mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	overall time of LLVM compilation by ~1%. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196667 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1186 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1186 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements a simple loop reroller.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "loop-reroll"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/LoopUtils.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumRerolledLoops, "Number of rerolled loops");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden,
 | |
|   cl::desc("The maximum increment for loop rerolling"));
 | |
| 
 | |
| // This loop re-rolling transformation aims to transform loops like this:
 | |
| //
 | |
| // int foo(int a);
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 500; i += 3) {
 | |
| //     foo(i);
 | |
| //     foo(i+1);
 | |
| //     foo(i+2);
 | |
| //   }
 | |
| // }
 | |
| //
 | |
| // into a loop like this:
 | |
| //
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 500; ++i)
 | |
| //     foo(i);
 | |
| // }
 | |
| //
 | |
| // It does this by looking for loops that, besides the latch code, are composed
 | |
| // of isomorphic DAGs of instructions, with each DAG rooted at some increment
 | |
| // to the induction variable, and where each DAG is isomorphic to the DAG
 | |
| // rooted at the induction variable (excepting the sub-DAGs which root the
 | |
| // other induction-variable increments). In other words, we're looking for loop
 | |
| // bodies of the form:
 | |
| //
 | |
| // %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | |
| // f(%iv)
 | |
| // %iv.1 = add %iv, 1                <-- a root increment
 | |
| // f(%iv.1)
 | |
| // %iv.2 = add %iv, 2                <-- a root increment
 | |
| // f(%iv.2)
 | |
| // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | |
| // f(%iv.scale_m_1)
 | |
| // ...
 | |
| // %iv.next = add %iv, scale
 | |
| // %cmp = icmp(%iv, ...)
 | |
| // br %cmp, header, exit
 | |
| //
 | |
| // where each f(i) is a set of instructions that, collectively, are a function
 | |
| // only of i (and other loop-invariant values).
 | |
| //
 | |
| // As a special case, we can also reroll loops like this:
 | |
| //
 | |
| // int foo(int);
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 500; ++i) {
 | |
| //     x[3*i] = foo(0);
 | |
| //     x[3*i+1] = foo(0);
 | |
| //     x[3*i+2] = foo(0);
 | |
| //   }
 | |
| // }
 | |
| //
 | |
| // into this:
 | |
| //
 | |
| // void bar(int *x) {
 | |
| //   for (int i = 0; i < 1500; ++i)
 | |
| //     x[i] = foo(0);
 | |
| // }
 | |
| //
 | |
| // in which case, we're looking for inputs like this:
 | |
| //
 | |
| // %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | |
| // %scaled.iv = mul %iv, scale
 | |
| // f(%scaled.iv)
 | |
| // %scaled.iv.1 = add %scaled.iv, 1
 | |
| // f(%scaled.iv.1)
 | |
| // %scaled.iv.2 = add %scaled.iv, 2
 | |
| // f(%scaled.iv.2)
 | |
| // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
 | |
| // f(%scaled.iv.scale_m_1)
 | |
| // ...
 | |
| // %iv.next = add %iv, 1
 | |
| // %cmp = icmp(%iv, ...)
 | |
| // br %cmp, header, exit
 | |
| 
 | |
| namespace {
 | |
|   class LoopReroll : public LoopPass {
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     LoopReroll() : LoopPass(ID) {
 | |
|       initializeLoopRerollPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addPreserved<LoopInfo>();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|     }
 | |
| 
 | |
| protected:
 | |
|     AliasAnalysis *AA;
 | |
|     LoopInfo *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     DataLayout *DL;
 | |
|     TargetLibraryInfo *TLI;
 | |
|     DominatorTree *DT;
 | |
| 
 | |
|     typedef SmallVector<Instruction *, 16> SmallInstructionVector;
 | |
|     typedef SmallSet<Instruction *, 16>   SmallInstructionSet;
 | |
| 
 | |
|     // A chain of isomorphic instructions, indentified by a single-use PHI,
 | |
|     // representing a reduction. Only the last value may be used outside the
 | |
|     // loop.
 | |
|     struct SimpleLoopReduction {
 | |
|       SimpleLoopReduction(Instruction *P, Loop *L)
 | |
|         : Valid(false), Instructions(1, P) {
 | |
|         assert(isa<PHINode>(P) && "First reduction instruction must be a PHI");
 | |
|         add(L);
 | |
|       }
 | |
| 
 | |
|       bool valid() const {
 | |
|         return Valid;
 | |
|       }
 | |
| 
 | |
|       Instruction *getPHI() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions.front();
 | |
|       }
 | |
| 
 | |
|       Instruction *getReducedValue() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions.back();
 | |
|       }
 | |
| 
 | |
|       Instruction *get(size_t i) const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions[i+1];
 | |
|       }
 | |
| 
 | |
|       Instruction *operator [] (size_t i) const { return get(i); }
 | |
| 
 | |
|       // The size, ignoring the initial PHI.
 | |
|       size_t size() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return Instructions.size()-1;
 | |
|       }
 | |
| 
 | |
|       typedef SmallInstructionVector::iterator iterator;
 | |
|       typedef SmallInstructionVector::const_iterator const_iterator;
 | |
| 
 | |
|       iterator begin() {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return llvm::next(Instructions.begin());
 | |
|       }
 | |
| 
 | |
|       const_iterator begin() const {
 | |
|         assert(Valid && "Using invalid reduction");
 | |
|         return llvm::next(Instructions.begin());
 | |
|       }
 | |
| 
 | |
|       iterator end() { return Instructions.end(); }
 | |
|       const_iterator end() const { return Instructions.end(); }
 | |
| 
 | |
|     protected:
 | |
|       bool Valid;
 | |
|       SmallInstructionVector Instructions;
 | |
| 
 | |
|       void add(Loop *L);
 | |
|     };
 | |
| 
 | |
|     // The set of all reductions, and state tracking of possible reductions
 | |
|     // during loop instruction processing.
 | |
|     struct ReductionTracker {
 | |
|       typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector;
 | |
| 
 | |
|       // Add a new possible reduction.
 | |
|       void addSLR(SimpleLoopReduction &SLR) {
 | |
|         PossibleReds.push_back(SLR);
 | |
|       }
 | |
| 
 | |
|       // Setup to track possible reductions corresponding to the provided
 | |
|       // rerolling scale. Only reductions with a number of non-PHI instructions
 | |
|       // that is divisible by the scale are considered. Three instructions sets
 | |
|       // are filled in:
 | |
|       //   - A set of all possible instructions in eligible reductions.
 | |
|       //   - A set of all PHIs in eligible reductions
 | |
|       //   - A set of all reduced values (last instructions) in eligible reductions.
 | |
|       void restrictToScale(uint64_t Scale,
 | |
|                            SmallInstructionSet &PossibleRedSet,
 | |
|                            SmallInstructionSet &PossibleRedPHISet,
 | |
|                            SmallInstructionSet &PossibleRedLastSet) {
 | |
|         PossibleRedIdx.clear();
 | |
|         PossibleRedIter.clear();
 | |
|         Reds.clear();
 | |
| 
 | |
|         for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i)
 | |
|           if (PossibleReds[i].size() % Scale == 0) {
 | |
|             PossibleRedLastSet.insert(PossibleReds[i].getReducedValue());
 | |
|             PossibleRedPHISet.insert(PossibleReds[i].getPHI());
 | |
|       
 | |
|             PossibleRedSet.insert(PossibleReds[i].getPHI());
 | |
|             PossibleRedIdx[PossibleReds[i].getPHI()] = i;
 | |
|             for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
 | |
|                  JE = PossibleReds[i].end(); J != JE; ++J) {
 | |
|               PossibleRedSet.insert(*J);
 | |
|               PossibleRedIdx[*J] = i;
 | |
|             }
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       // The functions below are used while processing the loop instructions.
 | |
| 
 | |
|       // Are the two instructions both from reductions, and furthermore, from
 | |
|       // the same reduction?
 | |
|       bool isPairInSame(Instruction *J1, Instruction *J2) {
 | |
|         DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1);
 | |
|         if (J1I != PossibleRedIdx.end()) {
 | |
|           DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2);
 | |
|           if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second)
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // The two provided instructions, the first from the base iteration, and
 | |
|       // the second from iteration i, form a matched pair. If these are part of
 | |
|       // a reduction, record that fact.
 | |
|       void recordPair(Instruction *J1, Instruction *J2, unsigned i) {
 | |
|         if (PossibleRedIdx.count(J1)) {
 | |
|           assert(PossibleRedIdx.count(J2) &&
 | |
|                  "Recording reduction vs. non-reduction instruction?");
 | |
| 
 | |
|           PossibleRedIter[J1] = 0;
 | |
|           PossibleRedIter[J2] = i;
 | |
| 
 | |
|           int Idx = PossibleRedIdx[J1];
 | |
|           assert(Idx == PossibleRedIdx[J2] &&
 | |
|                  "Recording pair from different reductions?");
 | |
|           Reds.insert(Idx);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // The functions below can be called after we've finished processing all
 | |
|       // instructions in the loop, and we know which reductions were selected.
 | |
| 
 | |
|       // Is the provided instruction the PHI of a reduction selected for
 | |
|       // rerolling?
 | |
|       bool isSelectedPHI(Instruction *J) {
 | |
|         if (!isa<PHINode>(J))
 | |
|           return false;
 | |
| 
 | |
|         for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | |
|              RI != RIE; ++RI) {
 | |
|           int i = *RI;
 | |
|           if (cast<Instruction>(J) == PossibleReds[i].getPHI())
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       bool validateSelected();
 | |
|       void replaceSelected();
 | |
| 
 | |
|     protected:
 | |
|       // The vector of all possible reductions (for any scale).
 | |
|       SmallReductionVector PossibleReds;
 | |
| 
 | |
|       DenseMap<Instruction *, int> PossibleRedIdx;
 | |
|       DenseMap<Instruction *, int> PossibleRedIter;
 | |
|       DenseSet<int> Reds;
 | |
|     };
 | |
| 
 | |
|     void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs);
 | |
|     void collectPossibleReductions(Loop *L,
 | |
|            ReductionTracker &Reductions);
 | |
|     void collectInLoopUserSet(Loop *L,
 | |
|            const SmallInstructionVector &Roots,
 | |
|            const SmallInstructionSet &Exclude,
 | |
|            const SmallInstructionSet &Final,
 | |
|            DenseSet<Instruction *> &Users);
 | |
|     void collectInLoopUserSet(Loop *L,
 | |
|            Instruction * Root,
 | |
|            const SmallInstructionSet &Exclude,
 | |
|            const SmallInstructionSet &Final,
 | |
|            DenseSet<Instruction *> &Users);
 | |
|     bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
 | |
|                           Instruction *&IV,
 | |
|                           SmallInstructionVector &LoopIncs);
 | |
|     bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV,
 | |
|                          SmallVector<SmallInstructionVector, 32> &Roots,
 | |
|                          SmallInstructionSet &AllRoots,
 | |
|                          SmallInstructionVector &LoopIncs);
 | |
|     bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount,
 | |
|                 ReductionTracker &Reductions);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopReroll::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false)
 | |
| 
 | |
| Pass *llvm::createLoopRerollPass() {
 | |
|   return new LoopReroll;
 | |
| }
 | |
| 
 | |
| // Returns true if the provided instruction is used outside the given loop.
 | |
| // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
 | |
| // non-loop blocks to be outside the loop.
 | |
| static bool hasUsesOutsideLoop(Instruction *I, Loop *L) {
 | |
|   for (Value::use_iterator UI = I->use_begin(),
 | |
|        UIE = I->use_end(); UI != UIE; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     if (!L->contains(User))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Collect the list of loop induction variables with respect to which it might
 | |
| // be possible to reroll the loop.
 | |
| void LoopReroll::collectPossibleIVs(Loop *L,
 | |
|                                     SmallInstructionVector &PossibleIVs) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   for (BasicBlock::iterator I = Header->begin(),
 | |
|        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | |
|     if (!isa<PHINode>(I))
 | |
|       continue;
 | |
|     if (!I->getType()->isIntegerTy())
 | |
|       continue;
 | |
| 
 | |
|     if (const SCEVAddRecExpr *PHISCEV =
 | |
|         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) {
 | |
|       if (PHISCEV->getLoop() != L)
 | |
|         continue;
 | |
|       if (!PHISCEV->isAffine())
 | |
|         continue;
 | |
|       if (const SCEVConstant *IncSCEV =
 | |
|           dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) {
 | |
|         if (!IncSCEV->getValue()->getValue().isStrictlyPositive())
 | |
|           continue;
 | |
|         if (IncSCEV->getValue()->uge(MaxInc))
 | |
|           continue;
 | |
| 
 | |
|         DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " <<
 | |
|               *PHISCEV << "\n");
 | |
|         PossibleIVs.push_back(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Add the remainder of the reduction-variable chain to the instruction vector
 | |
| // (the initial PHINode has already been added). If successful, the object is
 | |
| // marked as valid.
 | |
| void LoopReroll::SimpleLoopReduction::add(Loop *L) {
 | |
|   assert(!Valid && "Cannot add to an already-valid chain");
 | |
| 
 | |
|   // The reduction variable must be a chain of single-use instructions
 | |
|   // (including the PHI), except for the last value (which is used by the PHI
 | |
|   // and also outside the loop).
 | |
|   Instruction *C = Instructions.front();
 | |
| 
 | |
|   do {
 | |
|     C = cast<Instruction>(*C->use_begin());
 | |
|     if (C->hasOneUse()) {
 | |
|       if (!C->isBinaryOp())
 | |
|         return;
 | |
| 
 | |
|       if (!(isa<PHINode>(Instructions.back()) ||
 | |
|             C->isSameOperationAs(Instructions.back())))
 | |
|         return;
 | |
| 
 | |
|       Instructions.push_back(C);
 | |
|     }
 | |
|   } while (C->hasOneUse());
 | |
| 
 | |
|   if (Instructions.size() < 2 ||
 | |
|       !C->isSameOperationAs(Instructions.back()) ||
 | |
|       C->use_begin() == C->use_end())
 | |
|     return;
 | |
| 
 | |
|   // C is now the (potential) last instruction in the reduction chain.
 | |
|   for (Value::use_iterator UI = C->use_begin(), UIE = C->use_end();
 | |
|        UI != UIE; ++UI) {
 | |
|     // The only in-loop user can be the initial PHI.
 | |
|     if (L->contains(cast<Instruction>(*UI)))
 | |
|       if (cast<Instruction>(*UI ) != Instructions.front())
 | |
|         return;
 | |
|   }
 | |
| 
 | |
|   Instructions.push_back(C);
 | |
|   Valid = true;
 | |
| }
 | |
| 
 | |
| // Collect the vector of possible reduction variables.
 | |
| void LoopReroll::collectPossibleReductions(Loop *L,
 | |
|   ReductionTracker &Reductions) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   for (BasicBlock::iterator I = Header->begin(),
 | |
|        IE = Header->getFirstInsertionPt(); I != IE; ++I) {
 | |
|     if (!isa<PHINode>(I))
 | |
|       continue;
 | |
|     if (!I->getType()->isSingleValueType())
 | |
|       continue;
 | |
| 
 | |
|     SimpleLoopReduction SLR(I, L);
 | |
|     if (!SLR.valid())
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " <<
 | |
|           SLR.size() << " chained instructions)\n");
 | |
|     Reductions.addSLR(SLR);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Collect the set of all users of the provided root instruction. This set of
 | |
| // users contains not only the direct users of the root instruction, but also
 | |
| // all users of those users, and so on. There are two exceptions:
 | |
| //
 | |
| //   1. Instructions in the set of excluded instructions are never added to the
 | |
| //   use set (even if they are users). This is used, for example, to exclude
 | |
| //   including root increments in the use set of the primary IV.
 | |
| //
 | |
| //   2. Instructions in the set of final instructions are added to the use set
 | |
| //   if they are users, but their users are not added. This is used, for
 | |
| //   example, to prevent a reduction update from forcing all later reduction
 | |
| //   updates into the use set.
 | |
| void LoopReroll::collectInLoopUserSet(Loop *L,
 | |
|   Instruction *Root, const SmallInstructionSet &Exclude,
 | |
|   const SmallInstructionSet &Final,
 | |
|   DenseSet<Instruction *> &Users) {
 | |
|   SmallInstructionVector Queue(1, Root);
 | |
|   while (!Queue.empty()) {
 | |
|     Instruction *I = Queue.pop_back_val();
 | |
|     if (!Users.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     if (!Final.count(I))
 | |
|       for (Value::use_iterator UI = I->use_begin(),
 | |
|            UIE = I->use_end(); UI != UIE; ++UI) {
 | |
|         Instruction *User = cast<Instruction>(*UI);
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|           // Ignore "wrap-around" uses to PHIs of this loop's header.
 | |
|           if (PN->getIncomingBlock(UI) == L->getHeader())
 | |
|             continue;
 | |
|         }
 | |
|   
 | |
|         if (L->contains(User) && !Exclude.count(User)) {
 | |
|           Queue.push_back(User);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // We also want to collect single-user "feeder" values.
 | |
|     for (User::op_iterator OI = I->op_begin(),
 | |
|          OIE = I->op_end(); OI != OIE; ++OI) {
 | |
|       if (Instruction *Op = dyn_cast<Instruction>(*OI))
 | |
|         if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) &&
 | |
|             !Final.count(Op))
 | |
|           Queue.push_back(Op);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Collect all of the users of all of the provided root instructions (combined
 | |
| // into a single set).
 | |
| void LoopReroll::collectInLoopUserSet(Loop *L,
 | |
|   const SmallInstructionVector &Roots,
 | |
|   const SmallInstructionSet &Exclude,
 | |
|   const SmallInstructionSet &Final,
 | |
|   DenseSet<Instruction *> &Users) {
 | |
|   for (SmallInstructionVector::const_iterator I = Roots.begin(),
 | |
|        IE = Roots.end(); I != IE; ++I)
 | |
|     collectInLoopUserSet(L, *I, Exclude, Final, Users);
 | |
| }
 | |
| 
 | |
| static bool isSimpleLoadStore(Instruction *I) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|     return LI->isSimple();
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->isSimple();
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
 | |
|     return !MI->isVolatile();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Recognize loops that are setup like this:
 | |
| //
 | |
| // %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | |
| // %scaled.iv = mul %iv, scale
 | |
| // f(%scaled.iv)
 | |
| // %scaled.iv.1 = add %scaled.iv, 1
 | |
| // f(%scaled.iv.1)
 | |
| // %scaled.iv.2 = add %scaled.iv, 2
 | |
| // f(%scaled.iv.2)
 | |
| // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
 | |
| // f(%scaled.iv.scale_m_1)
 | |
| // ...
 | |
| // %iv.next = add %iv, 1
 | |
| // %cmp = icmp(%iv, ...)
 | |
| // br %cmp, header, exit
 | |
| //
 | |
| // and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs.
 | |
| bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale,
 | |
|                                   Instruction *&IV,
 | |
|                                   SmallInstructionVector &LoopIncs) {
 | |
|   // This is a special case: here we're looking for all uses (except for
 | |
|   // the increment) to be multiplied by a common factor. The increment must
 | |
|   // be by one. This is to capture loops like:
 | |
|   //   for (int i = 0; i < 500; ++i) {
 | |
|   //     foo(3*i); foo(3*i+1); foo(3*i+2);
 | |
|   //   }
 | |
|   if (RealIV->getNumUses() != 2)
 | |
|     return false;
 | |
|   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV));
 | |
|   Instruction *User1 = cast<Instruction>(*RealIV->use_begin()),
 | |
|               *User2 = cast<Instruction>(*llvm::next(RealIV->use_begin()));
 | |
|   if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType()))
 | |
|     return false;
 | |
|   const SCEVAddRecExpr *User1SCEV =
 | |
|                          dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)),
 | |
|                        *User2SCEV =
 | |
|                          dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2));
 | |
|   if (!User1SCEV || !User1SCEV->isAffine() ||
 | |
|       !User2SCEV || !User2SCEV->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   // We assume below that User1 is the scale multiply and User2 is the
 | |
|   // increment. If this can't be true, then swap them.
 | |
|   if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) {
 | |
|     std::swap(User1, User2);
 | |
|     std::swap(User1SCEV, User2SCEV);
 | |
|   }
 | |
| 
 | |
|   if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE))
 | |
|     return false;
 | |
|   assert(User2SCEV->getStepRecurrence(*SE)->isOne() &&
 | |
|          "Invalid non-unit step for multiplicative scaling");
 | |
|   LoopIncs.push_back(User2);
 | |
| 
 | |
|   if (const SCEVConstant *MulScale =
 | |
|       dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) {
 | |
|     // Make sure that both the start and step have the same multiplier.
 | |
|     if (RealIVSCEV->getStart()->getType() != MulScale->getType())
 | |
|       return false;
 | |
|     if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) !=
 | |
|         User1SCEV->getStart())
 | |
|       return false;
 | |
| 
 | |
|     ConstantInt *MulScaleCI = MulScale->getValue();
 | |
|     if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc))
 | |
|       return false;
 | |
|     Scale = MulScaleCI->getZExtValue();
 | |
|     IV = User1;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Collect all root increments with respect to the provided induction variable
 | |
| // (normally the PHI, but sometimes a multiply). A root increment is an
 | |
| // instruction, normally an add, with a positive constant less than Scale. In a
 | |
| // rerollable loop, each of these increments is the root of an instruction
 | |
| // graph isomorphic to the others. Also, we collect the final induction
 | |
| // increment (the increment equal to the Scale), and its users in LoopIncs.
 | |
| bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale,
 | |
|                                  Instruction *IV,
 | |
|                                  SmallVector<SmallInstructionVector, 32> &Roots,
 | |
|                                  SmallInstructionSet &AllRoots,
 | |
|                                  SmallInstructionVector &LoopIncs) {
 | |
|   for (Value::use_iterator UI = IV->use_begin(),
 | |
|        UIE = IV->use_end(); UI != UIE; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     if (!SE->isSCEVable(User->getType()))
 | |
|       continue;
 | |
|     if (User->getType() != IV->getType())
 | |
|       continue;
 | |
|     if (!L->contains(User))
 | |
|       continue;
 | |
|     if (hasUsesOutsideLoop(User, L))
 | |
|       continue;
 | |
| 
 | |
|     if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV(
 | |
|           SE->getSCEV(User), SE->getSCEV(IV)))) {
 | |
|       uint64_t Idx = Diff->getValue()->getValue().getZExtValue();
 | |
|       if (Idx > 0 && Idx < Scale) {
 | |
|         Roots[Idx-1].push_back(User);
 | |
|         AllRoots.insert(User);
 | |
|       } else if (Idx == Scale && Inc > 1) {
 | |
|         LoopIncs.push_back(User);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Roots[0].empty())
 | |
|     return false;
 | |
|   bool AllSame = true;
 | |
|   for (unsigned i = 1; i < Scale-1; ++i)
 | |
|     if (Roots[i].size() != Roots[0].size()) {
 | |
|       AllSame = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   if (!AllSame)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Validate the selected reductions. All iterations must have an isomorphic
 | |
| // part of the reduction chain and, for non-associative reductions, the chain
 | |
| // entries must appear in order.
 | |
| bool LoopReroll::ReductionTracker::validateSelected() {
 | |
|   // For a non-associative reduction, the chain entries must appear in order.
 | |
|   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | |
|        RI != RIE; ++RI) {
 | |
|     int i = *RI;
 | |
|     int PrevIter = 0, BaseCount = 0, Count = 0;
 | |
|     for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(),
 | |
|          JE = PossibleReds[i].end(); J != JE; ++J) {
 | |
| 	// Note that all instructions in the chain must have been found because
 | |
| 	// all instructions in the function must have been assigned to some
 | |
| 	// iteration.
 | |
|       int Iter = PossibleRedIter[*J];
 | |
|       if (Iter != PrevIter && Iter != PrevIter + 1 &&
 | |
|           !PossibleReds[i].getReducedValue()->isAssociative()) {
 | |
|         DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " <<
 | |
|                         *J << "\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       if (Iter != PrevIter) {
 | |
|         if (Count != BaseCount) {
 | |
|           DEBUG(dbgs() << "LRR: Iteration " << PrevIter <<
 | |
|                 " reduction use count " << Count <<
 | |
|                 " is not equal to the base use count " <<
 | |
|                 BaseCount << "\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         Count = 0;
 | |
|       }
 | |
| 
 | |
|       ++Count;
 | |
|       if (Iter == 0)
 | |
|         ++BaseCount;
 | |
| 
 | |
|       PrevIter = Iter;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // For all selected reductions, remove all parts except those in the first
 | |
| // iteration (and the PHI). Replace outside uses of the reduced value with uses
 | |
| // of the first-iteration reduced value (in other words, reroll the selected
 | |
| // reductions).
 | |
| void LoopReroll::ReductionTracker::replaceSelected() {
 | |
|   // Fixup reductions to refer to the last instruction associated with the
 | |
|   // first iteration (not the last).
 | |
|   for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end();
 | |
|        RI != RIE; ++RI) {
 | |
|     int i = *RI;
 | |
|     int j = 0;
 | |
|     for (int e = PossibleReds[i].size(); j != e; ++j)
 | |
|       if (PossibleRedIter[PossibleReds[i][j]] != 0) {
 | |
|         --j;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     // Replace users with the new end-of-chain value.
 | |
|     SmallInstructionVector Users;
 | |
|     for (Value::use_iterator UI =
 | |
|            PossibleReds[i].getReducedValue()->use_begin(),
 | |
|          UIE = PossibleReds[i].getReducedValue()->use_end(); UI != UIE; ++UI)
 | |
|       Users.push_back(cast<Instruction>(*UI));
 | |
| 
 | |
|     for (SmallInstructionVector::iterator J = Users.begin(),
 | |
|          JE = Users.end(); J != JE; ++J)
 | |
|       (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(),
 | |
|                               PossibleReds[i][j]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Reroll the provided loop with respect to the provided induction variable.
 | |
| // Generally, we're looking for a loop like this:
 | |
| //
 | |
| // %iv = phi [ (preheader, ...), (body, %iv.next) ]
 | |
| // f(%iv)
 | |
| // %iv.1 = add %iv, 1                <-- a root increment
 | |
| // f(%iv.1)
 | |
| // %iv.2 = add %iv, 2                <-- a root increment
 | |
| // f(%iv.2)
 | |
| // %iv.scale_m_1 = add %iv, scale-1  <-- a root increment
 | |
| // f(%iv.scale_m_1)
 | |
| // ...
 | |
| // %iv.next = add %iv, scale
 | |
| // %cmp = icmp(%iv, ...)
 | |
| // br %cmp, header, exit
 | |
| //
 | |
| // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
 | |
| // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
 | |
| // be intermixed with eachother. The restriction imposed by this algorithm is
 | |
| // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
 | |
| // etc. be the same.
 | |
| //
 | |
| // First, we collect the use set of %iv, excluding the other increment roots.
 | |
| // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
 | |
| // times, having collected the use set of f(%iv.(i+1)), during which we:
 | |
| //   - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
 | |
| //     the next unmatched instruction in f(%iv.(i+1)).
 | |
| //   - Ensure that both matched instructions don't have any external users
 | |
| //     (with the exception of last-in-chain reduction instructions).
 | |
| //   - Track the (aliasing) write set, and other side effects, of all
 | |
| //     instructions that belong to future iterations that come before the matched
 | |
| //     instructions. If the matched instructions read from that write set, then
 | |
| //     f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
 | |
| //     f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
 | |
| //     if any of these future instructions had side effects (could not be
 | |
| //     speculatively executed), and so do the matched instructions, when we
 | |
| //     cannot reorder those side-effect-producing instructions, and rerolling
 | |
| //     fails.
 | |
| //
 | |
| // Finally, we make sure that all loop instructions are either loop increment
 | |
| // roots, belong to simple latch code, parts of validated reductions, part of
 | |
| // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
 | |
| // have been validated), then we reroll the loop.
 | |
| bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header,
 | |
|                         const SCEV *IterCount,
 | |
|                         ReductionTracker &Reductions) {
 | |
|   const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV));
 | |
|   uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))->
 | |
|                    getValue()->getZExtValue();
 | |
|   // The collection of loop increment instructions.
 | |
|   SmallInstructionVector LoopIncs;
 | |
|   uint64_t Scale = Inc;
 | |
| 
 | |
|   // The effective induction variable, IV, is normally also the real induction
 | |
|   // variable. When we're dealing with a loop like:
 | |
|   //   for (int i = 0; i < 500; ++i)
 | |
|   //     x[3*i] = ...;
 | |
|   //     x[3*i+1] = ...;
 | |
|   //     x[3*i+2] = ...;
 | |
|   // then the real IV is still i, but the effective IV is (3*i).
 | |
|   Instruction *RealIV = IV;
 | |
|   if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs))
 | |
|     return false;
 | |
| 
 | |
|   assert(Scale <= MaxInc && "Scale is too large");
 | |
|   assert(Scale > 1 && "Scale must be at least 2");
 | |
| 
 | |
|   // The set of increment instructions for each increment value.
 | |
|   SmallVector<SmallInstructionVector, 32> Roots(Scale-1);
 | |
|   SmallInstructionSet AllRoots;
 | |
|   if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "LRR: Found all root induction increments for: " <<
 | |
|                   *RealIV << "\n");
 | |
| 
 | |
|   // An array of just the possible reductions for this scale factor. When we
 | |
|   // collect the set of all users of some root instructions, these reduction
 | |
|   // instructions are treated as 'final' (their uses are not considered).
 | |
|   // This is important because we don't want the root use set to search down
 | |
|   // the reduction chain.
 | |
|   SmallInstructionSet PossibleRedSet;
 | |
|   SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet;
 | |
|   Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet,
 | |
|                              PossibleRedLastSet);
 | |
| 
 | |
|   // We now need to check for equivalence of the use graph of each root with
 | |
|   // that of the primary induction variable (excluding the roots). Our goal
 | |
|   // here is not to solve the full graph isomorphism problem, but rather to
 | |
|   // catch common cases without a lot of work. As a result, we will assume
 | |
|   // that the relative order of the instructions in each unrolled iteration
 | |
|   // is the same (although we will not make an assumption about how the
 | |
|   // different iterations are intermixed). Note that while the order must be
 | |
|   // the same, the instructions may not be in the same basic block.
 | |
|   SmallInstructionSet Exclude(AllRoots);
 | |
|   Exclude.insert(LoopIncs.begin(), LoopIncs.end());
 | |
| 
 | |
|   DenseSet<Instruction *> BaseUseSet;
 | |
|   collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet);
 | |
| 
 | |
|   DenseSet<Instruction *> AllRootUses;
 | |
|   std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1);
 | |
| 
 | |
|   bool MatchFailed = false;
 | |
|   for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) {
 | |
|     DenseSet<Instruction *> &RootUseSet = RootUseSets[i];
 | |
|     collectInLoopUserSet(L, Roots[i], SmallInstructionSet(),
 | |
|                          PossibleRedSet, RootUseSet);
 | |
| 
 | |
|     DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() <<
 | |
|                     " vs. iteration increment " << (i+1) <<
 | |
|                     " use set size: " << RootUseSet.size() << "\n");
 | |
| 
 | |
|     if (BaseUseSet.size() != RootUseSet.size()) {
 | |
|       MatchFailed = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // In addition to regular aliasing information, we need to look for
 | |
|     // instructions from later (future) iterations that have side effects
 | |
|     // preventing us from reordering them past other instructions with side
 | |
|     // effects.
 | |
|     bool FutureSideEffects = false;
 | |
|     AliasSetTracker AST(*AA);
 | |
| 
 | |
|     // The map between instructions in f(%iv.(i+1)) and f(%iv).
 | |
|     DenseMap<Value *, Value *> BaseMap;
 | |
| 
 | |
|     assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops");
 | |
|     for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(),
 | |
|          JE = Header->end(); J1 != JE && !MatchFailed; ++J1) {
 | |
|       if (cast<Instruction>(J1) == RealIV)
 | |
|         continue;
 | |
|       if (cast<Instruction>(J1) == IV)
 | |
|         continue;
 | |
|       if (!BaseUseSet.count(J1))
 | |
|         continue;
 | |
|       if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs.
 | |
|         continue;
 | |
| 
 | |
|       while (J2 != JE && (!RootUseSet.count(J2) ||
 | |
|              std::find(Roots[i].begin(), Roots[i].end(), J2) !=
 | |
|                Roots[i].end())) {
 | |
|         // As we iterate through the instructions, instructions that don't
 | |
|         // belong to previous iterations (or the base case), must belong to
 | |
|         // future iterations. We want to track the alias set of writes from
 | |
|         // previous iterations.
 | |
|         if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) &&
 | |
|             !AllRootUses.count(J2)) {
 | |
|           if (J2->mayWriteToMemory())
 | |
|             AST.add(J2);
 | |
| 
 | |
|           // Note: This is specifically guarded by a check on isa<PHINode>,
 | |
|           // which while a valid (somewhat arbitrary) micro-optimization, is
 | |
|           // needed because otherwise isSafeToSpeculativelyExecute returns
 | |
|           // false on PHI nodes.
 | |
|           if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL))
 | |
|             FutureSideEffects = true; 
 | |
|         }
 | |
| 
 | |
|         ++J2;
 | |
|       }
 | |
| 
 | |
|       if (!J1->isSameOperationAs(J2)) {
 | |
|         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | |
|                         " vs. " << *J2 << "\n");
 | |
|         MatchFailed = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Make sure that this instruction, which is in the use set of this
 | |
|       // root instruction, does not also belong to the base set or the set of
 | |
|       // some previous root instruction.
 | |
|       if (BaseUseSet.count(J2) || AllRootUses.count(J2)) {
 | |
|         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | |
|                         " vs. " << *J2 << " (prev. case overlap)\n");
 | |
|         MatchFailed = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Make sure that we don't alias with any instruction in the alias set
 | |
|       // tracker. If we do, then we depend on a future iteration, and we
 | |
|       // can't reroll.
 | |
|       if (J2->mayReadFromMemory()) {
 | |
|         for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end();
 | |
|              K != KE && !MatchFailed; ++K) {
 | |
|           if (K->aliasesUnknownInst(J2, *AA)) {
 | |
|             DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | |
|                             " vs. " << *J2 << " (depends on future store)\n");
 | |
|             MatchFailed = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we've past an instruction from a future iteration that may have
 | |
|       // side effects, and this instruction might also, then we can't reorder
 | |
|       // them, and this matching fails. As an exception, we allow the alias
 | |
|       // set tracker to handle regular (simple) load/store dependencies.
 | |
|       if (FutureSideEffects &&
 | |
|             ((!isSimpleLoadStore(J1) && !isSafeToSpeculativelyExecute(J1)) ||
 | |
|              (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2)))) {
 | |
|         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | |
|                         " vs. " << *J2 <<
 | |
|                         " (side effects prevent reordering)\n");
 | |
|         MatchFailed = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // For instructions that are part of a reduction, if the operation is
 | |
|       // associative, then don't bother matching the operands (because we
 | |
|       // already know that the instructions are isomorphic, and the order
 | |
|       // within the iteration does not matter). For non-associative reductions,
 | |
|       // we do need to match the operands, because we need to reject
 | |
|       // out-of-order instructions within an iteration!
 | |
|       // For example (assume floating-point addition), we need to reject this:
 | |
|       //   x += a[i]; x += b[i];
 | |
|       //   x += a[i+1]; x += b[i+1];
 | |
|       //   x += b[i+2]; x += a[i+2];
 | |
|       bool InReduction = Reductions.isPairInSame(J1, J2);
 | |
| 
 | |
|       if (!(InReduction && J1->isAssociative())) {
 | |
|         bool Swapped = false, SomeOpMatched = false;;
 | |
|         for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) {
 | |
|           Value *Op2 = J2->getOperand(j);
 | |
| 
 | |
| 	  // If this is part of a reduction (and the operation is not
 | |
| 	  // associatve), then we match all operands, but not those that are
 | |
| 	  // part of the reduction.
 | |
|           if (InReduction)
 | |
|             if (Instruction *Op2I = dyn_cast<Instruction>(Op2))
 | |
|               if (Reductions.isPairInSame(J2, Op2I))
 | |
|                 continue;
 | |
| 
 | |
|           DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2);
 | |
|           if (BMI != BaseMap.end())
 | |
|             Op2 = BMI->second;
 | |
|           else if (std::find(Roots[i].begin(), Roots[i].end(),
 | |
|                              (Instruction*) Op2) != Roots[i].end())
 | |
|             Op2 = IV;
 | |
| 
 | |
|           if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) {
 | |
| 	    // If we've not already decided to swap the matched operands, and
 | |
| 	    // we've not already matched our first operand (note that we could
 | |
| 	    // have skipped matching the first operand because it is part of a
 | |
| 	    // reduction above), and the instruction is commutative, then try
 | |
| 	    // the swapped match.
 | |
|             if (!Swapped && J1->isCommutative() && !SomeOpMatched &&
 | |
|                 J1->getOperand(!j) == Op2) {
 | |
|               Swapped = true;
 | |
|             } else {
 | |
|               DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | |
|                               " vs. " << *J2 << " (operand " << j << ")\n");
 | |
|               MatchFailed = true;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           SomeOpMatched = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) ||
 | |
|           (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) {
 | |
|         DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 <<
 | |
|                         " vs. " << *J2 << " (uses outside loop)\n");
 | |
|         MatchFailed = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (!MatchFailed)
 | |
|         BaseMap.insert(std::pair<Value *, Value *>(J2, J1));
 | |
| 
 | |
|       AllRootUses.insert(J2);
 | |
|       Reductions.recordPair(J1, J2, i+1);
 | |
| 
 | |
|       ++J2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MatchFailed)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "LRR: Matched all iteration increments for " <<
 | |
|                   *RealIV << "\n");
 | |
| 
 | |
|   DenseSet<Instruction *> LoopIncUseSet;
 | |
|   collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(),
 | |
|                        SmallInstructionSet(), LoopIncUseSet);
 | |
|   DEBUG(dbgs() << "LRR: Loop increment set size: " <<
 | |
|                   LoopIncUseSet.size() << "\n");
 | |
| 
 | |
|   // Make sure that all instructions in the loop have been included in some
 | |
|   // use set.
 | |
|   for (BasicBlock::iterator J = Header->begin(), JE = Header->end();
 | |
|        J != JE; ++J) {
 | |
|     if (isa<DbgInfoIntrinsic>(J))
 | |
|       continue;
 | |
|     if (cast<Instruction>(J) == RealIV)
 | |
|       continue;
 | |
|     if (cast<Instruction>(J) == IV)
 | |
|       continue;
 | |
|     if (BaseUseSet.count(J) || AllRootUses.count(J) ||
 | |
|         (LoopIncUseSet.count(J) && (J->isTerminator() ||
 | |
|                                     isSafeToSpeculativelyExecute(J, DL))))
 | |
|       continue;
 | |
| 
 | |
|     if (AllRoots.count(J))
 | |
|       continue;
 | |
| 
 | |
|     if (Reductions.isSelectedPHI(J))
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV <<
 | |
|                     " unprocessed instruction found: " << *J << "\n");
 | |
|     MatchFailed = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (MatchFailed)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "LRR: all instructions processed from " <<
 | |
|                   *RealIV << "\n");
 | |
| 
 | |
|   if (!Reductions.validateSelected())
 | |
|     return false;
 | |
| 
 | |
|   // At this point, we've validated the rerolling, and we're committed to
 | |
|   // making changes!
 | |
| 
 | |
|   Reductions.replaceSelected();
 | |
| 
 | |
|   // Remove instructions associated with non-base iterations.
 | |
|   for (BasicBlock::reverse_iterator J = Header->rbegin();
 | |
|        J != Header->rend();) {
 | |
|     if (AllRootUses.count(&*J)) {
 | |
|       Instruction *D = &*J;
 | |
|       DEBUG(dbgs() << "LRR: removing: " << *D << "\n");
 | |
|       D->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ++J; 
 | |
|   }
 | |
| 
 | |
|   // Insert the new induction variable.
 | |
|   const SCEV *Start = RealIVSCEV->getStart();
 | |
|   if (Inc == 1)
 | |
|     Start = SE->getMulExpr(Start,
 | |
|                            SE->getConstant(Start->getType(), Scale));
 | |
|   const SCEVAddRecExpr *H =
 | |
|     cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start,
 | |
|                            SE->getConstant(RealIVSCEV->getType(), 1),
 | |
|                            L, SCEV::FlagAnyWrap));
 | |
|   { // Limit the lifetime of SCEVExpander.
 | |
|     SCEVExpander Expander(*SE, "reroll");
 | |
|     PHINode *NewIV =
 | |
|       cast<PHINode>(Expander.expandCodeFor(H, IV->getType(),
 | |
|                                            Header->begin()));
 | |
|     for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(),
 | |
|          JE = BaseUseSet.end(); J != JE; ++J)
 | |
|       (*J)->replaceUsesOfWith(IV, NewIV);
 | |
| 
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) {
 | |
|       if (LoopIncUseSet.count(BI)) {
 | |
|         const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE);
 | |
|         if (Inc == 1)
 | |
|           ICSCEV =
 | |
|             SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale));
 | |
|         Value *IC;
 | |
|         if (isa<SCEVConstant>(ICSCEV)) {
 | |
|           IC = Expander.expandCodeFor(ICSCEV, NewIV->getType(), BI);
 | |
|         } else {
 | |
|           BasicBlock *Preheader = L->getLoopPreheader();
 | |
|           if (!Preheader)
 | |
|             Preheader = InsertPreheaderForLoop(L, this);
 | |
| 
 | |
|           IC = Expander.expandCodeFor(ICSCEV, NewIV->getType(),
 | |
|                                       Preheader->getTerminator());
 | |
|         }
 | |
|  
 | |
|         Value *NewIVNext = NewIV->getIncomingValueForBlock(Header); 
 | |
|         Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIVNext, IC,
 | |
|                                    "exitcond");
 | |
|         BI->setCondition(Cond);
 | |
| 
 | |
|         if (BI->getSuccessor(1) != Header)
 | |
|           BI->swapSuccessors();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SimplifyInstructionsInBlock(Header, DL, TLI);
 | |
|   DeleteDeadPHIs(Header, TLI);
 | |
|   ++NumRerolledLoops;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   TLI = &getAnalysis<TargetLibraryInfo>();
 | |
|   DL = getAnalysisIfAvailable<DataLayout>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() <<
 | |
|         "] Loop %" << Header->getName() << " (" <<
 | |
|         L->getNumBlocks() << " block(s))\n");
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // For now, we'll handle only single BB loops.
 | |
|   if (L->getNumBlocks() > 1)
 | |
|     return Changed;
 | |
| 
 | |
|   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
 | |
|     return Changed;
 | |
| 
 | |
|   const SCEV *LIBETC = SE->getBackedgeTakenCount(L);
 | |
|   const SCEV *IterCount =
 | |
|     SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1));
 | |
|   DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n");
 | |
| 
 | |
|   // First, we need to find the induction variable with respect to which we can
 | |
|   // reroll (there may be several possible options).
 | |
|   SmallInstructionVector PossibleIVs;
 | |
|   collectPossibleIVs(L, PossibleIVs);
 | |
| 
 | |
|   if (PossibleIVs.empty()) {
 | |
|     DEBUG(dbgs() << "LRR: No possible IVs found\n");
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   ReductionTracker Reductions;
 | |
|   collectPossibleReductions(L, Reductions);
 | |
| 
 | |
|   // For each possible IV, collect the associated possible set of 'root' nodes
 | |
|   // (i+1, i+2, etc.).
 | |
|   for (SmallInstructionVector::iterator I = PossibleIVs.begin(),
 | |
|        IE = PossibleIVs.end(); I != IE; ++I)
 | |
|     if (reroll(*I, L, Header, IterCount, Reductions)) {
 | |
|       Changed = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 |