mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	why. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31743 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3950 lines
		
	
	
		
			155 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3950 lines
		
	
	
		
			155 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by Chris Lattner and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tablegen backend emits a DAG instruction selector.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "DAGISelEmitter.h"
 | |
| #include "Record.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helpers for working with extended types.
 | |
| 
 | |
| /// FilterVTs - Filter a list of VT's according to a predicate.
 | |
| ///
 | |
| template<typename T>
 | |
| static std::vector<MVT::ValueType> 
 | |
| FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
 | |
|   std::vector<MVT::ValueType> Result;
 | |
|   for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | |
|     if (Filter(InVTs[i]))
 | |
|       Result.push_back(InVTs[i]);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static std::vector<unsigned char> 
 | |
| FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
 | |
|   std::vector<unsigned char> Result;
 | |
|   for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | |
|     if (Filter((MVT::ValueType)InVTs[i]))
 | |
|       Result.push_back(InVTs[i]);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static std::vector<unsigned char>
 | |
| ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
 | |
|   std::vector<unsigned char> Result;
 | |
|   for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
 | |
|       Result.push_back(InVTs[i]);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
 | |
|                              const std::vector<unsigned char> &RHS) {
 | |
|   if (LHS.size() > RHS.size()) return false;
 | |
|   for (unsigned i = 0, e = LHS.size(); i != e; ++i)
 | |
|     if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isExtIntegerVT - Return true if the specified extended value type vector
 | |
| /// contains isInt or an integer value type.
 | |
| static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
 | |
|   assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
 | |
|   return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
 | |
| }
 | |
| 
 | |
| /// isExtFloatingPointVT - Return true if the specified extended value type 
 | |
| /// vector contains isFP or a FP value type.
 | |
| static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
 | |
|   assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
 | |
|   return EVTs[0] == MVT::isFP ||
 | |
|          !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDTypeConstraint implementation
 | |
| //
 | |
| 
 | |
| SDTypeConstraint::SDTypeConstraint(Record *R) {
 | |
|   OperandNo = R->getValueAsInt("OperandNum");
 | |
|   
 | |
|   if (R->isSubClassOf("SDTCisVT")) {
 | |
|     ConstraintType = SDTCisVT;
 | |
|     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
 | |
|   } else if (R->isSubClassOf("SDTCisPtrTy")) {
 | |
|     ConstraintType = SDTCisPtrTy;
 | |
|   } else if (R->isSubClassOf("SDTCisInt")) {
 | |
|     ConstraintType = SDTCisInt;
 | |
|   } else if (R->isSubClassOf("SDTCisFP")) {
 | |
|     ConstraintType = SDTCisFP;
 | |
|   } else if (R->isSubClassOf("SDTCisSameAs")) {
 | |
|     ConstraintType = SDTCisSameAs;
 | |
|     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisVTSmallerThanOp;
 | |
|     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 
 | |
|       R->getValueAsInt("OtherOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
 | |
|     ConstraintType = SDTCisOpSmallerThanOp;
 | |
|     x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 
 | |
|       R->getValueAsInt("BigOperandNum");
 | |
|   } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
 | |
|     ConstraintType = SDTCisIntVectorOfSameSize;
 | |
|     x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
 | |
|       R->getValueAsInt("OtherOpNum");
 | |
|   } else {
 | |
|     std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
 | |
|     exit(1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getOperandNum - Return the node corresponding to operand #OpNo in tree
 | |
| /// N, which has NumResults results.
 | |
| TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
 | |
|                                                  TreePatternNode *N,
 | |
|                                                  unsigned NumResults) const {
 | |
|   assert(NumResults <= 1 &&
 | |
|          "We only work with nodes with zero or one result so far!");
 | |
|   
 | |
|   if (OpNo >= (NumResults + N->getNumChildren())) {
 | |
|     std::cerr << "Invalid operand number " << OpNo << " ";
 | |
|     N->dump();
 | |
|     std::cerr << '\n';
 | |
|     exit(1);
 | |
|   }
 | |
| 
 | |
|   if (OpNo < NumResults)
 | |
|     return N;  // FIXME: need value #
 | |
|   else
 | |
|     return N->getChild(OpNo-NumResults);
 | |
| }
 | |
| 
 | |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | |
| /// constraint to the nodes operands.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, throw an
 | |
| /// exception.
 | |
| bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
 | |
|                                            const SDNodeInfo &NodeInfo,
 | |
|                                            TreePattern &TP) const {
 | |
|   unsigned NumResults = NodeInfo.getNumResults();
 | |
|   assert(NumResults <= 1 &&
 | |
|          "We only work with nodes with zero or one result so far!");
 | |
|   
 | |
|   // Check that the number of operands is sane.  Negative operands -> varargs.
 | |
|   if (NodeInfo.getNumOperands() >= 0) {
 | |
|     if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
 | |
|       TP.error(N->getOperator()->getName() + " node requires exactly " +
 | |
|                itostr(NodeInfo.getNumOperands()) + " operands!");
 | |
|   }
 | |
| 
 | |
|   const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
 | |
|   
 | |
|   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
 | |
|   
 | |
|   switch (ConstraintType) {
 | |
|   default: assert(0 && "Unknown constraint type!");
 | |
|   case SDTCisVT:
 | |
|     // Operand must be a particular type.
 | |
|     return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
 | |
|   case SDTCisPtrTy: {
 | |
|     // Operand must be same as target pointer type.
 | |
|     return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
 | |
|   }
 | |
|   case SDTCisInt: {
 | |
|     // If there is only one integer type supported, this must be it.
 | |
|     std::vector<MVT::ValueType> IntVTs =
 | |
|       FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
 | |
| 
 | |
|     // If we found exactly one supported integer type, apply it.
 | |
|     if (IntVTs.size() == 1)
 | |
|       return NodeToApply->UpdateNodeType(IntVTs[0], TP);
 | |
|     return NodeToApply->UpdateNodeType(MVT::isInt, TP);
 | |
|   }
 | |
|   case SDTCisFP: {
 | |
|     // If there is only one FP type supported, this must be it.
 | |
|     std::vector<MVT::ValueType> FPVTs =
 | |
|       FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
 | |
|         
 | |
|     // If we found exactly one supported FP type, apply it.
 | |
|     if (FPVTs.size() == 1)
 | |
|       return NodeToApply->UpdateNodeType(FPVTs[0], TP);
 | |
|     return NodeToApply->UpdateNodeType(MVT::isFP, TP);
 | |
|   }
 | |
|   case SDTCisSameAs: {
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
 | |
|     return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
 | |
|            OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
 | |
|   }
 | |
|   case SDTCisVTSmallerThanOp: {
 | |
|     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
 | |
|     // have an integer type that is smaller than the VT.
 | |
|     if (!NodeToApply->isLeaf() ||
 | |
|         !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
 | |
|         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
 | |
|                ->isSubClassOf("ValueType"))
 | |
|       TP.error(N->getOperator()->getName() + " expects a VT operand!");
 | |
|     MVT::ValueType VT =
 | |
|      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
 | |
|     if (!MVT::isInteger(VT))
 | |
|       TP.error(N->getOperator()->getName() + " VT operand must be integer!");
 | |
|     
 | |
|     TreePatternNode *OtherNode =
 | |
|       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
 | |
|     
 | |
|     // It must be integer.
 | |
|     bool MadeChange = false;
 | |
|     MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
 | |
|     
 | |
|     // This code only handles nodes that have one type set.  Assert here so
 | |
|     // that we can change this if we ever need to deal with multiple value
 | |
|     // types at this point.
 | |
|     assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
 | |
|     if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
 | |
|       OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error.
 | |
|     return false;
 | |
|   }
 | |
|   case SDTCisOpSmallerThanOp: {
 | |
|     TreePatternNode *BigOperand =
 | |
|       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
 | |
| 
 | |
|     // Both operands must be integer or FP, but we don't care which.
 | |
|     bool MadeChange = false;
 | |
|     
 | |
|     // This code does not currently handle nodes which have multiple types,
 | |
|     // where some types are integer, and some are fp.  Assert that this is not
 | |
|     // the case.
 | |
|     assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
 | |
|              isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
 | |
|            !(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
 | |
|              isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
 | |
|            "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
 | |
|     if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
 | |
|       MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
 | |
|     else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
 | |
|       MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
 | |
|     if (isExtIntegerInVTs(BigOperand->getExtTypes()))
 | |
|       MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
 | |
|     else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
 | |
|       MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
 | |
| 
 | |
|     std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
 | |
|     
 | |
|     if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
 | |
|       VTs = FilterVTs(VTs, MVT::isInteger);
 | |
|     } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
 | |
|       VTs = FilterVTs(VTs, MVT::isFloatingPoint);
 | |
|     } else {
 | |
|       VTs.clear();
 | |
|     }
 | |
| 
 | |
|     switch (VTs.size()) {
 | |
|     default:         // Too many VT's to pick from.
 | |
|     case 0: break;   // No info yet.
 | |
|     case 1: 
 | |
|       // Only one VT of this flavor.  Cannot ever satisify the constraints.
 | |
|       return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw
 | |
|     case 2:
 | |
|       // If we have exactly two possible types, the little operand must be the
 | |
|       // small one, the big operand should be the big one.  Common with 
 | |
|       // float/double for example.
 | |
|       assert(VTs[0] < VTs[1] && "Should be sorted!");
 | |
|       MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
 | |
|       MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
 | |
|       break;
 | |
|     }    
 | |
|     return MadeChange;
 | |
|   }
 | |
|   case SDTCisIntVectorOfSameSize: {
 | |
|     TreePatternNode *OtherOperand =
 | |
|       getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
 | |
|                     N, NumResults);
 | |
|     if (OtherOperand->hasTypeSet()) {
 | |
|       if (!MVT::isVector(OtherOperand->getTypeNum(0)))
 | |
|         TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
 | |
|       MVT::ValueType IVT = OtherOperand->getTypeNum(0);
 | |
|       IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
 | |
|       return NodeToApply->UpdateNodeType(IVT, TP);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   }  
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SDNodeInfo implementation
 | |
| //
 | |
| SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
 | |
|   EnumName    = R->getValueAsString("Opcode");
 | |
|   SDClassName = R->getValueAsString("SDClass");
 | |
|   Record *TypeProfile = R->getValueAsDef("TypeProfile");
 | |
|   NumResults = TypeProfile->getValueAsInt("NumResults");
 | |
|   NumOperands = TypeProfile->getValueAsInt("NumOperands");
 | |
|   
 | |
|   // Parse the properties.
 | |
|   Properties = 0;
 | |
|   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
 | |
|   for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
 | |
|     if (PropList[i]->getName() == "SDNPCommutative") {
 | |
|       Properties |= 1 << SDNPCommutative;
 | |
|     } else if (PropList[i]->getName() == "SDNPAssociative") {
 | |
|       Properties |= 1 << SDNPAssociative;
 | |
|     } else if (PropList[i]->getName() == "SDNPHasChain") {
 | |
|       Properties |= 1 << SDNPHasChain;
 | |
|     } else if (PropList[i]->getName() == "SDNPOutFlag") {
 | |
|       Properties |= 1 << SDNPOutFlag;
 | |
|     } else if (PropList[i]->getName() == "SDNPInFlag") {
 | |
|       Properties |= 1 << SDNPInFlag;
 | |
|     } else if (PropList[i]->getName() == "SDNPOptInFlag") {
 | |
|       Properties |= 1 << SDNPOptInFlag;
 | |
|     } else {
 | |
|       std::cerr << "Unknown SD Node property '" << PropList[i]->getName()
 | |
|                 << "' on node '" << R->getName() << "'!\n";
 | |
|       exit(1);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Parse the type constraints.
 | |
|   std::vector<Record*> ConstraintList =
 | |
|     TypeProfile->getValueAsListOfDefs("Constraints");
 | |
|   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePatternNode implementation
 | |
| //
 | |
| 
 | |
| TreePatternNode::~TreePatternNode() {
 | |
| #if 0 // FIXME: implement refcounted tree nodes!
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     delete getChild(i);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// UpdateNodeType - Set the node type of N to VT if VT contains
 | |
| /// information.  If N already contains a conflicting type, then throw an
 | |
| /// exception.  This returns true if any information was updated.
 | |
| ///
 | |
| bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
 | |
|                                      TreePattern &TP) {
 | |
|   assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
 | |
|   
 | |
|   if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) 
 | |
|     return false;
 | |
|   if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
 | |
|     setTypes(ExtVTs);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (getExtTypeNum(0) == MVT::iPTR) {
 | |
|     if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
 | |
|       return false;
 | |
|     if (isExtIntegerInVTs(ExtVTs)) {
 | |
|       std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
 | |
|       if (FVTs.size()) {
 | |
|         setTypes(ExtVTs);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
 | |
|     assert(hasTypeSet() && "should be handled above!");
 | |
|     std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
 | |
|     if (getExtTypes() == FVTs)
 | |
|       return false;
 | |
|     setTypes(FVTs);
 | |
|     return true;
 | |
|   }
 | |
|   if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
 | |
|     //assert(hasTypeSet() && "should be handled above!");
 | |
|     std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
 | |
|     if (getExtTypes() == FVTs)
 | |
|       return false;
 | |
|     if (FVTs.size()) {
 | |
|       setTypes(FVTs);
 | |
|       return true;
 | |
|     }
 | |
|   }      
 | |
|   if (ExtVTs[0] == MVT::isFP  && isExtFloatingPointInVTs(getExtTypes())) {
 | |
|     assert(hasTypeSet() && "should be handled above!");
 | |
|     std::vector<unsigned char> FVTs =
 | |
|       FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
 | |
|     if (getExtTypes() == FVTs)
 | |
|       return false;
 | |
|     setTypes(FVTs);
 | |
|     return true;
 | |
|   }
 | |
|       
 | |
|   // If we know this is an int or fp type, and we are told it is a specific one,
 | |
|   // take the advice.
 | |
|   //
 | |
|   // Similarly, we should probably set the type here to the intersection of
 | |
|   // {isInt|isFP} and ExtVTs
 | |
|   if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
 | |
|       (getExtTypeNum(0) == MVT::isFP  && isExtFloatingPointInVTs(ExtVTs))) {
 | |
|     setTypes(ExtVTs);
 | |
|     return true;
 | |
|   }
 | |
|   if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
 | |
|     setTypes(ExtVTs);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (isLeaf()) {
 | |
|     dump();
 | |
|     std::cerr << " ";
 | |
|     TP.error("Type inference contradiction found in node!");
 | |
|   } else {
 | |
|     TP.error("Type inference contradiction found in node " + 
 | |
|              getOperator()->getName() + "!");
 | |
|   }
 | |
|   return true; // unreachable
 | |
| }
 | |
| 
 | |
| 
 | |
| void TreePatternNode::print(std::ostream &OS) const {
 | |
|   if (isLeaf()) {
 | |
|     OS << *getLeafValue();
 | |
|   } else {
 | |
|     OS << "(" << getOperator()->getName();
 | |
|   }
 | |
|   
 | |
|   // FIXME: At some point we should handle printing all the value types for 
 | |
|   // nodes that are multiply typed.
 | |
|   switch (getExtTypeNum(0)) {
 | |
|   case MVT::Other: OS << ":Other"; break;
 | |
|   case MVT::isInt: OS << ":isInt"; break;
 | |
|   case MVT::isFP : OS << ":isFP"; break;
 | |
|   case MVT::isUnknown: ; /*OS << ":?";*/ break;
 | |
|   case MVT::iPTR:  OS << ":iPTR"; break;
 | |
|   default: {
 | |
|     std::string VTName = llvm::getName(getTypeNum(0));
 | |
|     // Strip off MVT:: prefix if present.
 | |
|     if (VTName.substr(0,5) == "MVT::")
 | |
|       VTName = VTName.substr(5);
 | |
|     OS << ":" << VTName;
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (!isLeaf()) {
 | |
|     if (getNumChildren() != 0) {
 | |
|       OS << " ";
 | |
|       getChild(0)->print(OS);
 | |
|       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
 | |
|         OS << ", ";
 | |
|         getChild(i)->print(OS);
 | |
|       }
 | |
|     }
 | |
|     OS << ")";
 | |
|   }
 | |
|   
 | |
|   if (!PredicateFn.empty())
 | |
|     OS << "<<P:" << PredicateFn << ">>";
 | |
|   if (TransformFn)
 | |
|     OS << "<<X:" << TransformFn->getName() << ">>";
 | |
|   if (!getName().empty())
 | |
|     OS << ":$" << getName();
 | |
| 
 | |
| }
 | |
| void TreePatternNode::dump() const {
 | |
|   print(std::cerr);
 | |
| }
 | |
| 
 | |
| /// isIsomorphicTo - Return true if this node is recursively isomorphic to
 | |
| /// the specified node.  For this comparison, all of the state of the node
 | |
| /// is considered, except for the assigned name.  Nodes with differing names
 | |
| /// that are otherwise identical are considered isomorphic.
 | |
| bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
 | |
|   if (N == this) return true;
 | |
|   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
 | |
|       getPredicateFn() != N->getPredicateFn() ||
 | |
|       getTransformFn() != N->getTransformFn())
 | |
|     return false;
 | |
| 
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
 | |
|       if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
 | |
|         return DI->getDef() == NDI->getDef();
 | |
|     return getLeafValue() == N->getLeafValue();
 | |
|   }
 | |
|   
 | |
|   if (N->getOperator() != getOperator() ||
 | |
|       N->getNumChildren() != getNumChildren()) return false;
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// clone - Make a copy of this tree and all of its children.
 | |
| ///
 | |
| TreePatternNode *TreePatternNode::clone() const {
 | |
|   TreePatternNode *New;
 | |
|   if (isLeaf()) {
 | |
|     New = new TreePatternNode(getLeafValue());
 | |
|   } else {
 | |
|     std::vector<TreePatternNode*> CChildren;
 | |
|     CChildren.reserve(Children.size());
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       CChildren.push_back(getChild(i)->clone());
 | |
|     New = new TreePatternNode(getOperator(), CChildren);
 | |
|   }
 | |
|   New->setName(getName());
 | |
|   New->setTypes(getExtTypes());
 | |
|   New->setPredicateFn(getPredicateFn());
 | |
|   New->setTransformFn(getTransformFn());
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree
 | |
| /// with actual values specified by ArgMap.
 | |
| void TreePatternNode::
 | |
| SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
 | |
|   if (isLeaf()) return;
 | |
|   
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = getChild(i);
 | |
|     if (Child->isLeaf()) {
 | |
|       Init *Val = Child->getLeafValue();
 | |
|       if (dynamic_cast<DefInit*>(Val) &&
 | |
|           static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
 | |
|         // We found a use of a formal argument, replace it with its value.
 | |
|         Child = ArgMap[Child->getName()];
 | |
|         assert(Child && "Couldn't find formal argument!");
 | |
|         setChild(i, Child);
 | |
|       }
 | |
|     } else {
 | |
|       getChild(i)->SubstituteFormalArguments(ArgMap);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InlinePatternFragments - If this pattern refers to any pattern
 | |
| /// fragments, inline them into place, giving us a pattern without any
 | |
| /// PatFrag references.
 | |
| TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
 | |
|   if (isLeaf()) return this;  // nothing to do.
 | |
|   Record *Op = getOperator();
 | |
|   
 | |
|   if (!Op->isSubClassOf("PatFrag")) {
 | |
|     // Just recursively inline children nodes.
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       setChild(i, getChild(i)->InlinePatternFragments(TP));
 | |
|     return this;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we found a reference to a fragment.  First, look up its
 | |
|   // TreePattern record.
 | |
|   TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
 | |
|   
 | |
|   // Verify that we are passing the right number of operands.
 | |
|   if (Frag->getNumArgs() != Children.size())
 | |
|     TP.error("'" + Op->getName() + "' fragment requires " +
 | |
|              utostr(Frag->getNumArgs()) + " operands!");
 | |
| 
 | |
|   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
 | |
| 
 | |
|   // Resolve formal arguments to their actual value.
 | |
|   if (Frag->getNumArgs()) {
 | |
|     // Compute the map of formal to actual arguments.
 | |
|     std::map<std::string, TreePatternNode*> ArgMap;
 | |
|     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
 | |
|       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
 | |
|   
 | |
|     FragTree->SubstituteFormalArguments(ArgMap);
 | |
|   }
 | |
|   
 | |
|   FragTree->setName(getName());
 | |
|   FragTree->UpdateNodeType(getExtTypes(), TP);
 | |
|   
 | |
|   // Get a new copy of this fragment to stitch into here.
 | |
|   //delete this;    // FIXME: implement refcounting!
 | |
|   return FragTree;
 | |
| }
 | |
| 
 | |
| /// getImplicitType - Check to see if the specified record has an implicit
 | |
| /// type which should be applied to it.  This infer the type of register
 | |
| /// references from the register file information, for example.
 | |
| ///
 | |
| static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
 | |
|                                       TreePattern &TP) {
 | |
|   // Some common return values
 | |
|   std::vector<unsigned char> Unknown(1, MVT::isUnknown);
 | |
|   std::vector<unsigned char> Other(1, MVT::Other);
 | |
| 
 | |
|   // Check to see if this is a register or a register class...
 | |
|   if (R->isSubClassOf("RegisterClass")) {
 | |
|     if (NotRegisters) 
 | |
|       return Unknown;
 | |
|     const CodeGenRegisterClass &RC = 
 | |
|       TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
 | |
|     return ConvertVTs(RC.getValueTypes());
 | |
|   } else if (R->isSubClassOf("PatFrag")) {
 | |
|     // Pattern fragment types will be resolved when they are inlined.
 | |
|     return Unknown;
 | |
|   } else if (R->isSubClassOf("Register")) {
 | |
|     if (NotRegisters) 
 | |
|       return Unknown;
 | |
|     const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
 | |
|     return T.getRegisterVTs(R);
 | |
|   } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
 | |
|     // Using a VTSDNode or CondCodeSDNode.
 | |
|     return Other;
 | |
|   } else if (R->isSubClassOf("ComplexPattern")) {
 | |
|     if (NotRegisters) 
 | |
|       return Unknown;
 | |
|     std::vector<unsigned char>
 | |
|     ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
 | |
|     return ComplexPat;
 | |
|   } else if (R->getName() == "ptr_rc") {
 | |
|     Other[0] = MVT::iPTR;
 | |
|     return Other;
 | |
|   } else if (R->getName() == "node" || R->getName() == "srcvalue") {
 | |
|     // Placeholder.
 | |
|     return Unknown;
 | |
|   }
 | |
|   
 | |
|   TP.error("Unknown node flavor used in pattern: " + R->getName());
 | |
|   return Other;
 | |
| }
 | |
| 
 | |
| /// ApplyTypeConstraints - Apply all of the type constraints relevent to
 | |
| /// this node and its children in the tree.  This returns true if it makes a
 | |
| /// change, false otherwise.  If a type contradiction is found, throw an
 | |
| /// exception.
 | |
| bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
 | |
|   DAGISelEmitter &ISE = TP.getDAGISelEmitter();
 | |
|   if (isLeaf()) {
 | |
|     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
 | |
|       // If it's a regclass or something else known, include the type.
 | |
|       return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
 | |
|     } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
 | |
|       // Int inits are always integers. :)
 | |
|       bool MadeChange = UpdateNodeType(MVT::isInt, TP);
 | |
|       
 | |
|       if (hasTypeSet()) {
 | |
|         // At some point, it may make sense for this tree pattern to have
 | |
|         // multiple types.  Assert here that it does not, so we revisit this
 | |
|         // code when appropriate.
 | |
|         assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
 | |
|         MVT::ValueType VT = getTypeNum(0);
 | |
|         for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
 | |
|           assert(getTypeNum(i) == VT && "TreePattern has too many types!");
 | |
|         
 | |
|         VT = getTypeNum(0);
 | |
|         if (VT != MVT::iPTR) {
 | |
|           unsigned Size = MVT::getSizeInBits(VT);
 | |
|           // Make sure that the value is representable for this type.
 | |
|           if (Size < 32) {
 | |
|             int Val = (II->getValue() << (32-Size)) >> (32-Size);
 | |
|             if (Val != II->getValue())
 | |
|               TP.error("Sign-extended integer value '" + itostr(II->getValue())+
 | |
|                        "' is out of range for type '" + 
 | |
|                        getEnumName(getTypeNum(0)) + "'!");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       return MadeChange;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // special handling for set, which isn't really an SDNode.
 | |
|   if (getOperator()->getName() == "set") {
 | |
|     assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
 | |
|     bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     
 | |
|     // Types of operands must match.
 | |
|     MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
 | |
|     MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
 | |
|     MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | |
|     return MadeChange;
 | |
|   } else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
 | |
|              getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
 | |
|              getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
 | |
|     unsigned IID = 
 | |
|     dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
 | |
|     const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
 | |
|     bool MadeChange = false;
 | |
|     
 | |
|     // Apply the result type to the node.
 | |
|     MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
 | |
|     
 | |
|     if (getNumChildren() != Int.ArgVTs.size())
 | |
|       TP.error("Intrinsic '" + Int.Name + "' expects " +
 | |
|                utostr(Int.ArgVTs.size()-1) + " operands, not " +
 | |
|                utostr(getNumChildren()-1) + " operands!");
 | |
| 
 | |
|     // Apply type info to the intrinsic ID.
 | |
|     MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
 | |
|     
 | |
|     for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
 | |
|       MVT::ValueType OpVT = Int.ArgVTs[i];
 | |
|       MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     }
 | |
|     return MadeChange;
 | |
|   } else if (getOperator()->isSubClassOf("SDNode")) {
 | |
|     const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
 | |
|     
 | |
|     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
 | |
|     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     // Branch, etc. do not produce results and top-level forms in instr pattern
 | |
|     // must have void types.
 | |
|     if (NI.getNumResults() == 0)
 | |
|       MadeChange |= UpdateNodeType(MVT::isVoid, TP);
 | |
|     
 | |
|     // If this is a vector_shuffle operation, apply types to the build_vector
 | |
|     // operation.  The types of the integers don't matter, but this ensures they
 | |
|     // won't get checked.
 | |
|     if (getOperator()->getName() == "vector_shuffle" &&
 | |
|         getChild(2)->getOperator()->getName() == "build_vector") {
 | |
|       TreePatternNode *BV = getChild(2);
 | |
|       const std::vector<MVT::ValueType> &LegalVTs
 | |
|         = ISE.getTargetInfo().getLegalValueTypes();
 | |
|       MVT::ValueType LegalIntVT = MVT::Other;
 | |
|       for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
 | |
|         if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
 | |
|           LegalIntVT = LegalVTs[i];
 | |
|           break;
 | |
|         }
 | |
|       assert(LegalIntVT != MVT::Other && "No legal integer VT?");
 | |
|             
 | |
|       for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
 | |
|         MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
 | |
|     }
 | |
|     return MadeChange;  
 | |
|   } else if (getOperator()->isSubClassOf("Instruction")) {
 | |
|     const DAGInstruction &Inst = ISE.getInstruction(getOperator());
 | |
|     bool MadeChange = false;
 | |
|     unsigned NumResults = Inst.getNumResults();
 | |
|     
 | |
|     assert(NumResults <= 1 &&
 | |
|            "Only supports zero or one result instrs!");
 | |
| 
 | |
|     CodeGenInstruction &InstInfo =
 | |
|       ISE.getTargetInfo().getInstruction(getOperator()->getName());
 | |
|     // Apply the result type to the node
 | |
|     if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack.
 | |
|       MadeChange = UpdateNodeType(MVT::isVoid, TP);
 | |
|     } else {
 | |
|       Record *ResultNode = Inst.getResult(0);
 | |
|       
 | |
|       if (ResultNode->getName() == "ptr_rc") {
 | |
|         std::vector<unsigned char> VT;
 | |
|         VT.push_back(MVT::iPTR);
 | |
|         MadeChange = UpdateNodeType(VT, TP);
 | |
|       } else {
 | |
|         assert(ResultNode->isSubClassOf("RegisterClass") &&
 | |
|                "Operands should be register classes!");
 | |
| 
 | |
|         const CodeGenRegisterClass &RC = 
 | |
|           ISE.getTargetInfo().getRegisterClass(ResultNode);
 | |
|         MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     unsigned ChildNo = 0;
 | |
|     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
 | |
|       Record *OperandNode = Inst.getOperand(i);
 | |
|       
 | |
|       // If the instruction expects a predicate operand, we codegen this by
 | |
|       // setting the predicate to it's "execute always" value.
 | |
|       if (OperandNode->isSubClassOf("PredicateOperand"))
 | |
|         continue;
 | |
|        
 | |
|       // Verify that we didn't run out of provided operands.
 | |
|       if (ChildNo >= getNumChildren())
 | |
|         TP.error("Instruction '" + getOperator()->getName() +
 | |
|                  "' expects more operands than were provided.");
 | |
|       
 | |
|       MVT::ValueType VT;
 | |
|       TreePatternNode *Child = getChild(ChildNo++);
 | |
|       if (OperandNode->isSubClassOf("RegisterClass")) {
 | |
|         const CodeGenRegisterClass &RC = 
 | |
|           ISE.getTargetInfo().getRegisterClass(OperandNode);
 | |
|         MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
 | |
|       } else if (OperandNode->isSubClassOf("Operand")) {
 | |
|         VT = getValueType(OperandNode->getValueAsDef("Type"));
 | |
|         MadeChange |= Child->UpdateNodeType(VT, TP);
 | |
|       } else if (OperandNode->getName() == "ptr_rc") {
 | |
|         MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
 | |
|       } else {
 | |
|         assert(0 && "Unknown operand type!");
 | |
|         abort();
 | |
|       }
 | |
|       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
 | |
|     }
 | |
|     
 | |
|     if (ChildNo != getNumChildren())
 | |
|       TP.error("Instruction '" + getOperator()->getName() +
 | |
|                "' was provided too many operands!");
 | |
|     
 | |
|     return MadeChange;
 | |
|   } else {
 | |
|     assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
 | |
|     
 | |
|     // Node transforms always take one operand.
 | |
|     if (getNumChildren() != 1)
 | |
|       TP.error("Node transform '" + getOperator()->getName() +
 | |
|                "' requires one operand!");
 | |
| 
 | |
|     // If either the output or input of the xform does not have exact
 | |
|     // type info. We assume they must be the same. Otherwise, it is perfectly
 | |
|     // legal to transform from one type to a completely different type.
 | |
|     if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
 | |
|       bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
 | |
|       MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
 | |
|       return MadeChange;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
 | |
| /// RHS of a commutative operation, not the on LHS.
 | |
| static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
 | |
|   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
 | |
|     return true;
 | |
|   if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// canPatternMatch - If it is impossible for this pattern to match on this
 | |
| /// target, fill in Reason and return false.  Otherwise, return true.  This is
 | |
| /// used as a santity check for .td files (to prevent people from writing stuff
 | |
| /// that can never possibly work), and to prevent the pattern permuter from
 | |
| /// generating stuff that is useless.
 | |
| bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
 | |
|   if (isLeaf()) return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | |
|     if (!getChild(i)->canPatternMatch(Reason, ISE))
 | |
|       return false;
 | |
| 
 | |
|   // If this is an intrinsic, handle cases that would make it not match.  For
 | |
|   // example, if an operand is required to be an immediate.
 | |
|   if (getOperator()->isSubClassOf("Intrinsic")) {
 | |
|     // TODO:
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If this node is a commutative operator, check that the LHS isn't an
 | |
|   // immediate.
 | |
|   const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative)) {
 | |
|     // Scan all of the operands of the node and make sure that only the last one
 | |
|     // is a constant node, unless the RHS also is.
 | |
|     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
 | |
|       for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
 | |
|         if (OnlyOnRHSOfCommutative(getChild(i))) {
 | |
|           Reason="Immediate value must be on the RHS of commutative operators!";
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TreePattern implementation
 | |
| //
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | |
|                          DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
 | |
|    isInputPattern = isInput;
 | |
|    for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
 | |
|      Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | |
|                          DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
 | |
|   isInputPattern = isInput;
 | |
|   Trees.push_back(ParseTreePattern(Pat));
 | |
| }
 | |
| 
 | |
| TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
 | |
|                          DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
 | |
|   isInputPattern = isInput;
 | |
|   Trees.push_back(Pat);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void TreePattern::error(const std::string &Msg) const {
 | |
|   dump();
 | |
|   throw "In " + TheRecord->getName() + ": " + Msg;
 | |
| }
 | |
| 
 | |
| TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
 | |
|   DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
 | |
|   if (!OpDef) error("Pattern has unexpected operator type!");
 | |
|   Record *Operator = OpDef->getDef();
 | |
|   
 | |
|   if (Operator->isSubClassOf("ValueType")) {
 | |
|     // If the operator is a ValueType, then this must be "type cast" of a leaf
 | |
|     // node.
 | |
|     if (Dag->getNumArgs() != 1)
 | |
|       error("Type cast only takes one operand!");
 | |
|     
 | |
|     Init *Arg = Dag->getArg(0);
 | |
|     TreePatternNode *New;
 | |
|     if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
 | |
|       Record *R = DI->getDef();
 | |
|       if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
 | |
|         Dag->setArg(0, new DagInit(DI,
 | |
|                                 std::vector<std::pair<Init*, std::string> >()));
 | |
|         return ParseTreePattern(Dag);
 | |
|       }
 | |
|       New = new TreePatternNode(DI);
 | |
|     } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
 | |
|       New = ParseTreePattern(DI);
 | |
|     } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
 | |
|       New = new TreePatternNode(II);
 | |
|       if (!Dag->getArgName(0).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|     } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
 | |
|       // Turn this into an IntInit.
 | |
|       Init *II = BI->convertInitializerTo(new IntRecTy());
 | |
|       if (II == 0 || !dynamic_cast<IntInit*>(II))
 | |
|         error("Bits value must be constants!");
 | |
|       
 | |
|       New = new TreePatternNode(dynamic_cast<IntInit*>(II));
 | |
|       if (!Dag->getArgName(0).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|     } else {
 | |
|       Arg->dump();
 | |
|       error("Unknown leaf value for tree pattern!");
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // Apply the type cast.
 | |
|     New->UpdateNodeType(getValueType(Operator), *this);
 | |
|     New->setName(Dag->getArgName(0));
 | |
|     return New;
 | |
|   }
 | |
|   
 | |
|   // Verify that this is something that makes sense for an operator.
 | |
|   if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
 | |
|       !Operator->isSubClassOf("Instruction") && 
 | |
|       !Operator->isSubClassOf("SDNodeXForm") &&
 | |
|       !Operator->isSubClassOf("Intrinsic") &&
 | |
|       Operator->getName() != "set")
 | |
|     error("Unrecognized node '" + Operator->getName() + "'!");
 | |
|   
 | |
|   //  Check to see if this is something that is illegal in an input pattern.
 | |
|   if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
 | |
|                          Operator->isSubClassOf("SDNodeXForm")))
 | |
|     error("Cannot use '" + Operator->getName() + "' in an input pattern!");
 | |
|   
 | |
|   std::vector<TreePatternNode*> Children;
 | |
|   
 | |
|   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
 | |
|     Init *Arg = Dag->getArg(i);
 | |
|     if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
 | |
|       Children.push_back(ParseTreePattern(DI));
 | |
|       if (Children.back()->getName().empty())
 | |
|         Children.back()->setName(Dag->getArgName(i));
 | |
|     } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
 | |
|       Record *R = DefI->getDef();
 | |
|       // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
 | |
|       // TreePatternNode if its own.
 | |
|       if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
 | |
|         Dag->setArg(i, new DagInit(DefI,
 | |
|                               std::vector<std::pair<Init*, std::string> >()));
 | |
|         --i;  // Revisit this node...
 | |
|       } else {
 | |
|         TreePatternNode *Node = new TreePatternNode(DefI);
 | |
|         Node->setName(Dag->getArgName(i));
 | |
|         Children.push_back(Node);
 | |
|         
 | |
|         // Input argument?
 | |
|         if (R->getName() == "node") {
 | |
|           if (Dag->getArgName(i).empty())
 | |
|             error("'node' argument requires a name to match with operand list");
 | |
|           Args.push_back(Dag->getArgName(i));
 | |
|         }
 | |
|       }
 | |
|     } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
 | |
|       TreePatternNode *Node = new TreePatternNode(II);
 | |
|       if (!Dag->getArgName(i).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|       Children.push_back(Node);
 | |
|     } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
 | |
|       // Turn this into an IntInit.
 | |
|       Init *II = BI->convertInitializerTo(new IntRecTy());
 | |
|       if (II == 0 || !dynamic_cast<IntInit*>(II))
 | |
|         error("Bits value must be constants!");
 | |
|       
 | |
|       TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
 | |
|       if (!Dag->getArgName(i).empty())
 | |
|         error("Constant int argument should not have a name!");
 | |
|       Children.push_back(Node);
 | |
|     } else {
 | |
|       std::cerr << '"';
 | |
|       Arg->dump();
 | |
|       std::cerr << "\": ";
 | |
|       error("Unknown leaf value for tree pattern!");
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If the operator is an intrinsic, then this is just syntactic sugar for for
 | |
|   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and 
 | |
|   // convert the intrinsic name to a number.
 | |
|   if (Operator->isSubClassOf("Intrinsic")) {
 | |
|     const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
 | |
|     unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
 | |
| 
 | |
|     // If this intrinsic returns void, it must have side-effects and thus a
 | |
|     // chain.
 | |
|     if (Int.ArgVTs[0] == MVT::isVoid) {
 | |
|       Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
 | |
|     } else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
 | |
|       // Has side-effects, requires chain.
 | |
|       Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
 | |
|     } else {
 | |
|       // Otherwise, no chain.
 | |
|       Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
 | |
|     }
 | |
|     
 | |
|     TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
 | |
|     Children.insert(Children.begin(), IIDNode);
 | |
|   }
 | |
|   
 | |
|   return new TreePatternNode(Operator, Children);
 | |
| }
 | |
| 
 | |
| /// InferAllTypes - Infer/propagate as many types throughout the expression
 | |
| /// patterns as possible.  Return true if all types are infered, false
 | |
| /// otherwise.  Throw an exception if a type contradiction is found.
 | |
| bool TreePattern::InferAllTypes() {
 | |
|   bool MadeChange = true;
 | |
|   while (MadeChange) {
 | |
|     MadeChange = false;
 | |
|     for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | |
|       MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
 | |
|   }
 | |
|   
 | |
|   bool HasUnresolvedTypes = false;
 | |
|   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
 | |
|     HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
 | |
|   return !HasUnresolvedTypes;
 | |
| }
 | |
| 
 | |
| void TreePattern::print(std::ostream &OS) const {
 | |
|   OS << getRecord()->getName();
 | |
|   if (!Args.empty()) {
 | |
|     OS << "(" << Args[0];
 | |
|     for (unsigned i = 1, e = Args.size(); i != e; ++i)
 | |
|       OS << ", " << Args[i];
 | |
|     OS << ")";
 | |
|   }
 | |
|   OS << ": ";
 | |
|   
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "[\n";
 | |
|   for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
 | |
|     OS << "\t";
 | |
|     Trees[i]->print(OS);
 | |
|     OS << "\n";
 | |
|   }
 | |
| 
 | |
|   if (Trees.size() > 1)
 | |
|     OS << "]\n";
 | |
| }
 | |
| 
 | |
| void TreePattern::dump() const { print(std::cerr); }
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DAGISelEmitter implementation
 | |
| //
 | |
| 
 | |
| // Parse all of the SDNode definitions for the target, populating SDNodes.
 | |
| void DAGISelEmitter::ParseNodeInfo() {
 | |
|   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
 | |
|   while (!Nodes.empty()) {
 | |
|     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
 | |
|     Nodes.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Get the buildin intrinsic nodes.
 | |
|   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
 | |
|   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
 | |
|   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
 | |
| }
 | |
| 
 | |
| /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
 | |
| /// map, and emit them to the file as functions.
 | |
| void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
 | |
|   OS << "\n// Node transformations.\n";
 | |
|   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
 | |
|   while (!Xforms.empty()) {
 | |
|     Record *XFormNode = Xforms.back();
 | |
|     Record *SDNode = XFormNode->getValueAsDef("Opcode");
 | |
|     std::string Code = XFormNode->getValueAsCode("XFormFunction");
 | |
|     SDNodeXForms.insert(std::make_pair(XFormNode,
 | |
|                                        std::make_pair(SDNode, Code)));
 | |
| 
 | |
|     if (!Code.empty()) {
 | |
|       std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
 | |
|       const char *C2 = ClassName == "SDNode" ? "N" : "inN";
 | |
| 
 | |
|       OS << "inline SDOperand Transform_" << XFormNode->getName()
 | |
|          << "(SDNode *" << C2 << ") {\n";
 | |
|       if (ClassName != "SDNode")
 | |
|         OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
 | |
|       OS << Code << "\n}\n";
 | |
|     }
 | |
| 
 | |
|     Xforms.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DAGISelEmitter::ParseComplexPatterns() {
 | |
|   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
 | |
|   while (!AMs.empty()) {
 | |
|     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
 | |
|     AMs.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
 | |
| /// file, building up the PatternFragments map.  After we've collected them all,
 | |
| /// inline fragments together as necessary, so that there are no references left
 | |
| /// inside a pattern fragment to a pattern fragment.
 | |
| ///
 | |
| /// This also emits all of the predicate functions to the output file.
 | |
| ///
 | |
| void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
 | |
|   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
 | |
|   
 | |
|   // First step, parse all of the fragments and emit predicate functions.
 | |
|   OS << "\n// Predicate functions.\n";
 | |
|   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
 | |
|     DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
 | |
|     TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
 | |
|     PatternFragments[Fragments[i]] = P;
 | |
|     
 | |
|     // Validate the argument list, converting it to map, to discard duplicates.
 | |
|     std::vector<std::string> &Args = P->getArgList();
 | |
|     std::set<std::string> OperandsMap(Args.begin(), Args.end());
 | |
|     
 | |
|     if (OperandsMap.count(""))
 | |
|       P->error("Cannot have unnamed 'node' values in pattern fragment!");
 | |
|     
 | |
|     // Parse the operands list.
 | |
|     DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
 | |
|     DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
 | |
|     if (!OpsOp || OpsOp->getDef()->getName() != "ops")
 | |
|       P->error("Operands list should start with '(ops ... '!");
 | |
|     
 | |
|     // Copy over the arguments.       
 | |
|     Args.clear();
 | |
|     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
 | |
|       if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
 | |
|           static_cast<DefInit*>(OpsList->getArg(j))->
 | |
|           getDef()->getName() != "node")
 | |
|         P->error("Operands list should all be 'node' values.");
 | |
|       if (OpsList->getArgName(j).empty())
 | |
|         P->error("Operands list should have names for each operand!");
 | |
|       if (!OperandsMap.count(OpsList->getArgName(j)))
 | |
|         P->error("'" + OpsList->getArgName(j) +
 | |
|                  "' does not occur in pattern or was multiply specified!");
 | |
|       OperandsMap.erase(OpsList->getArgName(j));
 | |
|       Args.push_back(OpsList->getArgName(j));
 | |
|     }
 | |
|     
 | |
|     if (!OperandsMap.empty())
 | |
|       P->error("Operands list does not contain an entry for operand '" +
 | |
|                *OperandsMap.begin() + "'!");
 | |
| 
 | |
|     // If there is a code init for this fragment, emit the predicate code and
 | |
|     // keep track of the fact that this fragment uses it.
 | |
|     std::string Code = Fragments[i]->getValueAsCode("Predicate");
 | |
|     if (!Code.empty()) {
 | |
|       if (P->getOnlyTree()->isLeaf())
 | |
|         OS << "inline bool Predicate_" << Fragments[i]->getName()
 | |
|            << "(SDNode *N) {\n";
 | |
|       else {
 | |
|         std::string ClassName =
 | |
|           getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
 | |
|         const char *C2 = ClassName == "SDNode" ? "N" : "inN";
 | |
|       
 | |
|         OS << "inline bool Predicate_" << Fragments[i]->getName()
 | |
|            << "(SDNode *" << C2 << ") {\n";
 | |
|         if (ClassName != "SDNode")
 | |
|           OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
 | |
|       }
 | |
|       OS << Code << "\n}\n";
 | |
|       P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
 | |
|     }
 | |
|     
 | |
|     // If there is a node transformation corresponding to this, keep track of
 | |
|     // it.
 | |
|     Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
 | |
|     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
 | |
|       P->getOnlyTree()->setTransformFn(Transform);
 | |
|   }
 | |
|   
 | |
|   OS << "\n\n";
 | |
| 
 | |
|   // Now that we've parsed all of the tree fragments, do a closure on them so
 | |
|   // that there are not references to PatFrags left inside of them.
 | |
|   for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
 | |
|        E = PatternFragments.end(); I != E; ++I) {
 | |
|     TreePattern *ThePat = I->second;
 | |
|     ThePat->InlinePatternFragments();
 | |
|         
 | |
|     // Infer as many types as possible.  Don't worry about it if we don't infer
 | |
|     // all of them, some may depend on the inputs of the pattern.
 | |
|     try {
 | |
|       ThePat->InferAllTypes();
 | |
|     } catch (...) {
 | |
|       // If this pattern fragment is not supported by this target (no types can
 | |
|       // satisfy its constraints), just ignore it.  If the bogus pattern is
 | |
|       // actually used by instructions, the type consistency error will be
 | |
|       // reported there.
 | |
|     }
 | |
|     
 | |
|     // If debugging, print out the pattern fragment result.
 | |
|     DEBUG(ThePat->dump());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DAGISelEmitter::ParsePredicateOperands() {
 | |
|   std::vector<Record*> PredOps =
 | |
|     Records.getAllDerivedDefinitions("PredicateOperand");
 | |
| 
 | |
|   // Find some SDNode.
 | |
|   assert(!SDNodes.empty() && "No SDNodes parsed?");
 | |
|   Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
 | |
|   
 | |
|   for (unsigned i = 0, e = PredOps.size(); i != e; ++i) {
 | |
|     DagInit *AlwaysInfo = PredOps[i]->getValueAsDag("ExecuteAlways");
 | |
|     
 | |
|     // Clone the AlwaysInfo dag node, changing the operator from 'ops' to
 | |
|     // SomeSDnode so that we can parse this.
 | |
|     std::vector<std::pair<Init*, std::string> > Ops;
 | |
|     for (unsigned op = 0, e = AlwaysInfo->getNumArgs(); op != e; ++op)
 | |
|       Ops.push_back(std::make_pair(AlwaysInfo->getArg(op),
 | |
|                                    AlwaysInfo->getArgName(op)));
 | |
|     DagInit *DI = new DagInit(SomeSDNode, Ops);
 | |
|     
 | |
|     // Create a TreePattern to parse this.
 | |
|     TreePattern P(PredOps[i], DI, false, *this);
 | |
|     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
 | |
| 
 | |
|     // Copy the operands over into a DAGPredicateOperand.
 | |
|     DAGPredicateOperand PredOpInfo;
 | |
|     
 | |
|     TreePatternNode *T = P.getTree(0);
 | |
|     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
 | |
|       TreePatternNode *TPN = T->getChild(op);
 | |
|       while (TPN->ApplyTypeConstraints(P, false))
 | |
|         /* Resolve all types */;
 | |
|       
 | |
|       if (TPN->ContainsUnresolvedType())
 | |
|         throw "Value #" + utostr(i) + " of PredicateOperand '" +
 | |
|               PredOps[i]->getName() + "' doesn't have a concrete type!";
 | |
|       
 | |
|       PredOpInfo.AlwaysOps.push_back(TPN);
 | |
|     }
 | |
| 
 | |
|     // Insert it into the PredicateOperands map so we can find it later.
 | |
|     PredicateOperands[PredOps[i]] = PredOpInfo;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
 | |
| /// instruction input.  Return true if this is a real use.
 | |
| static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
 | |
|                       std::map<std::string, TreePatternNode*> &InstInputs,
 | |
|                       std::vector<Record*> &InstImpInputs) {
 | |
|   // No name -> not interesting.
 | |
|   if (Pat->getName().empty()) {
 | |
|     if (Pat->isLeaf()) {
 | |
|       DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
 | |
|       if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
 | |
|         I->error("Input " + DI->getDef()->getName() + " must be named!");
 | |
|       else if (DI && DI->getDef()->isSubClassOf("Register")) 
 | |
|         InstImpInputs.push_back(DI->getDef());
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   Record *Rec;
 | |
|   if (Pat->isLeaf()) {
 | |
|     DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
 | |
|     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
 | |
|     Rec = DI->getDef();
 | |
|   } else {
 | |
|     assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
 | |
|     Rec = Pat->getOperator();
 | |
|   }
 | |
| 
 | |
|   // SRCVALUE nodes are ignored.
 | |
|   if (Rec->getName() == "srcvalue")
 | |
|     return false;
 | |
| 
 | |
|   TreePatternNode *&Slot = InstInputs[Pat->getName()];
 | |
|   if (!Slot) {
 | |
|     Slot = Pat;
 | |
|   } else {
 | |
|     Record *SlotRec;
 | |
|     if (Slot->isLeaf()) {
 | |
|       SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
 | |
|     } else {
 | |
|       assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
 | |
|       SlotRec = Slot->getOperator();
 | |
|     }
 | |
|     
 | |
|     // Ensure that the inputs agree if we've already seen this input.
 | |
|     if (Rec != SlotRec)
 | |
|       I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|     if (Slot->getExtTypes() != Pat->getExtTypes())
 | |
|       I->error("All $" + Pat->getName() + " inputs must agree with each other");
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
 | |
| /// part of "I", the instruction), computing the set of inputs and outputs of
 | |
| /// the pattern.  Report errors if we see anything naughty.
 | |
| void DAGISelEmitter::
 | |
| FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
 | |
|                             std::map<std::string, TreePatternNode*> &InstInputs,
 | |
|                             std::map<std::string, TreePatternNode*>&InstResults,
 | |
|                             std::vector<Record*> &InstImpInputs,
 | |
|                             std::vector<Record*> &InstImpResults) {
 | |
|   if (Pat->isLeaf()) {
 | |
|     bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I->error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   } else if (Pat->getOperator()->getName() != "set") {
 | |
|     // If this is not a set, verify that the children nodes are not void typed,
 | |
|     // and recurse.
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | |
|       if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
 | |
|         I->error("Cannot have void nodes inside of patterns!");
 | |
|       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
 | |
|                                   InstImpInputs, InstImpResults);
 | |
|     }
 | |
|     
 | |
|     // If this is a non-leaf node with no children, treat it basically as if
 | |
|     // it were a leaf.  This handles nodes like (imm).
 | |
|     bool isUse = false;
 | |
|     if (Pat->getNumChildren() == 0)
 | |
|       isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
 | |
|     
 | |
|     if (!isUse && Pat->getTransformFn())
 | |
|       I->error("Cannot specify a transform function for a non-input value!");
 | |
|     return;
 | |
|   } 
 | |
|   
 | |
|   // Otherwise, this is a set, validate and collect instruction results.
 | |
|   if (Pat->getNumChildren() == 0)
 | |
|     I->error("set requires operands!");
 | |
|   else if (Pat->getNumChildren() & 1)
 | |
|     I->error("set requires an even number of operands");
 | |
|   
 | |
|   if (Pat->getTransformFn())
 | |
|     I->error("Cannot specify a transform function on a set node!");
 | |
|   
 | |
|   // Check the set destinations.
 | |
|   unsigned NumValues = Pat->getNumChildren()/2;
 | |
|   for (unsigned i = 0; i != NumValues; ++i) {
 | |
|     TreePatternNode *Dest = Pat->getChild(i);
 | |
|     if (!Dest->isLeaf())
 | |
|       I->error("set destination should be a register!");
 | |
|     
 | |
|     DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
 | |
|     if (!Val)
 | |
|       I->error("set destination should be a register!");
 | |
| 
 | |
|     if (Val->getDef()->isSubClassOf("RegisterClass") ||
 | |
|         Val->getDef()->getName() == "ptr_rc") {
 | |
|       if (Dest->getName().empty())
 | |
|         I->error("set destination must have a name!");
 | |
|       if (InstResults.count(Dest->getName()))
 | |
|         I->error("cannot set '" + Dest->getName() +"' multiple times");
 | |
|       InstResults[Dest->getName()] = Dest;
 | |
|     } else if (Val->getDef()->isSubClassOf("Register")) {
 | |
|       InstImpResults.push_back(Val->getDef());
 | |
|     } else {
 | |
|       I->error("set destination should be a register!");
 | |
|     }
 | |
|     
 | |
|     // Verify and collect info from the computation.
 | |
|     FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
 | |
|                                 InstInputs, InstResults,
 | |
|                                 InstImpInputs, InstImpResults);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ParseInstructions - Parse all of the instructions, inlining and resolving
 | |
| /// any fragments involved.  This populates the Instructions list with fully
 | |
| /// resolved instructions.
 | |
| void DAGISelEmitter::ParseInstructions() {
 | |
|   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
 | |
|   
 | |
|   for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
 | |
|     ListInit *LI = 0;
 | |
|     
 | |
|     if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
 | |
|       LI = Instrs[i]->getValueAsListInit("Pattern");
 | |
|     
 | |
|     // If there is no pattern, only collect minimal information about the
 | |
|     // instruction for its operand list.  We have to assume that there is one
 | |
|     // result, as we have no detailed info.
 | |
|     if (!LI || LI->getSize() == 0) {
 | |
|       std::vector<Record*> Results;
 | |
|       std::vector<Record*> Operands;
 | |
|       
 | |
|       CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
 | |
| 
 | |
|       if (InstInfo.OperandList.size() != 0) {
 | |
|         // FIXME: temporary hack...
 | |
|         if (InstInfo.noResults) {
 | |
|           // These produce no results
 | |
|           for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
 | |
|             Operands.push_back(InstInfo.OperandList[j].Rec);
 | |
|         } else {
 | |
|           // Assume the first operand is the result.
 | |
|           Results.push_back(InstInfo.OperandList[0].Rec);
 | |
|       
 | |
|           // The rest are inputs.
 | |
|           for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
 | |
|             Operands.push_back(InstInfo.OperandList[j].Rec);
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Create and insert the instruction.
 | |
|       std::vector<Record*> ImpResults;
 | |
|       std::vector<Record*> ImpOperands;
 | |
|       Instructions.insert(std::make_pair(Instrs[i], 
 | |
|                           DAGInstruction(0, Results, Operands, ImpResults,
 | |
|                                          ImpOperands)));
 | |
|       continue;  // no pattern.
 | |
|     }
 | |
|     
 | |
|     // Parse the instruction.
 | |
|     TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
 | |
|     // Inline pattern fragments into it.
 | |
|     I->InlinePatternFragments();
 | |
|     
 | |
|     // Infer as many types as possible.  If we cannot infer all of them, we can
 | |
|     // never do anything with this instruction pattern: report it to the user.
 | |
|     if (!I->InferAllTypes())
 | |
|       I->error("Could not infer all types in pattern!");
 | |
|     
 | |
|     // InstInputs - Keep track of all of the inputs of the instruction, along 
 | |
|     // with the record they are declared as.
 | |
|     std::map<std::string, TreePatternNode*> InstInputs;
 | |
|     
 | |
|     // InstResults - Keep track of all the virtual registers that are 'set'
 | |
|     // in the instruction, including what reg class they are.
 | |
|     std::map<std::string, TreePatternNode*> InstResults;
 | |
| 
 | |
|     std::vector<Record*> InstImpInputs;
 | |
|     std::vector<Record*> InstImpResults;
 | |
|     
 | |
|     // Verify that the top-level forms in the instruction are of void type, and
 | |
|     // fill in the InstResults map.
 | |
|     for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
 | |
|       TreePatternNode *Pat = I->getTree(j);
 | |
|       if (Pat->getExtTypeNum(0) != MVT::isVoid)
 | |
|         I->error("Top-level forms in instruction pattern should have"
 | |
|                  " void types");
 | |
| 
 | |
|       // Find inputs and outputs, and verify the structure of the uses/defs.
 | |
|       FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
 | |
|                                   InstImpInputs, InstImpResults);
 | |
|     }
 | |
| 
 | |
|     // Now that we have inputs and outputs of the pattern, inspect the operands
 | |
|     // list for the instruction.  This determines the order that operands are
 | |
|     // added to the machine instruction the node corresponds to.
 | |
|     unsigned NumResults = InstResults.size();
 | |
| 
 | |
|     // Parse the operands list from the (ops) list, validating it.
 | |
|     std::vector<std::string> &Args = I->getArgList();
 | |
|     assert(Args.empty() && "Args list should still be empty here!");
 | |
|     CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
 | |
| 
 | |
|     // Check that all of the results occur first in the list.
 | |
|     std::vector<Record*> Results;
 | |
|     TreePatternNode *Res0Node = NULL;
 | |
|     for (unsigned i = 0; i != NumResults; ++i) {
 | |
|       if (i == CGI.OperandList.size())
 | |
|         I->error("'" + InstResults.begin()->first +
 | |
|                  "' set but does not appear in operand list!");
 | |
|       const std::string &OpName = CGI.OperandList[i].Name;
 | |
|       
 | |
|       // Check that it exists in InstResults.
 | |
|       TreePatternNode *RNode = InstResults[OpName];
 | |
|       if (RNode == 0)
 | |
|         I->error("Operand $" + OpName + " does not exist in operand list!");
 | |
|         
 | |
|       if (i == 0)
 | |
|         Res0Node = RNode;
 | |
|       Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
 | |
|       if (R == 0)
 | |
|         I->error("Operand $" + OpName + " should be a set destination: all "
 | |
|                  "outputs must occur before inputs in operand list!");
 | |
|       
 | |
|       if (CGI.OperandList[i].Rec != R)
 | |
|         I->error("Operand $" + OpName + " class mismatch!");
 | |
|       
 | |
|       // Remember the return type.
 | |
|       Results.push_back(CGI.OperandList[i].Rec);
 | |
|       
 | |
|       // Okay, this one checks out.
 | |
|       InstResults.erase(OpName);
 | |
|     }
 | |
| 
 | |
|     // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
 | |
|     // the copy while we're checking the inputs.
 | |
|     std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
 | |
| 
 | |
|     std::vector<TreePatternNode*> ResultNodeOperands;
 | |
|     std::vector<Record*> Operands;
 | |
|     for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
 | |
|       CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
 | |
|       const std::string &OpName = Op.Name;
 | |
|       if (OpName.empty())
 | |
|         I->error("Operand #" + utostr(i) + " in operands list has no name!");
 | |
| 
 | |
|       if (!InstInputsCheck.count(OpName)) {
 | |
|         // If this is an predicate operand with an ExecuteAlways set filled in,
 | |
|         // we can ignore this.  When we codegen it, we will do so as always
 | |
|         // executed.
 | |
|         if (Op.Rec->isSubClassOf("PredicateOperand")) {
 | |
|           // Does it have a non-empty ExecuteAlways field?  If so, ignore this
 | |
|           // operand.
 | |
|           if (!getPredicateOperand(Op.Rec).AlwaysOps.empty())
 | |
|             continue;
 | |
|         }
 | |
|         I->error("Operand $" + OpName +
 | |
|                  " does not appear in the instruction pattern");
 | |
|       }
 | |
|       TreePatternNode *InVal = InstInputsCheck[OpName];
 | |
|       InstInputsCheck.erase(OpName);   // It occurred, remove from map.
 | |
|       
 | |
|       if (InVal->isLeaf() &&
 | |
|           dynamic_cast<DefInit*>(InVal->getLeafValue())) {
 | |
|         Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
 | |
|         if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
 | |
|           I->error("Operand $" + OpName + "'s register class disagrees"
 | |
|                    " between the operand and pattern");
 | |
|       }
 | |
|       Operands.push_back(Op.Rec);
 | |
|       
 | |
|       // Construct the result for the dest-pattern operand list.
 | |
|       TreePatternNode *OpNode = InVal->clone();
 | |
|       
 | |
|       // No predicate is useful on the result.
 | |
|       OpNode->setPredicateFn("");
 | |
|       
 | |
|       // Promote the xform function to be an explicit node if set.
 | |
|       if (Record *Xform = OpNode->getTransformFn()) {
 | |
|         OpNode->setTransformFn(0);
 | |
|         std::vector<TreePatternNode*> Children;
 | |
|         Children.push_back(OpNode);
 | |
|         OpNode = new TreePatternNode(Xform, Children);
 | |
|       }
 | |
|       
 | |
|       ResultNodeOperands.push_back(OpNode);
 | |
|     }
 | |
|     
 | |
|     if (!InstInputsCheck.empty())
 | |
|       I->error("Input operand $" + InstInputsCheck.begin()->first +
 | |
|                " occurs in pattern but not in operands list!");
 | |
| 
 | |
|     TreePatternNode *ResultPattern =
 | |
|       new TreePatternNode(I->getRecord(), ResultNodeOperands);
 | |
|     // Copy fully inferred output node type to instruction result pattern.
 | |
|     if (NumResults > 0)
 | |
|       ResultPattern->setTypes(Res0Node->getExtTypes());
 | |
| 
 | |
|     // Create and insert the instruction.
 | |
|     DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
 | |
|     Instructions.insert(std::make_pair(I->getRecord(), TheInst));
 | |
| 
 | |
|     // Use a temporary tree pattern to infer all types and make sure that the
 | |
|     // constructed result is correct.  This depends on the instruction already
 | |
|     // being inserted into the Instructions map.
 | |
|     TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
 | |
|     Temp.InferAllTypes();
 | |
| 
 | |
|     DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
 | |
|     TheInsertedInst.setResultPattern(Temp.getOnlyTree());
 | |
|     
 | |
|     DEBUG(I->dump());
 | |
|   }
 | |
|    
 | |
|   // If we can, convert the instructions to be patterns that are matched!
 | |
|   for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
 | |
|        E = Instructions.end(); II != E; ++II) {
 | |
|     DAGInstruction &TheInst = II->second;
 | |
|     TreePattern *I = TheInst.getPattern();
 | |
|     if (I == 0) continue;  // No pattern.
 | |
| 
 | |
|     if (I->getNumTrees() != 1) {
 | |
|       std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
 | |
|       continue;
 | |
|     }
 | |
|     TreePatternNode *Pattern = I->getTree(0);
 | |
|     TreePatternNode *SrcPattern;
 | |
|     if (Pattern->getOperator()->getName() == "set") {
 | |
|       if (Pattern->getNumChildren() != 2)
 | |
|         continue;  // Not a set of a single value (not handled so far)
 | |
| 
 | |
|       SrcPattern = Pattern->getChild(1)->clone();    
 | |
|     } else{
 | |
|       // Not a set (store or something?)
 | |
|       SrcPattern = Pattern;
 | |
|     }
 | |
|     
 | |
|     std::string Reason;
 | |
|     if (!SrcPattern->canPatternMatch(Reason, *this))
 | |
|       I->error("Instruction can never match: " + Reason);
 | |
|     
 | |
|     Record *Instr = II->first;
 | |
|     TreePatternNode *DstPattern = TheInst.getResultPattern();
 | |
|     PatternsToMatch.
 | |
|       push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
 | |
|                                SrcPattern, DstPattern,
 | |
|                                Instr->getValueAsInt("AddedComplexity")));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DAGISelEmitter::ParsePatterns() {
 | |
|   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
 | |
| 
 | |
|   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
 | |
|     DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
 | |
|     TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
 | |
| 
 | |
|     // Inline pattern fragments into it.
 | |
|     Pattern->InlinePatternFragments();
 | |
|     
 | |
|     ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
 | |
|     if (LI->getSize() == 0) continue;  // no pattern.
 | |
|     
 | |
|     // Parse the instruction.
 | |
|     TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
 | |
|     
 | |
|     // Inline pattern fragments into it.
 | |
|     Result->InlinePatternFragments();
 | |
| 
 | |
|     if (Result->getNumTrees() != 1)
 | |
|       Result->error("Cannot handle instructions producing instructions "
 | |
|                     "with temporaries yet!");
 | |
|     
 | |
|     bool IterateInference;
 | |
|     bool InferredAllPatternTypes, InferredAllResultTypes;
 | |
|     do {
 | |
|       // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|       // can never do anything with this pattern: report it to the user.
 | |
|       InferredAllPatternTypes = Pattern->InferAllTypes();
 | |
|       
 | |
|       // Infer as many types as possible.  If we cannot infer all of them, we
 | |
|       // can never do anything with this pattern: report it to the user.
 | |
|       InferredAllResultTypes = Result->InferAllTypes();
 | |
| 
 | |
|       // Apply the type of the result to the source pattern.  This helps us
 | |
|       // resolve cases where the input type is known to be a pointer type (which
 | |
|       // is considered resolved), but the result knows it needs to be 32- or
 | |
|       // 64-bits.  Infer the other way for good measure.
 | |
|       IterateInference = Pattern->getOnlyTree()->
 | |
|         UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result);
 | |
|       IterateInference |= Result->getOnlyTree()->
 | |
|         UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result);
 | |
|     } while (IterateInference);
 | |
| 
 | |
|     // Verify that we inferred enough types that we can do something with the
 | |
|     // pattern and result.  If these fire the user has to add type casts.
 | |
|     if (!InferredAllPatternTypes)
 | |
|       Pattern->error("Could not infer all types in pattern!");
 | |
|     if (!InferredAllResultTypes)
 | |
|       Result->error("Could not infer all types in pattern result!");
 | |
|     
 | |
|     // Validate that the input pattern is correct.
 | |
|     {
 | |
|       std::map<std::string, TreePatternNode*> InstInputs;
 | |
|       std::map<std::string, TreePatternNode*> InstResults;
 | |
|       std::vector<Record*> InstImpInputs;
 | |
|       std::vector<Record*> InstImpResults;
 | |
|       FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
 | |
|                                   InstInputs, InstResults,
 | |
|                                   InstImpInputs, InstImpResults);
 | |
|     }
 | |
| 
 | |
|     // Promote the xform function to be an explicit node if set.
 | |
|     std::vector<TreePatternNode*> ResultNodeOperands;
 | |
|     TreePatternNode *DstPattern = Result->getOnlyTree();
 | |
|     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
 | |
|       TreePatternNode *OpNode = DstPattern->getChild(ii);
 | |
|       if (Record *Xform = OpNode->getTransformFn()) {
 | |
|         OpNode->setTransformFn(0);
 | |
|         std::vector<TreePatternNode*> Children;
 | |
|         Children.push_back(OpNode);
 | |
|         OpNode = new TreePatternNode(Xform, Children);
 | |
|       }
 | |
|       ResultNodeOperands.push_back(OpNode);
 | |
|     }
 | |
|     DstPattern = Result->getOnlyTree();
 | |
|     if (!DstPattern->isLeaf())
 | |
|       DstPattern = new TreePatternNode(DstPattern->getOperator(),
 | |
|                                        ResultNodeOperands);
 | |
|     DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
 | |
|     TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
 | |
|     Temp.InferAllTypes();
 | |
| 
 | |
|     std::string Reason;
 | |
|     if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
 | |
|       Pattern->error("Pattern can never match: " + Reason);
 | |
|     
 | |
|     PatternsToMatch.
 | |
|       push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
 | |
|                                Pattern->getOnlyTree(),
 | |
|                                Temp.getOnlyTree(),
 | |
|                                Patterns[i]->getValueAsInt("AddedComplexity")));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CombineChildVariants - Given a bunch of permutations of each child of the
 | |
| /// 'operator' node, put them together in all possible ways.
 | |
| static void CombineChildVariants(TreePatternNode *Orig, 
 | |
|                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
 | |
|                                  std::vector<TreePatternNode*> &OutVariants,
 | |
|                                  DAGISelEmitter &ISE) {
 | |
|   // Make sure that each operand has at least one variant to choose from.
 | |
|   for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | |
|     if (ChildVariants[i].empty())
 | |
|       return;
 | |
|         
 | |
|   // The end result is an all-pairs construction of the resultant pattern.
 | |
|   std::vector<unsigned> Idxs;
 | |
|   Idxs.resize(ChildVariants.size());
 | |
|   bool NotDone = true;
 | |
|   while (NotDone) {
 | |
|     // Create the variant and add it to the output list.
 | |
|     std::vector<TreePatternNode*> NewChildren;
 | |
|     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | |
|       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
 | |
|     TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
 | |
|     
 | |
|     // Copy over properties.
 | |
|     R->setName(Orig->getName());
 | |
|     R->setPredicateFn(Orig->getPredicateFn());
 | |
|     R->setTransformFn(Orig->getTransformFn());
 | |
|     R->setTypes(Orig->getExtTypes());
 | |
|     
 | |
|     // If this pattern cannot every match, do not include it as a variant.
 | |
|     std::string ErrString;
 | |
|     if (!R->canPatternMatch(ErrString, ISE)) {
 | |
|       delete R;
 | |
|     } else {
 | |
|       bool AlreadyExists = false;
 | |
|       
 | |
|       // Scan to see if this pattern has already been emitted.  We can get
 | |
|       // duplication due to things like commuting:
 | |
|       //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
 | |
|       // which are the same pattern.  Ignore the dups.
 | |
|       for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
 | |
|         if (R->isIsomorphicTo(OutVariants[i])) {
 | |
|           AlreadyExists = true;
 | |
|           break;
 | |
|         }
 | |
|       
 | |
|       if (AlreadyExists)
 | |
|         delete R;
 | |
|       else
 | |
|         OutVariants.push_back(R);
 | |
|     }
 | |
|     
 | |
|     // Increment indices to the next permutation.
 | |
|     NotDone = false;
 | |
|     // Look for something we can increment without causing a wrap-around.
 | |
|     for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
 | |
|       if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
 | |
|         NotDone = true;   // Found something to increment.
 | |
|         break;
 | |
|       }
 | |
|       Idxs[IdxsIdx] = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CombineChildVariants - A helper function for binary operators.
 | |
| ///
 | |
| static void CombineChildVariants(TreePatternNode *Orig, 
 | |
|                                  const std::vector<TreePatternNode*> &LHS,
 | |
|                                  const std::vector<TreePatternNode*> &RHS,
 | |
|                                  std::vector<TreePatternNode*> &OutVariants,
 | |
|                                  DAGISelEmitter &ISE) {
 | |
|   std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | |
|   ChildVariants.push_back(LHS);
 | |
|   ChildVariants.push_back(RHS);
 | |
|   CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
 | |
| }  
 | |
| 
 | |
| 
 | |
| static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
 | |
|                                      std::vector<TreePatternNode *> &Children) {
 | |
|   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
 | |
|   Record *Operator = N->getOperator();
 | |
|   
 | |
|   // Only permit raw nodes.
 | |
|   if (!N->getName().empty() || !N->getPredicateFn().empty() ||
 | |
|       N->getTransformFn()) {
 | |
|     Children.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChild(0));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
 | |
| 
 | |
|   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
 | |
|     Children.push_back(N->getChild(1));
 | |
|   else
 | |
|     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
 | |
| }
 | |
| 
 | |
| /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
 | |
| /// the (potentially recursive) pattern by using algebraic laws.
 | |
| ///
 | |
| static void GenerateVariantsOf(TreePatternNode *N,
 | |
|                                std::vector<TreePatternNode*> &OutVariants,
 | |
|                                DAGISelEmitter &ISE) {
 | |
|   // We cannot permute leaves.
 | |
|   if (N->isLeaf()) {
 | |
|     OutVariants.push_back(N);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Look up interesting info about the node.
 | |
|   const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
 | |
| 
 | |
|   // If this node is associative, reassociate.
 | |
|   if (NodeInfo.hasProperty(SDNPAssociative)) {
 | |
|     // Reassociate by pulling together all of the linked operators 
 | |
|     std::vector<TreePatternNode*> MaximalChildren;
 | |
|     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
 | |
| 
 | |
|     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
 | |
|     // permutations.
 | |
|     if (MaximalChildren.size() == 3) {
 | |
|       // Find the variants of all of our maximal children.
 | |
|       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
 | |
|       GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
 | |
|       GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
 | |
|       GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
 | |
|       
 | |
|       // There are only two ways we can permute the tree:
 | |
|       //   (A op B) op C    and    A op (B op C)
 | |
|       // Within these forms, we can also permute A/B/C.
 | |
|       
 | |
|       // Generate legal pair permutations of A/B/C.
 | |
|       std::vector<TreePatternNode*> ABVariants;
 | |
|       std::vector<TreePatternNode*> BAVariants;
 | |
|       std::vector<TreePatternNode*> ACVariants;
 | |
|       std::vector<TreePatternNode*> CAVariants;
 | |
|       std::vector<TreePatternNode*> BCVariants;
 | |
|       std::vector<TreePatternNode*> CBVariants;
 | |
|       CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
 | |
|       CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
 | |
|       CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
 | |
|       CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
 | |
|       CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
 | |
|       CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
 | |
| 
 | |
|       // Combine those into the result: (x op x) op x
 | |
|       CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
 | |
| 
 | |
|       // Combine those into the result: x op (x op x)
 | |
|       CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
 | |
|       CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Compute permutations of all children.
 | |
|   std::vector<std::vector<TreePatternNode*> > ChildVariants;
 | |
|   ChildVariants.resize(N->getNumChildren());
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|     GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
 | |
| 
 | |
|   // Build all permutations based on how the children were formed.
 | |
|   CombineChildVariants(N, ChildVariants, OutVariants, ISE);
 | |
| 
 | |
|   // If this node is commutative, consider the commuted order.
 | |
|   if (NodeInfo.hasProperty(SDNPCommutative)) {
 | |
|     assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
 | |
|     // Don't count children which are actually register references.
 | |
|     unsigned NC = 0;
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | |
|       TreePatternNode *Child = N->getChild(i);
 | |
|       if (Child->isLeaf())
 | |
|         if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
 | |
|           Record *RR = DI->getDef();
 | |
|           if (RR->isSubClassOf("Register"))
 | |
|             continue;
 | |
|         }
 | |
|       NC++;
 | |
|     }
 | |
|     // Consider the commuted order.
 | |
|     if (NC == 2)
 | |
|       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
 | |
|                            OutVariants, ISE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // GenerateVariants - Generate variants.  For example, commutative patterns can
 | |
| // match multiple ways.  Add them to PatternsToMatch as well.
 | |
| void DAGISelEmitter::GenerateVariants() {
 | |
|   
 | |
|   DEBUG(std::cerr << "Generating instruction variants.\n");
 | |
|   
 | |
|   // Loop over all of the patterns we've collected, checking to see if we can
 | |
|   // generate variants of the instruction, through the exploitation of
 | |
|   // identities.  This permits the target to provide agressive matching without
 | |
|   // the .td file having to contain tons of variants of instructions.
 | |
|   //
 | |
|   // Note that this loop adds new patterns to the PatternsToMatch list, but we
 | |
|   // intentionally do not reconsider these.  Any variants of added patterns have
 | |
|   // already been added.
 | |
|   //
 | |
|   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
 | |
|     std::vector<TreePatternNode*> Variants;
 | |
|     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
 | |
| 
 | |
|     assert(!Variants.empty() && "Must create at least original variant!");
 | |
|     Variants.erase(Variants.begin());  // Remove the original pattern.
 | |
| 
 | |
|     if (Variants.empty())  // No variants for this pattern.
 | |
|       continue;
 | |
| 
 | |
|     DEBUG(std::cerr << "FOUND VARIANTS OF: ";
 | |
|           PatternsToMatch[i].getSrcPattern()->dump();
 | |
|           std::cerr << "\n");
 | |
| 
 | |
|     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
 | |
|       TreePatternNode *Variant = Variants[v];
 | |
| 
 | |
|       DEBUG(std::cerr << "  VAR#" << v <<  ": ";
 | |
|             Variant->dump();
 | |
|             std::cerr << "\n");
 | |
|       
 | |
|       // Scan to see if an instruction or explicit pattern already matches this.
 | |
|       bool AlreadyExists = false;
 | |
|       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
 | |
|         // Check to see if this variant already exists.
 | |
|         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
 | |
|           DEBUG(std::cerr << "  *** ALREADY EXISTS, ignoring variant.\n");
 | |
|           AlreadyExists = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       // If we already have it, ignore the variant.
 | |
|       if (AlreadyExists) continue;
 | |
| 
 | |
|       // Otherwise, add it to the list of patterns we have.
 | |
|       PatternsToMatch.
 | |
|         push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
 | |
|                                  Variant, PatternsToMatch[i].getDstPattern(),
 | |
|                                  PatternsToMatch[i].getAddedComplexity()));
 | |
|     }
 | |
| 
 | |
|     DEBUG(std::cerr << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // NodeIsComplexPattern - return true if N is a leaf node and a subclass of
 | |
| // ComplexPattern.
 | |
| static bool NodeIsComplexPattern(TreePatternNode *N)
 | |
| {
 | |
|   return (N->isLeaf() &&
 | |
|           dynamic_cast<DefInit*>(N->getLeafValue()) &&
 | |
|           static_cast<DefInit*>(N->getLeafValue())->getDef()->
 | |
|           isSubClassOf("ComplexPattern"));
 | |
| }
 | |
| 
 | |
| // NodeGetComplexPattern - return the pointer to the ComplexPattern if N
 | |
| // is a leaf node and a subclass of ComplexPattern, else it returns NULL.
 | |
| static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
 | |
|                                                    DAGISelEmitter &ISE)
 | |
| {
 | |
|   if (N->isLeaf() &&
 | |
|       dynamic_cast<DefInit*>(N->getLeafValue()) &&
 | |
|       static_cast<DefInit*>(N->getLeafValue())->getDef()->
 | |
|       isSubClassOf("ComplexPattern")) {
 | |
|     return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
 | |
|                                   ->getDef());
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// getPatternSize - Return the 'size' of this pattern.  We want to match large
 | |
| /// patterns before small ones.  This is used to determine the size of a
 | |
| /// pattern.
 | |
| static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
 | |
|   assert((isExtIntegerInVTs(P->getExtTypes()) || 
 | |
|           isExtFloatingPointInVTs(P->getExtTypes()) ||
 | |
|           P->getExtTypeNum(0) == MVT::isVoid ||
 | |
|           P->getExtTypeNum(0) == MVT::Flag ||
 | |
|           P->getExtTypeNum(0) == MVT::iPTR) && 
 | |
|          "Not a valid pattern node to size!");
 | |
|   unsigned Size = 3;  // The node itself.
 | |
|   // If the root node is a ConstantSDNode, increases its size.
 | |
|   // e.g. (set R32:$dst, 0).
 | |
|   if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
 | |
|     Size += 2;
 | |
| 
 | |
|   // FIXME: This is a hack to statically increase the priority of patterns
 | |
|   // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
 | |
|   // Later we can allow complexity / cost for each pattern to be (optionally)
 | |
|   // specified. To get best possible pattern match we'll need to dynamically
 | |
|   // calculate the complexity of all patterns a dag can potentially map to.
 | |
|   const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
 | |
|   if (AM)
 | |
|     Size += AM->getNumOperands() * 3;
 | |
| 
 | |
|   // If this node has some predicate function that must match, it adds to the
 | |
|   // complexity of this node.
 | |
|   if (!P->getPredicateFn().empty())
 | |
|     ++Size;
 | |
|   
 | |
|   // Count children in the count if they are also nodes.
 | |
|   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = P->getChild(i);
 | |
|     if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
 | |
|       Size += getPatternSize(Child, ISE);
 | |
|     else if (Child->isLeaf()) {
 | |
|       if (dynamic_cast<IntInit*>(Child->getLeafValue())) 
 | |
|         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
 | |
|       else if (NodeIsComplexPattern(Child))
 | |
|         Size += getPatternSize(Child, ISE);
 | |
|       else if (!Child->getPredicateFn().empty())
 | |
|         ++Size;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// getResultPatternCost - Compute the number of instructions for this pattern.
 | |
| /// This is a temporary hack.  We should really include the instruction
 | |
| /// latencies in this calculation.
 | |
| static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
 | |
|   if (P->isLeaf()) return 0;
 | |
|   
 | |
|   unsigned Cost = 0;
 | |
|   Record *Op = P->getOperator();
 | |
|   if (Op->isSubClassOf("Instruction")) {
 | |
|     Cost++;
 | |
|     CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
 | |
|     if (II.usesCustomDAGSchedInserter)
 | |
|       Cost += 10;
 | |
|   }
 | |
|   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
 | |
|     Cost += getResultPatternCost(P->getChild(i), ISE);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| /// getResultPatternCodeSize - Compute the code size of instructions for this
 | |
| /// pattern.
 | |
| static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
 | |
|   if (P->isLeaf()) return 0;
 | |
| 
 | |
|   unsigned Cost = 0;
 | |
|   Record *Op = P->getOperator();
 | |
|   if (Op->isSubClassOf("Instruction")) {
 | |
|     Cost += Op->getValueAsInt("CodeSize");
 | |
|   }
 | |
|   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
 | |
|     Cost += getResultPatternSize(P->getChild(i), ISE);
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| // PatternSortingPredicate - return true if we prefer to match LHS before RHS.
 | |
| // In particular, we want to match maximal patterns first and lowest cost within
 | |
| // a particular complexity first.
 | |
| struct PatternSortingPredicate {
 | |
|   PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
 | |
|   DAGISelEmitter &ISE;
 | |
| 
 | |
|   bool operator()(PatternToMatch *LHS,
 | |
|                   PatternToMatch *RHS) {
 | |
|     unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
 | |
|     unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
 | |
|     LHSSize += LHS->getAddedComplexity();
 | |
|     RHSSize += RHS->getAddedComplexity();
 | |
|     if (LHSSize > RHSSize) return true;   // LHS -> bigger -> less cost
 | |
|     if (LHSSize < RHSSize) return false;
 | |
|     
 | |
|     // If the patterns have equal complexity, compare generated instruction cost
 | |
|     unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
 | |
|     unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
 | |
|     if (LHSCost < RHSCost) return true;
 | |
|     if (LHSCost > RHSCost) return false;
 | |
| 
 | |
|     return getResultPatternSize(LHS->getDstPattern(), ISE) <
 | |
|       getResultPatternSize(RHS->getDstPattern(), ISE);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// getRegisterValueType - Look up and return the first ValueType of specified 
 | |
| /// RegisterClass record
 | |
| static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
 | |
|   if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
 | |
|     return RC->getValueTypeNum(0);
 | |
|   return MVT::Other;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// RemoveAllTypes - A quick recursive walk over a pattern which removes all
 | |
| /// type information from it.
 | |
| static void RemoveAllTypes(TreePatternNode *N) {
 | |
|   N->removeTypes();
 | |
|   if (!N->isLeaf())
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | |
|       RemoveAllTypes(N->getChild(i));
 | |
| }
 | |
| 
 | |
| Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
 | |
|   Record *N = Records.getDef(Name);
 | |
|   if (!N || !N->isSubClassOf("SDNode")) {
 | |
|     std::cerr << "Error getting SDNode '" << Name << "'!\n";
 | |
|     exit(1);
 | |
|   }
 | |
|   return N;
 | |
| }
 | |
| 
 | |
| /// NodeHasProperty - return true if TreePatternNode has the specified
 | |
| /// property.
 | |
| static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
 | |
|                             DAGISelEmitter &ISE)
 | |
| {
 | |
|   if (N->isLeaf()) {
 | |
|     const ComplexPattern *CP = NodeGetComplexPattern(N, ISE);
 | |
|     if (CP)
 | |
|       return CP->hasProperty(Property);
 | |
|     return false;
 | |
|   }
 | |
|   Record *Operator = N->getOperator();
 | |
|   if (!Operator->isSubClassOf("SDNode")) return false;
 | |
| 
 | |
|   const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
 | |
|   return NodeInfo.hasProperty(Property);
 | |
| }
 | |
| 
 | |
| static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
 | |
|                                DAGISelEmitter &ISE)
 | |
| {
 | |
|   if (NodeHasProperty(N, Property, ISE))
 | |
|     return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | |
|     TreePatternNode *Child = N->getChild(i);
 | |
|     if (PatternHasProperty(Child, Property, ISE))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| class PatternCodeEmitter {
 | |
| private:
 | |
|   DAGISelEmitter &ISE;
 | |
| 
 | |
|   // Predicates.
 | |
|   ListInit *Predicates;
 | |
|   // Pattern cost.
 | |
|   unsigned Cost;
 | |
|   // Instruction selector pattern.
 | |
|   TreePatternNode *Pattern;
 | |
|   // Matched instruction.
 | |
|   TreePatternNode *Instruction;
 | |
|   
 | |
|   // Node to name mapping
 | |
|   std::map<std::string, std::string> VariableMap;
 | |
|   // Node to operator mapping
 | |
|   std::map<std::string, Record*> OperatorMap;
 | |
|   // Names of all the folded nodes which produce chains.
 | |
|   std::vector<std::pair<std::string, unsigned> > FoldedChains;
 | |
|   // Original input chain(s).
 | |
|   std::vector<std::pair<std::string, std::string> > OrigChains;
 | |
|   std::set<std::string> Duplicates;
 | |
| 
 | |
|   /// GeneratedCode - This is the buffer that we emit code to.  The first int
 | |
|   /// indicates whether this is an exit predicate (something that should be
 | |
|   /// tested, and if true, the match fails) [when 1], or normal code to emit
 | |
|   /// [when 0], or initialization code to emit [when 2].
 | |
|   std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
 | |
|   /// GeneratedDecl - This is the set of all SDOperand declarations needed for
 | |
|   /// the set of patterns for each top-level opcode.
 | |
|   std::set<std::string> &GeneratedDecl;
 | |
|   /// TargetOpcodes - The target specific opcodes used by the resulting
 | |
|   /// instructions.
 | |
|   std::vector<std::string> &TargetOpcodes;
 | |
|   std::vector<std::string> &TargetVTs;
 | |
| 
 | |
|   std::string ChainName;
 | |
|   unsigned TmpNo;
 | |
|   unsigned OpcNo;
 | |
|   unsigned VTNo;
 | |
|   
 | |
|   void emitCheck(const std::string &S) {
 | |
|     if (!S.empty())
 | |
|       GeneratedCode.push_back(std::make_pair(1, S));
 | |
|   }
 | |
|   void emitCode(const std::string &S) {
 | |
|     if (!S.empty())
 | |
|       GeneratedCode.push_back(std::make_pair(0, S));
 | |
|   }
 | |
|   void emitInit(const std::string &S) {
 | |
|     if (!S.empty())
 | |
|       GeneratedCode.push_back(std::make_pair(2, S));
 | |
|   }
 | |
|   void emitDecl(const std::string &S) {
 | |
|     assert(!S.empty() && "Invalid declaration");
 | |
|     GeneratedDecl.insert(S);
 | |
|   }
 | |
|   void emitOpcode(const std::string &Opc) {
 | |
|     TargetOpcodes.push_back(Opc);
 | |
|     OpcNo++;
 | |
|   }
 | |
|   void emitVT(const std::string &VT) {
 | |
|     TargetVTs.push_back(VT);
 | |
|     VTNo++;
 | |
|   }
 | |
| public:
 | |
|   PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
 | |
|                      TreePatternNode *pattern, TreePatternNode *instr,
 | |
|                      std::vector<std::pair<unsigned, std::string> > &gc,
 | |
|                      std::set<std::string> &gd,
 | |
|                      std::vector<std::string> &to,
 | |
|                      std::vector<std::string> &tv)
 | |
|   : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
 | |
|     GeneratedCode(gc), GeneratedDecl(gd),
 | |
|     TargetOpcodes(to), TargetVTs(tv),
 | |
|     TmpNo(0), OpcNo(0), VTNo(0) {}
 | |
| 
 | |
|   /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
 | |
|   /// if the match fails. At this point, we already know that the opcode for N
 | |
|   /// matches, and the SDNode for the result has the RootName specified name.
 | |
|   void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
 | |
|                      const std::string &RootName, const std::string &ChainSuffix,
 | |
|                      bool &FoundChain) {
 | |
|     bool isRoot = (P == NULL);
 | |
|     // Emit instruction predicates. Each predicate is just a string for now.
 | |
|     if (isRoot) {
 | |
|       std::string PredicateCheck;
 | |
|       for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
 | |
|         if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
 | |
|           Record *Def = Pred->getDef();
 | |
|           if (!Def->isSubClassOf("Predicate")) {
 | |
| #ifndef NDEBUG
 | |
|             Def->dump();
 | |
| #endif
 | |
|             assert(0 && "Unknown predicate type!");
 | |
|           }
 | |
|           if (!PredicateCheck.empty())
 | |
|             PredicateCheck += " && ";
 | |
|           PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       emitCheck(PredicateCheck);
 | |
|     }
 | |
| 
 | |
|     if (N->isLeaf()) {
 | |
|       if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
 | |
|         emitCheck("cast<ConstantSDNode>(" + RootName +
 | |
|                   ")->getSignExtended() == " + itostr(II->getValue()));
 | |
|         return;
 | |
|       } else if (!NodeIsComplexPattern(N)) {
 | |
|         assert(0 && "Cannot match this as a leaf value!");
 | |
|         abort();
 | |
|       }
 | |
|     }
 | |
|   
 | |
|     // If this node has a name associated with it, capture it in VariableMap. If
 | |
|     // we already saw this in the pattern, emit code to verify dagness.
 | |
|     if (!N->getName().empty()) {
 | |
|       std::string &VarMapEntry = VariableMap[N->getName()];
 | |
|       if (VarMapEntry.empty()) {
 | |
|         VarMapEntry = RootName;
 | |
|       } else {
 | |
|         // If we get here, this is a second reference to a specific name.  Since
 | |
|         // we already have checked that the first reference is valid, we don't
 | |
|         // have to recursively match it, just check that it's the same as the
 | |
|         // previously named thing.
 | |
|         emitCheck(VarMapEntry + " == " + RootName);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (!N->isLeaf())
 | |
|         OperatorMap[N->getName()] = N->getOperator();
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Emit code to load the child nodes and match their contents recursively.
 | |
|     unsigned OpNo = 0;
 | |
|     bool NodeHasChain = NodeHasProperty   (N, SDNPHasChain, ISE);
 | |
|     bool HasChain     = PatternHasProperty(N, SDNPHasChain, ISE);
 | |
|     bool EmittedUseCheck = false;
 | |
|     if (HasChain) {
 | |
|       if (NodeHasChain)
 | |
|         OpNo = 1;
 | |
|       if (!isRoot) {
 | |
|         // Multiple uses of actual result?
 | |
|         emitCheck(RootName + ".hasOneUse()");
 | |
|         EmittedUseCheck = true;
 | |
|         if (NodeHasChain) {
 | |
|           // If the immediate use can somehow reach this node through another
 | |
|           // path, then can't fold it either or it will create a cycle.
 | |
|           // e.g. In the following diagram, XX can reach ld through YY. If
 | |
|           // ld is folded into XX, then YY is both a predecessor and a successor
 | |
|           // of XX.
 | |
|           //
 | |
|           //         [ld]
 | |
|           //         ^  ^
 | |
|           //         |  |
 | |
|           //        /   \---
 | |
|           //      /        [YY]
 | |
|           //      |         ^
 | |
|           //     [XX]-------|
 | |
|           bool NeedCheck = false;
 | |
|           if (P != Pattern)
 | |
|             NeedCheck = true;
 | |
|           else {
 | |
|             const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
 | |
|             NeedCheck =
 | |
|               P->getOperator() == ISE.get_intrinsic_void_sdnode() ||
 | |
|               P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
 | |
|               P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() ||
 | |
|               PInfo.getNumOperands() > 1 ||
 | |
|               PInfo.hasProperty(SDNPHasChain) ||
 | |
|               PInfo.hasProperty(SDNPInFlag) ||
 | |
|               PInfo.hasProperty(SDNPOptInFlag);
 | |
|           }
 | |
| 
 | |
|           if (NeedCheck) {
 | |
|             std::string ParentName(RootName.begin(), RootName.end()-1);
 | |
|             emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
 | |
|                       ".Val, N.Val)");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (NodeHasChain) {
 | |
|         if (FoundChain) {
 | |
|           emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
 | |
|                     "IsChainCompatible(" + ChainName + ".Val, " +
 | |
|                     RootName + ".Val))");
 | |
|           OrigChains.push_back(std::make_pair(ChainName, RootName));
 | |
|         } else
 | |
|           FoundChain = true;
 | |
|         ChainName = "Chain" + ChainSuffix;
 | |
|         emitInit("SDOperand " + ChainName + " = " + RootName +
 | |
|                  ".getOperand(0);");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Don't fold any node which reads or writes a flag and has multiple uses.
 | |
|     // FIXME: We really need to separate the concepts of flag and "glue". Those
 | |
|     // real flag results, e.g. X86CMP output, can have multiple uses.
 | |
|     // FIXME: If the optional incoming flag does not exist. Then it is ok to
 | |
|     // fold it.
 | |
|     if (!isRoot &&
 | |
|         (PatternHasProperty(N, SDNPInFlag, ISE) ||
 | |
|          PatternHasProperty(N, SDNPOptInFlag, ISE) ||
 | |
|          PatternHasProperty(N, SDNPOutFlag, ISE))) {
 | |
|       if (!EmittedUseCheck) {
 | |
|         // Multiple uses of actual result?
 | |
|         emitCheck(RootName + ".hasOneUse()");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If there is a node predicate for this, emit the call.
 | |
|     if (!N->getPredicateFn().empty())
 | |
|       emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
 | |
| 
 | |
|     
 | |
|     // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
 | |
|     // a constant without a predicate fn that has more that one bit set, handle
 | |
|     // this as a special case.  This is usually for targets that have special
 | |
|     // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
 | |
|     // handling stuff).  Using these instructions is often far more efficient
 | |
|     // than materializing the constant.  Unfortunately, both the instcombiner
 | |
|     // and the dag combiner can often infer that bits are dead, and thus drop
 | |
|     // them from the mask in the dag.  For example, it might turn 'AND X, 255'
 | |
|     // into 'AND X, 254' if it knows the low bit is set.  Emit code that checks
 | |
|     // to handle this.
 | |
|     if (!N->isLeaf() && 
 | |
|         (N->getOperator()->getName() == "and" || 
 | |
|          N->getOperator()->getName() == "or") &&
 | |
|         N->getChild(1)->isLeaf() &&
 | |
|         N->getChild(1)->getPredicateFn().empty()) {
 | |
|       if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
 | |
|         if (!isPowerOf2_32(II->getValue())) {  // Don't bother with single bits.
 | |
|           emitInit("SDOperand " + RootName + "0" + " = " +
 | |
|                    RootName + ".getOperand(" + utostr(0) + ");");
 | |
|           emitInit("SDOperand " + RootName + "1" + " = " +
 | |
|                    RootName + ".getOperand(" + utostr(1) + ");");
 | |
| 
 | |
|           emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
 | |
|           const char *MaskPredicate = N->getOperator()->getName() == "or"
 | |
|             ? "CheckOrMask(" : "CheckAndMask(";
 | |
|           emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
 | |
|                     RootName + "1), " + itostr(II->getValue()) + ")");
 | |
|           
 | |
|           EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0),
 | |
|                              ChainSuffix + utostr(0), FoundChain);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
 | |
|       emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
 | |
|                RootName + ".getOperand(" +utostr(OpNo) + ");");
 | |
| 
 | |
|       EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo),
 | |
|                          ChainSuffix + utostr(OpNo), FoundChain);
 | |
|     }
 | |
| 
 | |
|     // Handle cases when root is a complex pattern.
 | |
|     const ComplexPattern *CP;
 | |
|     if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
 | |
|       std::string Fn = CP->getSelectFunc();
 | |
|       unsigned NumOps = CP->getNumOperands();
 | |
|       for (unsigned i = 0; i < NumOps; ++i) {
 | |
|         emitDecl("CPTmp" + utostr(i));
 | |
|         emitCode("SDOperand CPTmp" + utostr(i) + ";");
 | |
|       }
 | |
|       if (CP->hasProperty(SDNPHasChain)) {
 | |
|         emitDecl("CPInChain");
 | |
|         emitDecl("Chain" + ChainSuffix);
 | |
|         emitCode("SDOperand CPInChain;");
 | |
|         emitCode("SDOperand Chain" + ChainSuffix + ";");
 | |
|       }
 | |
| 
 | |
|       std::string Code = Fn + "(" + RootName + ", " + RootName;
 | |
|       for (unsigned i = 0; i < NumOps; i++)
 | |
|         Code += ", CPTmp" + utostr(i);
 | |
|       if (CP->hasProperty(SDNPHasChain)) {
 | |
|         ChainName = "Chain" + ChainSuffix;
 | |
|         Code += ", CPInChain, Chain" + ChainSuffix;
 | |
|       }
 | |
|       emitCheck(Code + ")");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
 | |
|                           const std::string &RootName,
 | |
|                           const std::string &ChainSuffix, bool &FoundChain) {
 | |
|     if (!Child->isLeaf()) {
 | |
|       // If it's not a leaf, recursively match.
 | |
|       const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
 | |
|       emitCheck(RootName + ".getOpcode() == " +
 | |
|                 CInfo.getEnumName());
 | |
|       EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
 | |
|       if (NodeHasProperty(Child, SDNPHasChain, ISE))
 | |
|         FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
 | |
|     } else {
 | |
|       // If this child has a name associated with it, capture it in VarMap. If
 | |
|       // we already saw this in the pattern, emit code to verify dagness.
 | |
|       if (!Child->getName().empty()) {
 | |
|         std::string &VarMapEntry = VariableMap[Child->getName()];
 | |
|         if (VarMapEntry.empty()) {
 | |
|           VarMapEntry = RootName;
 | |
|         } else {
 | |
|           // If we get here, this is a second reference to a specific name.
 | |
|           // Since we already have checked that the first reference is valid,
 | |
|           // we don't have to recursively match it, just check that it's the
 | |
|           // same as the previously named thing.
 | |
|           emitCheck(VarMapEntry + " == " + RootName);
 | |
|           Duplicates.insert(RootName);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Handle leaves of various types.
 | |
|       if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
 | |
|         Record *LeafRec = DI->getDef();
 | |
|         if (LeafRec->isSubClassOf("RegisterClass") || 
 | |
|             LeafRec->getName() == "ptr_rc") {
 | |
|           // Handle register references.  Nothing to do here.
 | |
|         } else if (LeafRec->isSubClassOf("Register")) {
 | |
|           // Handle register references.
 | |
|         } else if (LeafRec->isSubClassOf("ComplexPattern")) {
 | |
|           // Handle complex pattern.
 | |
|           const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE);
 | |
|           std::string Fn = CP->getSelectFunc();
 | |
|           unsigned NumOps = CP->getNumOperands();
 | |
|           for (unsigned i = 0; i < NumOps; ++i) {
 | |
|             emitDecl("CPTmp" + utostr(i));
 | |
|             emitCode("SDOperand CPTmp" + utostr(i) + ";");
 | |
|           }
 | |
|           if (CP->hasProperty(SDNPHasChain)) {
 | |
|             const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator());
 | |
|             FoldedChains.push_back(std::make_pair("CPInChain",
 | |
|                                                   PInfo.getNumResults()));
 | |
|             ChainName = "Chain" + ChainSuffix;
 | |
|             emitDecl("CPInChain");
 | |
|             emitDecl(ChainName);
 | |
|             emitCode("SDOperand CPInChain;");
 | |
|             emitCode("SDOperand " + ChainName + ";");
 | |
|           }
 | |
|           
 | |
|           std::string Code = Fn + "(N, ";
 | |
|           if (CP->hasProperty(SDNPHasChain)) {
 | |
|             std::string ParentName(RootName.begin(), RootName.end()-1);
 | |
|             Code += ParentName + ", ";
 | |
|           }
 | |
|           Code += RootName;
 | |
|           for (unsigned i = 0; i < NumOps; i++)
 | |
|             Code += ", CPTmp" + utostr(i);
 | |
|           if (CP->hasProperty(SDNPHasChain))
 | |
|             Code += ", CPInChain, Chain" + ChainSuffix;
 | |
|           emitCheck(Code + ")");
 | |
|         } else if (LeafRec->getName() == "srcvalue") {
 | |
|           // Place holder for SRCVALUE nodes. Nothing to do here.
 | |
|         } else if (LeafRec->isSubClassOf("ValueType")) {
 | |
|           // Make sure this is the specified value type.
 | |
|           emitCheck("cast<VTSDNode>(" + RootName +
 | |
|                     ")->getVT() == MVT::" + LeafRec->getName());
 | |
|         } else if (LeafRec->isSubClassOf("CondCode")) {
 | |
|           // Make sure this is the specified cond code.
 | |
|           emitCheck("cast<CondCodeSDNode>(" + RootName +
 | |
|                     ")->get() == ISD::" + LeafRec->getName());
 | |
|         } else {
 | |
| #ifndef NDEBUG
 | |
|           Child->dump();
 | |
|           std::cerr << " ";
 | |
| #endif
 | |
|           assert(0 && "Unknown leaf type!");
 | |
|         }
 | |
|         
 | |
|         // If there is a node predicate for this, emit the call.
 | |
|         if (!Child->getPredicateFn().empty())
 | |
|           emitCheck(Child->getPredicateFn() + "(" + RootName +
 | |
|                     ".Val)");
 | |
|       } else if (IntInit *II =
 | |
|                  dynamic_cast<IntInit*>(Child->getLeafValue())) {
 | |
|         emitCheck("isa<ConstantSDNode>(" + RootName + ")");
 | |
|         unsigned CTmp = TmpNo++;
 | |
|         emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
 | |
|                  RootName + ")->getSignExtended();");
 | |
|         
 | |
|         emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
 | |
|       } else {
 | |
| #ifndef NDEBUG
 | |
|         Child->dump();
 | |
| #endif
 | |
|         assert(0 && "Unknown leaf type!");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// EmitResultCode - Emit the action for a pattern.  Now that it has matched
 | |
|   /// we actually have to build a DAG!
 | |
|   std::vector<std::string>
 | |
|   EmitResultCode(TreePatternNode *N, bool RetSelected,
 | |
|                  bool InFlagDecled, bool ResNodeDecled,
 | |
|                  bool LikeLeaf = false, bool isRoot = false) {
 | |
|     // List of arguments of getTargetNode() or SelectNodeTo().
 | |
|     std::vector<std::string> NodeOps;
 | |
|     // This is something selected from the pattern we matched.
 | |
|     if (!N->getName().empty()) {
 | |
|       std::string &Val = VariableMap[N->getName()];
 | |
|       assert(!Val.empty() &&
 | |
|              "Variable referenced but not defined and not caught earlier!");
 | |
|       if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
 | |
|         // Already selected this operand, just return the tmpval.
 | |
|         NodeOps.push_back(Val);
 | |
|         return NodeOps;
 | |
|       }
 | |
| 
 | |
|       const ComplexPattern *CP;
 | |
|       unsigned ResNo = TmpNo++;
 | |
|       if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
 | |
|         assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
 | |
|         std::string CastType;
 | |
|         switch (N->getTypeNum(0)) {
 | |
|         default: assert(0 && "Unknown type for constant node!");
 | |
|         case MVT::i1:  CastType = "bool"; break;
 | |
|         case MVT::i8:  CastType = "unsigned char"; break;
 | |
|         case MVT::i16: CastType = "unsigned short"; break;
 | |
|         case MVT::i32: CastType = "unsigned"; break;
 | |
|         case MVT::i64: CastType = "uint64_t"; break;
 | |
|         }
 | |
|         emitCode("SDOperand Tmp" + utostr(ResNo) + 
 | |
|                  " = CurDAG->getTargetConstant(((" + CastType +
 | |
|                  ") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
 | |
|                  getEnumName(N->getTypeNum(0)) + ");");
 | |
|         NodeOps.push_back("Tmp" + utostr(ResNo));
 | |
|         // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
 | |
|         // value if used multiple times by this pattern result.
 | |
|         Val = "Tmp"+utostr(ResNo);
 | |
|       } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
 | |
|         Record *Op = OperatorMap[N->getName()];
 | |
|         // Transform ExternalSymbol to TargetExternalSymbol
 | |
|         if (Op && Op->getName() == "externalsym") {
 | |
|           emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
 | |
|                    "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
 | |
|                    Val + ")->getSymbol(), " +
 | |
|                    getEnumName(N->getTypeNum(0)) + ");");
 | |
|           NodeOps.push_back("Tmp" + utostr(ResNo));
 | |
|           // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
 | |
|           // this value if used multiple times by this pattern result.
 | |
|           Val = "Tmp"+utostr(ResNo);
 | |
|         } else {
 | |
|           NodeOps.push_back(Val);
 | |
|         }
 | |
|       } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") {
 | |
|         Record *Op = OperatorMap[N->getName()];
 | |
|         // Transform GlobalAddress to TargetGlobalAddress
 | |
|         if (Op && Op->getName() == "globaladdr") {
 | |
|           emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
 | |
|                    "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
 | |
|                    ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
 | |
|                    ");");
 | |
|           NodeOps.push_back("Tmp" + utostr(ResNo));
 | |
|           // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
 | |
|           // this value if used multiple times by this pattern result.
 | |
|           Val = "Tmp"+utostr(ResNo);
 | |
|         } else {
 | |
|           NodeOps.push_back(Val);
 | |
|         }
 | |
|       } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
 | |
|         NodeOps.push_back(Val);
 | |
|         // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
 | |
|         // value if used multiple times by this pattern result.
 | |
|         Val = "Tmp"+utostr(ResNo);
 | |
|       } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
 | |
|         NodeOps.push_back(Val);
 | |
|         // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
 | |
|         // value if used multiple times by this pattern result.
 | |
|         Val = "Tmp"+utostr(ResNo);
 | |
|       } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
 | |
|         for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
 | |
|           emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
 | |
|           NodeOps.push_back("CPTmp" + utostr(i));
 | |
|         }
 | |
|       } else {
 | |
|         // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
 | |
|         // node even if it isn't one. Don't select it.
 | |
|         if (!LikeLeaf) {
 | |
|           emitCode("AddToISelQueue(" + Val + ");");
 | |
|           if (isRoot && N->isLeaf()) {
 | |
|             emitCode("ReplaceUses(N, " + Val + ");");
 | |
|             emitCode("return NULL;");
 | |
|           }
 | |
|         }
 | |
|         NodeOps.push_back(Val);
 | |
|       }
 | |
|       return NodeOps;
 | |
|     }
 | |
|     if (N->isLeaf()) {
 | |
|       // If this is an explicit register reference, handle it.
 | |
|       if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
 | |
|         unsigned ResNo = TmpNo++;
 | |
|         if (DI->getDef()->isSubClassOf("Register")) {
 | |
|           emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
 | |
|                    ISE.getQualifiedName(DI->getDef()) + ", " +
 | |
|                    getEnumName(N->getTypeNum(0)) + ");");
 | |
|           NodeOps.push_back("Tmp" + utostr(ResNo));
 | |
|           return NodeOps;
 | |
|         }
 | |
|       } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
 | |
|         unsigned ResNo = TmpNo++;
 | |
|         assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
 | |
|         emitCode("SDOperand Tmp" + utostr(ResNo) + 
 | |
|                  " = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
 | |
|                  ", " + getEnumName(N->getTypeNum(0)) + ");");
 | |
|         NodeOps.push_back("Tmp" + utostr(ResNo));
 | |
|         return NodeOps;
 | |
|       }
 | |
|     
 | |
| #ifndef NDEBUG
 | |
|       N->dump();
 | |
| #endif
 | |
|       assert(0 && "Unknown leaf type!");
 | |
|       return NodeOps;
 | |
|     }
 | |
| 
 | |
|     Record *Op = N->getOperator();
 | |
|     if (Op->isSubClassOf("Instruction")) {
 | |
|       const CodeGenTarget &CGT = ISE.getTargetInfo();
 | |
|       CodeGenInstruction &II = CGT.getInstruction(Op->getName());
 | |
|       const DAGInstruction &Inst = ISE.getInstruction(Op);
 | |
|       TreePattern *InstPat = Inst.getPattern();
 | |
|       TreePatternNode *InstPatNode =
 | |
|         isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
 | |
|                : (InstPat ? InstPat->getOnlyTree() : NULL);
 | |
|       if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
 | |
|         InstPatNode = InstPatNode->getChild(1);
 | |
|       }
 | |
|       bool HasVarOps     = isRoot && II.hasVariableNumberOfOperands;
 | |
|       bool HasImpInputs  = isRoot && Inst.getNumImpOperands() > 0;
 | |
|       bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
 | |
|       bool NodeHasOptInFlag = isRoot &&
 | |
|         PatternHasProperty(Pattern, SDNPOptInFlag, ISE);
 | |
|       bool NodeHasInFlag  = isRoot &&
 | |
|         PatternHasProperty(Pattern, SDNPInFlag, ISE);
 | |
|       bool NodeHasOutFlag = HasImpResults || (isRoot &&
 | |
|         PatternHasProperty(Pattern, SDNPOutFlag, ISE));
 | |
|       bool NodeHasChain = InstPatNode &&
 | |
|         PatternHasProperty(InstPatNode, SDNPHasChain, ISE);
 | |
|       bool InputHasChain = isRoot &&
 | |
|         NodeHasProperty(Pattern, SDNPHasChain, ISE);
 | |
|       unsigned NumResults = Inst.getNumResults();    
 | |
| 
 | |
|       if (NodeHasOptInFlag) {
 | |
|         emitCode("bool HasInFlag = "
 | |
|            "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
 | |
|       }
 | |
|       if (HasVarOps)
 | |
|         emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
 | |
| 
 | |
|       // How many results is this pattern expected to produce?
 | |
|       unsigned PatResults = 0;
 | |
|       for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
 | |
|         MVT::ValueType VT = Pattern->getTypeNum(i);
 | |
|         if (VT != MVT::isVoid && VT != MVT::Flag)
 | |
|           PatResults++;
 | |
|       }
 | |
| 
 | |
|       if (OrigChains.size() > 0) {
 | |
|         // The original input chain is being ignored. If it is not just
 | |
|         // pointing to the op that's being folded, we should create a
 | |
|         // TokenFactor with it and the chain of the folded op as the new chain.
 | |
|         // We could potentially be doing multiple levels of folding, in that
 | |
|         // case, the TokenFactor can have more operands.
 | |
|         emitCode("SmallVector<SDOperand, 8> InChains;");
 | |
|         for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
 | |
|           emitCode("if (" + OrigChains[i].first + ".Val != " +
 | |
|                    OrigChains[i].second + ".Val) {");
 | |
|           emitCode("  AddToISelQueue(" + OrigChains[i].first + ");");
 | |
|           emitCode("  InChains.push_back(" + OrigChains[i].first + ");");
 | |
|           emitCode("}");
 | |
|         }
 | |
|         emitCode("AddToISelQueue(" + ChainName + ");");
 | |
|         emitCode("InChains.push_back(" + ChainName + ");");
 | |
|         emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
 | |
|                  "&InChains[0], InChains.size());");
 | |
|       }
 | |
| 
 | |
|       // Loop over all of the operands of the instruction pattern, emitting code
 | |
|       // to fill them all in.  The node 'N' usually has number children equal to
 | |
|       // the number of input operands of the instruction.  However, in cases
 | |
|       // where there are predicate operands for an instruction, we need to fill
 | |
|       // in the 'execute always' values.  Match up the node operands to the
 | |
|       // instruction operands to do this.
 | |
|       std::vector<std::string> AllOps;
 | |
|       for (unsigned ChildNo = 0, InstOpNo = NumResults;
 | |
|            InstOpNo != II.OperandList.size(); ++InstOpNo) {
 | |
|         std::vector<std::string> Ops;
 | |
|         
 | |
|         // If this is a normal operand, emit it.
 | |
|         if (!II.OperandList[InstOpNo].Rec->isSubClassOf("PredicateOperand")) {
 | |
|           Ops = EmitResultCode(N->getChild(ChildNo), RetSelected, 
 | |
|                                InFlagDecled, ResNodeDecled);
 | |
|           AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
 | |
|           ++ChildNo;
 | |
|         } else {
 | |
|           // Otherwise, this is a predicate operand, emit the 'execute always'
 | |
|           // operands.
 | |
|           const DAGPredicateOperand &Pred =
 | |
|             ISE.getPredicateOperand(II.OperandList[InstOpNo].Rec);
 | |
|           for (unsigned i = 0, e = Pred.AlwaysOps.size(); i != e; ++i) {
 | |
|             Ops = EmitResultCode(Pred.AlwaysOps[i], RetSelected, 
 | |
|                                  InFlagDecled, ResNodeDecled);
 | |
|             AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Emit all the chain and CopyToReg stuff.
 | |
|       bool ChainEmitted = NodeHasChain;
 | |
|       if (NodeHasChain)
 | |
|         emitCode("AddToISelQueue(" + ChainName + ");");
 | |
|       if (NodeHasInFlag || HasImpInputs)
 | |
|         EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
 | |
|                              InFlagDecled, ResNodeDecled, true);
 | |
|       if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
 | |
|         if (!InFlagDecled) {
 | |
|           emitCode("SDOperand InFlag(0, 0);");
 | |
|           InFlagDecled = true;
 | |
|         }
 | |
|         if (NodeHasOptInFlag) {
 | |
|           emitCode("if (HasInFlag) {");
 | |
|           emitCode("  InFlag = N.getOperand(N.getNumOperands()-1);");
 | |
|           emitCode("  AddToISelQueue(InFlag);");
 | |
|           emitCode("}");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       unsigned ResNo = TmpNo++;
 | |
|       if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
 | |
|           NodeHasOptInFlag) {
 | |
|         std::string Code;
 | |
|         std::string Code2;
 | |
|         std::string NodeName;
 | |
|         if (!isRoot) {
 | |
|           NodeName = "Tmp" + utostr(ResNo);
 | |
|           Code2 = "SDOperand " + NodeName + " = SDOperand(";
 | |
|         } else {
 | |
|           NodeName = "ResNode";
 | |
|           if (!ResNodeDecled)
 | |
|             Code2 = "SDNode *" + NodeName + " = ";
 | |
|           else
 | |
|             Code2 = NodeName + " = ";
 | |
|         }
 | |
| 
 | |
|         Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
 | |
|         unsigned OpsNo = OpcNo;
 | |
|         emitOpcode(II.Namespace + "::" + II.TheDef->getName());
 | |
| 
 | |
|         // Output order: results, chain, flags
 | |
|         // Result types.
 | |
|         if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
 | |
|           Code += ", VT" + utostr(VTNo);
 | |
|           emitVT(getEnumName(N->getTypeNum(0)));
 | |
|         }
 | |
|         if (NodeHasChain)
 | |
|           Code += ", MVT::Other";
 | |
|         if (NodeHasOutFlag)
 | |
|           Code += ", MVT::Flag";
 | |
| 
 | |
|         // Figure out how many fixed inputs the node has.  This is important to
 | |
|         // know which inputs are the variable ones if present.
 | |
|         unsigned NumInputs = AllOps.size();
 | |
|         NumInputs += NodeHasChain;
 | |
|         
 | |
|         // Inputs.
 | |
|         if (HasVarOps) {
 | |
|           for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
 | |
|             emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
 | |
|           AllOps.clear();
 | |
|         }
 | |
| 
 | |
|         if (HasVarOps) {
 | |
|           // Figure out whether any operands at the end of the op list are not
 | |
|           // part of the variable section.
 | |
|           std::string EndAdjust;
 | |
|           if (NodeHasInFlag || HasImpInputs)
 | |
|             EndAdjust = "-1";  // Always has one flag.
 | |
|           else if (NodeHasOptInFlag)
 | |
|             EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
 | |
| 
 | |
|           emitCode("for (unsigned i = " + utostr(NumInputs) +
 | |
|                    ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
 | |
| 
 | |
|           emitCode("  AddToISelQueue(N.getOperand(i));");
 | |
|           emitCode("  Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
 | |
|           emitCode("}");
 | |
|         }
 | |
| 
 | |
|         if (NodeHasChain) {
 | |
|           if (HasVarOps)
 | |
|             emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
 | |
|           else
 | |
|             AllOps.push_back(ChainName);
 | |
|         }
 | |
| 
 | |
|         if (HasVarOps) {
 | |
|           if (NodeHasInFlag || HasImpInputs)
 | |
|             emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
 | |
|           else if (NodeHasOptInFlag) {
 | |
|             emitCode("if (HasInFlag)");
 | |
|             emitCode("  Ops" + utostr(OpsNo) + ".push_back(InFlag);");
 | |
|           }
 | |
|           Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
 | |
|             ".size()";
 | |
|         } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
 | |
|             AllOps.push_back("InFlag");
 | |
| 
 | |
|         unsigned NumOps = AllOps.size();
 | |
|         if (NumOps) {
 | |
|           if (!NodeHasOptInFlag && NumOps < 4) {
 | |
|             for (unsigned i = 0; i != NumOps; ++i)
 | |
|               Code += ", " + AllOps[i];
 | |
|           } else {
 | |
|             std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
 | |
|             for (unsigned i = 0; i != NumOps; ++i) {
 | |
|               OpsCode += AllOps[i];
 | |
|               if (i != NumOps-1)
 | |
|                 OpsCode += ", ";
 | |
|             }
 | |
|             emitCode(OpsCode + " };");
 | |
|             Code += ", Ops" + utostr(OpsNo) + ", ";
 | |
|             if (NodeHasOptInFlag) {
 | |
|               Code += "HasInFlag ? ";
 | |
|               Code += utostr(NumOps) + " : " + utostr(NumOps-1);
 | |
|             } else
 | |
|               Code += utostr(NumOps);
 | |
|           }
 | |
|         }
 | |
|             
 | |
|         if (!isRoot)
 | |
|           Code += "), 0";
 | |
|         emitCode(Code2 + Code + ");");
 | |
| 
 | |
|         if (NodeHasChain)
 | |
|           // Remember which op produces the chain.
 | |
|           if (!isRoot)
 | |
|             emitCode(ChainName + " = SDOperand(" + NodeName +
 | |
|                      ".Val, " + utostr(PatResults) + ");");
 | |
|           else
 | |
|             emitCode(ChainName + " = SDOperand(" + NodeName +
 | |
|                      ", " + utostr(PatResults) + ");");
 | |
| 
 | |
|         if (!isRoot) {
 | |
|           NodeOps.push_back("Tmp" + utostr(ResNo));
 | |
|           return NodeOps;
 | |
|         }
 | |
| 
 | |
|         bool NeedReplace = false;
 | |
|         if (NodeHasOutFlag) {
 | |
|           if (!InFlagDecled) {
 | |
|             emitCode("SDOperand InFlag = SDOperand(ResNode, " + 
 | |
|                      utostr(NumResults + (unsigned)NodeHasChain) + ");");
 | |
|             InFlagDecled = true;
 | |
|           } else
 | |
|             emitCode("InFlag = SDOperand(ResNode, " + 
 | |
|                      utostr(NumResults + (unsigned)NodeHasChain) + ");");
 | |
|         }
 | |
| 
 | |
|         if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) {
 | |
|           emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));");
 | |
|           NumResults = 1;
 | |
|         }
 | |
| 
 | |
|         if (FoldedChains.size() > 0) {
 | |
|           std::string Code;
 | |
|           for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
 | |
|             emitCode("ReplaceUses(SDOperand(" +
 | |
|                      FoldedChains[j].first + ".Val, " + 
 | |
|                      utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
 | |
|                      utostr(NumResults) + "));");
 | |
|           NeedReplace = true;
 | |
|         }
 | |
| 
 | |
|         if (NodeHasOutFlag) {
 | |
|           emitCode("ReplaceUses(SDOperand(N.Val, " +
 | |
|                    utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);");
 | |
|           NeedReplace = true;
 | |
|         }
 | |
| 
 | |
|         if (NeedReplace) {
 | |
|           for (unsigned i = 0; i < NumResults; i++)
 | |
|             emitCode("ReplaceUses(SDOperand(N.Val, " +
 | |
|                      utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));");
 | |
|           if (InputHasChain)
 | |
|             emitCode("ReplaceUses(SDOperand(N.Val, " + 
 | |
|                      utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, "
 | |
|                      + ChainName + ".ResNo" + "));");
 | |
|         } else
 | |
|           RetSelected = true;
 | |
| 
 | |
|         // User does not expect the instruction would produce a chain!
 | |
|         if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
 | |
|           ;
 | |
|         } else if (InputHasChain && !NodeHasChain) {
 | |
|           // One of the inner node produces a chain.
 | |
|           if (NodeHasOutFlag)
 | |
| 	    emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) +
 | |
| 		     "), SDOperand(ResNode, N.ResNo-1));");
 | |
| 	  for (unsigned i = 0; i < PatResults; ++i)
 | |
| 	    emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) +
 | |
| 		     "), SDOperand(ResNode, " + utostr(i) + "));");
 | |
| 	  emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) +
 | |
| 		   "), " + ChainName + ");");
 | |
| 	  RetSelected = false;
 | |
|         }
 | |
| 
 | |
| 	if (RetSelected)
 | |
| 	  emitCode("return ResNode;");
 | |
| 	else
 | |
| 	  emitCode("return NULL;");
 | |
|       } else {
 | |
|         std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
 | |
|           utostr(OpcNo);
 | |
|         if (N->getTypeNum(0) != MVT::isVoid)
 | |
|           Code += ", VT" + utostr(VTNo);
 | |
|         if (NodeHasOutFlag)
 | |
|           Code += ", MVT::Flag";
 | |
| 
 | |
|         if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
 | |
|           AllOps.push_back("InFlag");
 | |
| 
 | |
|         unsigned NumOps = AllOps.size();
 | |
|         if (NumOps) {
 | |
|           if (!NodeHasOptInFlag && NumOps < 4) {
 | |
|             for (unsigned i = 0; i != NumOps; ++i)
 | |
|               Code += ", " + AllOps[i];
 | |
|           } else {
 | |
|             std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
 | |
|             for (unsigned i = 0; i != NumOps; ++i) {
 | |
|               OpsCode += AllOps[i];
 | |
|               if (i != NumOps-1)
 | |
|                 OpsCode += ", ";
 | |
|             }
 | |
|             emitCode(OpsCode + " };");
 | |
|             Code += ", Ops" + utostr(OpcNo) + ", ";
 | |
|             Code += utostr(NumOps);
 | |
|           }
 | |
|         }
 | |
|         emitCode(Code + ");");
 | |
|         emitOpcode(II.Namespace + "::" + II.TheDef->getName());
 | |
|         if (N->getTypeNum(0) != MVT::isVoid)
 | |
|           emitVT(getEnumName(N->getTypeNum(0)));
 | |
|       }
 | |
| 
 | |
|       return NodeOps;
 | |
|     } else if (Op->isSubClassOf("SDNodeXForm")) {
 | |
|       assert(N->getNumChildren() == 1 && "node xform should have one child!");
 | |
|       // PatLeaf node - the operand may or may not be a leaf node. But it should
 | |
|       // behave like one.
 | |
|       std::vector<std::string> Ops =
 | |
|         EmitResultCode(N->getChild(0), RetSelected, InFlagDecled,
 | |
|                        ResNodeDecled, true);
 | |
|       unsigned ResNo = TmpNo++;
 | |
|       emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
 | |
|                + "(" + Ops.back() + ".Val);");
 | |
|       NodeOps.push_back("Tmp" + utostr(ResNo));
 | |
|       if (isRoot)
 | |
|         emitCode("return Tmp" + utostr(ResNo) + ".Val;");
 | |
|       return NodeOps;
 | |
|     } else {
 | |
|       N->dump();
 | |
|       std::cerr << "\n";
 | |
|       throw std::string("Unknown node in result pattern!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
 | |
|   /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that 
 | |
|   /// 'Pat' may be missing types.  If we find an unresolved type to add a check
 | |
|   /// for, this returns true otherwise false if Pat has all types.
 | |
|   bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
 | |
|                           const std::string &Prefix, bool isRoot = false) {
 | |
|     // Did we find one?
 | |
|     if (Pat->getExtTypes() != Other->getExtTypes()) {
 | |
|       // Move a type over from 'other' to 'pat'.
 | |
|       Pat->setTypes(Other->getExtTypes());
 | |
|       // The top level node type is checked outside of the select function.
 | |
|       if (!isRoot)
 | |
|         emitCheck(Prefix + ".Val->getValueType(0) == " +
 | |
|                   getName(Pat->getTypeNum(0)));
 | |
|       return true;
 | |
|     }
 | |
|   
 | |
|     unsigned OpNo =
 | |
|       (unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE);
 | |
|     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
 | |
|       if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
 | |
|                              Prefix + utostr(OpNo)))
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
 | |
|   /// being built.
 | |
|   void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
 | |
|                             bool &ChainEmitted, bool &InFlagDecled,
 | |
|                             bool &ResNodeDecled, bool isRoot = false) {
 | |
|     const CodeGenTarget &T = ISE.getTargetInfo();
 | |
|     unsigned OpNo =
 | |
|       (unsigned) NodeHasProperty(N, SDNPHasChain, ISE);
 | |
|     bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE);
 | |
|     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
 | |
|       TreePatternNode *Child = N->getChild(i);
 | |
|       if (!Child->isLeaf()) {
 | |
|         EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
 | |
|                              InFlagDecled, ResNodeDecled);
 | |
|       } else {
 | |
|         if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
 | |
|           if (!Child->getName().empty()) {
 | |
|             std::string Name = RootName + utostr(OpNo);
 | |
|             if (Duplicates.find(Name) != Duplicates.end())
 | |
|               // A duplicate! Do not emit a copy for this node.
 | |
|               continue;
 | |
|           }
 | |
| 
 | |
|           Record *RR = DI->getDef();
 | |
|           if (RR->isSubClassOf("Register")) {
 | |
|             MVT::ValueType RVT = getRegisterValueType(RR, T);
 | |
|             if (RVT == MVT::Flag) {
 | |
|               if (!InFlagDecled) {
 | |
|                 emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
 | |
|                 InFlagDecled = true;
 | |
|               } else
 | |
|                 emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
 | |
|               emitCode("AddToISelQueue(InFlag);");
 | |
|             } else {
 | |
|               if (!ChainEmitted) {
 | |
|                 emitCode("SDOperand Chain = CurDAG->getEntryNode();");
 | |
|                 ChainName = "Chain";
 | |
|                 ChainEmitted = true;
 | |
|               }
 | |
|               emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
 | |
|               if (!InFlagDecled) {
 | |
|                 emitCode("SDOperand InFlag(0, 0);");
 | |
|                 InFlagDecled = true;
 | |
|               }
 | |
|               std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
 | |
|               emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
 | |
|                        ", " + ISE.getQualifiedName(RR) +
 | |
|                        ", " +  RootName + utostr(OpNo) + ", InFlag).Val;");
 | |
|               ResNodeDecled = true;
 | |
|               emitCode(ChainName + " = SDOperand(ResNode, 0);");
 | |
|               emitCode("InFlag = SDOperand(ResNode, 1);");
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (HasInFlag) {
 | |
|       if (!InFlagDecled) {
 | |
|         emitCode("SDOperand InFlag = " + RootName +
 | |
|                ".getOperand(" + utostr(OpNo) + ");");
 | |
|         InFlagDecled = true;
 | |
|       } else
 | |
|         emitCode("InFlag = " + RootName +
 | |
|                ".getOperand(" + utostr(OpNo) + ");");
 | |
|       emitCode("AddToISelQueue(InFlag);");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// EmitCopyFromRegs - Emit code to copy result to physical registers
 | |
|   /// as specified by the instruction. It returns true if any copy is
 | |
|   /// emitted.
 | |
|   bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled,
 | |
|                         bool &ChainEmitted) {
 | |
|     bool RetVal = false;
 | |
|     Record *Op = N->getOperator();
 | |
|     if (Op->isSubClassOf("Instruction")) {
 | |
|       const DAGInstruction &Inst = ISE.getInstruction(Op);
 | |
|       const CodeGenTarget &CGT = ISE.getTargetInfo();
 | |
|       unsigned NumImpResults  = Inst.getNumImpResults();
 | |
|       for (unsigned i = 0; i < NumImpResults; i++) {
 | |
|         Record *RR = Inst.getImpResult(i);
 | |
|         if (RR->isSubClassOf("Register")) {
 | |
|           MVT::ValueType RVT = getRegisterValueType(RR, CGT);
 | |
|           if (RVT != MVT::Flag) {
 | |
|             if (!ChainEmitted) {
 | |
|               emitCode("SDOperand Chain = CurDAG->getEntryNode();");
 | |
|               ChainEmitted = true;
 | |
|               ChainName = "Chain";
 | |
|             }
 | |
|             std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
 | |
|             emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName +
 | |
|                      ", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) +
 | |
|                      ", InFlag).Val;");
 | |
|             ResNodeDecled = true;
 | |
|             emitCode(ChainName + " = SDOperand(ResNode, 1);");
 | |
|             emitCode("InFlag = SDOperand(ResNode, 2);");
 | |
|             RetVal = true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return RetVal;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// EmitCodeForPattern - Given a pattern to match, emit code to the specified
 | |
| /// stream to match the pattern, and generate the code for the match if it
 | |
| /// succeeds.  Returns true if the pattern is not guaranteed to match.
 | |
| void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
 | |
|                   std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
 | |
|                                            std::set<std::string> &GeneratedDecl,
 | |
|                                         std::vector<std::string> &TargetOpcodes,
 | |
|                                           std::vector<std::string> &TargetVTs) {
 | |
|   PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
 | |
|                              Pattern.getSrcPattern(), Pattern.getDstPattern(),
 | |
|                              GeneratedCode, GeneratedDecl,
 | |
|                              TargetOpcodes, TargetVTs);
 | |
| 
 | |
|   // Emit the matcher, capturing named arguments in VariableMap.
 | |
|   bool FoundChain = false;
 | |
|   Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
 | |
| 
 | |
|   // TP - Get *SOME* tree pattern, we don't care which.
 | |
|   TreePattern &TP = *PatternFragments.begin()->second;
 | |
|   
 | |
|   // At this point, we know that we structurally match the pattern, but the
 | |
|   // types of the nodes may not match.  Figure out the fewest number of type 
 | |
|   // comparisons we need to emit.  For example, if there is only one integer
 | |
|   // type supported by a target, there should be no type comparisons at all for
 | |
|   // integer patterns!
 | |
|   //
 | |
|   // To figure out the fewest number of type checks needed, clone the pattern,
 | |
|   // remove the types, then perform type inference on the pattern as a whole.
 | |
|   // If there are unresolved types, emit an explicit check for those types,
 | |
|   // apply the type to the tree, then rerun type inference.  Iterate until all
 | |
|   // types are resolved.
 | |
|   //
 | |
|   TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
 | |
|   RemoveAllTypes(Pat);
 | |
|   
 | |
|   do {
 | |
|     // Resolve/propagate as many types as possible.
 | |
|     try {
 | |
|       bool MadeChange = true;
 | |
|       while (MadeChange)
 | |
|         MadeChange = Pat->ApplyTypeConstraints(TP,
 | |
|                                                true/*Ignore reg constraints*/);
 | |
|     } catch (...) {
 | |
|       assert(0 && "Error: could not find consistent types for something we"
 | |
|              " already decided was ok!");
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|     // Insert a check for an unresolved type and add it to the tree.  If we find
 | |
|     // an unresolved type to add a check for, this returns true and we iterate,
 | |
|     // otherwise we are done.
 | |
|   } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
 | |
| 
 | |
|   Emitter.EmitResultCode(Pattern.getDstPattern(),
 | |
|                          false, false, false, false, true);
 | |
|   delete Pat;
 | |
| }
 | |
| 
 | |
| /// EraseCodeLine - Erase one code line from all of the patterns.  If removing
 | |
| /// a line causes any of them to be empty, remove them and return true when
 | |
| /// done.
 | |
| static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*, 
 | |
|                           std::vector<std::pair<unsigned, std::string> > > >
 | |
|                           &Patterns) {
 | |
|   bool ErasedPatterns = false;
 | |
|   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
 | |
|     Patterns[i].second.pop_back();
 | |
|     if (Patterns[i].second.empty()) {
 | |
|       Patterns.erase(Patterns.begin()+i);
 | |
|       --i; --e;
 | |
|       ErasedPatterns = true;
 | |
|     }
 | |
|   }
 | |
|   return ErasedPatterns;
 | |
| }
 | |
| 
 | |
| /// EmitPatterns - Emit code for at least one pattern, but try to group common
 | |
| /// code together between the patterns.
 | |
| void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*, 
 | |
|                               std::vector<std::pair<unsigned, std::string> > > >
 | |
|                                   &Patterns, unsigned Indent,
 | |
|                                   std::ostream &OS) {
 | |
|   typedef std::pair<unsigned, std::string> CodeLine;
 | |
|   typedef std::vector<CodeLine> CodeList;
 | |
|   typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
 | |
|   
 | |
|   if (Patterns.empty()) return;
 | |
|   
 | |
|   // Figure out how many patterns share the next code line.  Explicitly copy
 | |
|   // FirstCodeLine so that we don't invalidate a reference when changing
 | |
|   // Patterns.
 | |
|   const CodeLine FirstCodeLine = Patterns.back().second.back();
 | |
|   unsigned LastMatch = Patterns.size()-1;
 | |
|   while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
 | |
|     --LastMatch;
 | |
|   
 | |
|   // If not all patterns share this line, split the list into two pieces.  The
 | |
|   // first chunk will use this line, the second chunk won't.
 | |
|   if (LastMatch != 0) {
 | |
|     PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
 | |
|     PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
 | |
|     
 | |
|     // FIXME: Emit braces?
 | |
|     if (Shared.size() == 1) {
 | |
|       PatternToMatch &Pattern = *Shared.back().first;
 | |
|       OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
 | |
|       Pattern.getSrcPattern()->print(OS);
 | |
|       OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
 | |
|       Pattern.getDstPattern()->print(OS);
 | |
|       OS << "\n";
 | |
|       unsigned AddedComplexity = Pattern.getAddedComplexity();
 | |
|       OS << std::string(Indent, ' ') << "// Pattern complexity = "
 | |
|          << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
 | |
|          << "  cost = "
 | |
|          << getResultPatternCost(Pattern.getDstPattern(), *this)
 | |
|          << "  size = "
 | |
|          << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
 | |
|     }
 | |
|     if (FirstCodeLine.first != 1) {
 | |
|       OS << std::string(Indent, ' ') << "{\n";
 | |
|       Indent += 2;
 | |
|     }
 | |
|     EmitPatterns(Shared, Indent, OS);
 | |
|     if (FirstCodeLine.first != 1) {
 | |
|       Indent -= 2;
 | |
|       OS << std::string(Indent, ' ') << "}\n";
 | |
|     }
 | |
|     
 | |
|     if (Other.size() == 1) {
 | |
|       PatternToMatch &Pattern = *Other.back().first;
 | |
|       OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
 | |
|       Pattern.getSrcPattern()->print(OS);
 | |
|       OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
 | |
|       Pattern.getDstPattern()->print(OS);
 | |
|       OS << "\n";
 | |
|       unsigned AddedComplexity = Pattern.getAddedComplexity();
 | |
|       OS << std::string(Indent, ' ') << "// Pattern complexity = "
 | |
|          << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
 | |
|          << "  cost = "
 | |
|          << getResultPatternCost(Pattern.getDstPattern(), *this)
 | |
|          << "  size = "
 | |
|          << getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
 | |
|     }
 | |
|     EmitPatterns(Other, Indent, OS);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Remove this code from all of the patterns that share it.
 | |
|   bool ErasedPatterns = EraseCodeLine(Patterns);
 | |
|   
 | |
|   bool isPredicate = FirstCodeLine.first == 1;
 | |
|   
 | |
|   // Otherwise, every pattern in the list has this line.  Emit it.
 | |
|   if (!isPredicate) {
 | |
|     // Normal code.
 | |
|     OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
 | |
|   } else {
 | |
|     OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
 | |
|     
 | |
|     // If the next code line is another predicate, and if all of the pattern
 | |
|     // in this group share the same next line, emit it inline now.  Do this
 | |
|     // until we run out of common predicates.
 | |
|     while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
 | |
|       // Check that all of fhe patterns in Patterns end with the same predicate.
 | |
|       bool AllEndWithSamePredicate = true;
 | |
|       for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
 | |
|         if (Patterns[i].second.back() != Patterns.back().second.back()) {
 | |
|           AllEndWithSamePredicate = false;
 | |
|           break;
 | |
|         }
 | |
|       // If all of the predicates aren't the same, we can't share them.
 | |
|       if (!AllEndWithSamePredicate) break;
 | |
|       
 | |
|       // Otherwise we can.  Emit it shared now.
 | |
|       OS << " &&\n" << std::string(Indent+4, ' ')
 | |
|          << Patterns.back().second.back().second;
 | |
|       ErasedPatterns = EraseCodeLine(Patterns);
 | |
|     }
 | |
|     
 | |
|     OS << ") {\n";
 | |
|     Indent += 2;
 | |
|   }
 | |
|   
 | |
|   EmitPatterns(Patterns, Indent, OS);
 | |
|   
 | |
|   if (isPredicate)
 | |
|     OS << std::string(Indent-2, ' ') << "}\n";
 | |
| }
 | |
| 
 | |
| static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) {
 | |
|   const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op);
 | |
|   return OpcodeInfo.getEnumName();
 | |
| }
 | |
| 
 | |
| static std::string getLegalCName(std::string OpName) {
 | |
|   std::string::size_type pos = OpName.find("::");
 | |
|   if (pos != std::string::npos)
 | |
|     OpName.replace(pos, 2, "_");
 | |
|   return OpName;
 | |
| }
 | |
| 
 | |
| void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
 | |
|   std::string InstNS = Target.inst_begin()->second.Namespace;
 | |
|   if (!InstNS.empty()) InstNS += "::";
 | |
|   
 | |
|   // Group the patterns by their top-level opcodes.
 | |
|   std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode;
 | |
|   // All unique target node emission functions.
 | |
|   std::map<std::string, unsigned> EmitFunctions;
 | |
|   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
 | |
|     TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
 | |
|     if (!Node->isLeaf()) {
 | |
|       PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)].
 | |
|         push_back(&PatternsToMatch[i]);
 | |
|     } else {
 | |
|       const ComplexPattern *CP;
 | |
|       if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
 | |
|         PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)].
 | |
|           push_back(&PatternsToMatch[i]);
 | |
|       } else if ((CP = NodeGetComplexPattern(Node, *this))) {
 | |
|         std::vector<Record*> OpNodes = CP->getRootNodes();
 | |
|         for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
 | |
|           PatternsByOpcode[getOpcodeName(OpNodes[j], *this)]
 | |
|             .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(),
 | |
|                     &PatternsToMatch[i]);
 | |
|         }
 | |
|       } else {
 | |
|         std::cerr << "Unrecognized opcode '";
 | |
|         Node->dump();
 | |
|         std::cerr << "' on tree pattern '";
 | |
|         std::cerr << 
 | |
|            PatternsToMatch[i].getDstPattern()->getOperator()->getName();
 | |
|         std::cerr << "'!\n";
 | |
|         exit(1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // For each opcode, there might be multiple select functions, one per
 | |
|   // ValueType of the node (or its first operand if it doesn't produce a
 | |
|   // non-chain result.
 | |
|   std::map<std::string, std::vector<std::string> > OpcodeVTMap;
 | |
| 
 | |
|   // Emit one Select_* method for each top-level opcode.  We do this instead of
 | |
|   // emitting one giant switch statement to support compilers where this will
 | |
|   // result in the recursive functions taking less stack space.
 | |
|   for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
 | |
|          PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
 | |
|        PBOI != E; ++PBOI) {
 | |
|     const std::string &OpName = PBOI->first;
 | |
|     std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second;
 | |
|     assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
 | |
| 
 | |
|     // We want to emit all of the matching code now.  However, we want to emit
 | |
|     // the matches in order of minimal cost.  Sort the patterns so the least
 | |
|     // cost one is at the start.
 | |
|     std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
 | |
|                      PatternSortingPredicate(*this));
 | |
| 
 | |
|     // Split them into groups by type.
 | |
|     std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
 | |
|     for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
 | |
|       PatternToMatch *Pat = PatternsOfOp[i];
 | |
|       TreePatternNode *SrcPat = Pat->getSrcPattern();
 | |
|       MVT::ValueType VT = SrcPat->getTypeNum(0);
 | |
|       std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI = 
 | |
|         PatternsByType.find(VT);
 | |
|       if (TI != PatternsByType.end())
 | |
|         TI->second.push_back(Pat);
 | |
|       else {
 | |
|         std::vector<PatternToMatch*> PVec;
 | |
|         PVec.push_back(Pat);
 | |
|         PatternsByType.insert(std::make_pair(VT, PVec));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator
 | |
|            II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
 | |
|          ++II) {
 | |
|       MVT::ValueType OpVT = II->first;
 | |
|       std::vector<PatternToMatch*> &Patterns = II->second;
 | |
|       typedef std::vector<std::pair<unsigned,std::string> > CodeList;
 | |
|       typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
 | |
|     
 | |
|       std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
 | |
|       std::vector<std::vector<std::string> > PatternOpcodes;
 | |
|       std::vector<std::vector<std::string> > PatternVTs;
 | |
|       std::vector<std::set<std::string> > PatternDecls;
 | |
|       for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
 | |
|         CodeList GeneratedCode;
 | |
|         std::set<std::string> GeneratedDecl;
 | |
|         std::vector<std::string> TargetOpcodes;
 | |
|         std::vector<std::string> TargetVTs;
 | |
|         GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
 | |
|                                TargetOpcodes, TargetVTs);
 | |
|         CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
 | |
|         PatternDecls.push_back(GeneratedDecl);
 | |
|         PatternOpcodes.push_back(TargetOpcodes);
 | |
|         PatternVTs.push_back(TargetVTs);
 | |
|       }
 | |
|     
 | |
|       // Scan the code to see if all of the patterns are reachable and if it is
 | |
|       // possible that the last one might not match.
 | |
|       bool mightNotMatch = true;
 | |
|       for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
 | |
|         CodeList &GeneratedCode = CodeForPatterns[i].second;
 | |
|         mightNotMatch = false;
 | |
| 
 | |
|         for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
 | |
|           if (GeneratedCode[j].first == 1) { // predicate.
 | |
|             mightNotMatch = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       
 | |
|         // If this pattern definitely matches, and if it isn't the last one, the
 | |
|         // patterns after it CANNOT ever match.  Error out.
 | |
|         if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
 | |
|           std::cerr << "Pattern '";
 | |
|           CodeForPatterns[i].first->getSrcPattern()->print(std::cerr);
 | |
|           std::cerr << "' is impossible to select!\n";
 | |
|           exit(1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Factor target node emission code (emitted by EmitResultCode) into
 | |
|       // separate functions. Uniquing and share them among all instruction
 | |
|       // selection routines.
 | |
|       for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
 | |
|         CodeList &GeneratedCode = CodeForPatterns[i].second;
 | |
|         std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
 | |
|         std::vector<std::string> &TargetVTs = PatternVTs[i];
 | |
|         std::set<std::string> Decls = PatternDecls[i];
 | |
|         std::vector<std::string> AddedInits;
 | |
|         int CodeSize = (int)GeneratedCode.size();
 | |
|         int LastPred = -1;
 | |
|         for (int j = CodeSize-1; j >= 0; --j) {
 | |
|           if (LastPred == -1 && GeneratedCode[j].first == 1)
 | |
|             LastPred = j;
 | |
|           else if (LastPred != -1 && GeneratedCode[j].first == 2)
 | |
|             AddedInits.push_back(GeneratedCode[j].second);
 | |
|         }
 | |
| 
 | |
|         std::string CalleeCode = "(const SDOperand &N";
 | |
|         std::string CallerCode = "(N";
 | |
|         for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
 | |
|           CalleeCode += ", unsigned Opc" + utostr(j);
 | |
|           CallerCode += ", " + TargetOpcodes[j];
 | |
|         }
 | |
|         for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
 | |
|           CalleeCode += ", MVT::ValueType VT" + utostr(j);
 | |
|           CallerCode += ", " + TargetVTs[j];
 | |
|         }
 | |
|         for (std::set<std::string>::iterator
 | |
|                I = Decls.begin(), E = Decls.end(); I != E; ++I) {
 | |
|           std::string Name = *I;
 | |
|           CalleeCode += ", SDOperand &" + Name;
 | |
|           CallerCode += ", " + Name;
 | |
|         }
 | |
|         CallerCode += ");";
 | |
|         CalleeCode += ") ";
 | |
|         // Prevent emission routines from being inlined to reduce selection
 | |
|         // routines stack frame sizes.
 | |
|         CalleeCode += "DISABLE_INLINE ";
 | |
|         CalleeCode += "{\n";
 | |
| 
 | |
|         for (std::vector<std::string>::const_reverse_iterator
 | |
|                I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
 | |
|           CalleeCode += "  " + *I + "\n";
 | |
| 
 | |
|         for (int j = LastPred+1; j < CodeSize; ++j)
 | |
|           CalleeCode += "  " + GeneratedCode[j].second + "\n";
 | |
|         for (int j = LastPred+1; j < CodeSize; ++j)
 | |
|           GeneratedCode.pop_back();
 | |
|         CalleeCode += "}\n";
 | |
| 
 | |
|         // Uniquing the emission routines.
 | |
|         unsigned EmitFuncNum;
 | |
|         std::map<std::string, unsigned>::iterator EFI =
 | |
|           EmitFunctions.find(CalleeCode);
 | |
|         if (EFI != EmitFunctions.end()) {
 | |
|           EmitFuncNum = EFI->second;
 | |
|         } else {
 | |
|           EmitFuncNum = EmitFunctions.size();
 | |
|           EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
 | |
|           OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
 | |
|         }
 | |
| 
 | |
|         // Replace the emission code within selection routines with calls to the
 | |
|         // emission functions.
 | |
|         CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
 | |
|         GeneratedCode.push_back(std::make_pair(false, CallerCode));
 | |
|       }
 | |
| 
 | |
|       // Print function.
 | |
|       std::string OpVTStr;
 | |
|       if (OpVT == MVT::iPTR) {
 | |
|         OpVTStr = "_iPTR";
 | |
|       } else if (OpVT == MVT::isVoid) {
 | |
|         // Nodes with a void result actually have a first result type of either
 | |
|         // Other (a chain) or Flag.  Since there is no one-to-one mapping from
 | |
|         // void to this case, we handle it specially here.
 | |
|       } else {
 | |
|         OpVTStr = "_" + getEnumName(OpVT).substr(5);  // Skip 'MVT::'
 | |
|       }
 | |
|       std::map<std::string, std::vector<std::string> >::iterator OpVTI =
 | |
|         OpcodeVTMap.find(OpName);
 | |
|       if (OpVTI == OpcodeVTMap.end()) {
 | |
|         std::vector<std::string> VTSet;
 | |
|         VTSet.push_back(OpVTStr);
 | |
|         OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
 | |
|       } else
 | |
|         OpVTI->second.push_back(OpVTStr);
 | |
| 
 | |
|       OS << "SDNode *Select_" << getLegalCName(OpName)
 | |
|          << OpVTStr << "(const SDOperand &N) {\n";    
 | |
| 
 | |
|       // Loop through and reverse all of the CodeList vectors, as we will be
 | |
|       // accessing them from their logical front, but accessing the end of a
 | |
|       // vector is more efficient.
 | |
|       for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
 | |
|         CodeList &GeneratedCode = CodeForPatterns[i].second;
 | |
|         std::reverse(GeneratedCode.begin(), GeneratedCode.end());
 | |
|       }
 | |
|     
 | |
|       // Next, reverse the list of patterns itself for the same reason.
 | |
|       std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
 | |
|     
 | |
|       // Emit all of the patterns now, grouped together to share code.
 | |
|       EmitPatterns(CodeForPatterns, 2, OS);
 | |
|     
 | |
|       // If the last pattern has predicates (which could fail) emit code to
 | |
|       // catch the case where nothing handles a pattern.
 | |
|       if (mightNotMatch) {
 | |
|         OS << "  std::cerr << \"Cannot yet select: \";\n";
 | |
|         if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
 | |
|             OpName != "ISD::INTRINSIC_WO_CHAIN" &&
 | |
|             OpName != "ISD::INTRINSIC_VOID") {
 | |
|           OS << "  N.Val->dump(CurDAG);\n";
 | |
|         } else {
 | |
|           OS << "  unsigned iid = cast<ConstantSDNode>(N.getOperand("
 | |
|             "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
 | |
|              << "  std::cerr << \"intrinsic %\"<< "
 | |
|             "Intrinsic::getName((Intrinsic::ID)iid);\n";
 | |
|         }
 | |
|         OS << "  std::cerr << '\\n';\n"
 | |
|            << "  abort();\n"
 | |
|            << "  return NULL;\n";
 | |
|       }
 | |
|       OS << "}\n\n";
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Emit boilerplate.
 | |
|   OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
 | |
|      << "  std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
 | |
|      << "  AddToISelQueue(N.getOperand(0)); // Select the chain.\n\n"
 | |
|      << "  // Select the flag operand.\n"
 | |
|      << "  if (Ops.back().getValueType() == MVT::Flag)\n"
 | |
|      << "    AddToISelQueue(Ops.back());\n"
 | |
|      << "  SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n"
 | |
|      << "  std::vector<MVT::ValueType> VTs;\n"
 | |
|      << "  VTs.push_back(MVT::Other);\n"
 | |
|      << "  VTs.push_back(MVT::Flag);\n"
 | |
|      << "  SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
 | |
|                  "Ops.size());\n"
 | |
|      << "  return New.Val;\n"
 | |
|      << "}\n\n";
 | |
|   
 | |
|   OS << "// The main instruction selector code.\n"
 | |
|      << "SDNode *SelectCode(SDOperand N) {\n"
 | |
|      << "  if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
 | |
|      << "      N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
 | |
|      << "INSTRUCTION_LIST_END)) {\n"
 | |
|      << "    return NULL;   // Already selected.\n"
 | |
|      << "  }\n\n"
 | |
|      << "  MVT::ValueType NVT = N.Val->getValueType(0);\n"
 | |
|      << "  switch (N.getOpcode()) {\n"
 | |
|      << "  default: break;\n"
 | |
|      << "  case ISD::EntryToken:       // These leaves remain the same.\n"
 | |
|      << "  case ISD::BasicBlock:\n"
 | |
|      << "  case ISD::Register:\n"
 | |
|      << "  case ISD::HANDLENODE:\n"
 | |
|      << "  case ISD::TargetConstant:\n"
 | |
|      << "  case ISD::TargetConstantPool:\n"
 | |
|      << "  case ISD::TargetFrameIndex:\n"
 | |
|      << "  case ISD::TargetJumpTable:\n"
 | |
|      << "  case ISD::TargetGlobalAddress: {\n"
 | |
|      << "    return NULL;\n"
 | |
|      << "  }\n"
 | |
|      << "  case ISD::AssertSext:\n"
 | |
|      << "  case ISD::AssertZext: {\n"
 | |
|      << "    AddToISelQueue(N.getOperand(0));\n"
 | |
|      << "    ReplaceUses(N, N.getOperand(0));\n"
 | |
|      << "    return NULL;\n"
 | |
|      << "  }\n"
 | |
|      << "  case ISD::TokenFactor:\n"
 | |
|      << "  case ISD::CopyFromReg:\n"
 | |
|      << "  case ISD::CopyToReg: {\n"
 | |
|      << "    for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
 | |
|      << "      AddToISelQueue(N.getOperand(i));\n"
 | |
|      << "    return NULL;\n"
 | |
|      << "  }\n"
 | |
|      << "  case ISD::INLINEASM:  return Select_INLINEASM(N);\n";
 | |
| 
 | |
|     
 | |
|   // Loop over all of the case statements, emiting a call to each method we
 | |
|   // emitted above.
 | |
|   for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
 | |
|          PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
 | |
|        PBOI != E; ++PBOI) {
 | |
|     const std::string &OpName = PBOI->first;
 | |
|     // Potentially multiple versions of select for this opcode. One for each
 | |
|     // ValueType of the node (or its first true operand if it doesn't produce a
 | |
|     // result.
 | |
|     std::map<std::string, std::vector<std::string> >::iterator OpVTI =
 | |
|       OpcodeVTMap.find(OpName);
 | |
|     std::vector<std::string> &OpVTs = OpVTI->second;
 | |
|     OS << "  case " << OpName << ": {\n";
 | |
|     if (OpVTs.size() == 1) {
 | |
|       std::string &VTStr = OpVTs[0];
 | |
|       OS << "    return Select_" << getLegalCName(OpName)
 | |
|          << VTStr << "(N);\n";
 | |
|     } else {
 | |
|       // Keep track of whether we see a pattern that has an iPtr result.
 | |
|       bool HasPtrPattern = false;
 | |
|       bool HasDefaultPattern = false;
 | |
|       
 | |
|       OS << "    switch (NVT) {\n";
 | |
|       for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
 | |
|         std::string &VTStr = OpVTs[i];
 | |
|         if (VTStr.empty()) {
 | |
|           HasDefaultPattern = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If this is a match on iPTR: don't emit it directly, we need special
 | |
|         // code.
 | |
|         if (VTStr == "_iPTR") {
 | |
|           HasPtrPattern = true;
 | |
|           continue;
 | |
|         }
 | |
|         OS << "    case MVT::" << VTStr.substr(1) << ":\n"
 | |
|            << "      return Select_" << getLegalCName(OpName)
 | |
|            << VTStr << "(N);\n";
 | |
|       }
 | |
|       OS << "    default:\n";
 | |
|       
 | |
|       // If there is an iPTR result version of this pattern, emit it here.
 | |
|       if (HasPtrPattern) {
 | |
|         OS << "      if (NVT == TLI.getPointerTy())\n";
 | |
|         OS << "        return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
 | |
|       }
 | |
|       if (HasDefaultPattern) {
 | |
|         OS << "      return Select_" << getLegalCName(OpName) << "(N);\n";
 | |
|       }
 | |
|       OS << "      break;\n";
 | |
|       OS << "    }\n";
 | |
|       OS << "    break;\n";
 | |
|     }
 | |
|     OS << "  }\n";
 | |
|   }
 | |
| 
 | |
|   OS << "  } // end of big switch.\n\n"
 | |
|      << "  std::cerr << \"Cannot yet select: \";\n"
 | |
|      << "  if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
 | |
|      << "      N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
 | |
|      << "      N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
 | |
|      << "    N.Val->dump(CurDAG);\n"
 | |
|      << "  } else {\n"
 | |
|      << "    unsigned iid = cast<ConstantSDNode>(N.getOperand("
 | |
|                "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
 | |
|      << "    std::cerr << \"intrinsic %\"<< "
 | |
|                         "Intrinsic::getName((Intrinsic::ID)iid);\n"
 | |
|      << "  }\n"
 | |
|      << "  std::cerr << '\\n';\n"
 | |
|      << "  abort();\n"
 | |
|      << "  return NULL;\n"
 | |
|      << "}\n";
 | |
| }
 | |
| 
 | |
| void DAGISelEmitter::run(std::ostream &OS) {
 | |
|   EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
 | |
|                        " target", OS);
 | |
|   
 | |
|   OS << "// *** NOTE: This file is #included into the middle of the target\n"
 | |
|      << "// *** instruction selector class.  These functions are really "
 | |
|      << "methods.\n\n";
 | |
|   
 | |
|   OS << "#include \"llvm/Support/Compiler.h\"\n";
 | |
| 
 | |
|   OS << "// Instruction selector priority queue:\n"
 | |
|      << "std::vector<SDNode*> ISelQueue;\n";
 | |
|   OS << "/// Keep track of nodes which have already been added to queue.\n"
 | |
|      << "unsigned char *ISelQueued;\n";
 | |
|   OS << "/// Keep track of nodes which have already been selected.\n"
 | |
|      << "unsigned char *ISelSelected;\n";
 | |
|   OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
 | |
|      << "std::vector<SDNode*> ISelKilled;\n\n";
 | |
| 
 | |
|   OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
 | |
|   OS << "/// not reach Op.\n";
 | |
|   OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
 | |
|   OS << "  if (Chain->getOpcode() == ISD::EntryToken)\n";
 | |
|   OS << "    return true;\n";
 | |
|   OS << "  else if (Chain->getOpcode() == ISD::TokenFactor)\n";
 | |
|   OS << "    return false;\n";
 | |
|   OS << "  else if (Chain->getNumOperands() > 0) {\n";
 | |
|   OS << "    SDOperand C0 = Chain->getOperand(0);\n";
 | |
|   OS << "    if (C0.getValueType() == MVT::Other)\n";
 | |
|   OS << "      return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
 | |
|   OS << "  }\n";
 | |
|   OS << "  return true;\n";
 | |
|   OS << "}\n";
 | |
| 
 | |
|   OS << "/// Sorting functions for the selection queue.\n"
 | |
|      << "struct isel_sort : public std::binary_function"
 | |
|      << "<SDNode*, SDNode*, bool> {\n"
 | |
|      << "  bool operator()(const SDNode* left, const SDNode* right) "
 | |
|      << "const {\n"
 | |
|      << "    return (left->getNodeId() > right->getNodeId());\n"
 | |
|      << "  }\n"
 | |
|      << "};\n\n";
 | |
| 
 | |
|   OS << "inline void setQueued(int Id) {\n";
 | |
|   OS << "  ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
 | |
|   OS << "}\n";
 | |
|   OS << "inline bool isQueued(int Id) {\n";
 | |
|   OS << "  return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
 | |
|   OS << "}\n";
 | |
|   OS << "inline void setSelected(int Id) {\n";
 | |
|   OS << "  ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
 | |
|   OS << "}\n";
 | |
|   OS << "inline bool isSelected(int Id) {\n";
 | |
|   OS << "  return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
 | |
|   OS << "  int Id = N.Val->getNodeId();\n";
 | |
|   OS << "  if (Id != -1 && !isQueued(Id)) {\n";
 | |
|   OS << "    ISelQueue.push_back(N.Val);\n";
 | |
|  OS << "    std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
 | |
|   OS << "    setQueued(Id);\n";
 | |
|   OS << "  }\n";
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   OS << "inline void RemoveKilled() {\n";
 | |
| OS << "  unsigned NumKilled = ISelKilled.size();\n";
 | |
|   OS << "  if (NumKilled) {\n";
 | |
|   OS << "    for (unsigned i = 0; i != NumKilled; ++i) {\n";
 | |
|   OS << "      SDNode *Temp = ISelKilled[i];\n";
 | |
|   OS << "      ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), "
 | |
|      << "Temp), ISelQueue.end());\n";
 | |
|   OS << "    };\n";
 | |
|  OS << "    std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
 | |
|   OS << "    ISelKilled.clear();\n";
 | |
|   OS << "  }\n";
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
 | |
|   OS << "  CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n";
 | |
|   OS << "  setSelected(F.Val->getNodeId());\n";
 | |
|   OS << "  RemoveKilled();\n";
 | |
|   OS << "}\n";
 | |
|   OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n";
 | |
|   OS << "  CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
 | |
|   OS << "  setSelected(F->getNodeId());\n";
 | |
|   OS << "  RemoveKilled();\n";
 | |
|   OS << "}\n\n";
 | |
| 
 | |
|   OS << "// SelectRoot - Top level entry to DAG isel.\n";
 | |
|   OS << "SDOperand SelectRoot(SDOperand Root) {\n";
 | |
|   OS << "  SelectRootInit();\n";
 | |
|   OS << "  unsigned NumBytes = (DAGSize + 7) / 8;\n";
 | |
|   OS << "  ISelQueued   = new unsigned char[NumBytes];\n";
 | |
|   OS << "  ISelSelected = new unsigned char[NumBytes];\n";
 | |
|   OS << "  memset(ISelQueued,   0, NumBytes);\n";
 | |
|   OS << "  memset(ISelSelected, 0, NumBytes);\n";
 | |
|   OS << "\n";
 | |
|   OS << "  // Create a dummy node (which is not added to allnodes), that adds\n"
 | |
|      << "  // a reference to the root node, preventing it from being deleted,\n"
 | |
|      << "  // and tracking any changes of the root.\n"
 | |
|      << "  HandleSDNode Dummy(CurDAG->getRoot());\n"
 | |
|      << "  ISelQueue.push_back(CurDAG->getRoot().Val);\n";
 | |
|   OS << "  while (!ISelQueue.empty()) {\n";
 | |
|   OS << "    SDNode *Node = ISelQueue.front();\n";
 | |
|   OS << "    std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
 | |
|   OS << "    ISelQueue.pop_back();\n";
 | |
|   OS << "    if (!isSelected(Node->getNodeId())) {\n";
 | |
|   OS << "      SDNode *ResNode = Select(SDOperand(Node, 0));\n";
 | |
|   OS << "      if (ResNode != Node) {\n";
 | |
|   OS << "        if (ResNode)\n";
 | |
|   OS << "          ReplaceUses(Node, ResNode);\n";
 | |
|   OS << "        if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
 | |
|   OS << "          CurDAG->RemoveDeadNode(Node, ISelKilled);\n";
 | |
|   OS << "          RemoveKilled();\n";
 | |
|   OS << "        }\n";
 | |
|   OS << "      }\n";
 | |
|   OS << "    }\n";
 | |
|   OS << "  }\n";
 | |
|   OS << "\n";
 | |
|   OS << "  delete[] ISelQueued;\n";
 | |
|   OS << "  ISelQueued = NULL;\n";
 | |
|   OS << "  delete[] ISelSelected;\n";
 | |
|   OS << "  ISelSelected = NULL;\n";
 | |
|   OS << "  return Dummy.getValue();\n";
 | |
|   OS << "}\n";
 | |
|   
 | |
|   Intrinsics = LoadIntrinsics(Records);
 | |
|   ParseNodeInfo();
 | |
|   ParseNodeTransforms(OS);
 | |
|   ParseComplexPatterns();
 | |
|   ParsePatternFragments(OS);
 | |
|   ParsePredicateOperands();
 | |
|   ParseInstructions();
 | |
|   ParsePatterns();
 | |
|   
 | |
|   // Generate variants.  For example, commutative patterns can match
 | |
|   // multiple ways.  Add them to PatternsToMatch as well.
 | |
|   GenerateVariants();
 | |
| 
 | |
|   
 | |
|   DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n";
 | |
|         for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
 | |
|           std::cerr << "PATTERN: ";  PatternsToMatch[i].getSrcPattern()->dump();
 | |
|           std::cerr << "\nRESULT:  ";PatternsToMatch[i].getDstPattern()->dump();
 | |
|           std::cerr << "\n";
 | |
|         });
 | |
|   
 | |
|   // At this point, we have full information about the 'Patterns' we need to
 | |
|   // parse, both implicitly from instructions as well as from explicit pattern
 | |
|   // definitions.  Emit the resultant instruction selector.
 | |
|   EmitInstructionSelector(OS);  
 | |
|   
 | |
|   for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
 | |
|        E = PatternFragments.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   PatternFragments.clear();
 | |
| 
 | |
|   Instructions.clear();
 | |
| }
 |