mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207197 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2063 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2063 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a pass that splits the constant pool up into 'islands'
 | |
| // which are scattered through-out the function.  This is required due to the
 | |
| // limited pc-relative displacements that ARM has.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ARM.h"
 | |
| #include "ARMMachineFunctionInfo.h"
 | |
| #include "MCTargetDesc/ARMAddressingModes.h"
 | |
| #include "Thumb2InstrInfo.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "arm-cp-islands"
 | |
| 
 | |
| STATISTIC(NumCPEs,       "Number of constpool entries");
 | |
| STATISTIC(NumSplit,      "Number of uncond branches inserted");
 | |
| STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
 | |
| STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
 | |
| STATISTIC(NumTBs,        "Number of table branches generated");
 | |
| STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
 | |
| STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
 | |
| STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
 | |
| STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
 | |
| STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
 | |
| 
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
 | |
|           cl::desc("Adjust basic block layout to better use TB[BH]"));
 | |
| 
 | |
| // FIXME: This option should be removed once it has received sufficient testing.
 | |
| static cl::opt<bool>
 | |
| AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
 | |
|           cl::desc("Align constant islands in code"));
 | |
| 
 | |
| /// UnknownPadding - Return the worst case padding that could result from
 | |
| /// unknown offset bits.  This does not include alignment padding caused by
 | |
| /// known offset bits.
 | |
| ///
 | |
| /// @param LogAlign log2(alignment)
 | |
| /// @param KnownBits Number of known low offset bits.
 | |
| static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
 | |
|   if (KnownBits < LogAlign)
 | |
|     return (1u << LogAlign) - (1u << KnownBits);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
 | |
|   /// requires constant pool entries to be scattered among the instructions
 | |
|   /// inside a function.  To do this, it completely ignores the normal LLVM
 | |
|   /// constant pool; instead, it places constants wherever it feels like with
 | |
|   /// special instructions.
 | |
|   ///
 | |
|   /// The terminology used in this pass includes:
 | |
|   ///   Islands - Clumps of constants placed in the function.
 | |
|   ///   Water   - Potential places where an island could be formed.
 | |
|   ///   CPE     - A constant pool entry that has been placed somewhere, which
 | |
|   ///             tracks a list of users.
 | |
|   class ARMConstantIslands : public MachineFunctionPass {
 | |
|     /// BasicBlockInfo - Information about the offset and size of a single
 | |
|     /// basic block.
 | |
|     struct BasicBlockInfo {
 | |
|       /// Offset - Distance from the beginning of the function to the beginning
 | |
|       /// of this basic block.
 | |
|       ///
 | |
|       /// Offsets are computed assuming worst case padding before an aligned
 | |
|       /// block. This means that subtracting basic block offsets always gives a
 | |
|       /// conservative estimate of the real distance which may be smaller.
 | |
|       ///
 | |
|       /// Because worst case padding is used, the computed offset of an aligned
 | |
|       /// block may not actually be aligned.
 | |
|       unsigned Offset;
 | |
| 
 | |
|       /// Size - Size of the basic block in bytes.  If the block contains
 | |
|       /// inline assembly, this is a worst case estimate.
 | |
|       ///
 | |
|       /// The size does not include any alignment padding whether from the
 | |
|       /// beginning of the block, or from an aligned jump table at the end.
 | |
|       unsigned Size;
 | |
| 
 | |
|       /// KnownBits - The number of low bits in Offset that are known to be
 | |
|       /// exact.  The remaining bits of Offset are an upper bound.
 | |
|       uint8_t KnownBits;
 | |
| 
 | |
|       /// Unalign - When non-zero, the block contains instructions (inline asm)
 | |
|       /// of unknown size.  The real size may be smaller than Size bytes by a
 | |
|       /// multiple of 1 << Unalign.
 | |
|       uint8_t Unalign;
 | |
| 
 | |
|       /// PostAlign - When non-zero, the block terminator contains a .align
 | |
|       /// directive, so the end of the block is aligned to 1 << PostAlign
 | |
|       /// bytes.
 | |
|       uint8_t PostAlign;
 | |
| 
 | |
|       BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
 | |
|         PostAlign(0) {}
 | |
| 
 | |
|       /// Compute the number of known offset bits internally to this block.
 | |
|       /// This number should be used to predict worst case padding when
 | |
|       /// splitting the block.
 | |
|       unsigned internalKnownBits() const {
 | |
|         unsigned Bits = Unalign ? Unalign : KnownBits;
 | |
|         // If the block size isn't a multiple of the known bits, assume the
 | |
|         // worst case padding.
 | |
|         if (Size & ((1u << Bits) - 1))
 | |
|           Bits = countTrailingZeros(Size);
 | |
|         return Bits;
 | |
|       }
 | |
| 
 | |
|       /// Compute the offset immediately following this block.  If LogAlign is
 | |
|       /// specified, return the offset the successor block will get if it has
 | |
|       /// this alignment.
 | |
|       unsigned postOffset(unsigned LogAlign = 0) const {
 | |
|         unsigned PO = Offset + Size;
 | |
|         unsigned LA = std::max(unsigned(PostAlign), LogAlign);
 | |
|         if (!LA)
 | |
|           return PO;
 | |
|         // Add alignment padding from the terminator.
 | |
|         return PO + UnknownPadding(LA, internalKnownBits());
 | |
|       }
 | |
| 
 | |
|       /// Compute the number of known low bits of postOffset.  If this block
 | |
|       /// contains inline asm, the number of known bits drops to the
 | |
|       /// instruction alignment.  An aligned terminator may increase the number
 | |
|       /// of know bits.
 | |
|       /// If LogAlign is given, also consider the alignment of the next block.
 | |
|       unsigned postKnownBits(unsigned LogAlign = 0) const {
 | |
|         return std::max(std::max(unsigned(PostAlign), LogAlign),
 | |
|                         internalKnownBits());
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     std::vector<BasicBlockInfo> BBInfo;
 | |
| 
 | |
|     /// WaterList - A sorted list of basic blocks where islands could be placed
 | |
|     /// (i.e. blocks that don't fall through to the following block, due
 | |
|     /// to a return, unreachable, or unconditional branch).
 | |
|     std::vector<MachineBasicBlock*> WaterList;
 | |
| 
 | |
|     /// NewWaterList - The subset of WaterList that was created since the
 | |
|     /// previous iteration by inserting unconditional branches.
 | |
|     SmallSet<MachineBasicBlock*, 4> NewWaterList;
 | |
| 
 | |
|     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
 | |
| 
 | |
|     /// CPUser - One user of a constant pool, keeping the machine instruction
 | |
|     /// pointer, the constant pool being referenced, and the max displacement
 | |
|     /// allowed from the instruction to the CP.  The HighWaterMark records the
 | |
|     /// highest basic block where a new CPEntry can be placed.  To ensure this
 | |
|     /// pass terminates, the CP entries are initially placed at the end of the
 | |
|     /// function and then move monotonically to lower addresses.  The
 | |
|     /// exception to this rule is when the current CP entry for a particular
 | |
|     /// CPUser is out of range, but there is another CP entry for the same
 | |
|     /// constant value in range.  We want to use the existing in-range CP
 | |
|     /// entry, but if it later moves out of range, the search for new water
 | |
|     /// should resume where it left off.  The HighWaterMark is used to record
 | |
|     /// that point.
 | |
|     struct CPUser {
 | |
|       MachineInstr *MI;
 | |
|       MachineInstr *CPEMI;
 | |
|       MachineBasicBlock *HighWaterMark;
 | |
|     private:
 | |
|       unsigned MaxDisp;
 | |
|     public:
 | |
|       bool NegOk;
 | |
|       bool IsSoImm;
 | |
|       bool KnownAlignment;
 | |
|       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
 | |
|              bool neg, bool soimm)
 | |
|         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
 | |
|           KnownAlignment(false) {
 | |
|         HighWaterMark = CPEMI->getParent();
 | |
|       }
 | |
|       /// getMaxDisp - Returns the maximum displacement supported by MI.
 | |
|       /// Correct for unknown alignment.
 | |
|       /// Conservatively subtract 2 bytes to handle weird alignment effects.
 | |
|       unsigned getMaxDisp() const {
 | |
|         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     /// CPUsers - Keep track of all of the machine instructions that use various
 | |
|     /// constant pools and their max displacement.
 | |
|     std::vector<CPUser> CPUsers;
 | |
| 
 | |
|     /// CPEntry - One per constant pool entry, keeping the machine instruction
 | |
|     /// pointer, the constpool index, and the number of CPUser's which
 | |
|     /// reference this entry.
 | |
|     struct CPEntry {
 | |
|       MachineInstr *CPEMI;
 | |
|       unsigned CPI;
 | |
|       unsigned RefCount;
 | |
|       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
 | |
|         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
 | |
|     };
 | |
| 
 | |
|     /// CPEntries - Keep track of all of the constant pool entry machine
 | |
|     /// instructions. For each original constpool index (i.e. those that
 | |
|     /// existed upon entry to this pass), it keeps a vector of entries.
 | |
|     /// Original elements are cloned as we go along; the clones are
 | |
|     /// put in the vector of the original element, but have distinct CPIs.
 | |
|     std::vector<std::vector<CPEntry> > CPEntries;
 | |
| 
 | |
|     /// ImmBranch - One per immediate branch, keeping the machine instruction
 | |
|     /// pointer, conditional or unconditional, the max displacement,
 | |
|     /// and (if isCond is true) the corresponding unconditional branch
 | |
|     /// opcode.
 | |
|     struct ImmBranch {
 | |
|       MachineInstr *MI;
 | |
|       unsigned MaxDisp : 31;
 | |
|       bool isCond : 1;
 | |
|       int UncondBr;
 | |
|       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
 | |
|         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
 | |
|     };
 | |
| 
 | |
|     /// ImmBranches - Keep track of all the immediate branch instructions.
 | |
|     ///
 | |
|     std::vector<ImmBranch> ImmBranches;
 | |
| 
 | |
|     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
 | |
|     ///
 | |
|     SmallVector<MachineInstr*, 4> PushPopMIs;
 | |
| 
 | |
|     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
 | |
|     SmallVector<MachineInstr*, 4> T2JumpTables;
 | |
| 
 | |
|     /// HasFarJump - True if any far jump instruction has been emitted during
 | |
|     /// the branch fix up pass.
 | |
|     bool HasFarJump;
 | |
| 
 | |
|     MachineFunction *MF;
 | |
|     MachineConstantPool *MCP;
 | |
|     const ARMBaseInstrInfo *TII;
 | |
|     const ARMSubtarget *STI;
 | |
|     ARMFunctionInfo *AFI;
 | |
|     bool isThumb;
 | |
|     bool isThumb1;
 | |
|     bool isThumb2;
 | |
|   public:
 | |
|     static char ID;
 | |
|     ARMConstantIslands() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     const char *getPassName() const override {
 | |
|       return "ARM constant island placement and branch shortening pass";
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
 | |
|     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
 | |
|     unsigned getCPELogAlign(const MachineInstr *CPEMI);
 | |
|     void scanFunctionJumpTables();
 | |
|     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
 | |
|     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
 | |
|     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
 | |
|     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
 | |
|     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
 | |
|     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
 | |
|     bool findAvailableWater(CPUser&U, unsigned UserOffset,
 | |
|                             water_iterator &WaterIter);
 | |
|     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
 | |
|                         MachineBasicBlock *&NewMBB);
 | |
|     bool handleConstantPoolUser(unsigned CPUserIndex);
 | |
|     void removeDeadCPEMI(MachineInstr *CPEMI);
 | |
|     bool removeUnusedCPEntries();
 | |
|     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
 | |
|                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
 | |
|                           bool DoDump = false);
 | |
|     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
 | |
|                         CPUser &U, unsigned &Growth);
 | |
|     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
 | |
|     bool fixupImmediateBr(ImmBranch &Br);
 | |
|     bool fixupConditionalBr(ImmBranch &Br);
 | |
|     bool fixupUnconditionalBr(ImmBranch &Br);
 | |
|     bool undoLRSpillRestore();
 | |
|     bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
 | |
|     bool optimizeThumb2Instructions();
 | |
|     bool optimizeThumb2Branches();
 | |
|     bool reorderThumb2JumpTables();
 | |
|     bool optimizeThumb2JumpTables();
 | |
|     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
 | |
|                                                   MachineBasicBlock *JTBB);
 | |
| 
 | |
|     void computeBlockSize(MachineBasicBlock *MBB);
 | |
|     unsigned getOffsetOf(MachineInstr *MI) const;
 | |
|     unsigned getUserOffset(CPUser&) const;
 | |
|     void dumpBBs();
 | |
|     void verify();
 | |
| 
 | |
|     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
 | |
|                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
 | |
|     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
 | |
|                          const CPUser &U) {
 | |
|       return isOffsetInRange(UserOffset, TrialOffset,
 | |
|                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
 | |
|     }
 | |
|   };
 | |
|   char ARMConstantIslands::ID = 0;
 | |
| }
 | |
| 
 | |
| /// verify - check BBOffsets, BBSizes, alignment of islands
 | |
| void ARMConstantIslands::verify() {
 | |
| #ifndef NDEBUG
 | |
|   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock *MBB = MBBI;
 | |
|     unsigned MBBId = MBB->getNumber();
 | |
|     assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
 | |
|   }
 | |
|   DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
 | |
|   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
 | |
|     CPUser &U = CPUsers[i];
 | |
|     unsigned UserOffset = getUserOffset(U);
 | |
|     // Verify offset using the real max displacement without the safety
 | |
|     // adjustment.
 | |
|     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
 | |
|                          /* DoDump = */ true)) {
 | |
|       DEBUG(dbgs() << "OK\n");
 | |
|       continue;
 | |
|     }
 | |
|     DEBUG(dbgs() << "Out of range.\n");
 | |
|     dumpBBs();
 | |
|     DEBUG(MF->dump());
 | |
|     llvm_unreachable("Constant pool entry out of range!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// print block size and offset information - debugging
 | |
| void ARMConstantIslands::dumpBBs() {
 | |
|   DEBUG({
 | |
|     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
 | |
|       const BasicBlockInfo &BBI = BBInfo[J];
 | |
|       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
 | |
|              << " kb=" << unsigned(BBI.KnownBits)
 | |
|              << " ua=" << unsigned(BBI.Unalign)
 | |
|              << " pa=" << unsigned(BBI.PostAlign)
 | |
|              << format(" size=%#x\n", BBInfo[J].Size);
 | |
|     }
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// createARMConstantIslandPass - returns an instance of the constpool
 | |
| /// island pass.
 | |
| FunctionPass *llvm::createARMConstantIslandPass() {
 | |
|   return new ARMConstantIslands();
 | |
| }
 | |
| 
 | |
| bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
 | |
|   MF = &mf;
 | |
|   MCP = mf.getConstantPool();
 | |
| 
 | |
|   DEBUG(dbgs() << "***** ARMConstantIslands: "
 | |
|                << MCP->getConstants().size() << " CP entries, aligned to "
 | |
|                << MCP->getConstantPoolAlignment() << " bytes *****\n");
 | |
| 
 | |
|   TII = (const ARMBaseInstrInfo*)MF->getTarget().getInstrInfo();
 | |
|   AFI = MF->getInfo<ARMFunctionInfo>();
 | |
|   STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
 | |
| 
 | |
|   isThumb = AFI->isThumbFunction();
 | |
|   isThumb1 = AFI->isThumb1OnlyFunction();
 | |
|   isThumb2 = AFI->isThumb2Function();
 | |
| 
 | |
|   HasFarJump = false;
 | |
| 
 | |
|   // This pass invalidates liveness information when it splits basic blocks.
 | |
|   MF->getRegInfo().invalidateLiveness();
 | |
| 
 | |
|   // Renumber all of the machine basic blocks in the function, guaranteeing that
 | |
|   // the numbers agree with the position of the block in the function.
 | |
|   MF->RenumberBlocks();
 | |
| 
 | |
|   // Try to reorder and otherwise adjust the block layout to make good use
 | |
|   // of the TB[BH] instructions.
 | |
|   bool MadeChange = false;
 | |
|   if (isThumb2 && AdjustJumpTableBlocks) {
 | |
|     scanFunctionJumpTables();
 | |
|     MadeChange |= reorderThumb2JumpTables();
 | |
|     // Data is out of date, so clear it. It'll be re-computed later.
 | |
|     T2JumpTables.clear();
 | |
|     // Blocks may have shifted around. Keep the numbering up to date.
 | |
|     MF->RenumberBlocks();
 | |
|   }
 | |
| 
 | |
|   // Thumb1 functions containing constant pools get 4-byte alignment.
 | |
|   // This is so we can keep exact track of where the alignment padding goes.
 | |
| 
 | |
|   // ARM and Thumb2 functions need to be 4-byte aligned.
 | |
|   if (!isThumb1)
 | |
|     MF->ensureAlignment(2);  // 2 = log2(4)
 | |
| 
 | |
|   // Perform the initial placement of the constant pool entries.  To start with,
 | |
|   // we put them all at the end of the function.
 | |
|   std::vector<MachineInstr*> CPEMIs;
 | |
|   if (!MCP->isEmpty())
 | |
|     doInitialPlacement(CPEMIs);
 | |
| 
 | |
|   /// The next UID to take is the first unused one.
 | |
|   AFI->initPICLabelUId(CPEMIs.size());
 | |
| 
 | |
|   // Do the initial scan of the function, building up information about the
 | |
|   // sizes of each block, the location of all the water, and finding all of the
 | |
|   // constant pool users.
 | |
|   initializeFunctionInfo(CPEMIs);
 | |
|   CPEMIs.clear();
 | |
|   DEBUG(dumpBBs());
 | |
| 
 | |
| 
 | |
|   /// Remove dead constant pool entries.
 | |
|   MadeChange |= removeUnusedCPEntries();
 | |
| 
 | |
|   // Iteratively place constant pool entries and fix up branches until there
 | |
|   // is no change.
 | |
|   unsigned NoCPIters = 0, NoBRIters = 0;
 | |
|   while (true) {
 | |
|     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
 | |
|     bool CPChange = false;
 | |
|     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
 | |
|       CPChange |= handleConstantPoolUser(i);
 | |
|     if (CPChange && ++NoCPIters > 30)
 | |
|       report_fatal_error("Constant Island pass failed to converge!");
 | |
|     DEBUG(dumpBBs());
 | |
| 
 | |
|     // Clear NewWaterList now.  If we split a block for branches, it should
 | |
|     // appear as "new water" for the next iteration of constant pool placement.
 | |
|     NewWaterList.clear();
 | |
| 
 | |
|     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
 | |
|     bool BRChange = false;
 | |
|     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
 | |
|       BRChange |= fixupImmediateBr(ImmBranches[i]);
 | |
|     if (BRChange && ++NoBRIters > 30)
 | |
|       report_fatal_error("Branch Fix Up pass failed to converge!");
 | |
|     DEBUG(dumpBBs());
 | |
| 
 | |
|     if (!CPChange && !BRChange)
 | |
|       break;
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   // Shrink 32-bit Thumb2 branch, load, and store instructions.
 | |
|   if (isThumb2 && !STI->prefers32BitThumb())
 | |
|     MadeChange |= optimizeThumb2Instructions();
 | |
| 
 | |
|   // After a while, this might be made debug-only, but it is not expensive.
 | |
|   verify();
 | |
| 
 | |
|   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
 | |
|   // undo the spill / restore of LR if possible.
 | |
|   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
 | |
|     MadeChange |= undoLRSpillRestore();
 | |
| 
 | |
|   // Save the mapping between original and cloned constpool entries.
 | |
|   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
 | |
|     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
 | |
|       const CPEntry & CPE = CPEntries[i][j];
 | |
|       AFI->recordCPEClone(i, CPE.CPI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << '\n'; dumpBBs());
 | |
| 
 | |
|   BBInfo.clear();
 | |
|   WaterList.clear();
 | |
|   CPUsers.clear();
 | |
|   CPEntries.clear();
 | |
|   ImmBranches.clear();
 | |
|   PushPopMIs.clear();
 | |
|   T2JumpTables.clear();
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// doInitialPlacement - Perform the initial placement of the constant pool
 | |
| /// entries.  To start with, we put them all at the end of the function.
 | |
| void
 | |
| ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
 | |
|   // Create the basic block to hold the CPE's.
 | |
|   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
 | |
|   MF->push_back(BB);
 | |
| 
 | |
|   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
 | |
|   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
 | |
| 
 | |
|   // Mark the basic block as required by the const-pool.
 | |
|   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
 | |
|   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
 | |
| 
 | |
|   // The function needs to be as aligned as the basic blocks. The linker may
 | |
|   // move functions around based on their alignment.
 | |
|   MF->ensureAlignment(BB->getAlignment());
 | |
| 
 | |
|   // Order the entries in BB by descending alignment.  That ensures correct
 | |
|   // alignment of all entries as long as BB is sufficiently aligned.  Keep
 | |
|   // track of the insertion point for each alignment.  We are going to bucket
 | |
|   // sort the entries as they are created.
 | |
|   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
 | |
| 
 | |
|   // Add all of the constants from the constant pool to the end block, use an
 | |
|   // identity mapping of CPI's to CPE's.
 | |
|   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
 | |
| 
 | |
|   const DataLayout &TD = *MF->getTarget().getDataLayout();
 | |
|   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
 | |
|     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
 | |
|     assert(Size >= 4 && "Too small constant pool entry");
 | |
|     unsigned Align = CPs[i].getAlignment();
 | |
|     assert(isPowerOf2_32(Align) && "Invalid alignment");
 | |
|     // Verify that all constant pool entries are a multiple of their alignment.
 | |
|     // If not, we would have to pad them out so that instructions stay aligned.
 | |
|     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
 | |
| 
 | |
|     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
 | |
|     unsigned LogAlign = Log2_32(Align);
 | |
|     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
 | |
|     MachineInstr *CPEMI =
 | |
|       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
 | |
|         .addImm(i).addConstantPoolIndex(i).addImm(Size);
 | |
|     CPEMIs.push_back(CPEMI);
 | |
| 
 | |
|     // Ensure that future entries with higher alignment get inserted before
 | |
|     // CPEMI. This is bucket sort with iterators.
 | |
|     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
 | |
|       if (InsPoint[a] == InsAt)
 | |
|         InsPoint[a] = CPEMI;
 | |
| 
 | |
|     // Add a new CPEntry, but no corresponding CPUser yet.
 | |
|     std::vector<CPEntry> CPEs;
 | |
|     CPEs.push_back(CPEntry(CPEMI, i));
 | |
|     CPEntries.push_back(CPEs);
 | |
|     ++NumCPEs;
 | |
|     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
 | |
|                  << Size << ", align = " << Align <<'\n');
 | |
|   }
 | |
|   DEBUG(BB->dump());
 | |
| }
 | |
| 
 | |
| /// BBHasFallthrough - Return true if the specified basic block can fallthrough
 | |
| /// into the block immediately after it.
 | |
| static bool BBHasFallthrough(MachineBasicBlock *MBB) {
 | |
|   // Get the next machine basic block in the function.
 | |
|   MachineFunction::iterator MBBI = MBB;
 | |
|   // Can't fall off end of function.
 | |
|   if (std::next(MBBI) == MBB->getParent()->end())
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *NextBB = std::next(MBBI);
 | |
|   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
 | |
|        E = MBB->succ_end(); I != E; ++I)
 | |
|     if (*I == NextBB)
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
 | |
| /// look up the corresponding CPEntry.
 | |
| ARMConstantIslands::CPEntry
 | |
| *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
 | |
|                                         const MachineInstr *CPEMI) {
 | |
|   std::vector<CPEntry> &CPEs = CPEntries[CPI];
 | |
|   // Number of entries per constpool index should be small, just do a
 | |
|   // linear search.
 | |
|   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
 | |
|     if (CPEs[i].CPEMI == CPEMI)
 | |
|       return &CPEs[i];
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// getCPELogAlign - Returns the required alignment of the constant pool entry
 | |
| /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
 | |
| unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
 | |
|   assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
 | |
| 
 | |
|   // Everything is 4-byte aligned unless AlignConstantIslands is set.
 | |
|   if (!AlignConstantIslands)
 | |
|     return 2;
 | |
| 
 | |
|   unsigned CPI = CPEMI->getOperand(1).getIndex();
 | |
|   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
 | |
|   unsigned Align = MCP->getConstants()[CPI].getAlignment();
 | |
|   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
 | |
|   return Log2_32(Align);
 | |
| }
 | |
| 
 | |
| /// scanFunctionJumpTables - Do a scan of the function, building up
 | |
| /// information about the sizes of each block and the locations of all
 | |
| /// the jump tables.
 | |
| void ARMConstantIslands::scanFunctionJumpTables() {
 | |
|   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock &MBB = *MBBI;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
 | |
|          I != E; ++I)
 | |
|       if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
 | |
|         T2JumpTables.push_back(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// initializeFunctionInfo - Do the initial scan of the function, building up
 | |
| /// information about the sizes of each block, the location of all the water,
 | |
| /// and finding all of the constant pool users.
 | |
| void ARMConstantIslands::
 | |
| initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
 | |
|   BBInfo.clear();
 | |
|   BBInfo.resize(MF->getNumBlockIDs());
 | |
| 
 | |
|   // First thing, compute the size of all basic blocks, and see if the function
 | |
|   // has any inline assembly in it. If so, we have to be conservative about
 | |
|   // alignment assumptions, as we don't know for sure the size of any
 | |
|   // instructions in the inline assembly.
 | |
|   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
 | |
|     computeBlockSize(I);
 | |
| 
 | |
|   // The known bits of the entry block offset are determined by the function
 | |
|   // alignment.
 | |
|   BBInfo.front().KnownBits = MF->getAlignment();
 | |
| 
 | |
|   // Compute block offsets and known bits.
 | |
|   adjustBBOffsetsAfter(MF->begin());
 | |
| 
 | |
|   // Now go back through the instructions and build up our data structures.
 | |
|   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock &MBB = *MBBI;
 | |
| 
 | |
|     // If this block doesn't fall through into the next MBB, then this is
 | |
|     // 'water' that a constant pool island could be placed.
 | |
|     if (!BBHasFallthrough(&MBB))
 | |
|       WaterList.push_back(&MBB);
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
 | |
|          I != E; ++I) {
 | |
|       if (I->isDebugValue())
 | |
|         continue;
 | |
| 
 | |
|       int Opc = I->getOpcode();
 | |
|       if (I->isBranch()) {
 | |
|         bool isCond = false;
 | |
|         unsigned Bits = 0;
 | |
|         unsigned Scale = 1;
 | |
|         int UOpc = Opc;
 | |
|         switch (Opc) {
 | |
|         default:
 | |
|           continue;  // Ignore other JT branches
 | |
|         case ARM::t2BR_JT:
 | |
|           T2JumpTables.push_back(I);
 | |
|           continue;   // Does not get an entry in ImmBranches
 | |
|         case ARM::Bcc:
 | |
|           isCond = true;
 | |
|           UOpc = ARM::B;
 | |
|           // Fallthrough
 | |
|         case ARM::B:
 | |
|           Bits = 24;
 | |
|           Scale = 4;
 | |
|           break;
 | |
|         case ARM::tBcc:
 | |
|           isCond = true;
 | |
|           UOpc = ARM::tB;
 | |
|           Bits = 8;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         case ARM::tB:
 | |
|           Bits = 11;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         case ARM::t2Bcc:
 | |
|           isCond = true;
 | |
|           UOpc = ARM::t2B;
 | |
|           Bits = 20;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         case ARM::t2B:
 | |
|           Bits = 24;
 | |
|           Scale = 2;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         // Record this immediate branch.
 | |
|         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
 | |
|         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
 | |
|       }
 | |
| 
 | |
|       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
 | |
|         PushPopMIs.push_back(I);
 | |
| 
 | |
|       if (Opc == ARM::CONSTPOOL_ENTRY)
 | |
|         continue;
 | |
| 
 | |
|       // Scan the instructions for constant pool operands.
 | |
|       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
 | |
|         if (I->getOperand(op).isCPI()) {
 | |
|           // We found one.  The addressing mode tells us the max displacement
 | |
|           // from the PC that this instruction permits.
 | |
| 
 | |
|           // Basic size info comes from the TSFlags field.
 | |
|           unsigned Bits = 0;
 | |
|           unsigned Scale = 1;
 | |
|           bool NegOk = false;
 | |
|           bool IsSoImm = false;
 | |
| 
 | |
|           switch (Opc) {
 | |
|           default:
 | |
|             llvm_unreachable("Unknown addressing mode for CP reference!");
 | |
| 
 | |
|           // Taking the address of a CP entry.
 | |
|           case ARM::LEApcrel:
 | |
|             // This takes a SoImm, which is 8 bit immediate rotated. We'll
 | |
|             // pretend the maximum offset is 255 * 4. Since each instruction
 | |
|             // 4 byte wide, this is always correct. We'll check for other
 | |
|             // displacements that fits in a SoImm as well.
 | |
|             Bits = 8;
 | |
|             Scale = 4;
 | |
|             NegOk = true;
 | |
|             IsSoImm = true;
 | |
|             break;
 | |
|           case ARM::t2LEApcrel:
 | |
|             Bits = 12;
 | |
|             NegOk = true;
 | |
|             break;
 | |
|           case ARM::tLEApcrel:
 | |
|             Bits = 8;
 | |
|             Scale = 4;
 | |
|             break;
 | |
| 
 | |
|           case ARM::LDRBi12:
 | |
|           case ARM::LDRi12:
 | |
|           case ARM::LDRcp:
 | |
|           case ARM::t2LDRpci:
 | |
|             Bits = 12;  // +-offset_12
 | |
|             NegOk = true;
 | |
|             break;
 | |
| 
 | |
|           case ARM::tLDRpci:
 | |
|             Bits = 8;
 | |
|             Scale = 4;  // +(offset_8*4)
 | |
|             break;
 | |
| 
 | |
|           case ARM::VLDRD:
 | |
|           case ARM::VLDRS:
 | |
|             Bits = 8;
 | |
|             Scale = 4;  // +-(offset_8*4)
 | |
|             NegOk = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Remember that this is a user of a CP entry.
 | |
|           unsigned CPI = I->getOperand(op).getIndex();
 | |
|           MachineInstr *CPEMI = CPEMIs[CPI];
 | |
|           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
 | |
|           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
 | |
| 
 | |
|           // Increment corresponding CPEntry reference count.
 | |
|           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
 | |
|           assert(CPE && "Cannot find a corresponding CPEntry!");
 | |
|           CPE->RefCount++;
 | |
| 
 | |
|           // Instructions can only use one CP entry, don't bother scanning the
 | |
|           // rest of the operands.
 | |
|           break;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// computeBlockSize - Compute the size and some alignment information for MBB.
 | |
| /// This function updates BBInfo directly.
 | |
| void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
 | |
|   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
 | |
|   BBI.Size = 0;
 | |
|   BBI.Unalign = 0;
 | |
|   BBI.PostAlign = 0;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
 | |
|        ++I) {
 | |
|     BBI.Size += TII->GetInstSizeInBytes(I);
 | |
|     // For inline asm, GetInstSizeInBytes returns a conservative estimate.
 | |
|     // The actual size may be smaller, but still a multiple of the instr size.
 | |
|     if (I->isInlineAsm())
 | |
|       BBI.Unalign = isThumb ? 1 : 2;
 | |
|     // Also consider instructions that may be shrunk later.
 | |
|     else if (isThumb && mayOptimizeThumb2Instruction(I))
 | |
|       BBI.Unalign = 1;
 | |
|   }
 | |
| 
 | |
|   // tBR_JTr contains a .align 2 directive.
 | |
|   if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
 | |
|     BBI.PostAlign = 2;
 | |
|     MBB->getParent()->ensureAlignment(2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getOffsetOf - Return the current offset of the specified machine instruction
 | |
| /// from the start of the function.  This offset changes as stuff is moved
 | |
| /// around inside the function.
 | |
| unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
| 
 | |
|   // The offset is composed of two things: the sum of the sizes of all MBB's
 | |
|   // before this instruction's block, and the offset from the start of the block
 | |
|   // it is in.
 | |
|   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
 | |
| 
 | |
|   // Sum instructions before MI in MBB.
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
 | |
|     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
 | |
|     Offset += TII->GetInstSizeInBytes(I);
 | |
|   }
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
 | |
| /// ID.
 | |
| static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
 | |
|                               const MachineBasicBlock *RHS) {
 | |
|   return LHS->getNumber() < RHS->getNumber();
 | |
| }
 | |
| 
 | |
| /// updateForInsertedWaterBlock - When a block is newly inserted into the
 | |
| /// machine function, it upsets all of the block numbers.  Renumber the blocks
 | |
| /// and update the arrays that parallel this numbering.
 | |
| void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
 | |
|   // Renumber the MBB's to keep them consecutive.
 | |
|   NewBB->getParent()->RenumberBlocks(NewBB);
 | |
| 
 | |
|   // Insert an entry into BBInfo to align it properly with the (newly
 | |
|   // renumbered) block numbers.
 | |
|   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
 | |
| 
 | |
|   // Next, update WaterList.  Specifically, we need to add NewMBB as having
 | |
|   // available water after it.
 | |
|   water_iterator IP =
 | |
|     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
 | |
|                      CompareMBBNumbers);
 | |
|   WaterList.insert(IP, NewBB);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Split the basic block containing MI into two blocks, which are joined by
 | |
| /// an unconditional branch.  Update data structures and renumber blocks to
 | |
| /// account for this change and returns the newly created block.
 | |
| MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
 | |
|   MachineBasicBlock *OrigBB = MI->getParent();
 | |
| 
 | |
|   // Create a new MBB for the code after the OrigBB.
 | |
|   MachineBasicBlock *NewBB =
 | |
|     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
 | |
|   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
 | |
|   MF->insert(MBBI, NewBB);
 | |
| 
 | |
|   // Splice the instructions starting with MI over to NewBB.
 | |
|   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
 | |
| 
 | |
|   // Add an unconditional branch from OrigBB to NewBB.
 | |
|   // Note the new unconditional branch is not being recorded.
 | |
|   // There doesn't seem to be meaningful DebugInfo available; this doesn't
 | |
|   // correspond to anything in the source.
 | |
|   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
 | |
|   if (!isThumb)
 | |
|     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
 | |
|   else
 | |
|     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
 | |
|             .addImm(ARMCC::AL).addReg(0);
 | |
|   ++NumSplit;
 | |
| 
 | |
|   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
 | |
|   NewBB->transferSuccessors(OrigBB);
 | |
| 
 | |
|   // OrigBB branches to NewBB.
 | |
|   OrigBB->addSuccessor(NewBB);
 | |
| 
 | |
|   // Update internal data structures to account for the newly inserted MBB.
 | |
|   // This is almost the same as updateForInsertedWaterBlock, except that
 | |
|   // the Water goes after OrigBB, not NewBB.
 | |
|   MF->RenumberBlocks(NewBB);
 | |
| 
 | |
|   // Insert an entry into BBInfo to align it properly with the (newly
 | |
|   // renumbered) block numbers.
 | |
|   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
 | |
| 
 | |
|   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
 | |
|   // available water after it (but not if it's already there, which happens
 | |
|   // when splitting before a conditional branch that is followed by an
 | |
|   // unconditional branch - in that case we want to insert NewBB).
 | |
|   water_iterator IP =
 | |
|     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
 | |
|                      CompareMBBNumbers);
 | |
|   MachineBasicBlock* WaterBB = *IP;
 | |
|   if (WaterBB == OrigBB)
 | |
|     WaterList.insert(std::next(IP), NewBB);
 | |
|   else
 | |
|     WaterList.insert(IP, OrigBB);
 | |
|   NewWaterList.insert(OrigBB);
 | |
| 
 | |
|   // Figure out how large the OrigBB is.  As the first half of the original
 | |
|   // block, it cannot contain a tablejump.  The size includes
 | |
|   // the new jump we added.  (It should be possible to do this without
 | |
|   // recounting everything, but it's very confusing, and this is rarely
 | |
|   // executed.)
 | |
|   computeBlockSize(OrigBB);
 | |
| 
 | |
|   // Figure out how large the NewMBB is.  As the second half of the original
 | |
|   // block, it may contain a tablejump.
 | |
|   computeBlockSize(NewBB);
 | |
| 
 | |
|   // All BBOffsets following these blocks must be modified.
 | |
|   adjustBBOffsetsAfter(OrigBB);
 | |
| 
 | |
|   return NewBB;
 | |
| }
 | |
| 
 | |
| /// getUserOffset - Compute the offset of U.MI as seen by the hardware
 | |
| /// displacement computation.  Update U.KnownAlignment to match its current
 | |
| /// basic block location.
 | |
| unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
 | |
|   unsigned UserOffset = getOffsetOf(U.MI);
 | |
|   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
 | |
|   unsigned KnownBits = BBI.internalKnownBits();
 | |
| 
 | |
|   // The value read from PC is offset from the actual instruction address.
 | |
|   UserOffset += (isThumb ? 4 : 8);
 | |
| 
 | |
|   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
 | |
|   // Make sure U.getMaxDisp() returns a constrained range.
 | |
|   U.KnownAlignment = (KnownBits >= 2);
 | |
| 
 | |
|   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
 | |
|   // purposes of the displacement computation; compensate for that here.
 | |
|   // For unknown alignments, getMaxDisp() constrains the range instead.
 | |
|   if (isThumb && U.KnownAlignment)
 | |
|     UserOffset &= ~3u;
 | |
| 
 | |
|   return UserOffset;
 | |
| }
 | |
| 
 | |
| /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
 | |
| /// reference) is within MaxDisp of TrialOffset (a proposed location of a
 | |
| /// constant pool entry).
 | |
| /// UserOffset is computed by getUserOffset above to include PC adjustments. If
 | |
| /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
 | |
| /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
 | |
| bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
 | |
|                                          unsigned TrialOffset, unsigned MaxDisp,
 | |
|                                          bool NegativeOK, bool IsSoImm) {
 | |
|   if (UserOffset <= TrialOffset) {
 | |
|     // User before the Trial.
 | |
|     if (TrialOffset - UserOffset <= MaxDisp)
 | |
|       return true;
 | |
|     // FIXME: Make use full range of soimm values.
 | |
|   } else if (NegativeOK) {
 | |
|     if (UserOffset - TrialOffset <= MaxDisp)
 | |
|       return true;
 | |
|     // FIXME: Make use full range of soimm values.
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isWaterInRange - Returns true if a CPE placed after the specified
 | |
| /// Water (a basic block) will be in range for the specific MI.
 | |
| ///
 | |
| /// Compute how much the function will grow by inserting a CPE after Water.
 | |
| bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
 | |
|                                         MachineBasicBlock* Water, CPUser &U,
 | |
|                                         unsigned &Growth) {
 | |
|   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
 | |
|   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
 | |
|   unsigned NextBlockOffset, NextBlockAlignment;
 | |
|   MachineFunction::const_iterator NextBlock = Water;
 | |
|   if (++NextBlock == MF->end()) {
 | |
|     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
 | |
|     NextBlockAlignment = 0;
 | |
|   } else {
 | |
|     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
 | |
|     NextBlockAlignment = NextBlock->getAlignment();
 | |
|   }
 | |
|   unsigned Size = U.CPEMI->getOperand(2).getImm();
 | |
|   unsigned CPEEnd = CPEOffset + Size;
 | |
| 
 | |
|   // The CPE may be able to hide in the alignment padding before the next
 | |
|   // block. It may also cause more padding to be required if it is more aligned
 | |
|   // that the next block.
 | |
|   if (CPEEnd > NextBlockOffset) {
 | |
|     Growth = CPEEnd - NextBlockOffset;
 | |
|     // Compute the padding that would go at the end of the CPE to align the next
 | |
|     // block.
 | |
|     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
 | |
| 
 | |
|     // If the CPE is to be inserted before the instruction, that will raise
 | |
|     // the offset of the instruction. Also account for unknown alignment padding
 | |
|     // in blocks between CPE and the user.
 | |
|     if (CPEOffset < UserOffset)
 | |
|       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
 | |
|   } else
 | |
|     // CPE fits in existing padding.
 | |
|     Growth = 0;
 | |
| 
 | |
|   return isOffsetInRange(UserOffset, CPEOffset, U);
 | |
| }
 | |
| 
 | |
| /// isCPEntryInRange - Returns true if the distance between specific MI and
 | |
| /// specific ConstPool entry instruction can fit in MI's displacement field.
 | |
| bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
 | |
|                                       MachineInstr *CPEMI, unsigned MaxDisp,
 | |
|                                       bool NegOk, bool DoDump) {
 | |
|   unsigned CPEOffset  = getOffsetOf(CPEMI);
 | |
| 
 | |
|   if (DoDump) {
 | |
|     DEBUG({
 | |
|       unsigned Block = MI->getParent()->getNumber();
 | |
|       const BasicBlockInfo &BBI = BBInfo[Block];
 | |
|       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
 | |
|              << " max delta=" << MaxDisp
 | |
|              << format(" insn address=%#x", UserOffset)
 | |
|              << " in BB#" << Block << ": "
 | |
|              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
 | |
|              << format("CPE address=%#x offset=%+d: ", CPEOffset,
 | |
|                        int(CPEOffset-UserOffset));
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
 | |
| /// unconditionally branches to its only successor.
 | |
| static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
 | |
|   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *Succ = *MBB->succ_begin();
 | |
|   MachineBasicBlock *Pred = *MBB->pred_begin();
 | |
|   MachineInstr *PredMI = &Pred->back();
 | |
|   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
 | |
|       || PredMI->getOpcode() == ARM::t2B)
 | |
|     return PredMI->getOperand(0).getMBB() == Succ;
 | |
|   return false;
 | |
| }
 | |
| #endif // NDEBUG
 | |
| 
 | |
| void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
 | |
|   unsigned BBNum = BB->getNumber();
 | |
|   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
 | |
|     // Get the offset and known bits at the end of the layout predecessor.
 | |
|     // Include the alignment of the current block.
 | |
|     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
 | |
|     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
 | |
|     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
 | |
| 
 | |
|     // This is where block i begins.  Stop if the offset is already correct,
 | |
|     // and we have updated 2 blocks.  This is the maximum number of blocks
 | |
|     // changed before calling this function.
 | |
|     if (i > BBNum + 2 &&
 | |
|         BBInfo[i].Offset == Offset &&
 | |
|         BBInfo[i].KnownBits == KnownBits)
 | |
|       break;
 | |
| 
 | |
|     BBInfo[i].Offset = Offset;
 | |
|     BBInfo[i].KnownBits = KnownBits;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// decrementCPEReferenceCount - find the constant pool entry with index CPI
 | |
| /// and instruction CPEMI, and decrement its refcount.  If the refcount
 | |
| /// becomes 0 remove the entry and instruction.  Returns true if we removed
 | |
| /// the entry, false if we didn't.
 | |
| 
 | |
| bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
 | |
|                                                     MachineInstr *CPEMI) {
 | |
|   // Find the old entry. Eliminate it if it is no longer used.
 | |
|   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
 | |
|   assert(CPE && "Unexpected!");
 | |
|   if (--CPE->RefCount == 0) {
 | |
|     removeDeadCPEMI(CPEMI);
 | |
|     CPE->CPEMI = nullptr;
 | |
|     --NumCPEs;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
 | |
| /// if not, see if an in-range clone of the CPE is in range, and if so,
 | |
| /// change the data structures so the user references the clone.  Returns:
 | |
| /// 0 = no existing entry found
 | |
| /// 1 = entry found, and there were no code insertions or deletions
 | |
| /// 2 = entry found, and there were code insertions or deletions
 | |
| int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
 | |
| {
 | |
|   MachineInstr *UserMI = U.MI;
 | |
|   MachineInstr *CPEMI  = U.CPEMI;
 | |
| 
 | |
|   // Check to see if the CPE is already in-range.
 | |
|   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
 | |
|                        true)) {
 | |
|     DEBUG(dbgs() << "In range\n");
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // No.  Look for previously created clones of the CPE that are in range.
 | |
|   unsigned CPI = CPEMI->getOperand(1).getIndex();
 | |
|   std::vector<CPEntry> &CPEs = CPEntries[CPI];
 | |
|   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
 | |
|     // We already tried this one
 | |
|     if (CPEs[i].CPEMI == CPEMI)
 | |
|       continue;
 | |
|     // Removing CPEs can leave empty entries, skip
 | |
|     if (CPEs[i].CPEMI == nullptr)
 | |
|       continue;
 | |
|     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
 | |
|                      U.NegOk)) {
 | |
|       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
 | |
|                    << CPEs[i].CPI << "\n");
 | |
|       // Point the CPUser node to the replacement
 | |
|       U.CPEMI = CPEs[i].CPEMI;
 | |
|       // Change the CPI in the instruction operand to refer to the clone.
 | |
|       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
 | |
|         if (UserMI->getOperand(j).isCPI()) {
 | |
|           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
 | |
|           break;
 | |
|         }
 | |
|       // Adjust the refcount of the clone...
 | |
|       CPEs[i].RefCount++;
 | |
|       // ...and the original.  If we didn't remove the old entry, none of the
 | |
|       // addresses changed, so we don't need another pass.
 | |
|       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
 | |
| /// the specific unconditional branch instruction.
 | |
| static inline unsigned getUnconditionalBrDisp(int Opc) {
 | |
|   switch (Opc) {
 | |
|   case ARM::tB:
 | |
|     return ((1<<10)-1)*2;
 | |
|   case ARM::t2B:
 | |
|     return ((1<<23)-1)*2;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return ((1<<23)-1)*4;
 | |
| }
 | |
| 
 | |
| /// findAvailableWater - Look for an existing entry in the WaterList in which
 | |
| /// we can place the CPE referenced from U so it's within range of U's MI.
 | |
| /// Returns true if found, false if not.  If it returns true, WaterIter
 | |
| /// is set to the WaterList entry.  For Thumb, prefer water that will not
 | |
| /// introduce padding to water that will.  To ensure that this pass
 | |
| /// terminates, the CPE location for a particular CPUser is only allowed to
 | |
| /// move to a lower address, so search backward from the end of the list and
 | |
| /// prefer the first water that is in range.
 | |
| bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
 | |
|                                       water_iterator &WaterIter) {
 | |
|   if (WaterList.empty())
 | |
|     return false;
 | |
| 
 | |
|   unsigned BestGrowth = ~0u;
 | |
|   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
 | |
|        --IP) {
 | |
|     MachineBasicBlock* WaterBB = *IP;
 | |
|     // Check if water is in range and is either at a lower address than the
 | |
|     // current "high water mark" or a new water block that was created since
 | |
|     // the previous iteration by inserting an unconditional branch.  In the
 | |
|     // latter case, we want to allow resetting the high water mark back to
 | |
|     // this new water since we haven't seen it before.  Inserting branches
 | |
|     // should be relatively uncommon and when it does happen, we want to be
 | |
|     // sure to take advantage of it for all the CPEs near that block, so that
 | |
|     // we don't insert more branches than necessary.
 | |
|     unsigned Growth;
 | |
|     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
 | |
|         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
 | |
|          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
 | |
|       // This is the least amount of required padding seen so far.
 | |
|       BestGrowth = Growth;
 | |
|       WaterIter = IP;
 | |
|       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
 | |
|                    << " Growth=" << Growth << '\n');
 | |
| 
 | |
|       // Keep looking unless it is perfect.
 | |
|       if (BestGrowth == 0)
 | |
|         return true;
 | |
|     }
 | |
|     if (IP == B)
 | |
|       break;
 | |
|   }
 | |
|   return BestGrowth != ~0u;
 | |
| }
 | |
| 
 | |
| /// createNewWater - No existing WaterList entry will work for
 | |
| /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
 | |
| /// block is used if in range, and the conditional branch munged so control
 | |
| /// flow is correct.  Otherwise the block is split to create a hole with an
 | |
| /// unconditional branch around it.  In either case NewMBB is set to a
 | |
| /// block following which the new island can be inserted (the WaterList
 | |
| /// is not adjusted).
 | |
| void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
 | |
|                                         unsigned UserOffset,
 | |
|                                         MachineBasicBlock *&NewMBB) {
 | |
|   CPUser &U = CPUsers[CPUserIndex];
 | |
|   MachineInstr *UserMI = U.MI;
 | |
|   MachineInstr *CPEMI  = U.CPEMI;
 | |
|   unsigned CPELogAlign = getCPELogAlign(CPEMI);
 | |
|   MachineBasicBlock *UserMBB = UserMI->getParent();
 | |
|   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
 | |
| 
 | |
|   // If the block does not end in an unconditional branch already, and if the
 | |
|   // end of the block is within range, make new water there.  (The addition
 | |
|   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
 | |
|   // Thumb2, 2 on Thumb1.
 | |
|   if (BBHasFallthrough(UserMBB)) {
 | |
|     // Size of branch to insert.
 | |
|     unsigned Delta = isThumb1 ? 2 : 4;
 | |
|     // Compute the offset where the CPE will begin.
 | |
|     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
 | |
| 
 | |
|     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
 | |
|       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
 | |
|             << format(", expected CPE offset %#x\n", CPEOffset));
 | |
|       NewMBB = std::next(MachineFunction::iterator(UserMBB));
 | |
|       // Add an unconditional branch from UserMBB to fallthrough block.  Record
 | |
|       // it for branch lengthening; this new branch will not get out of range,
 | |
|       // but if the preceding conditional branch is out of range, the targets
 | |
|       // will be exchanged, and the altered branch may be out of range, so the
 | |
|       // machinery has to know about it.
 | |
|       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
 | |
|       if (!isThumb)
 | |
|         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
 | |
|       else
 | |
|         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
 | |
|           .addImm(ARMCC::AL).addReg(0);
 | |
|       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
 | |
|       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
 | |
|                                       MaxDisp, false, UncondBr));
 | |
|       BBInfo[UserMBB->getNumber()].Size += Delta;
 | |
|       adjustBBOffsetsAfter(UserMBB);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // What a big block.  Find a place within the block to split it.  This is a
 | |
|   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
 | |
|   // entries are 4 bytes: if instruction I references island CPE, and
 | |
|   // instruction I+1 references CPE', it will not work well to put CPE as far
 | |
|   // forward as possible, since then CPE' cannot immediately follow it (that
 | |
|   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
 | |
|   // need to create a new island.  So, we make a first guess, then walk through
 | |
|   // the instructions between the one currently being looked at and the
 | |
|   // possible insertion point, and make sure any other instructions that
 | |
|   // reference CPEs will be able to use the same island area; if not, we back
 | |
|   // up the insertion point.
 | |
| 
 | |
|   // Try to split the block so it's fully aligned.  Compute the latest split
 | |
|   // point where we can add a 4-byte branch instruction, and then align to
 | |
|   // LogAlign which is the largest possible alignment in the function.
 | |
|   unsigned LogAlign = MF->getAlignment();
 | |
|   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
 | |
|   unsigned KnownBits = UserBBI.internalKnownBits();
 | |
|   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
 | |
|   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
 | |
|   DEBUG(dbgs() << format("Split in middle of big block before %#x",
 | |
|                          BaseInsertOffset));
 | |
| 
 | |
|   // The 4 in the following is for the unconditional branch we'll be inserting
 | |
|   // (allows for long branch on Thumb1).  Alignment of the island is handled
 | |
|   // inside isOffsetInRange.
 | |
|   BaseInsertOffset -= 4;
 | |
| 
 | |
|   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
 | |
|                << " la=" << LogAlign
 | |
|                << " kb=" << KnownBits
 | |
|                << " up=" << UPad << '\n');
 | |
| 
 | |
|   // This could point off the end of the block if we've already got constant
 | |
|   // pool entries following this block; only the last one is in the water list.
 | |
|   // Back past any possible branches (allow for a conditional and a maximally
 | |
|   // long unconditional).
 | |
|   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
 | |
|     BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
 | |
|     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
 | |
|   }
 | |
|   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
 | |
|     CPEMI->getOperand(2).getImm();
 | |
|   MachineBasicBlock::iterator MI = UserMI;
 | |
|   ++MI;
 | |
|   unsigned CPUIndex = CPUserIndex+1;
 | |
|   unsigned NumCPUsers = CPUsers.size();
 | |
|   MachineInstr *LastIT = nullptr;
 | |
|   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
 | |
|        Offset < BaseInsertOffset;
 | |
|        Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
 | |
|     assert(MI != UserMBB->end() && "Fell off end of block");
 | |
|     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
 | |
|       CPUser &U = CPUsers[CPUIndex];
 | |
|       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
 | |
|         // Shift intertion point by one unit of alignment so it is within reach.
 | |
|         BaseInsertOffset -= 1u << LogAlign;
 | |
|         EndInsertOffset  -= 1u << LogAlign;
 | |
|       }
 | |
|       // This is overly conservative, as we don't account for CPEMIs being
 | |
|       // reused within the block, but it doesn't matter much.  Also assume CPEs
 | |
|       // are added in order with alignment padding.  We may eventually be able
 | |
|       // to pack the aligned CPEs better.
 | |
|       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
 | |
|       CPUIndex++;
 | |
|     }
 | |
| 
 | |
|     // Remember the last IT instruction.
 | |
|     if (MI->getOpcode() == ARM::t2IT)
 | |
|       LastIT = MI;
 | |
|   }
 | |
| 
 | |
|   --MI;
 | |
| 
 | |
|   // Avoid splitting an IT block.
 | |
|   if (LastIT) {
 | |
|     unsigned PredReg = 0;
 | |
|     ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
 | |
|     if (CC != ARMCC::AL)
 | |
|       MI = LastIT;
 | |
|   }
 | |
|   NewMBB = splitBlockBeforeInstr(MI);
 | |
| }
 | |
| 
 | |
| /// handleConstantPoolUser - Analyze the specified user, checking to see if it
 | |
| /// is out-of-range.  If so, pick up the constant pool value and move it some
 | |
| /// place in-range.  Return true if we changed any addresses (thus must run
 | |
| /// another pass of branch lengthening), false otherwise.
 | |
| bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
 | |
|   CPUser &U = CPUsers[CPUserIndex];
 | |
|   MachineInstr *UserMI = U.MI;
 | |
|   MachineInstr *CPEMI  = U.CPEMI;
 | |
|   unsigned CPI = CPEMI->getOperand(1).getIndex();
 | |
|   unsigned Size = CPEMI->getOperand(2).getImm();
 | |
|   // Compute this only once, it's expensive.
 | |
|   unsigned UserOffset = getUserOffset(U);
 | |
| 
 | |
|   // See if the current entry is within range, or there is a clone of it
 | |
|   // in range.
 | |
|   int result = findInRangeCPEntry(U, UserOffset);
 | |
|   if (result==1) return false;
 | |
|   else if (result==2) return true;
 | |
| 
 | |
|   // No existing clone of this CPE is within range.
 | |
|   // We will be generating a new clone.  Get a UID for it.
 | |
|   unsigned ID = AFI->createPICLabelUId();
 | |
| 
 | |
|   // Look for water where we can place this CPE.
 | |
|   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
 | |
|   MachineBasicBlock *NewMBB;
 | |
|   water_iterator IP;
 | |
|   if (findAvailableWater(U, UserOffset, IP)) {
 | |
|     DEBUG(dbgs() << "Found water in range\n");
 | |
|     MachineBasicBlock *WaterBB = *IP;
 | |
| 
 | |
|     // If the original WaterList entry was "new water" on this iteration,
 | |
|     // propagate that to the new island.  This is just keeping NewWaterList
 | |
|     // updated to match the WaterList, which will be updated below.
 | |
|     if (NewWaterList.erase(WaterBB))
 | |
|       NewWaterList.insert(NewIsland);
 | |
| 
 | |
|     // The new CPE goes before the following block (NewMBB).
 | |
|     NewMBB = std::next(MachineFunction::iterator(WaterBB));
 | |
| 
 | |
|   } else {
 | |
|     // No water found.
 | |
|     DEBUG(dbgs() << "No water found\n");
 | |
|     createNewWater(CPUserIndex, UserOffset, NewMBB);
 | |
| 
 | |
|     // splitBlockBeforeInstr adds to WaterList, which is important when it is
 | |
|     // called while handling branches so that the water will be seen on the
 | |
|     // next iteration for constant pools, but in this context, we don't want
 | |
|     // it.  Check for this so it will be removed from the WaterList.
 | |
|     // Also remove any entry from NewWaterList.
 | |
|     MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
 | |
|     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
 | |
|     if (IP != WaterList.end())
 | |
|       NewWaterList.erase(WaterBB);
 | |
| 
 | |
|     // We are adding new water.  Update NewWaterList.
 | |
|     NewWaterList.insert(NewIsland);
 | |
|   }
 | |
| 
 | |
|   // Remove the original WaterList entry; we want subsequent insertions in
 | |
|   // this vicinity to go after the one we're about to insert.  This
 | |
|   // considerably reduces the number of times we have to move the same CPE
 | |
|   // more than once and is also important to ensure the algorithm terminates.
 | |
|   if (IP != WaterList.end())
 | |
|     WaterList.erase(IP);
 | |
| 
 | |
|   // Okay, we know we can put an island before NewMBB now, do it!
 | |
|   MF->insert(NewMBB, NewIsland);
 | |
| 
 | |
|   // Update internal data structures to account for the newly inserted MBB.
 | |
|   updateForInsertedWaterBlock(NewIsland);
 | |
| 
 | |
|   // Decrement the old entry, and remove it if refcount becomes 0.
 | |
|   decrementCPEReferenceCount(CPI, CPEMI);
 | |
| 
 | |
|   // Now that we have an island to add the CPE to, clone the original CPE and
 | |
|   // add it to the island.
 | |
|   U.HighWaterMark = NewIsland;
 | |
|   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
 | |
|                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
 | |
|   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
 | |
|   ++NumCPEs;
 | |
| 
 | |
|   // Mark the basic block as aligned as required by the const-pool entry.
 | |
|   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
 | |
| 
 | |
|   // Increase the size of the island block to account for the new entry.
 | |
|   BBInfo[NewIsland->getNumber()].Size += Size;
 | |
|   adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
 | |
| 
 | |
|   // Finally, change the CPI in the instruction operand to be ID.
 | |
|   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
 | |
|     if (UserMI->getOperand(i).isCPI()) {
 | |
|       UserMI->getOperand(i).setIndex(ID);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
 | |
|         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
 | |
| /// sizes and offsets of impacted basic blocks.
 | |
| void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
 | |
|   MachineBasicBlock *CPEBB = CPEMI->getParent();
 | |
|   unsigned Size = CPEMI->getOperand(2).getImm();
 | |
|   CPEMI->eraseFromParent();
 | |
|   BBInfo[CPEBB->getNumber()].Size -= Size;
 | |
|   // All succeeding offsets have the current size value added in, fix this.
 | |
|   if (CPEBB->empty()) {
 | |
|     BBInfo[CPEBB->getNumber()].Size = 0;
 | |
| 
 | |
|     // This block no longer needs to be aligned.
 | |
|     CPEBB->setAlignment(0);
 | |
|   } else
 | |
|     // Entries are sorted by descending alignment, so realign from the front.
 | |
|     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
 | |
| 
 | |
|   adjustBBOffsetsAfter(CPEBB);
 | |
|   // An island has only one predecessor BB and one successor BB. Check if
 | |
|   // this BB's predecessor jumps directly to this BB's successor. This
 | |
|   // shouldn't happen currently.
 | |
|   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
 | |
|   // FIXME: remove the empty blocks after all the work is done?
 | |
| }
 | |
| 
 | |
| /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
 | |
| /// are zero.
 | |
| bool ARMConstantIslands::removeUnusedCPEntries() {
 | |
|   unsigned MadeChange = false;
 | |
|   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
 | |
|       std::vector<CPEntry> &CPEs = CPEntries[i];
 | |
|       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
 | |
|         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
 | |
|           removeDeadCPEMI(CPEs[j].CPEMI);
 | |
|           CPEs[j].CPEMI = nullptr;
 | |
|           MadeChange = true;
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// isBBInRange - Returns true if the distance between specific MI and
 | |
| /// specific BB can fit in MI's displacement field.
 | |
| bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
 | |
|                                      unsigned MaxDisp) {
 | |
|   unsigned PCAdj      = isThumb ? 4 : 8;
 | |
|   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
 | |
|   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
 | |
| 
 | |
|   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
 | |
|                << " from BB#" << MI->getParent()->getNumber()
 | |
|                << " max delta=" << MaxDisp
 | |
|                << " from " << getOffsetOf(MI) << " to " << DestOffset
 | |
|                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
 | |
| 
 | |
|   if (BrOffset <= DestOffset) {
 | |
|     // Branch before the Dest.
 | |
|     if (DestOffset-BrOffset <= MaxDisp)
 | |
|       return true;
 | |
|   } else {
 | |
|     if (BrOffset-DestOffset <= MaxDisp)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
 | |
| /// away to fit in its displacement field.
 | |
| bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
 | |
|   MachineInstr *MI = Br.MI;
 | |
|   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
 | |
| 
 | |
|   // Check to see if the DestBB is already in-range.
 | |
|   if (isBBInRange(MI, DestBB, Br.MaxDisp))
 | |
|     return false;
 | |
| 
 | |
|   if (!Br.isCond)
 | |
|     return fixupUnconditionalBr(Br);
 | |
|   return fixupConditionalBr(Br);
 | |
| }
 | |
| 
 | |
| /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
 | |
| /// too far away to fit in its displacement field. If the LR register has been
 | |
| /// spilled in the epilogue, then we can use BL to implement a far jump.
 | |
| /// Otherwise, add an intermediate branch instruction to a branch.
 | |
| bool
 | |
| ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
 | |
|   MachineInstr *MI = Br.MI;
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   if (!isThumb1)
 | |
|     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
 | |
| 
 | |
|   // Use BL to implement far jump.
 | |
|   Br.MaxDisp = (1 << 21) * 2;
 | |
|   MI->setDesc(TII->get(ARM::tBfar));
 | |
|   BBInfo[MBB->getNumber()].Size += 2;
 | |
|   adjustBBOffsetsAfter(MBB);
 | |
|   HasFarJump = true;
 | |
|   ++NumUBrFixed;
 | |
| 
 | |
|   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// fixupConditionalBr - Fix up a conditional branch whose destination is too
 | |
| /// far away to fit in its displacement field. It is converted to an inverse
 | |
| /// conditional branch + an unconditional branch to the destination.
 | |
| bool
 | |
| ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
 | |
|   MachineInstr *MI = Br.MI;
 | |
|   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
 | |
| 
 | |
|   // Add an unconditional branch to the destination and invert the branch
 | |
|   // condition to jump over it:
 | |
|   // blt L1
 | |
|   // =>
 | |
|   // bge L2
 | |
|   // b   L1
 | |
|   // L2:
 | |
|   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
 | |
|   CC = ARMCC::getOppositeCondition(CC);
 | |
|   unsigned CCReg = MI->getOperand(2).getReg();
 | |
| 
 | |
|   // If the branch is at the end of its MBB and that has a fall-through block,
 | |
|   // direct the updated conditional branch to the fall-through block. Otherwise,
 | |
|   // split the MBB before the next instruction.
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineInstr *BMI = &MBB->back();
 | |
|   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
 | |
| 
 | |
|   ++NumCBrFixed;
 | |
|   if (BMI != MI) {
 | |
|     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
 | |
|         BMI->getOpcode() == Br.UncondBr) {
 | |
|       // Last MI in the BB is an unconditional branch. Can we simply invert the
 | |
|       // condition and swap destinations:
 | |
|       // beq L1
 | |
|       // b   L2
 | |
|       // =>
 | |
|       // bne L2
 | |
|       // b   L1
 | |
|       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
 | |
|       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
 | |
|         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
 | |
|                      << *BMI);
 | |
|         BMI->getOperand(0).setMBB(DestBB);
 | |
|         MI->getOperand(0).setMBB(NewDest);
 | |
|         MI->getOperand(1).setImm(CC);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NeedSplit) {
 | |
|     splitBlockBeforeInstr(MI);
 | |
|     // No need for the branch to the next block. We're adding an unconditional
 | |
|     // branch to the destination.
 | |
|     int delta = TII->GetInstSizeInBytes(&MBB->back());
 | |
|     BBInfo[MBB->getNumber()].Size -= delta;
 | |
|     MBB->back().eraseFromParent();
 | |
|     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
 | |
|   }
 | |
|   MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
 | |
| 
 | |
|   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
 | |
|                << " also invert condition and change dest. to BB#"
 | |
|                << NextBB->getNumber() << "\n");
 | |
| 
 | |
|   // Insert a new conditional branch and a new unconditional branch.
 | |
|   // Also update the ImmBranch as well as adding a new entry for the new branch.
 | |
|   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
 | |
|     .addMBB(NextBB).addImm(CC).addReg(CCReg);
 | |
|   Br.MI = &MBB->back();
 | |
|   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
 | |
|   if (isThumb)
 | |
|     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
 | |
|             .addImm(ARMCC::AL).addReg(0);
 | |
|   else
 | |
|     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
 | |
|   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
 | |
|   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
 | |
|   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
 | |
| 
 | |
|   // Remove the old conditional branch.  It may or may not still be in MBB.
 | |
|   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
 | |
|   MI->eraseFromParent();
 | |
|   adjustBBOffsetsAfter(MBB);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
 | |
| /// LR / restores LR to pc. FIXME: This is done here because it's only possible
 | |
| /// to do this if tBfar is not used.
 | |
| bool ARMConstantIslands::undoLRSpillRestore() {
 | |
|   bool MadeChange = false;
 | |
|   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = PushPopMIs[i];
 | |
|     // First two operands are predicates.
 | |
|     if (MI->getOpcode() == ARM::tPOP_RET &&
 | |
|         MI->getOperand(2).getReg() == ARM::PC &&
 | |
|         MI->getNumExplicitOperands() == 3) {
 | |
|       // Create the new insn and copy the predicate from the old.
 | |
|       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
 | |
|         .addOperand(MI->getOperand(0))
 | |
|         .addOperand(MI->getOperand(1));
 | |
|       MI->eraseFromParent();
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
 | |
| // below may shrink MI.
 | |
| bool
 | |
| ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
 | |
|   switch(MI->getOpcode()) {
 | |
|     // optimizeThumb2Instructions.
 | |
|     case ARM::t2LEApcrel:
 | |
|     case ARM::t2LDRpci:
 | |
|     // optimizeThumb2Branches.
 | |
|     case ARM::t2B:
 | |
|     case ARM::t2Bcc:
 | |
|     case ARM::tBcc:
 | |
|     // optimizeThumb2JumpTables.
 | |
|     case ARM::t2BR_JT:
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ARMConstantIslands::optimizeThumb2Instructions() {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Shrink ADR and LDR from constantpool.
 | |
|   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
 | |
|     CPUser &U = CPUsers[i];
 | |
|     unsigned Opcode = U.MI->getOpcode();
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned Scale = 1;
 | |
|     unsigned Bits = 0;
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ARM::t2LEApcrel:
 | |
|       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
 | |
|         NewOpc = ARM::tLEApcrel;
 | |
|         Bits = 8;
 | |
|         Scale = 4;
 | |
|       }
 | |
|       break;
 | |
|     case ARM::t2LDRpci:
 | |
|       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
 | |
|         NewOpc = ARM::tLDRpci;
 | |
|         Bits = 8;
 | |
|         Scale = 4;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!NewOpc)
 | |
|       continue;
 | |
| 
 | |
|     unsigned UserOffset = getUserOffset(U);
 | |
|     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
 | |
| 
 | |
|     // Be conservative with inline asm.
 | |
|     if (!U.KnownAlignment)
 | |
|       MaxOffs -= 2;
 | |
| 
 | |
|     // FIXME: Check if offset is multiple of scale if scale is not 4.
 | |
|     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
 | |
|       DEBUG(dbgs() << "Shrink: " << *U.MI);
 | |
|       U.MI->setDesc(TII->get(NewOpc));
 | |
|       MachineBasicBlock *MBB = U.MI->getParent();
 | |
|       BBInfo[MBB->getNumber()].Size -= 2;
 | |
|       adjustBBOffsetsAfter(MBB);
 | |
|       ++NumT2CPShrunk;
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MadeChange |= optimizeThumb2Branches();
 | |
|   MadeChange |= optimizeThumb2JumpTables();
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool ARMConstantIslands::optimizeThumb2Branches() {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
 | |
|     ImmBranch &Br = ImmBranches[i];
 | |
|     unsigned Opcode = Br.MI->getOpcode();
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned Scale = 1;
 | |
|     unsigned Bits = 0;
 | |
|     switch (Opcode) {
 | |
|     default: break;
 | |
|     case ARM::t2B:
 | |
|       NewOpc = ARM::tB;
 | |
|       Bits = 11;
 | |
|       Scale = 2;
 | |
|       break;
 | |
|     case ARM::t2Bcc: {
 | |
|       NewOpc = ARM::tBcc;
 | |
|       Bits = 8;
 | |
|       Scale = 2;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     if (NewOpc) {
 | |
|       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
 | |
|       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
 | |
|       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
 | |
|         DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
 | |
|         Br.MI->setDesc(TII->get(NewOpc));
 | |
|         MachineBasicBlock *MBB = Br.MI->getParent();
 | |
|         BBInfo[MBB->getNumber()].Size -= 2;
 | |
|         adjustBBOffsetsAfter(MBB);
 | |
|         ++NumT2BrShrunk;
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Opcode = Br.MI->getOpcode();
 | |
|     if (Opcode != ARM::tBcc)
 | |
|       continue;
 | |
| 
 | |
|     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
 | |
|     // so this transformation is not safe.
 | |
|     if (!Br.MI->killsRegister(ARM::CPSR))
 | |
|       continue;
 | |
| 
 | |
|     NewOpc = 0;
 | |
|     unsigned PredReg = 0;
 | |
|     ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
 | |
|     if (Pred == ARMCC::EQ)
 | |
|       NewOpc = ARM::tCBZ;
 | |
|     else if (Pred == ARMCC::NE)
 | |
|       NewOpc = ARM::tCBNZ;
 | |
|     if (!NewOpc)
 | |
|       continue;
 | |
|     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
 | |
|     // Check if the distance is within 126. Subtract starting offset by 2
 | |
|     // because the cmp will be eliminated.
 | |
|     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
 | |
|     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
 | |
|     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
 | |
|       MachineBasicBlock::iterator CmpMI = Br.MI;
 | |
|       if (CmpMI != Br.MI->getParent()->begin()) {
 | |
|         --CmpMI;
 | |
|         if (CmpMI->getOpcode() == ARM::tCMPi8) {
 | |
|           unsigned Reg = CmpMI->getOperand(0).getReg();
 | |
|           Pred = getInstrPredicate(CmpMI, PredReg);
 | |
|           if (Pred == ARMCC::AL &&
 | |
|               CmpMI->getOperand(1).getImm() == 0 &&
 | |
|               isARMLowRegister(Reg)) {
 | |
|             MachineBasicBlock *MBB = Br.MI->getParent();
 | |
|             DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
 | |
|             MachineInstr *NewBR =
 | |
|               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
 | |
|               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
 | |
|             CmpMI->eraseFromParent();
 | |
|             Br.MI->eraseFromParent();
 | |
|             Br.MI = NewBR;
 | |
|             BBInfo[MBB->getNumber()].Size -= 2;
 | |
|             adjustBBOffsetsAfter(MBB);
 | |
|             ++NumCBZ;
 | |
|             MadeChange = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
 | |
| /// jumptables when it's possible.
 | |
| bool ARMConstantIslands::optimizeThumb2JumpTables() {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // FIXME: After the tables are shrunk, can we get rid some of the
 | |
|   // constantpool tables?
 | |
|   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
 | |
|   if (!MJTI) return false;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = T2JumpTables[i];
 | |
|     const MCInstrDesc &MCID = MI->getDesc();
 | |
|     unsigned NumOps = MCID.getNumOperands();
 | |
|     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
 | |
|     MachineOperand JTOP = MI->getOperand(JTOpIdx);
 | |
|     unsigned JTI = JTOP.getIndex();
 | |
|     assert(JTI < JT.size());
 | |
| 
 | |
|     bool ByteOk = true;
 | |
|     bool HalfWordOk = true;
 | |
|     unsigned JTOffset = getOffsetOf(MI) + 4;
 | |
|     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
 | |
|     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
 | |
|       MachineBasicBlock *MBB = JTBBs[j];
 | |
|       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
 | |
|       // Negative offset is not ok. FIXME: We should change BB layout to make
 | |
|       // sure all the branches are forward.
 | |
|       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
 | |
|         ByteOk = false;
 | |
|       unsigned TBHLimit = ((1<<16)-1)*2;
 | |
|       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
 | |
|         HalfWordOk = false;
 | |
|       if (!ByteOk && !HalfWordOk)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (ByteOk || HalfWordOk) {
 | |
|       MachineBasicBlock *MBB = MI->getParent();
 | |
|       unsigned BaseReg = MI->getOperand(0).getReg();
 | |
|       bool BaseRegKill = MI->getOperand(0).isKill();
 | |
|       if (!BaseRegKill)
 | |
|         continue;
 | |
|       unsigned IdxReg = MI->getOperand(1).getReg();
 | |
|       bool IdxRegKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|       // Scan backwards to find the instruction that defines the base
 | |
|       // register. Due to post-RA scheduling, we can't count on it
 | |
|       // immediately preceding the branch instruction.
 | |
|       MachineBasicBlock::iterator PrevI = MI;
 | |
|       MachineBasicBlock::iterator B = MBB->begin();
 | |
|       while (PrevI != B && !PrevI->definesRegister(BaseReg))
 | |
|         --PrevI;
 | |
| 
 | |
|       // If for some reason we didn't find it, we can't do anything, so
 | |
|       // just skip this one.
 | |
|       if (!PrevI->definesRegister(BaseReg))
 | |
|         continue;
 | |
| 
 | |
|       MachineInstr *AddrMI = PrevI;
 | |
|       bool OptOk = true;
 | |
|       // Examine the instruction that calculates the jumptable entry address.
 | |
|       // Make sure it only defines the base register and kills any uses
 | |
|       // other than the index register.
 | |
|       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
 | |
|         const MachineOperand &MO = AddrMI->getOperand(k);
 | |
|         if (!MO.isReg() || !MO.getReg())
 | |
|           continue;
 | |
|         if (MO.isDef() && MO.getReg() != BaseReg) {
 | |
|           OptOk = false;
 | |
|           break;
 | |
|         }
 | |
|         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
 | |
|           OptOk = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (!OptOk)
 | |
|         continue;
 | |
| 
 | |
|       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
 | |
|       // that gave us the initial base register definition.
 | |
|       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
 | |
|         ;
 | |
| 
 | |
|       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
 | |
|       // to delete it as well.
 | |
|       MachineInstr *LeaMI = PrevI;
 | |
|       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
 | |
|            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
 | |
|           LeaMI->getOperand(0).getReg() != BaseReg)
 | |
|         OptOk = false;
 | |
| 
 | |
|       if (!OptOk)
 | |
|         continue;
 | |
| 
 | |
|       DEBUG(dbgs() << "Shrink JT: " << *MI << "     addr: " << *AddrMI
 | |
|                    << "      lea: " << *LeaMI);
 | |
|       unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
 | |
|       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
 | |
|         .addReg(IdxReg, getKillRegState(IdxRegKill))
 | |
|         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
 | |
|         .addImm(MI->getOperand(JTOpIdx+1).getImm());
 | |
|       DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
 | |
|       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
 | |
|       // is 2-byte aligned. For now, asm printer will fix it up.
 | |
|       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
 | |
|       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
 | |
|       OrigSize += TII->GetInstSizeInBytes(LeaMI);
 | |
|       OrigSize += TII->GetInstSizeInBytes(MI);
 | |
| 
 | |
|       AddrMI->eraseFromParent();
 | |
|       LeaMI->eraseFromParent();
 | |
|       MI->eraseFromParent();
 | |
| 
 | |
|       int delta = OrigSize - NewSize;
 | |
|       BBInfo[MBB->getNumber()].Size -= delta;
 | |
|       adjustBBOffsetsAfter(MBB);
 | |
| 
 | |
|       ++NumTBs;
 | |
|       MadeChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
 | |
| /// jump tables always branch forwards, since that's what tbb and tbh need.
 | |
| bool ARMConstantIslands::reorderThumb2JumpTables() {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
 | |
|   if (!MJTI) return false;
 | |
| 
 | |
|   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
 | |
|   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
 | |
|     MachineInstr *MI = T2JumpTables[i];
 | |
|     const MCInstrDesc &MCID = MI->getDesc();
 | |
|     unsigned NumOps = MCID.getNumOperands();
 | |
|     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
 | |
|     MachineOperand JTOP = MI->getOperand(JTOpIdx);
 | |
|     unsigned JTI = JTOP.getIndex();
 | |
|     assert(JTI < JT.size());
 | |
| 
 | |
|     // We prefer if target blocks for the jump table come after the jump
 | |
|     // instruction so we can use TB[BH]. Loop through the target blocks
 | |
|     // and try to adjust them such that that's true.
 | |
|     int JTNumber = MI->getParent()->getNumber();
 | |
|     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
 | |
|     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
 | |
|       MachineBasicBlock *MBB = JTBBs[j];
 | |
|       int DTNumber = MBB->getNumber();
 | |
| 
 | |
|       if (DTNumber < JTNumber) {
 | |
|         // The destination precedes the switch. Try to move the block forward
 | |
|         // so we have a positive offset.
 | |
|         MachineBasicBlock *NewBB =
 | |
|           adjustJTTargetBlockForward(MBB, MI->getParent());
 | |
|         if (NewBB)
 | |
|           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *ARMConstantIslands::
 | |
| adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
 | |
|   // If the destination block is terminated by an unconditional branch,
 | |
|   // try to move it; otherwise, create a new block following the jump
 | |
|   // table that branches back to the actual target. This is a very simple
 | |
|   // heuristic. FIXME: We can definitely improve it.
 | |
|   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   SmallVector<MachineOperand, 4> CondPrior;
 | |
|   MachineFunction::iterator BBi = BB;
 | |
|   MachineFunction::iterator OldPrior = std::prev(BBi);
 | |
| 
 | |
|   // If the block terminator isn't analyzable, don't try to move the block
 | |
|   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
 | |
| 
 | |
|   // If the block ends in an unconditional branch, move it. The prior block
 | |
|   // has to have an analyzable terminator for us to move this one. Be paranoid
 | |
|   // and make sure we're not trying to move the entry block of the function.
 | |
|   if (!B && Cond.empty() && BB != MF->begin() &&
 | |
|       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
 | |
|     BB->moveAfter(JTBB);
 | |
|     OldPrior->updateTerminator();
 | |
|     BB->updateTerminator();
 | |
|     // Update numbering to account for the block being moved.
 | |
|     MF->RenumberBlocks();
 | |
|     ++NumJTMoved;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Create a new MBB for the code after the jump BB.
 | |
|   MachineBasicBlock *NewBB =
 | |
|     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
 | |
|   MachineFunction::iterator MBBI = JTBB; ++MBBI;
 | |
|   MF->insert(MBBI, NewBB);
 | |
| 
 | |
|   // Add an unconditional branch from NewBB to BB.
 | |
|   // There doesn't seem to be meaningful DebugInfo available; this doesn't
 | |
|   // correspond directly to anything in the source.
 | |
|   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
 | |
|   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
 | |
|           .addImm(ARMCC::AL).addReg(0);
 | |
| 
 | |
|   // Update internal data structures to account for the newly inserted MBB.
 | |
|   MF->RenumberBlocks(NewBB);
 | |
| 
 | |
|   // Update the CFG.
 | |
|   NewBB->addSuccessor(BB);
 | |
|   JTBB->removeSuccessor(BB);
 | |
|   JTBB->addSuccessor(NewBB);
 | |
| 
 | |
|   ++NumJTInserted;
 | |
|   return NewBB;
 | |
| }
 |