mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33514 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			553 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			553 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass promotes "by reference" arguments to be "by value" arguments.  In
 | |
| // practice, this means looking for internal functions that have pointer
 | |
| // arguments.  If we can prove, through the use of alias analysis, that an
 | |
| // argument is *only* loaded, then we can pass the value into the function
 | |
| // instead of the address of the value.  This can cause recursive simplification
 | |
| // of code and lead to the elimination of allocas (especially in C++ template
 | |
| // code like the STL).
 | |
| //
 | |
| // This pass also handles aggregate arguments that are passed into a function,
 | |
| // scalarizing them if the elements of the aggregate are only loaded.  Note that
 | |
| // we refuse to scalarize aggregates which would require passing in more than
 | |
| // three operands to the function, because we don't want to pass thousands of
 | |
| // operands for a large array or structure!
 | |
| //
 | |
| // Note that this transformation could also be done for arguments that are only
 | |
| // stored to (returning the value instead), but we do not currently handle that
 | |
| // case.  This case would be best handled when and if we start supporting
 | |
| // multiple return values from functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "argpromotion"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CallGraphSCCPass.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CallGraph.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
 | |
| STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
 | |
| STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
 | |
| 
 | |
| namespace {
 | |
|   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
 | |
|   ///
 | |
|   struct ArgPromotion : public CallGraphSCCPass {
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<TargetData>();
 | |
|       CallGraphSCCPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
 | |
|   private:
 | |
|     bool PromoteArguments(CallGraphNode *CGN);
 | |
|     bool isSafeToPromoteArgument(Argument *Arg) const;
 | |
|     Function *DoPromotion(Function *F, std::vector<Argument*> &ArgsToPromote);
 | |
|   };
 | |
| 
 | |
|   RegisterPass<ArgPromotion> X("argpromotion",
 | |
|                                "Promote 'by reference' arguments to scalars");
 | |
| }
 | |
| 
 | |
| Pass *llvm::createArgumentPromotionPass() {
 | |
|   return new ArgPromotion();
 | |
| }
 | |
| 
 | |
| bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
 | |
|   bool Changed = false, LocalChange;
 | |
| 
 | |
|   do {  // Iterate until we stop promoting from this SCC.
 | |
|     LocalChange = false;
 | |
|     // Attempt to promote arguments from all functions in this SCC.
 | |
|     for (unsigned i = 0, e = SCC.size(); i != e; ++i)
 | |
|       LocalChange |= PromoteArguments(SCC[i]);
 | |
|     Changed |= LocalChange;               // Remember that we changed something.
 | |
|   } while (LocalChange);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// PromoteArguments - This method checks the specified function to see if there
 | |
| /// are any promotable arguments and if it is safe to promote the function (for
 | |
| /// example, all callers are direct).  If safe to promote some arguments, it
 | |
| /// calls the DoPromotion method.
 | |
| ///
 | |
| bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
 | |
|   Function *F = CGN->getFunction();
 | |
| 
 | |
|   // Make sure that it is local to this module.
 | |
|   if (!F || !F->hasInternalLinkage()) return false;
 | |
| 
 | |
|   // First check: see if there are any pointer arguments!  If not, quick exit.
 | |
|   std::vector<Argument*> PointerArgs;
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | |
|     if (isa<PointerType>(I->getType()))
 | |
|       PointerArgs.push_back(I);
 | |
|   if (PointerArgs.empty()) return false;
 | |
| 
 | |
|   // Second check: make sure that all callers are direct callers.  We can't
 | |
|   // transform functions that have indirect callers.
 | |
|   for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     CallSite CS = CallSite::get(*UI);
 | |
|     if (!CS.getInstruction())       // "Taking the address" of the function
 | |
|       return false;
 | |
| 
 | |
|     // Ensure that this call site is CALLING the function, not passing it as
 | |
|     // an argument.
 | |
|     for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
 | |
|          AI != E; ++AI)
 | |
|       if (*AI == F) return false;   // Passing the function address in!
 | |
|   }
 | |
| 
 | |
|   // Check to see which arguments are promotable.  If an argument is not
 | |
|   // promotable, remove it from the PointerArgs vector.
 | |
|   for (unsigned i = 0; i != PointerArgs.size(); ++i)
 | |
|     if (!isSafeToPromoteArgument(PointerArgs[i])) {
 | |
|       std::swap(PointerArgs[i--], PointerArgs.back());
 | |
|       PointerArgs.pop_back();
 | |
|     }
 | |
| 
 | |
|   // No promotable pointer arguments.
 | |
|   if (PointerArgs.empty()) return false;
 | |
| 
 | |
|   // Okay, promote all of the arguments are rewrite the callees!
 | |
|   Function *NewF = DoPromotion(F, PointerArgs);
 | |
| 
 | |
|   // Update the call graph to know that the old function is gone.
 | |
|   getAnalysis<CallGraph>().changeFunction(F, NewF);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IsAlwaysValidPointer - Return true if the specified pointer is always legal
 | |
| /// to load.
 | |
| static bool IsAlwaysValidPointer(Value *V) {
 | |
|   if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
 | |
|     return IsAlwaysValidPointer(GEP->getOperand(0));
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return IsAlwaysValidPointer(CE->getOperand(0));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
 | |
| /// all callees pass in a valid pointer for the specified function argument.
 | |
| static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
 | |
|   Function *Callee = Arg->getParent();
 | |
| 
 | |
|   unsigned ArgNo = std::distance(Callee->arg_begin(), Function::arg_iterator(Arg));
 | |
| 
 | |
|   // Look at all call sites of the function.  At this pointer we know we only
 | |
|   // have direct callees.
 | |
|   for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     CallSite CS = CallSite::get(*UI);
 | |
|     assert(CS.getInstruction() && "Should only have direct calls!");
 | |
| 
 | |
|     if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSafeToPromoteArgument - As you might guess from the name of this method,
 | |
| /// it checks to see if it is both safe and useful to promote the argument.
 | |
| /// This method limits promotion of aggregates to only promote up to three
 | |
| /// elements of the aggregate in order to avoid exploding the number of
 | |
| /// arguments passed in.
 | |
| bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg) const {
 | |
|   // We can only promote this argument if all of the uses are loads, or are GEP
 | |
|   // instructions (with constant indices) that are subsequently loaded.
 | |
|   bool HasLoadInEntryBlock = false;
 | |
|   BasicBlock *EntryBlock = Arg->getParent()->begin();
 | |
|   std::vector<LoadInst*> Loads;
 | |
|   std::vector<std::vector<ConstantInt*> > GEPIndices;
 | |
|   for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
 | |
|        UI != E; ++UI)
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | |
|       if (LI->isVolatile()) return false;  // Don't hack volatile loads
 | |
|       Loads.push_back(LI);
 | |
|       HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
 | |
|       if (GEP->use_empty()) {
 | |
|         // Dead GEP's cause trouble later.  Just remove them if we run into
 | |
|         // them.
 | |
|         getAnalysis<AliasAnalysis>().deleteValue(GEP);
 | |
|         GEP->getParent()->getInstList().erase(GEP);
 | |
|         return isSafeToPromoteArgument(Arg);
 | |
|       }
 | |
|       // Ensure that all of the indices are constants.
 | |
|       std::vector<ConstantInt*> Operands;
 | |
|       for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | |
|         if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
 | |
|           Operands.push_back(C);
 | |
|         else
 | |
|           return false;  // Not a constant operand GEP!
 | |
| 
 | |
|       // Ensure that the only users of the GEP are load instructions.
 | |
|       for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | |
|           if (LI->isVolatile()) return false;  // Don't hack volatile loads
 | |
|           Loads.push_back(LI);
 | |
|           HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
 | |
|         } else {
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|       // See if there is already a GEP with these indices.  If not, check to
 | |
|       // make sure that we aren't promoting too many elements.  If so, nothing
 | |
|       // to do.
 | |
|       if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
 | |
|           GEPIndices.end()) {
 | |
|         if (GEPIndices.size() == 3) {
 | |
|           DOUT << "argpromotion disable promoting argument '"
 | |
|                << Arg->getName() << "' because it would require adding more "
 | |
|                << "than 3 arguments to the function.\n";
 | |
|           // We limit aggregate promotion to only promoting up to three elements
 | |
|           // of the aggregate.
 | |
|           return false;
 | |
|         }
 | |
|         GEPIndices.push_back(Operands);
 | |
|       }
 | |
|     } else {
 | |
|       return false;  // Not a load or a GEP.
 | |
|     }
 | |
| 
 | |
|   if (Loads.empty()) return true;  // No users, this is a dead argument.
 | |
| 
 | |
|   // If we decide that we want to promote this argument, the value is going to
 | |
|   // be unconditionally loaded in all callees.  This is only safe to do if the
 | |
|   // pointer was going to be unconditionally loaded anyway (i.e. there is a load
 | |
|   // of the pointer in the entry block of the function) or if we can prove that
 | |
|   // all pointers passed in are always to legal locations (for example, no null
 | |
|   // pointers are passed in, no pointers to free'd memory, etc).
 | |
|   if (!HasLoadInEntryBlock && !AllCalleesPassInValidPointerForArgument(Arg))
 | |
|     return false;   // Cannot prove that this is safe!!
 | |
| 
 | |
|   // Okay, now we know that the argument is only used by load instructions and
 | |
|   // it is safe to unconditionally load the pointer.  Use alias analysis to
 | |
|   // check to see if the pointer is guaranteed to not be modified from entry of
 | |
|   // the function to each of the load instructions.
 | |
| 
 | |
|   // Because there could be several/many load instructions, remember which
 | |
|   // blocks we know to be transparent to the load.
 | |
|   std::set<BasicBlock*> TranspBlocks;
 | |
| 
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
|   TargetData &TD = getAnalysis<TargetData>();
 | |
| 
 | |
|   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
 | |
|     // Check to see if the load is invalidated from the start of the block to
 | |
|     // the load itself.
 | |
|     LoadInst *Load = Loads[i];
 | |
|     BasicBlock *BB = Load->getParent();
 | |
| 
 | |
|     const PointerType *LoadTy =
 | |
|       cast<PointerType>(Load->getOperand(0)->getType());
 | |
|     unsigned LoadSize = (unsigned)TD.getTypeSize(LoadTy->getElementType());
 | |
| 
 | |
|     if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
 | |
|       return false;  // Pointer is invalidated!
 | |
| 
 | |
|     // Now check every path from the entry block to the load for transparency.
 | |
|     // To do this, we perform a depth first search on the inverse CFG from the
 | |
|     // loading block.
 | |
|     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|       for (idf_ext_iterator<BasicBlock*> I = idf_ext_begin(*PI, TranspBlocks),
 | |
|              E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
 | |
|         if (AA.canBasicBlockModify(**I, Arg, LoadSize))
 | |
|           return false;
 | |
|   }
 | |
| 
 | |
|   // If the path from the entry of the function to each load is free of
 | |
|   // instructions that potentially invalidate the load, we can make the
 | |
|   // transformation!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
 | |
|   /// elements are instances of ConstantInt.
 | |
|   ///
 | |
|   struct GEPIdxComparator {
 | |
|     bool operator()(const std::vector<Value*> &LHS,
 | |
|                     const std::vector<Value*> &RHS) const {
 | |
|       unsigned idx = 0;
 | |
|       for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
 | |
|         if (LHS[idx] != RHS[idx]) {
 | |
|           return cast<ConstantInt>(LHS[idx])->getZExtValue() <
 | |
|                  cast<ConstantInt>(RHS[idx])->getZExtValue();
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Return less than if we ran out of stuff in LHS and we didn't run out of
 | |
|       // stuff in RHS.
 | |
|       return idx == LHS.size() && idx != RHS.size();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DoPromotion - This method actually performs the promotion of the specified
 | |
| /// arguments, and returns the new function.  At this point, we know that it's
 | |
| /// safe to do so.
 | |
| Function *ArgPromotion::DoPromotion(Function *F,
 | |
|                                     std::vector<Argument*> &Args2Prom) {
 | |
|   std::set<Argument*> ArgsToPromote(Args2Prom.begin(), Args2Prom.end());
 | |
| 
 | |
|   // Start by computing a new prototype for the function, which is the same as
 | |
|   // the old function, but has modified arguments.
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
|   std::vector<const Type*> Params;
 | |
| 
 | |
|   typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
 | |
| 
 | |
|   // ScalarizedElements - If we are promoting a pointer that has elements
 | |
|   // accessed out of it, keep track of which elements are accessed so that we
 | |
|   // can add one argument for each.
 | |
|   //
 | |
|   // Arguments that are directly loaded will have a zero element value here, to
 | |
|   // handle cases where there are both a direct load and GEP accesses.
 | |
|   //
 | |
|   std::map<Argument*, ScalarizeTable> ScalarizedElements;
 | |
| 
 | |
|   // OriginalLoads - Keep track of a representative load instruction from the
 | |
|   // original function so that we can tell the alias analysis implementation
 | |
|   // what the new GEP/Load instructions we are inserting look like.
 | |
|   std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
 | |
| 
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | |
|     if (!ArgsToPromote.count(I)) {
 | |
|       Params.push_back(I->getType());
 | |
|     } else if (I->use_empty()) {
 | |
|       ++NumArgumentsDead;
 | |
|     } else {
 | |
|       // Okay, this is being promoted.  Check to see if there are any GEP uses
 | |
|       // of the argument.
 | |
|       ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | |
|       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | |
|            ++UI) {
 | |
|         Instruction *User = cast<Instruction>(*UI);
 | |
|         assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
 | |
|         std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
 | |
|         ArgIndices.insert(Indices);
 | |
|         LoadInst *OrigLoad;
 | |
|         if (LoadInst *L = dyn_cast<LoadInst>(User))
 | |
|           OrigLoad = L;
 | |
|         else
 | |
|           OrigLoad = cast<LoadInst>(User->use_back());
 | |
|         OriginalLoads[Indices] = OrigLoad;
 | |
|       }
 | |
| 
 | |
|       // Add a parameter to the function for each element passed in.
 | |
|       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | |
|              E = ArgIndices.end(); SI != E; ++SI)
 | |
|         Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
 | |
| 
 | |
|       if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
 | |
|         ++NumArgumentsPromoted;
 | |
|       else
 | |
|         ++NumAggregatesPromoted;
 | |
|     }
 | |
| 
 | |
|   const Type *RetTy = FTy->getReturnType();
 | |
| 
 | |
|   // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
 | |
|   // have zero fixed arguments.
 | |
|   bool ExtraArgHack = false;
 | |
|   if (Params.empty() && FTy->isVarArg()) {
 | |
|     ExtraArgHack = true;
 | |
|     Params.push_back(Type::Int32Ty);
 | |
|   }
 | |
|   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
 | |
| 
 | |
|    // Create the new function body and insert it into the module...
 | |
|   Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
 | |
|   NF->setCallingConv(F->getCallingConv());
 | |
|   F->getParent()->getFunctionList().insert(F, NF);
 | |
| 
 | |
|   // Get the alias analysis information that we need to update to reflect our
 | |
|   // changes.
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   // Loop over all of the callers of the function, transforming the call sites
 | |
|   // to pass in the loaded pointers.
 | |
|   //
 | |
|   std::vector<Value*> Args;
 | |
|   while (!F->use_empty()) {
 | |
|     CallSite CS = CallSite::get(F->use_back());
 | |
|     Instruction *Call = CS.getInstruction();
 | |
| 
 | |
|     // Loop over the operands, inserting GEP and loads in the caller as
 | |
|     // appropriate.
 | |
|     CallSite::arg_iterator AI = CS.arg_begin();
 | |
|     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I, ++AI)
 | |
|       if (!ArgsToPromote.count(I))
 | |
|         Args.push_back(*AI);          // Unmodified argument
 | |
|       else if (!I->use_empty()) {
 | |
|         // Non-dead argument: insert GEPs and loads as appropriate.
 | |
|         ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | |
|         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | |
|                E = ArgIndices.end(); SI != E; ++SI) {
 | |
|           Value *V = *AI;
 | |
|           LoadInst *OrigLoad = OriginalLoads[*SI];
 | |
|           if (!SI->empty()) {
 | |
|             V = new GetElementPtrInst(V, *SI, V->getName()+".idx", Call);
 | |
|             AA.copyValue(OrigLoad->getOperand(0), V);
 | |
|           }
 | |
|           Args.push_back(new LoadInst(V, V->getName()+".val", Call));
 | |
|           AA.copyValue(OrigLoad, Args.back());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     if (ExtraArgHack)
 | |
|       Args.push_back(Constant::getNullValue(Type::Int32Ty));
 | |
| 
 | |
|     // Push any varargs arguments on the list
 | |
|     for (; AI != CS.arg_end(); ++AI)
 | |
|       Args.push_back(*AI);
 | |
| 
 | |
|     Instruction *New;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
 | |
|                            Args, "", Call);
 | |
|       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|     } else {
 | |
|       New = new CallInst(NF, Args, "", Call);
 | |
|       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       if (cast<CallInst>(Call)->isTailCall())
 | |
|         cast<CallInst>(New)->setTailCall();
 | |
|     }
 | |
|     Args.clear();
 | |
| 
 | |
|     // Update the alias analysis implementation to know that we are replacing
 | |
|     // the old call with a new one.
 | |
|     AA.replaceWithNewValue(Call, New);
 | |
| 
 | |
|     if (!Call->use_empty()) {
 | |
|       Call->replaceAllUsesWith(New);
 | |
|       std::string Name = Call->getName();
 | |
|       Call->setName("");
 | |
|       New->setName(Name);
 | |
|     }
 | |
| 
 | |
|     // Finally, remove the old call from the program, reducing the use-count of
 | |
|     // F.
 | |
|     Call->getParent()->getInstList().erase(Call);
 | |
|   }
 | |
| 
 | |
|   // Since we have now created the new function, splice the body of the old
 | |
|   // function right into the new function, leaving the old rotting hulk of the
 | |
|   // function empty.
 | |
|   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | |
| 
 | |
|   // Loop over the argument list, transfering uses of the old arguments over to
 | |
|   // the new arguments, also transfering over the names as well.
 | |
|   //
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), I2 = NF->arg_begin();
 | |
|        I != E; ++I)
 | |
|     if (!ArgsToPromote.count(I)) {
 | |
|       // If this is an unmodified argument, move the name and users over to the
 | |
|       // new version.
 | |
|       I->replaceAllUsesWith(I2);
 | |
|       I2->setName(I->getName());
 | |
|       AA.replaceWithNewValue(I, I2);
 | |
|       ++I2;
 | |
|     } else if (I->use_empty()) {
 | |
|       AA.deleteValue(I);
 | |
|     } else {
 | |
|       // Otherwise, if we promoted this argument, then all users are load
 | |
|       // instructions, and all loads should be using the new argument that we
 | |
|       // added.
 | |
|       ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | |
| 
 | |
|       while (!I->use_empty()) {
 | |
|         if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
 | |
|           assert(ArgIndices.begin()->empty() &&
 | |
|                  "Load element should sort to front!");
 | |
|           I2->setName(I->getName()+".val");
 | |
|           LI->replaceAllUsesWith(I2);
 | |
|           AA.replaceWithNewValue(LI, I2);
 | |
|           LI->getParent()->getInstList().erase(LI);
 | |
|           DOUT << "*** Promoted load of argument '" << I->getName()
 | |
|                << "' in function '" << F->getName() << "'\n";
 | |
|         } else {
 | |
|           GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
 | |
|           std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
 | |
| 
 | |
|           Function::arg_iterator TheArg = I2;
 | |
|           for (ScalarizeTable::iterator It = ArgIndices.begin();
 | |
|                *It != Operands; ++It, ++TheArg) {
 | |
|             assert(It != ArgIndices.end() && "GEP not handled??");
 | |
|           }
 | |
| 
 | |
|           std::string NewName = I->getName();
 | |
|           for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | |
|             if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
 | |
|               NewName += "."+itostr((int64_t)CI->getZExtValue());
 | |
|             else
 | |
|               NewName += ".x";
 | |
|           TheArg->setName(NewName+".val");
 | |
| 
 | |
|           DOUT << "*** Promoted agg argument '" << TheArg->getName()
 | |
|                << "' of function '" << F->getName() << "'\n";
 | |
| 
 | |
|           // All of the uses must be load instructions.  Replace them all with
 | |
|           // the argument specified by ArgNo.
 | |
|           while (!GEP->use_empty()) {
 | |
|             LoadInst *L = cast<LoadInst>(GEP->use_back());
 | |
|             L->replaceAllUsesWith(TheArg);
 | |
|             AA.replaceWithNewValue(L, TheArg);
 | |
|             L->getParent()->getInstList().erase(L);
 | |
|           }
 | |
|           AA.deleteValue(GEP);
 | |
|           GEP->getParent()->getInstList().erase(GEP);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Increment I2 past all of the arguments added for this promoted pointer.
 | |
|       for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
 | |
|         ++I2;
 | |
|     }
 | |
| 
 | |
|   // Notify the alias analysis implementation that we inserted a new argument.
 | |
|   if (ExtraArgHack)
 | |
|     AA.copyValue(Constant::getNullValue(Type::Int32Ty), NF->arg_begin());
 | |
| 
 | |
| 
 | |
|   // Tell the alias analysis that the old function is about to disappear.
 | |
|   AA.replaceWithNewValue(F, NF);
 | |
| 
 | |
|   // Now that the old function is dead, delete it.
 | |
|   F->getParent()->getFunctionList().erase(F);
 | |
|   return NF;
 | |
| }
 |