mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12464 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			293 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			293 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- GCSE.cpp - SSA based Global Common Subexpr Elimination ------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass is designed to be a very quick global transformation that
 | |
| // eliminates global common subexpressions from a function.  It does this by
 | |
| // using an existing value numbering implementation to identify the common
 | |
| // subexpressions, eliminating them when possible.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/iMemory.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/ValueNumbering.h"
 | |
| #include "llvm/Support/InstIterator.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include "Support/Debug.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumInstRemoved("gcse", "Number of instructions removed");
 | |
|   Statistic<> NumLoadRemoved("gcse", "Number of loads removed");
 | |
|   Statistic<> NumCallRemoved("gcse", "Number of calls removed");
 | |
|   Statistic<> NumNonInsts   ("gcse", "Number of instructions removed due "
 | |
|                              "to non-instruction values");
 | |
| 
 | |
|   class GCSE : public FunctionPass {
 | |
|     std::set<Instruction*>  WorkList;
 | |
|     DominatorSet           *DomSetInfo;
 | |
|     ValueNumbering         *VN;
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &F);
 | |
| 
 | |
|   private:
 | |
|     bool EliminateRedundancies(Instruction *I,std::vector<Value*> &EqualValues);
 | |
|     Instruction *EliminateCSE(Instruction *I, Instruction *Other);
 | |
|     void ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI);
 | |
| 
 | |
|     // This transformation requires dominator and immediate dominator info
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<DominatorSet>();
 | |
|       AU.addRequired<ImmediateDominators>();
 | |
|       AU.addRequired<ValueNumbering>();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<GCSE> X("gcse", "Global Common Subexpression Elimination");
 | |
| }
 | |
| 
 | |
| // createGCSEPass - The public interface to this file...
 | |
| FunctionPass *llvm::createGCSEPass() { return new GCSE(); }
 | |
| 
 | |
| // GCSE::runOnFunction - This is the main transformation entry point for a
 | |
| // function.
 | |
| //
 | |
| bool GCSE::runOnFunction(Function &F) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Get pointers to the analysis results that we will be using...
 | |
|   DomSetInfo = &getAnalysis<DominatorSet>();
 | |
|   VN = &getAnalysis<ValueNumbering>();
 | |
| 
 | |
|   // Step #1: Add all instructions in the function to the worklist for
 | |
|   // processing.  All of the instructions are considered to be our
 | |
|   // subexpressions to eliminate if possible.
 | |
|   //
 | |
|   WorkList.insert(inst_begin(F), inst_end(F));
 | |
| 
 | |
|   // Step #2: WorkList processing.  Iterate through all of the instructions,
 | |
|   // checking to see if there are any additionally defined subexpressions in the
 | |
|   // program.  If so, eliminate them!
 | |
|   //
 | |
|   while (!WorkList.empty()) {
 | |
|     Instruction &I = **WorkList.begin(); // Get an instruction from the worklist
 | |
|     WorkList.erase(WorkList.begin());
 | |
| 
 | |
|     // If this instruction computes a value, try to fold together common
 | |
|     // instructions that compute it.
 | |
|     //
 | |
|     if (I.getType() != Type::VoidTy) {
 | |
|       std::vector<Value*> EqualValues;
 | |
|       VN->getEqualNumberNodes(&I, EqualValues);
 | |
| 
 | |
|       if (!EqualValues.empty())
 | |
|         Changed |= EliminateRedundancies(&I, EqualValues);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // When the worklist is empty, return whether or not we changed anything...
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool GCSE::EliminateRedundancies(Instruction *I,
 | |
|                                  std::vector<Value*> &EqualValues) {
 | |
|   // If the EqualValues set contains any non-instruction values, then we know
 | |
|   // that all of the instructions can be replaced with the non-instruction value
 | |
|   // because it is guaranteed to dominate all of the instructions in the
 | |
|   // function.  We only have to do hard work if all we have are instructions.
 | |
|   //
 | |
|   for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
 | |
|     if (!isa<Instruction>(EqualValues[i])) {
 | |
|       // Found a non-instruction.  Replace all instructions with the
 | |
|       // non-instruction.
 | |
|       //
 | |
|       Value *Replacement = EqualValues[i];
 | |
| 
 | |
|       // Make sure we get I as well...
 | |
|       EqualValues[i] = I;
 | |
| 
 | |
|       // Replace all instructions with the Replacement value.
 | |
|       for (i = 0; i != e; ++i)
 | |
|         if (Instruction *I = dyn_cast<Instruction>(EqualValues[i])) {
 | |
|           // Change all users of I to use Replacement.
 | |
|           I->replaceAllUsesWith(Replacement);
 | |
| 
 | |
|           if (isa<LoadInst>(I))
 | |
|             ++NumLoadRemoved; // Keep track of loads eliminated
 | |
|           if (isa<CallInst>(I))
 | |
|             ++NumCallRemoved; // Keep track of calls eliminated
 | |
|           ++NumInstRemoved;   // Keep track of number of instructions eliminated
 | |
|           ++NumNonInsts;      // Keep track of number of insts repl with values
 | |
| 
 | |
|           // Erase the instruction from the program.
 | |
|           I->getParent()->getInstList().erase(I);
 | |
|           WorkList.erase(I);
 | |
|         }
 | |
|       
 | |
|       return true;
 | |
|     }
 | |
|   
 | |
|   // Remove duplicate entries from EqualValues...
 | |
|   std::sort(EqualValues.begin(), EqualValues.end());
 | |
|   EqualValues.erase(std::unique(EqualValues.begin(), EqualValues.end()),
 | |
|                     EqualValues.end());
 | |
| 
 | |
|   // From this point on, EqualValues is logically a vector of instructions.
 | |
|   //
 | |
|   bool Changed = false;
 | |
|   EqualValues.push_back(I); // Make sure I is included...
 | |
|   while (EqualValues.size() > 1) {
 | |
|     // FIXME, this could be done better than simple iteration!
 | |
|     Instruction *Test = cast<Instruction>(EqualValues.back());
 | |
|     EqualValues.pop_back();
 | |
|     
 | |
|     for (unsigned i = 0, e = EqualValues.size(); i != e; ++i)
 | |
|       if (Instruction *Ret = EliminateCSE(Test,
 | |
|                                           cast<Instruction>(EqualValues[i]))) {
 | |
|         if (Ret == Test)          // Eliminated EqualValues[i]
 | |
|           EqualValues[i] = Test;  // Make sure that we reprocess I at some point
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| // ReplaceInstWithInst - Destroy the instruction pointed to by SI, making all
 | |
| // uses of the instruction use First now instead.
 | |
| //
 | |
| void GCSE::ReplaceInstWithInst(Instruction *First, BasicBlock::iterator SI) {
 | |
|   Instruction &Second = *SI;
 | |
| 
 | |
|   DEBUG(std::cerr << "GCSE: Substituting %" << First->getName() << " for: "
 | |
|                   << Second);
 | |
|   
 | |
|   //cerr << "DEL " << (void*)Second << Second;
 | |
| 
 | |
|   // Add the first instruction back to the worklist
 | |
|   WorkList.insert(First);
 | |
| 
 | |
|   // Add all uses of the second instruction to the worklist
 | |
|   for (Value::use_iterator UI = Second.use_begin(), UE = Second.use_end();
 | |
|        UI != UE; ++UI)
 | |
|     WorkList.insert(cast<Instruction>(*UI));
 | |
|     
 | |
|   // Make all users of 'Second' now use 'First'
 | |
|   Second.replaceAllUsesWith(First);
 | |
| 
 | |
|   // Erase the second instruction from the program
 | |
|   Second.getParent()->getInstList().erase(SI);
 | |
| }
 | |
| 
 | |
| // EliminateCSE - The two instruction I & Other have been found to be common
 | |
| // subexpressions.  This function is responsible for eliminating one of them,
 | |
| // and for fixing the worklist to be correct.  The instruction that is preserved
 | |
| // is returned from the function if the other is eliminated, otherwise null is
 | |
| // returned.
 | |
| //
 | |
| Instruction *GCSE::EliminateCSE(Instruction *I, Instruction *Other) {
 | |
|   assert(I != Other);
 | |
| 
 | |
|   WorkList.erase(I);
 | |
|   WorkList.erase(Other); // Other may not actually be on the worklist anymore...
 | |
| 
 | |
|   // Handle the easy case, where both instructions are in the same basic block
 | |
|   BasicBlock *BB1 = I->getParent(), *BB2 = Other->getParent();
 | |
|   Instruction *Ret = 0;
 | |
| 
 | |
|   if (BB1 == BB2) {
 | |
|     // Eliminate the second occurring instruction.  Add all uses of the second
 | |
|     // instruction to the worklist.
 | |
|     //
 | |
|     // Scan the basic block looking for the "first" instruction
 | |
|     BasicBlock::iterator BI = BB1->begin();
 | |
|     while (&*BI != I && &*BI != Other) {
 | |
|       ++BI;
 | |
|       assert(BI != BB1->end() && "Instructions not found in parent BB!");
 | |
|     }
 | |
| 
 | |
|     // Keep track of which instructions occurred first & second
 | |
|     Instruction *First = BI;
 | |
|     Instruction *Second = I != First ? I : Other; // Get iterator to second inst
 | |
|     BI = Second;
 | |
| 
 | |
|     if (isa<LoadInst>(Second))
 | |
|       ++NumLoadRemoved;  // Keep track of loads eliminated
 | |
|     if (isa<CallInst>(Second))
 | |
|       ++NumCallRemoved;  // Keep track of calls eliminated
 | |
| 
 | |
|     // Destroy Second, using First instead.
 | |
|     ReplaceInstWithInst(First, BI);
 | |
|     Ret = First;
 | |
| 
 | |
|     // Otherwise, the two instructions are in different basic blocks.  If one
 | |
|     // dominates the other instruction, we can simply use it
 | |
|     //
 | |
|   } else if (DomSetInfo->dominates(BB1, BB2)) {    // I dom Other?
 | |
|     if (isa<LoadInst>(Other))
 | |
|       ++NumLoadRemoved;  // Keep track of loads eliminated
 | |
|     if (isa<CallInst>(Other))
 | |
|       ++NumCallRemoved;  // Keep track of calls eliminated
 | |
| 
 | |
|     ReplaceInstWithInst(I, Other);
 | |
|     Ret = I;
 | |
|   } else if (DomSetInfo->dominates(BB2, BB1)) {    // Other dom I?
 | |
|     if (isa<LoadInst>(I))
 | |
|       ++NumLoadRemoved;  // Keep track of loads eliminated
 | |
|     if (isa<CallInst>(I))
 | |
|       ++NumCallRemoved;  // Keep track of calls eliminated
 | |
| 
 | |
|     ReplaceInstWithInst(Other, I);
 | |
|     Ret = Other;
 | |
|   } else {
 | |
|     // This code is disabled because it has several problems:
 | |
|     // One, the actual assumption is wrong, as shown by this code:
 | |
|     // int "test"(int %X, int %Y) {
 | |
|     //         %Z = add int %X, %Y
 | |
|     //         ret int %Z
 | |
|     // Unreachable:
 | |
|     //         %Q = add int %X, %Y
 | |
|     //         ret int %Q
 | |
|     // }
 | |
|     //
 | |
|     // Here there are no shared dominators.  Additionally, this had the habit of
 | |
|     // moving computations where they were not always computed.  For example, in
 | |
|     // a case like this:
 | |
|     //  if (c) {
 | |
|     //    if (d)  ...
 | |
|     //    else ... X+Y ...
 | |
|     //  } else {
 | |
|     //    ... X+Y ...
 | |
|     //  }
 | |
|     // 
 | |
|     // In this case, the expression would be hoisted to outside the 'if' stmt,
 | |
|     // causing the expression to be evaluated, even for the if (d) path, which
 | |
|     // could cause problems, if, for example, it caused a divide by zero.  In
 | |
|     // general the problem this case is trying to solve is better addressed with
 | |
|     // PRE than GCSE.
 | |
|     //
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   ++NumInstRemoved;   // Keep track of number of instructions eliminated
 | |
| 
 | |
|   // Add all users of Ret to the worklist...
 | |
|   for (Value::use_iterator I = Ret->use_begin(), E = Ret->use_end(); I != E;++I)
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(*I))
 | |
|       WorkList.insert(Inst);
 | |
| 
 | |
|   return Ret;
 | |
| }
 |