mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Approved by Jim Grosbach, Lang Hames, Rafael Espindola. This reinstates commits r215111, 215115, 215116, 215117, 215136. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216982 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			309 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			309 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Parallel JIT
 | |
| //
 | |
| // This test program creates two LLVM functions then calls them from three
 | |
| // separate threads.  It requires the pthreads library.
 | |
| // The three threads are created and then block waiting on a condition variable.
 | |
| // Once all threads are blocked on the conditional variable, the main thread
 | |
| // wakes them up. This complicated work is performed so that all three threads
 | |
| // call into the JIT at the same time (or the best possible approximation of the
 | |
| // same time). This test had assertion errors until I got the locking right.
 | |
| 
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/ExecutionEngine/Interpreter.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/TargetSelect.h"
 | |
| #include <iostream>
 | |
| #include <pthread.h>
 | |
| using namespace llvm;
 | |
| 
 | |
| static Function* createAdd1(Module *M) {
 | |
|   // Create the add1 function entry and insert this entry into module M.  The
 | |
|   // function will have a return type of "int" and take an argument of "int".
 | |
|   // The '0' terminates the list of argument types.
 | |
|   Function *Add1F =
 | |
|     cast<Function>(M->getOrInsertFunction("add1",
 | |
|                                           Type::getInt32Ty(M->getContext()),
 | |
|                                           Type::getInt32Ty(M->getContext()),
 | |
|                                           (Type *)0));
 | |
| 
 | |
|   // Add a basic block to the function. As before, it automatically inserts
 | |
|   // because of the last argument.
 | |
|   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
 | |
| 
 | |
|   // Get pointers to the constant `1'.
 | |
|   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
 | |
| 
 | |
|   // Get pointers to the integer argument of the add1 function...
 | |
|   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
 | |
|   Argument *ArgX = Add1F->arg_begin();  // Get the arg
 | |
|   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
 | |
| 
 | |
|   // Create the add instruction, inserting it into the end of BB.
 | |
|   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
 | |
| 
 | |
|   // Create the return instruction and add it to the basic block
 | |
|   ReturnInst::Create(M->getContext(), Add, BB);
 | |
| 
 | |
|   // Now, function add1 is ready.
 | |
|   return Add1F;
 | |
| }
 | |
| 
 | |
| static Function *CreateFibFunction(Module *M) {
 | |
|   // Create the fib function and insert it into module M.  This function is said
 | |
|   // to return an int and take an int parameter.
 | |
|   Function *FibF = 
 | |
|     cast<Function>(M->getOrInsertFunction("fib",
 | |
|                                           Type::getInt32Ty(M->getContext()),
 | |
|                                           Type::getInt32Ty(M->getContext()),
 | |
|                                           (Type *)0));
 | |
| 
 | |
|   // Add a basic block to the function.
 | |
|   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
 | |
| 
 | |
|   // Get pointers to the constants.
 | |
|   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
 | |
|   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
 | |
| 
 | |
|   // Get pointer to the integer argument of the add1 function...
 | |
|   Argument *ArgX = FibF->arg_begin();   // Get the arg.
 | |
|   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
 | |
| 
 | |
|   // Create the true_block.
 | |
|   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
 | |
|   // Create an exit block.
 | |
|   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
 | |
| 
 | |
|   // Create the "if (arg < 2) goto exitbb"
 | |
|   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
 | |
|   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
 | |
| 
 | |
|   // Create: ret int 1
 | |
|   ReturnInst::Create(M->getContext(), One, RetBB);
 | |
| 
 | |
|   // create fib(x-1)
 | |
|   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
 | |
|   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
 | |
| 
 | |
|   // create fib(x-2)
 | |
|   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
 | |
|   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
 | |
| 
 | |
|   // fib(x-1)+fib(x-2)
 | |
|   Value *Sum =
 | |
|     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
 | |
| 
 | |
|   // Create the return instruction and add it to the basic block
 | |
|   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
 | |
| 
 | |
|   return FibF;
 | |
| }
 | |
| 
 | |
| struct threadParams {
 | |
|   ExecutionEngine* EE;
 | |
|   Function* F;
 | |
|   int value;
 | |
| };
 | |
| 
 | |
| // We block the subthreads just before they begin to execute:
 | |
| // we want all of them to call into the JIT at the same time,
 | |
| // to verify that the locking is working correctly.
 | |
| class WaitForThreads
 | |
| {
 | |
| public:
 | |
|   WaitForThreads()
 | |
|   {
 | |
|     n = 0;
 | |
|     waitFor = 0;
 | |
| 
 | |
|     int result = pthread_cond_init( &condition, NULL );
 | |
|     assert( result == 0 );
 | |
| 
 | |
|     result = pthread_mutex_init( &mutex, NULL );
 | |
|     assert( result == 0 );
 | |
|   }
 | |
| 
 | |
|   ~WaitForThreads()
 | |
|   {
 | |
|     int result = pthread_cond_destroy( &condition );
 | |
|     (void)result;
 | |
|     assert( result == 0 );
 | |
| 
 | |
|     result = pthread_mutex_destroy( &mutex );
 | |
|     assert( result == 0 );
 | |
|   }
 | |
| 
 | |
|   // All threads will stop here until another thread calls releaseThreads
 | |
|   void block()
 | |
|   {
 | |
|     int result = pthread_mutex_lock( &mutex );
 | |
|     (void)result;
 | |
|     assert( result == 0 );
 | |
|     n ++;
 | |
|     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
 | |
| 
 | |
|     assert( waitFor == 0 || n <= waitFor );
 | |
|     if ( waitFor > 0 && n == waitFor )
 | |
|     {
 | |
|       // There are enough threads blocked that we can release all of them
 | |
|       std::cout << "Unblocking threads from block()" << std::endl;
 | |
|       unblockThreads();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       // We just need to wait until someone unblocks us
 | |
|       result = pthread_cond_wait( &condition, &mutex );
 | |
|       assert( result == 0 );
 | |
|     }
 | |
| 
 | |
|     // unlock the mutex before returning
 | |
|     result = pthread_mutex_unlock( &mutex );
 | |
|     assert( result == 0 );
 | |
|   }
 | |
| 
 | |
|   // If there are num or more threads blocked, it will signal them all
 | |
|   // Otherwise, this thread blocks until there are enough OTHER threads
 | |
|   // blocked
 | |
|   void releaseThreads( size_t num )
 | |
|   {
 | |
|     int result = pthread_mutex_lock( &mutex );
 | |
|     (void)result;
 | |
|     assert( result == 0 );
 | |
| 
 | |
|     if ( n >= num ) {
 | |
|       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
 | |
|       unblockThreads();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       waitFor = num;
 | |
|       pthread_cond_wait( &condition, &mutex );
 | |
|     }
 | |
| 
 | |
|     // unlock the mutex before returning
 | |
|     result = pthread_mutex_unlock( &mutex );
 | |
|     assert( result == 0 );
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void unblockThreads()
 | |
|   {
 | |
|     // Reset the counters to zero: this way, if any new threads
 | |
|     // enter while threads are exiting, they will block instead
 | |
|     // of triggering a new release of threads
 | |
|     n = 0;
 | |
| 
 | |
|     // Reset waitFor to zero: this way, if waitFor threads enter
 | |
|     // while threads are exiting, they will block instead of
 | |
|     // triggering a new release of threads
 | |
|     waitFor = 0;
 | |
| 
 | |
|     int result = pthread_cond_broadcast( &condition );
 | |
|     (void)result;
 | |
|     assert(result == 0);
 | |
|   }
 | |
| 
 | |
|   size_t n;
 | |
|   size_t waitFor;
 | |
|   pthread_cond_t condition;
 | |
|   pthread_mutex_t mutex;
 | |
| };
 | |
| 
 | |
| static WaitForThreads synchronize;
 | |
| 
 | |
| void* callFunc( void* param )
 | |
| {
 | |
|   struct threadParams* p = (struct threadParams*) param;
 | |
| 
 | |
|   // Call the `foo' function with no arguments:
 | |
|   std::vector<GenericValue> Args(1);
 | |
|   Args[0].IntVal = APInt(32, p->value);
 | |
| 
 | |
|   synchronize.block(); // wait until other threads are at this point
 | |
|   GenericValue gv = p->EE->runFunction(p->F, Args);
 | |
| 
 | |
|   return (void*)(intptr_t)gv.IntVal.getZExtValue();
 | |
| }
 | |
| 
 | |
| int main() {
 | |
|   InitializeNativeTarget();
 | |
|   LLVMContext Context;
 | |
| 
 | |
|   // Create some module to put our function into it.
 | |
|   std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
 | |
|   Module *M = Owner.get();
 | |
| 
 | |
|   Function* add1F = createAdd1( M );
 | |
|   Function* fibF = CreateFibFunction( M );
 | |
| 
 | |
|   // Now we create the JIT.
 | |
|   ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
 | |
| 
 | |
|   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
 | |
|   //~ std::cout << "\n\nRunning foo: " << std::flush;
 | |
| 
 | |
|   // Create one thread for add1 and two threads for fib
 | |
|   struct threadParams add1 = { EE, add1F, 1000 };
 | |
|   struct threadParams fib1 = { EE, fibF, 39 };
 | |
|   struct threadParams fib2 = { EE, fibF, 42 };
 | |
| 
 | |
|   pthread_t add1Thread;
 | |
|   int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
 | |
|   if ( result != 0 ) {
 | |
|           std::cerr << "Could not create thread" << std::endl;
 | |
|           return 1;
 | |
|   }
 | |
| 
 | |
|   pthread_t fibThread1;
 | |
|   result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
 | |
|   if ( result != 0 ) {
 | |
|           std::cerr << "Could not create thread" << std::endl;
 | |
|           return 1;
 | |
|   }
 | |
| 
 | |
|   pthread_t fibThread2;
 | |
|   result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
 | |
|   if ( result != 0 ) {
 | |
|           std::cerr << "Could not create thread" << std::endl;
 | |
|           return 1;
 | |
|   }
 | |
| 
 | |
|   synchronize.releaseThreads(3); // wait until other threads are at this point
 | |
| 
 | |
|   void* returnValue;
 | |
|   result = pthread_join( add1Thread, &returnValue );
 | |
|   if ( result != 0 ) {
 | |
|           std::cerr << "Could not join thread" << std::endl;
 | |
|           return 1;
 | |
|   }
 | |
|   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
 | |
| 
 | |
|   result = pthread_join( fibThread1, &returnValue );
 | |
|   if ( result != 0 ) {
 | |
|           std::cerr << "Could not join thread" << std::endl;
 | |
|           return 1;
 | |
|   }
 | |
|   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
 | |
| 
 | |
|   result = pthread_join( fibThread2, &returnValue );
 | |
|   if ( result != 0 ) {
 | |
|           std::cerr << "Could not join thread" << std::endl;
 | |
|           return 1;
 | |
|   }
 | |
|   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
 | |
| 
 | |
|   return 0;
 | |
| }
 |