mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Fixes two typos. Change-Id: I129f647de8933e1d8f0dc9941bcb91602edce7e2 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221148 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			434 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			434 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
///
 | 
						|
/// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
 | 
						|
/// of these conform to an LLVM "Allocator" concept which consists of an
 | 
						|
/// Allocate method accepting a size and alignment, and a Deallocate accepting
 | 
						|
/// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
 | 
						|
/// Allocate and Deallocate for setting size and alignment based on the final
 | 
						|
/// type. These overloads are typically provided by a base class template \c
 | 
						|
/// AllocatorBase.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_SUPPORT_ALLOCATOR_H
 | 
						|
#define LLVM_SUPPORT_ALLOCATOR_H
 | 
						|
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/AlignOf.h"
 | 
						|
#include "llvm/Support/DataTypes.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Memory.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdlib>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// \brief CRTP base class providing obvious overloads for the core \c
 | 
						|
/// Allocate() methods of LLVM-style allocators.
 | 
						|
///
 | 
						|
/// This base class both documents the full public interface exposed by all
 | 
						|
/// LLVM-style allocators, and redirects all of the overloads to a single core
 | 
						|
/// set of methods which the derived class must define.
 | 
						|
template <typename DerivedT> class AllocatorBase {
 | 
						|
public:
 | 
						|
  /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
 | 
						|
  /// must be implemented by \c DerivedT.
 | 
						|
  void *Allocate(size_t Size, size_t Alignment) {
 | 
						|
#ifdef __clang__
 | 
						|
    static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
 | 
						|
                      &AllocatorBase::Allocate) !=
 | 
						|
                      static_cast<void *(DerivedT::*)(size_t, size_t)>(
 | 
						|
                          &DerivedT::Allocate),
 | 
						|
                  "Class derives from AllocatorBase without implementing the "
 | 
						|
                  "core Allocate(size_t, size_t) overload!");
 | 
						|
#endif
 | 
						|
    return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
 | 
						|
  /// allocator.
 | 
						|
  void Deallocate(const void *Ptr, size_t Size) {
 | 
						|
#ifdef __clang__
 | 
						|
    static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
 | 
						|
                      &AllocatorBase::Deallocate) !=
 | 
						|
                      static_cast<void (DerivedT::*)(const void *, size_t)>(
 | 
						|
                          &DerivedT::Deallocate),
 | 
						|
                  "Class derives from AllocatorBase without implementing the "
 | 
						|
                  "core Deallocate(void *) overload!");
 | 
						|
#endif
 | 
						|
    return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
 | 
						|
  }
 | 
						|
 | 
						|
  // The rest of these methods are helpers that redirect to one of the above
 | 
						|
  // core methods.
 | 
						|
 | 
						|
  /// \brief Allocate space for a sequence of objects without constructing them.
 | 
						|
  template <typename T> T *Allocate(size_t Num = 1) {
 | 
						|
    return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Deallocate space for a sequence of objects without constructing them.
 | 
						|
  template <typename T>
 | 
						|
  typename std::enable_if<
 | 
						|
      !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
 | 
						|
  Deallocate(T *Ptr, size_t Num = 1) {
 | 
						|
    Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class MallocAllocator : public AllocatorBase<MallocAllocator> {
 | 
						|
public:
 | 
						|
  void Reset() {}
 | 
						|
 | 
						|
  LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
 | 
						|
                                                size_t /*Alignment*/) {
 | 
						|
    return malloc(Size);
 | 
						|
  }
 | 
						|
 | 
						|
  // Pull in base class overloads.
 | 
						|
  using AllocatorBase<MallocAllocator>::Allocate;
 | 
						|
 | 
						|
  void Deallocate(const void *Ptr, size_t /*Size*/) {
 | 
						|
    free(const_cast<void *>(Ptr));
 | 
						|
  }
 | 
						|
 | 
						|
  // Pull in base class overloads.
 | 
						|
  using AllocatorBase<MallocAllocator>::Deallocate;
 | 
						|
 | 
						|
  void PrintStats() const {}
 | 
						|
};
 | 
						|
 | 
						|
namespace detail {
 | 
						|
 | 
						|
// We call out to an external function to actually print the message as the
 | 
						|
// printing code uses Allocator.h in its implementation.
 | 
						|
void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
 | 
						|
                                size_t TotalMemory);
 | 
						|
} // End namespace detail.
 | 
						|
 | 
						|
/// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
 | 
						|
///
 | 
						|
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
 | 
						|
/// memory rather than relying on a boundless contiguous heap. However, it has
 | 
						|
/// bump-pointer semantics in that it is a monotonically growing pool of memory
 | 
						|
/// where every allocation is found by merely allocating the next N bytes in
 | 
						|
/// the slab, or the next N bytes in the next slab.
 | 
						|
///
 | 
						|
/// Note that this also has a threshold for forcing allocations above a certain
 | 
						|
/// size into their own slab.
 | 
						|
///
 | 
						|
/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
 | 
						|
/// object, which wraps malloc, to allocate memory, but it can be changed to
 | 
						|
/// use a custom allocator.
 | 
						|
template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
 | 
						|
          size_t SizeThreshold = SlabSize>
 | 
						|
class BumpPtrAllocatorImpl
 | 
						|
    : public AllocatorBase<
 | 
						|
          BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
 | 
						|
public:
 | 
						|
  static_assert(SizeThreshold <= SlabSize,
 | 
						|
                "The SizeThreshold must be at most the SlabSize to ensure "
 | 
						|
                "that objects larger than a slab go into their own memory "
 | 
						|
                "allocation.");
 | 
						|
 | 
						|
  BumpPtrAllocatorImpl()
 | 
						|
      : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {}
 | 
						|
  template <typename T>
 | 
						|
  BumpPtrAllocatorImpl(T &&Allocator)
 | 
						|
      : CurPtr(nullptr), End(nullptr), BytesAllocated(0),
 | 
						|
        Allocator(std::forward<T &&>(Allocator)) {}
 | 
						|
 | 
						|
  // Manually implement a move constructor as we must clear the old allocators
 | 
						|
  // slabs as a matter of correctness.
 | 
						|
  BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
 | 
						|
      : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
 | 
						|
        CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
 | 
						|
        BytesAllocated(Old.BytesAllocated),
 | 
						|
        Allocator(std::move(Old.Allocator)) {
 | 
						|
    Old.CurPtr = Old.End = nullptr;
 | 
						|
    Old.BytesAllocated = 0;
 | 
						|
    Old.Slabs.clear();
 | 
						|
    Old.CustomSizedSlabs.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  ~BumpPtrAllocatorImpl() {
 | 
						|
    DeallocateSlabs(Slabs.begin(), Slabs.end());
 | 
						|
    DeallocateCustomSizedSlabs();
 | 
						|
  }
 | 
						|
 | 
						|
  BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
 | 
						|
    DeallocateSlabs(Slabs.begin(), Slabs.end());
 | 
						|
    DeallocateCustomSizedSlabs();
 | 
						|
 | 
						|
    CurPtr = RHS.CurPtr;
 | 
						|
    End = RHS.End;
 | 
						|
    BytesAllocated = RHS.BytesAllocated;
 | 
						|
    Slabs = std::move(RHS.Slabs);
 | 
						|
    CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
 | 
						|
    Allocator = std::move(RHS.Allocator);
 | 
						|
 | 
						|
    RHS.CurPtr = RHS.End = nullptr;
 | 
						|
    RHS.BytesAllocated = 0;
 | 
						|
    RHS.Slabs.clear();
 | 
						|
    RHS.CustomSizedSlabs.clear();
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Deallocate all but the current slab and reset the current pointer
 | 
						|
  /// to the beginning of it, freeing all memory allocated so far.
 | 
						|
  void Reset() {
 | 
						|
    if (Slabs.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
    // Reset the state.
 | 
						|
    BytesAllocated = 0;
 | 
						|
    CurPtr = (char *)Slabs.front();
 | 
						|
    End = CurPtr + SlabSize;
 | 
						|
 | 
						|
    // Deallocate all but the first slab, and all custome sized slabs.
 | 
						|
    DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
 | 
						|
    Slabs.erase(std::next(Slabs.begin()), Slabs.end());
 | 
						|
    DeallocateCustomSizedSlabs();
 | 
						|
    CustomSizedSlabs.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Allocate space at the specified alignment.
 | 
						|
  LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, size_t Alignment) {
 | 
						|
    assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
 | 
						|
 | 
						|
    // Keep track of how many bytes we've allocated.
 | 
						|
    BytesAllocated += Size;
 | 
						|
 | 
						|
    size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
 | 
						|
    assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
 | 
						|
 | 
						|
    // Check if we have enough space.
 | 
						|
    if (Adjustment + Size <= size_t(End - CurPtr)) {
 | 
						|
      char *AlignedPtr = CurPtr + Adjustment;
 | 
						|
      CurPtr = AlignedPtr + Size;
 | 
						|
      // Update the allocation point of this memory block in MemorySanitizer.
 | 
						|
      // Without this, MemorySanitizer messages for values originated from here
 | 
						|
      // will point to the allocation of the entire slab.
 | 
						|
      __msan_allocated_memory(AlignedPtr, Size);
 | 
						|
      return AlignedPtr;
 | 
						|
    }
 | 
						|
 | 
						|
    // If Size is really big, allocate a separate slab for it.
 | 
						|
    size_t PaddedSize = Size + Alignment - 1;
 | 
						|
    if (PaddedSize > SizeThreshold) {
 | 
						|
      void *NewSlab = Allocator.Allocate(PaddedSize, 0);
 | 
						|
      CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
 | 
						|
 | 
						|
      uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
 | 
						|
      assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
 | 
						|
      char *AlignedPtr = (char*)AlignedAddr;
 | 
						|
      __msan_allocated_memory(AlignedPtr, Size);
 | 
						|
      return AlignedPtr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, start a new slab and try again.
 | 
						|
    StartNewSlab();
 | 
						|
    uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
 | 
						|
    assert(AlignedAddr + Size <= (uintptr_t)End &&
 | 
						|
           "Unable to allocate memory!");
 | 
						|
    char *AlignedPtr = (char*)AlignedAddr;
 | 
						|
    CurPtr = AlignedPtr + Size;
 | 
						|
    __msan_allocated_memory(AlignedPtr, Size);
 | 
						|
    return AlignedPtr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Pull in base class overloads.
 | 
						|
  using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
 | 
						|
 | 
						|
  void Deallocate(const void * /*Ptr*/, size_t /*Size*/) {}
 | 
						|
 | 
						|
  // Pull in base class overloads.
 | 
						|
  using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
 | 
						|
 | 
						|
  size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
 | 
						|
 | 
						|
  size_t getTotalMemory() const {
 | 
						|
    size_t TotalMemory = 0;
 | 
						|
    for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
 | 
						|
      TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
 | 
						|
    for (auto &PtrAndSize : CustomSizedSlabs)
 | 
						|
      TotalMemory += PtrAndSize.second;
 | 
						|
    return TotalMemory;
 | 
						|
  }
 | 
						|
 | 
						|
  void PrintStats() const {
 | 
						|
    detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
 | 
						|
                                       getTotalMemory());
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// \brief The current pointer into the current slab.
 | 
						|
  ///
 | 
						|
  /// This points to the next free byte in the slab.
 | 
						|
  char *CurPtr;
 | 
						|
 | 
						|
  /// \brief The end of the current slab.
 | 
						|
  char *End;
 | 
						|
 | 
						|
  /// \brief The slabs allocated so far.
 | 
						|
  SmallVector<void *, 4> Slabs;
 | 
						|
 | 
						|
  /// \brief Custom-sized slabs allocated for too-large allocation requests.
 | 
						|
  SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
 | 
						|
 | 
						|
  /// \brief How many bytes we've allocated.
 | 
						|
  ///
 | 
						|
  /// Used so that we can compute how much space was wasted.
 | 
						|
  size_t BytesAllocated;
 | 
						|
 | 
						|
  /// \brief The allocator instance we use to get slabs of memory.
 | 
						|
  AllocatorT Allocator;
 | 
						|
 | 
						|
  static size_t computeSlabSize(unsigned SlabIdx) {
 | 
						|
    // Scale the actual allocated slab size based on the number of slabs
 | 
						|
    // allocated. Every 128 slabs allocated, we double the allocated size to
 | 
						|
    // reduce allocation frequency, but saturate at multiplying the slab size by
 | 
						|
    // 2^30.
 | 
						|
    return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Allocate a new slab and move the bump pointers over into the new
 | 
						|
  /// slab, modifying CurPtr and End.
 | 
						|
  void StartNewSlab() {
 | 
						|
    size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
 | 
						|
 | 
						|
    void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
 | 
						|
    Slabs.push_back(NewSlab);
 | 
						|
    CurPtr = (char *)(NewSlab);
 | 
						|
    End = ((char *)NewSlab) + AllocatedSlabSize;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Deallocate a sequence of slabs.
 | 
						|
  void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
 | 
						|
                       SmallVectorImpl<void *>::iterator E) {
 | 
						|
    for (; I != E; ++I) {
 | 
						|
      size_t AllocatedSlabSize =
 | 
						|
          computeSlabSize(std::distance(Slabs.begin(), I));
 | 
						|
#ifndef NDEBUG
 | 
						|
      // Poison the memory so stale pointers crash sooner.  Note we must
 | 
						|
      // preserve the Size and NextPtr fields at the beginning.
 | 
						|
      if (AllocatedSlabSize != 0) {
 | 
						|
        sys::Memory::setRangeWritable(*I, AllocatedSlabSize);
 | 
						|
        memset(*I, 0xCD, AllocatedSlabSize);
 | 
						|
      }
 | 
						|
#endif
 | 
						|
      Allocator.Deallocate(*I, AllocatedSlabSize);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Deallocate all memory for custom sized slabs.
 | 
						|
  void DeallocateCustomSizedSlabs() {
 | 
						|
    for (auto &PtrAndSize : CustomSizedSlabs) {
 | 
						|
      void *Ptr = PtrAndSize.first;
 | 
						|
      size_t Size = PtrAndSize.second;
 | 
						|
#ifndef NDEBUG
 | 
						|
      // Poison the memory so stale pointers crash sooner.  Note we must
 | 
						|
      // preserve the Size and NextPtr fields at the beginning.
 | 
						|
      sys::Memory::setRangeWritable(Ptr, Size);
 | 
						|
      memset(Ptr, 0xCD, Size);
 | 
						|
#endif
 | 
						|
      Allocator.Deallocate(Ptr, Size);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  template <typename T> friend class SpecificBumpPtrAllocator;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief The standard BumpPtrAllocator which just uses the default template
 | 
						|
/// paramaters.
 | 
						|
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
 | 
						|
 | 
						|
/// \brief A BumpPtrAllocator that allows only elements of a specific type to be
 | 
						|
/// allocated.
 | 
						|
///
 | 
						|
/// This allows calling the destructor in DestroyAll() and when the allocator is
 | 
						|
/// destroyed.
 | 
						|
template <typename T> class SpecificBumpPtrAllocator {
 | 
						|
  BumpPtrAllocator Allocator;
 | 
						|
 | 
						|
public:
 | 
						|
  SpecificBumpPtrAllocator() : Allocator() {}
 | 
						|
  SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
 | 
						|
      : Allocator(std::move(Old.Allocator)) {}
 | 
						|
  ~SpecificBumpPtrAllocator() { DestroyAll(); }
 | 
						|
 | 
						|
  SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
 | 
						|
    Allocator = std::move(RHS.Allocator);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Call the destructor of each allocated object and deallocate all but the
 | 
						|
  /// current slab and reset the current pointer to the beginning of it, freeing
 | 
						|
  /// all memory allocated so far.
 | 
						|
  void DestroyAll() {
 | 
						|
    auto DestroyElements = [](char *Begin, char *End) {
 | 
						|
      assert(Begin == (char*)alignAddr(Begin, alignOf<T>()));
 | 
						|
      for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
 | 
						|
        reinterpret_cast<T *>(Ptr)->~T();
 | 
						|
    };
 | 
						|
 | 
						|
    for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
 | 
						|
         ++I) {
 | 
						|
      size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
 | 
						|
          std::distance(Allocator.Slabs.begin(), I));
 | 
						|
      char *Begin = (char*)alignAddr(*I, alignOf<T>());
 | 
						|
      char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
 | 
						|
                                               : (char *)*I + AllocatedSlabSize;
 | 
						|
 | 
						|
      DestroyElements(Begin, End);
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
 | 
						|
      void *Ptr = PtrAndSize.first;
 | 
						|
      size_t Size = PtrAndSize.second;
 | 
						|
      DestroyElements((char*)alignAddr(Ptr, alignOf<T>()), (char *)Ptr + Size);
 | 
						|
    }
 | 
						|
 | 
						|
    Allocator.Reset();
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Allocate space for an array of objects without constructing them.
 | 
						|
  T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
 | 
						|
};
 | 
						|
 | 
						|
}  // end namespace llvm
 | 
						|
 | 
						|
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
 | 
						|
void *operator new(size_t Size,
 | 
						|
                   llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
 | 
						|
                                              SizeThreshold> &Allocator) {
 | 
						|
  struct S {
 | 
						|
    char c;
 | 
						|
    union {
 | 
						|
      double D;
 | 
						|
      long double LD;
 | 
						|
      long long L;
 | 
						|
      void *P;
 | 
						|
    } x;
 | 
						|
  };
 | 
						|
  return Allocator.Allocate(
 | 
						|
      Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
 | 
						|
}
 | 
						|
 | 
						|
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
 | 
						|
void operator delete(
 | 
						|
    void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
 | 
						|
}
 | 
						|
 | 
						|
#endif // LLVM_SUPPORT_ALLOCATOR_H
 |