |
|       return false;
 | |
|     // Allow 2*r as r+r.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 
 | |
|                                   std::vector<SDNode*>* Created) const {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl= N->getDebugLoc();
 | |
|   
 | |
|   // Check to see if we can do this.
 | |
|   // FIXME: We should be more aggressive here.
 | |
|   if (!isTypeLegal(VT))
 | |
|     return SDValue();
 | |
|   
 | |
|   APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
 | |
|   APInt::ms magics = d.magic();
 | |
|   
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   // FIXME: We should support doing a MUL in a wider type
 | |
|   SDValue Q;
 | |
|   if (isOperationLegalOrCustom(ISD::MULHS, VT))
 | |
|     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
 | |
|                     DAG.getConstant(magics.m, VT));
 | |
|   else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
 | |
|     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
 | |
|                               N->getOperand(0),
 | |
|                               DAG.getConstant(magics.m, VT)).getNode(), 1);
 | |
|   else
 | |
|     return SDValue();       // No mulhs or equvialent
 | |
|   // If d > 0 and m < 0, add the numerator
 | |
|   if (d.isStrictlyPositive() && magics.m.isNegative()) { 
 | |
|     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
 | |
|     if (Created)
 | |
|       Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // If d < 0 and m > 0, subtract the numerator.
 | |
|   if (d.isNegative() && magics.m.isStrictlyPositive()) {
 | |
|     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
 | |
|     if (Created)
 | |
|       Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // Shift right algebraic if shift value is nonzero
 | |
|   if (magics.s > 0) {
 | |
|     Q = DAG.getNode(ISD::SRA, dl, VT, Q, 
 | |
|                     DAG.getConstant(magics.s, getShiftAmountTy()));
 | |
|     if (Created)
 | |
|       Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // Extract the sign bit and add it to the quotient
 | |
|   SDValue T =
 | |
|     DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
 | |
|                                                  getShiftAmountTy()));
 | |
|   if (Created)
 | |
|     Created->push_back(T.getNode());
 | |
|   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
 | |
| }
 | |
| 
 | |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.  See:
 | |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
 | |
| SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
 | |
|                                   std::vector<SDNode*>* Created) const {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
| 
 | |
|   // Check to see if we can do this.
 | |
|   // FIXME: We should be more aggressive here.
 | |
|   if (!isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   // FIXME: We should use a narrower constant when the upper
 | |
|   // bits are known to be zero.
 | |
|   ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
 | |
|   APInt::mu magics = N1C->getAPIntValue().magicu();
 | |
| 
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   // FIXME: We should support doing a MUL in a wider type
 | |
|   SDValue Q;
 | |
|   if (isOperationLegalOrCustom(ISD::MULHU, VT))
 | |
|     Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
 | |
|                     DAG.getConstant(magics.m, VT));
 | |
|   else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
 | |
|     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
 | |
|                               N->getOperand(0),
 | |
|                               DAG.getConstant(magics.m, VT)).getNode(), 1);
 | |
|   else
 | |
|     return SDValue();       // No mulhu or equvialent
 | |
|   if (Created)
 | |
|     Created->push_back(Q.getNode());
 | |
| 
 | |
|   if (magics.a == 0) {
 | |
|     assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
 | |
|            "We shouldn't generate an undefined shift!");
 | |
|     return DAG.getNode(ISD::SRL, dl, VT, Q, 
 | |
|                        DAG.getConstant(magics.s, getShiftAmountTy()));
 | |
|   } else {
 | |
|     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
 | |
|     if (Created)
 | |
|       Created->push_back(NPQ.getNode());
 | |
|     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 
 | |
|                       DAG.getConstant(1, getShiftAmountTy()));
 | |
|     if (Created)
 | |
|       Created->push_back(NPQ.getNode());
 | |
|     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
 | |
|     if (Created)
 | |
|       Created->push_back(NPQ.getNode());
 | |
|     return DAG.getNode(ISD::SRL, dl, VT, NPQ, 
 | |
|                        DAG.getConstant(magics.s-1, getShiftAmountTy()));
 | |
|   }
 | |
| }
 |