mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This patch was generated by a clang tidy checker that is being open sourced. The documentation of that checker is the following: /// The emptiness of a container should be checked using the empty method /// instead of the size method. It is not guaranteed that size is a /// constant-time function, and it is generally more efficient and also shows /// clearer intent to use empty. Furthermore some containers may implement the /// empty method but not implement the size method. Using empty whenever /// possible makes it easier to switch to another container in the future. Patch by Gábor Horváth! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226161 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2961 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2961 lines
		
	
	
		
			120 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements the TargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineJumpTableInfo.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <cctype>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// NOTE: The TargetMachine owns TLOF.
 | |
| TargetLowering::TargetLowering(const TargetMachine &tm)
 | |
|   : TargetLoweringBase(tm) {}
 | |
| 
 | |
| const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Check whether a given call node is in tail position within its function. If
 | |
| /// so, it sets Chain to the input chain of the tail call.
 | |
| bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
 | |
|                                           SDValue &Chain) const {
 | |
|   const Function *F = DAG.getMachineFunction().getFunction();
 | |
| 
 | |
|   // Conservatively require the attributes of the call to match those of
 | |
|   // the return. Ignore noalias because it doesn't affect the call sequence.
 | |
|   AttributeSet CallerAttrs = F->getAttributes();
 | |
|   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
 | |
|       .removeAttribute(Attribute::NoAlias).hasAttributes())
 | |
|     return false;
 | |
| 
 | |
|   // It's not safe to eliminate the sign / zero extension of the return value.
 | |
|   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
 | |
|       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
 | |
|     return false;
 | |
| 
 | |
|   // Check if the only use is a function return node.
 | |
|   return isUsedByReturnOnly(Node, Chain);
 | |
| }
 | |
| 
 | |
| /// \brief Set CallLoweringInfo attribute flags based on a call instruction
 | |
| /// and called function attributes.
 | |
| void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
 | |
|                                                  unsigned AttrIdx) {
 | |
|   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
 | |
|   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
 | |
|   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
 | |
|   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
 | |
|   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
 | |
|   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
 | |
|   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
 | |
|   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
 | |
|   Alignment  = CS->getParamAlignment(AttrIdx);
 | |
| }
 | |
| 
 | |
| /// Generate a libcall taking the given operands as arguments and returning a
 | |
| /// result of type RetVT.
 | |
| std::pair<SDValue, SDValue>
 | |
| TargetLowering::makeLibCall(SelectionDAG &DAG,
 | |
|                             RTLIB::Libcall LC, EVT RetVT,
 | |
|                             const SDValue *Ops, unsigned NumOps,
 | |
|                             bool isSigned, SDLoc dl,
 | |
|                             bool doesNotReturn,
 | |
|                             bool isReturnValueUsed) const {
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   Args.reserve(NumOps);
 | |
| 
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     Entry.Node = Ops[i];
 | |
|     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
 | |
|     Entry.isSExt = isSigned;
 | |
|     Entry.isZExt = !isSigned;
 | |
|     Args.push_back(Entry);
 | |
|   }
 | |
|   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
 | |
| 
 | |
|   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
 | |
|   TargetLowering::CallLoweringInfo CLI(DAG);
 | |
|   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
 | |
|     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
 | |
|     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
 | |
|     .setSExtResult(isSigned).setZExtResult(!isSigned);
 | |
|   return LowerCallTo(CLI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
 | |
| /// shared among BR_CC, SELECT_CC, and SETCC handlers.
 | |
| void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
 | |
|                                          SDValue &NewLHS, SDValue &NewRHS,
 | |
|                                          ISD::CondCode &CCCode,
 | |
|                                          SDLoc dl) const {
 | |
|   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
 | |
|          && "Unsupported setcc type!");
 | |
| 
 | |
|   // Expand into one or more soft-fp libcall(s).
 | |
|   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
 | |
|   switch (CCCode) {
 | |
|   case ISD::SETEQ:
 | |
|   case ISD::SETOEQ:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
 | |
|     break;
 | |
|   case ISD::SETNE:
 | |
|   case ISD::SETUNE:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
 | |
|     break;
 | |
|   case ISD::SETGE:
 | |
|   case ISD::SETOGE:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
 | |
|     break;
 | |
|   case ISD::SETLT:
 | |
|   case ISD::SETOLT:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
 | |
|     break;
 | |
|   case ISD::SETLE:
 | |
|   case ISD::SETOLE:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
 | |
|     break;
 | |
|   case ISD::SETGT:
 | |
|   case ISD::SETOGT:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
 | |
|     break;
 | |
|   case ISD::SETUO:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
 | |
|     break;
 | |
|   case ISD::SETO:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
 | |
|     break;
 | |
|   default:
 | |
|     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | |
|           (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
 | |
|     switch (CCCode) {
 | |
|     case ISD::SETONE:
 | |
|       // SETONE = SETOLT | SETOGT
 | |
|       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
 | |
|       // Fallthrough
 | |
|     case ISD::SETUGT:
 | |
|       LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
 | |
|       break;
 | |
|     case ISD::SETUGE:
 | |
|       LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
 | |
|       break;
 | |
|     case ISD::SETULT:
 | |
|       LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
 | |
|       break;
 | |
|     case ISD::SETULE:
 | |
|       LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
 | |
|       break;
 | |
|     case ISD::SETUEQ:
 | |
|       LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | |
|             (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
 | |
|       break;
 | |
|     default: llvm_unreachable("Do not know how to soften this setcc!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use the target specific return value for comparions lib calls.
 | |
|   EVT RetVT = getCmpLibcallReturnType();
 | |
|   SDValue Ops[2] = { NewLHS, NewRHS };
 | |
|   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
 | |
|                        dl).first;
 | |
|   NewRHS = DAG.getConstant(0, RetVT);
 | |
|   CCCode = getCmpLibcallCC(LC1);
 | |
|   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
 | |
|     SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
 | |
|                               getSetCCResultType(*DAG.getContext(), RetVT),
 | |
|                               NewLHS, NewRHS, DAG.getCondCode(CCCode));
 | |
|     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
 | |
|                          dl).first;
 | |
|     NewLHS = DAG.getNode(ISD::SETCC, dl,
 | |
|                          getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
 | |
|                          NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
 | |
|     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
 | |
|     NewRHS = SDValue();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getJumpTableEncoding - Return the entry encoding for a jump table in the
 | |
| /// current function.  The returned value is a member of the
 | |
| /// MachineJumpTableInfo::JTEntryKind enum.
 | |
| unsigned TargetLowering::getJumpTableEncoding() const {
 | |
|   // In non-pic modes, just use the address of a block.
 | |
|   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
 | |
|     return MachineJumpTableInfo::EK_BlockAddress;
 | |
| 
 | |
|   // In PIC mode, if the target supports a GPRel32 directive, use it.
 | |
|   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
 | |
|     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
 | |
| 
 | |
|   // Otherwise, use a label difference.
 | |
|   return MachineJumpTableInfo::EK_LabelDifference32;
 | |
| }
 | |
| 
 | |
| SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   // If our PIC model is GP relative, use the global offset table as the base.
 | |
|   unsigned JTEncoding = getJumpTableEncoding();
 | |
| 
 | |
|   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
 | |
|       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
 | |
|     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
 | |
| 
 | |
|   return Table;
 | |
| }
 | |
| 
 | |
| /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
 | |
| /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
 | |
| /// MCExpr.
 | |
| const MCExpr *
 | |
| TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | |
|                                              unsigned JTI,MCContext &Ctx) const{
 | |
|   // The normal PIC reloc base is the label at the start of the jump table.
 | |
|   return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
 | |
| }
 | |
| 
 | |
| bool
 | |
| TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // Assume that everything is safe in static mode.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::Static)
 | |
|     return true;
 | |
| 
 | |
|   // In dynamic-no-pic mode, assume that known defined values are safe.
 | |
|   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
 | |
|       GA &&
 | |
|       !GA->getGlobal()->isDeclaration() &&
 | |
|       !GA->getGlobal()->isWeakForLinker())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise assume nothing is safe.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Optimization Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the
 | |
| /// specified instruction is a constant integer.  If so, check to see if there
 | |
| /// are any bits set in the constant that are not demanded.  If so, shrink the
 | |
| /// constant and return true.
 | |
| bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
 | |
|                                                         const APInt &Demanded) {
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // FIXME: ISD::SELECT, ISD::SELECT_CC
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::XOR:
 | |
|   case ISD::AND:
 | |
|   case ISD::OR: {
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|     if (!C) return false;
 | |
| 
 | |
|     if (Op.getOpcode() == ISD::XOR &&
 | |
|         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
 | |
|       return false;
 | |
| 
 | |
|     // if we can expand it to have all bits set, do it
 | |
|     if (C->getAPIntValue().intersects(~Demanded)) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
 | |
|                                 DAG.getConstant(Demanded &
 | |
|                                                 C->getAPIntValue(),
 | |
|                                                 VT));
 | |
|       return CombineTo(Op, New);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
 | |
| /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
 | |
| /// cast, but it could be generalized for targets with other types of
 | |
| /// implicit widening casts.
 | |
| bool
 | |
| TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
 | |
|                                                     unsigned BitWidth,
 | |
|                                                     const APInt &Demanded,
 | |
|                                                     SDLoc dl) {
 | |
|   assert(Op.getNumOperands() == 2 &&
 | |
|          "ShrinkDemandedOp only supports binary operators!");
 | |
|   assert(Op.getNode()->getNumValues() == 1 &&
 | |
|          "ShrinkDemandedOp only supports nodes with one result!");
 | |
| 
 | |
|   // Early return, as this function cannot handle vector types.
 | |
|   if (Op.getValueType().isVector())
 | |
|     return false;
 | |
| 
 | |
|   // Don't do this if the node has another user, which may require the
 | |
|   // full value.
 | |
|   if (!Op.getNode()->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Search for the smallest integer type with free casts to and from
 | |
|   // Op's type. For expedience, just check power-of-2 integer types.
 | |
|   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | |
|   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
 | |
|   unsigned SmallVTBits = DemandedSize;
 | |
|   if (!isPowerOf2_32(SmallVTBits))
 | |
|     SmallVTBits = NextPowerOf2(SmallVTBits);
 | |
|   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
 | |
|     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
 | |
|     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
 | |
|         TLI.isZExtFree(SmallVT, Op.getValueType())) {
 | |
|       // We found a type with free casts.
 | |
|       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
 | |
|                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
 | |
|                                           Op.getNode()->getOperand(0)),
 | |
|                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
 | |
|                                           Op.getNode()->getOperand(1)));
 | |
|       bool NeedZext = DemandedSize > SmallVTBits;
 | |
|       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
 | |
|                               dl, Op.getValueType(), X);
 | |
|       return CombineTo(Op, Z);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
 | |
| /// DemandedMask bits of the result of Op are ever used downstream.  If we can
 | |
| /// use this information to simplify Op, create a new simplified DAG node and
 | |
| /// return true, returning the original and new nodes in Old and New. Otherwise,
 | |
| /// analyze the expression and return a mask of KnownOne and KnownZero bits for
 | |
| /// the expression (used to simplify the caller).  The KnownZero/One bits may
 | |
| /// only be accurate for those bits in the DemandedMask.
 | |
| bool TargetLowering::SimplifyDemandedBits(SDValue Op,
 | |
|                                           const APInt &DemandedMask,
 | |
|                                           APInt &KnownZero,
 | |
|                                           APInt &KnownOne,
 | |
|                                           TargetLoweringOpt &TLO,
 | |
|                                           unsigned Depth) const {
 | |
|   unsigned BitWidth = DemandedMask.getBitWidth();
 | |
|   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
 | |
|          "Mask size mismatches value type size!");
 | |
|   APInt NewMask = DemandedMask;
 | |
|   SDLoc dl(Op);
 | |
| 
 | |
|   // Don't know anything.
 | |
|   KnownZero = KnownOne = APInt(BitWidth, 0);
 | |
| 
 | |
|   // Other users may use these bits.
 | |
|   if (!Op.getNode()->hasOneUse()) {
 | |
|     if (Depth != 0) {
 | |
|       // If not at the root, Just compute the KnownZero/KnownOne bits to
 | |
|       // simplify things downstream.
 | |
|       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
 | |
|       return false;
 | |
|     }
 | |
|     // If this is the root being simplified, allow it to have multiple uses,
 | |
|     // just set the NewMask to all bits.
 | |
|     NewMask = APInt::getAllOnesValue(BitWidth);
 | |
|   } else if (DemandedMask == 0) {
 | |
|     // Not demanding any bits from Op.
 | |
|     if (Op.getOpcode() != ISD::UNDEF)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
 | |
|     return false;
 | |
|   } else if (Depth == 6) {        // Limit search depth.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::Constant:
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
 | |
|     KnownZero = ~KnownOne;
 | |
|     return false;   // Don't fall through, will infinitely loop.
 | |
|   case ISD::AND:
 | |
|     // If the RHS is a constant, check to see if the LHS would be zero without
 | |
|     // using the bits from the RHS.  Below, we use knowledge about the RHS to
 | |
|     // simplify the LHS, here we're using information from the LHS to simplify
 | |
|     // the RHS.
 | |
|     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       APInt LHSZero, LHSOne;
 | |
|       // Do not increment Depth here; that can cause an infinite loop.
 | |
|       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
 | |
|       // If the LHS already has zeros where RHSC does, this and is dead.
 | |
|       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
 | |
|         return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|       // If any of the set bits in the RHS are known zero on the LHS, shrink
 | |
|       // the constant.
 | |
|       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If all of the demanded bits are known one on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
 | |
|       return true;
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
| 
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     break;
 | |
|   case ISD::OR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
 | |
|                              KnownZero2, KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If all of the potentially set bits on one side are known to be set on
 | |
|     // the other side, just use the 'other' side.
 | |
|     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, NewMask))
 | |
|       return true;
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
| 
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     break;
 | |
|   case ISD::XOR:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if ((KnownZero & NewMask) == NewMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
|     if ((KnownZero2 & NewMask) == NewMask)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(1));
 | |
|     // If the operation can be done in a smaller type, do so.
 | |
|     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
| 
 | |
|     // If all of the unknown bits are known to be zero on one side or the other
 | |
|     // (but not both) turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
 | |
|                                                Op.getOperand(0),
 | |
|                                                Op.getOperand(1)));
 | |
| 
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
| 
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     // NB: it is okay if more bits are known than are requested
 | |
|     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
 | |
|       if (KnownOne == KnownOne2) { // set bits are the same on both sides
 | |
|         EVT VT = Op.getValueType();
 | |
|         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
 | |
|                                                  Op.getOperand(0), ANDC));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     // for XOR, we prefer to force bits to 1 if they will make a -1.
 | |
|     // if we can't force bits, try to shrink constant
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       APInt Expanded = C->getAPIntValue() | (~NewMask);
 | |
|       // if we can expand it to have all bits set, do it
 | |
|       if (Expanded.isAllOnesValue()) {
 | |
|         if (Expanded != C->getAPIntValue()) {
 | |
|           EVT VT = Op.getValueType();
 | |
|           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
 | |
|                                           TLO.DAG.getConstant(Expanded, VT));
 | |
|           return TLO.CombineTo(Op, New);
 | |
|         }
 | |
|         // if it already has all the bits set, nothing to change
 | |
|         // but don't shrink either!
 | |
|       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     KnownZero = KnownZeroOut;
 | |
|     KnownOne  = KnownOneOut;
 | |
|     break;
 | |
|   case ISD::SELECT:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, NewMask))
 | |
|       return true;
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SELECT_CC:
 | |
|     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (TLO.ShrinkDemandedConstant(Op, NewMask))
 | |
|       return true;
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     break;
 | |
|   case ISD::SHL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
 | |
|       // single shift.  We can do this if the bottom bits (which are shifted
 | |
|       // out) are never demanded.
 | |
|       if (InOp.getOpcode() == ISD::SRL &&
 | |
|           isa<ConstantSDNode>(InOp.getOperand(1))) {
 | |
|         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
 | |
|           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
 | |
|           unsigned Opc = ISD::SHL;
 | |
|           int Diff = ShAmt-C1;
 | |
|           if (Diff < 0) {
 | |
|             Diff = -Diff;
 | |
|             Opc = ISD::SRL;
 | |
|           }
 | |
| 
 | |
|           SDValue NewSA =
 | |
|             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
 | |
|           EVT VT = Op.getValueType();
 | |
|           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
 | |
|                                                    InOp.getOperand(0), NewSA));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
| 
 | |
|       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
 | |
|       // are not demanded. This will likely allow the anyext to be folded away.
 | |
|       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
 | |
|         SDValue InnerOp = InOp.getNode()->getOperand(0);
 | |
|         EVT InnerVT = InnerOp.getValueType();
 | |
|         unsigned InnerBits = InnerVT.getSizeInBits();
 | |
|         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
 | |
|             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
 | |
|           EVT ShTy = getShiftAmountTy(InnerVT);
 | |
|           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
 | |
|             ShTy = InnerVT;
 | |
|           SDValue NarrowShl =
 | |
|             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
 | |
|                             TLO.DAG.getConstant(ShAmt, ShTy));
 | |
|           return
 | |
|             TLO.CombineTo(Op,
 | |
|                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
 | |
|                                           NarrowShl));
 | |
|         }
 | |
|         // Repeat the SHL optimization above in cases where an extension
 | |
|         // intervenes: (shl (anyext (shr x, c1)), c2) to
 | |
|         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
 | |
|         // aren't demanded (as above) and that the shifted upper c1 bits of
 | |
|         // x aren't demanded.
 | |
|         if (InOp.hasOneUse() &&
 | |
|             InnerOp.getOpcode() == ISD::SRL &&
 | |
|             InnerOp.hasOneUse() &&
 | |
|             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
 | |
|           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
 | |
|             ->getZExtValue();
 | |
|           if (InnerShAmt < ShAmt &&
 | |
|               InnerShAmt < InnerBits &&
 | |
|               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
 | |
|               NewMask.trunc(ShAmt) == 0) {
 | |
|             SDValue NewSA =
 | |
|               TLO.DAG.getConstant(ShAmt - InnerShAmt,
 | |
|                                   Op.getOperand(1).getValueType());
 | |
|             EVT VT = Op.getValueType();
 | |
|             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
 | |
|                                              InnerOp.getOperand(0));
 | |
|             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
 | |
|                                                      NewExt, NewSA));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       KnownZero <<= SA->getZExtValue();
 | |
|       KnownOne  <<= SA->getZExtValue();
 | |
|       // low bits known zero.
 | |
|       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRL:
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
|       unsigned VTSize = VT.getSizeInBits();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
 | |
|       // single shift.  We can do this if the top bits (which are shifted out)
 | |
|       // are never demanded.
 | |
|       if (InOp.getOpcode() == ISD::SHL &&
 | |
|           isa<ConstantSDNode>(InOp.getOperand(1))) {
 | |
|         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
 | |
|           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
 | |
|           unsigned Opc = ISD::SRL;
 | |
|           int Diff = ShAmt-C1;
 | |
|           if (Diff < 0) {
 | |
|             Diff = -Diff;
 | |
|             Opc = ISD::SHL;
 | |
|           }
 | |
| 
 | |
|           SDValue NewSA =
 | |
|             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
 | |
|           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
 | |
|                                                    InOp.getOperand(0), NewSA));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Compute the new bits that are at the top now.
 | |
|       if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
| 
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
 | |
|       KnownZero |= HighBits;  // High bits known zero.
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SRA:
 | |
|     // If this is an arithmetic shift right and only the low-bit is set, we can
 | |
|     // always convert this into a logical shr, even if the shift amount is
 | |
|     // variable.  The low bit of the shift cannot be an input sign bit unless
 | |
|     // the shift amount is >= the size of the datatype, which is undefined.
 | |
|     if (NewMask == 1)
 | |
|       return TLO.CombineTo(Op,
 | |
|                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
 | |
|                                            Op.getOperand(0), Op.getOperand(1)));
 | |
| 
 | |
|     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|       EVT VT = Op.getValueType();
 | |
|       unsigned ShAmt = SA->getZExtValue();
 | |
| 
 | |
|       // If the shift count is an invalid immediate, don't do anything.
 | |
|       if (ShAmt >= BitWidth)
 | |
|         break;
 | |
| 
 | |
|       APInt InDemandedMask = (NewMask << ShAmt);
 | |
| 
 | |
|       // If any of the demanded bits are produced by the sign extension, we also
 | |
|       // demand the input sign bit.
 | |
|       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
 | |
|       if (HighBits.intersects(NewMask))
 | |
|         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
 | |
| 
 | |
|       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
 | |
|                                KnownZero, KnownOne, TLO, Depth+1))
 | |
|         return true;
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|       KnownZero = KnownZero.lshr(ShAmt);
 | |
|       KnownOne  = KnownOne.lshr(ShAmt);
 | |
| 
 | |
|       // Handle the sign bit, adjusted to where it is now in the mask.
 | |
|       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
 | |
| 
 | |
|       // If the input sign bit is known to be zero, or if none of the top bits
 | |
|       // are demanded, turn this into an unsigned shift right.
 | |
|       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits)
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
 | |
|                                                  Op.getOperand(0),
 | |
|                                                  Op.getOperand(1)));
 | |
| 
 | |
|       int Log2 = NewMask.exactLogBase2();
 | |
|       if (Log2 >= 0) {
 | |
|         // The bit must come from the sign.
 | |
|         SDValue NewSA =
 | |
|           TLO.DAG.getConstant(BitWidth - 1 - Log2,
 | |
|                               Op.getOperand(1).getValueType());
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
 | |
|                                                  Op.getOperand(0), NewSA));
 | |
|       }
 | |
| 
 | |
|       if (KnownOne.intersects(SignBit))
 | |
|         // New bits are known one.
 | |
|         KnownOne |= HighBits;
 | |
|     }
 | |
|     break;
 | |
|   case ISD::SIGN_EXTEND_INREG: {
 | |
|     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
| 
 | |
|     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
 | |
|     // If we only care about the highest bit, don't bother shifting right.
 | |
|     if (MsbMask == DemandedMask) {
 | |
|       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
 | |
|       SDValue InOp = Op.getOperand(0);
 | |
| 
 | |
|       // Compute the correct shift amount type, which must be getShiftAmountTy
 | |
|       // for scalar types after legalization.
 | |
|       EVT ShiftAmtTy = Op.getValueType();
 | |
|       if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
 | |
|         ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
 | |
| 
 | |
|       SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
 | |
|                                             Op.getValueType(), InOp, ShiftAmt));
 | |
|     }
 | |
| 
 | |
|     // Sign extension.  Compute the demanded bits in the result that are not
 | |
|     // present in the input.
 | |
|     APInt NewBits =
 | |
|       APInt::getHighBitsSet(BitWidth,
 | |
|                             BitWidth - ExVT.getScalarType().getSizeInBits());
 | |
| 
 | |
|     // If none of the extended bits are demanded, eliminate the sextinreg.
 | |
|     if ((NewBits & NewMask) == 0)
 | |
|       return TLO.CombineTo(Op, Op.getOperand(0));
 | |
| 
 | |
|     APInt InSignBit =
 | |
|       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
 | |
|     APInt InputDemandedBits =
 | |
|       APInt::getLowBitsSet(BitWidth,
 | |
|                            ExVT.getScalarType().getSizeInBits()) &
 | |
|       NewMask;
 | |
| 
 | |
|     // Since the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     InputDemandedBits |= InSignBit;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
| 
 | |
|     // If the input sign bit is known zero, convert this into a zero extension.
 | |
|     if (KnownZero.intersects(InSignBit))
 | |
|       return TLO.CombineTo(Op,
 | |
|                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
 | |
| 
 | |
|     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
 | |
|       KnownOne |= NewBits;
 | |
|       KnownZero &= ~NewBits;
 | |
|     } else {                       // Input sign bit unknown
 | |
|       KnownZero &= ~NewBits;
 | |
|       KnownOne &= ~NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BUILD_PAIR: {
 | |
|     EVT HalfVT = Op.getOperand(0).getValueType();
 | |
|     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
 | |
| 
 | |
|     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
 | |
|     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
 | |
| 
 | |
|     APInt KnownZeroLo, KnownOneLo;
 | |
|     APInt KnownZeroHi, KnownOneHi;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
 | |
|                              KnownOneLo, TLO, Depth + 1))
 | |
|       return true;
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
 | |
|                              KnownOneHi, TLO, Depth + 1))
 | |
|       return true;
 | |
| 
 | |
|     KnownZero = KnownZeroLo.zext(BitWidth) |
 | |
|                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
 | |
| 
 | |
|     KnownOne = KnownOneLo.zext(BitWidth) |
 | |
|                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ZERO_EXTEND: {
 | |
|     unsigned OperandBitWidth =
 | |
|       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
 | |
|     APInt InMask = NewMask.trunc(OperandBitWidth);
 | |
| 
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     APInt NewBits =
 | |
|       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
 | |
|     if (!NewBits.intersects(NewMask))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
 | |
|                                                Op.getValueType(),
 | |
|                                                Op.getOperand(0)));
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     KnownZero = KnownZero.zext(BitWidth);
 | |
|     KnownOne = KnownOne.zext(BitWidth);
 | |
|     KnownZero |= NewBits;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::SIGN_EXTEND: {
 | |
|     EVT InVT = Op.getOperand(0).getValueType();
 | |
|     unsigned InBits = InVT.getScalarType().getSizeInBits();
 | |
|     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
 | |
|     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
 | |
|     APInt NewBits   = ~InMask & NewMask;
 | |
| 
 | |
|     // If none of the top bits are demanded, convert this into an any_extend.
 | |
|     if (NewBits == 0)
 | |
|       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
 | |
|                                               Op.getValueType(),
 | |
|                                               Op.getOperand(0)));
 | |
| 
 | |
|     // Since some of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     APInt InDemandedBits = InMask & NewMask;
 | |
|     InDemandedBits |= InSignBit;
 | |
|     InDemandedBits = InDemandedBits.trunc(InBits);
 | |
| 
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
 | |
|                              KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     KnownZero = KnownZero.zext(BitWidth);
 | |
|     KnownOne = KnownOne.zext(BitWidth);
 | |
| 
 | |
|     // If the sign bit is known zero, convert this to a zero extend.
 | |
|     if (KnownZero.intersects(InSignBit))
 | |
|       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
 | |
|                                                Op.getValueType(),
 | |
|                                                Op.getOperand(0)));
 | |
| 
 | |
|     // If the sign bit is known one, the top bits match.
 | |
|     if (KnownOne.intersects(InSignBit)) {
 | |
|       KnownOne |= NewBits;
 | |
|       assert((KnownZero & NewBits) == 0);
 | |
|     } else {   // Otherwise, top bits aren't known.
 | |
|       assert((KnownOne & NewBits) == 0);
 | |
|       assert((KnownZero & NewBits) == 0);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::ANY_EXTEND: {
 | |
|     unsigned OperandBitWidth =
 | |
|       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
 | |
|     APInt InMask = NewMask.trunc(OperandBitWidth);
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     KnownZero = KnownZero.zext(BitWidth);
 | |
|     KnownOne = KnownOne.zext(BitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case ISD::TRUNCATE: {
 | |
|     // Simplify the input, using demanded bit information, and compute the known
 | |
|     // zero/one bits live out.
 | |
|     unsigned OperandBitWidth =
 | |
|       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
 | |
|     APInt TruncMask = NewMask.zext(OperandBitWidth);
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     KnownZero = KnownZero.trunc(BitWidth);
 | |
|     KnownOne = KnownOne.trunc(BitWidth);
 | |
| 
 | |
|     // If the input is only used by this truncate, see if we can shrink it based
 | |
|     // on the known demanded bits.
 | |
|     if (Op.getOperand(0).getNode()->hasOneUse()) {
 | |
|       SDValue In = Op.getOperand(0);
 | |
|       switch (In.getOpcode()) {
 | |
|       default: break;
 | |
|       case ISD::SRL:
 | |
|         // Shrink SRL by a constant if none of the high bits shifted in are
 | |
|         // demanded.
 | |
|         if (TLO.LegalTypes() &&
 | |
|             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
 | |
|           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
 | |
|           // undesirable.
 | |
|           break;
 | |
|         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
 | |
|         if (!ShAmt)
 | |
|           break;
 | |
|         SDValue Shift = In.getOperand(1);
 | |
|         if (TLO.LegalTypes()) {
 | |
|           uint64_t ShVal = ShAmt->getZExtValue();
 | |
|           Shift =
 | |
|             TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
 | |
|         }
 | |
| 
 | |
|         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
 | |
|                                                OperandBitWidth - BitWidth);
 | |
|         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
 | |
| 
 | |
|         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
 | |
|           // None of the shifted in bits are needed.  Add a truncate of the
 | |
|           // shift input, then shift it.
 | |
|           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
 | |
|                                              Op.getValueType(),
 | |
|                                              In.getOperand(0));
 | |
|           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
 | |
|                                                    Op.getValueType(),
 | |
|                                                    NewTrunc,
 | |
|                                                    Shift));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|     break;
 | |
|   }
 | |
|   case ISD::AssertZext: {
 | |
|     // AssertZext demands all of the high bits, plus any of the low bits
 | |
|     // demanded by its users.
 | |
|     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | |
|     APInt InMask = APInt::getLowBitsSet(BitWidth,
 | |
|                                         VT.getSizeInBits());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
 | |
|                              KnownZero, KnownOne, TLO, Depth+1))
 | |
|       return true;
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
| 
 | |
|     KnownZero |= ~InMask & NewMask;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BITCAST:
 | |
|     // If this is an FP->Int bitcast and if the sign bit is the only
 | |
|     // thing demanded, turn this into a FGETSIGN.
 | |
|     if (!TLO.LegalOperations() &&
 | |
|         !Op.getValueType().isVector() &&
 | |
|         !Op.getOperand(0).getValueType().isVector() &&
 | |
|         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
 | |
|         Op.getOperand(0).getValueType().isFloatingPoint()) {
 | |
|       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
 | |
|       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
 | |
|       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
 | |
|         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
 | |
|         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
 | |
|         // place.  We expect the SHL to be eliminated by other optimizations.
 | |
|         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
 | |
|         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
 | |
|         if (!OpVTLegal && OpVTSizeInBits > 32)
 | |
|           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
 | |
|         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
 | |
|         SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
 | |
|         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
 | |
|                                                  Op.getValueType(),
 | |
|                                                  Sign, ShAmt));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::ADD:
 | |
|   case ISD::MUL:
 | |
|   case ISD::SUB: {
 | |
|     // Add, Sub, and Mul don't demand any bits in positions beyond that
 | |
|     // of the highest bit demanded of them.
 | |
|     APInt LoMask = APInt::getLowBitsSet(BitWidth,
 | |
|                                         BitWidth - NewMask.countLeadingZeros());
 | |
|     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
 | |
|                              KnownOne2, TLO, Depth+1))
 | |
|       return true;
 | |
|     // See if the operation should be performed at a smaller bit width.
 | |
|     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
 | |
|       return true;
 | |
|   }
 | |
|   // FALL THROUGH
 | |
|   default:
 | |
|     // Just use computeKnownBits to compute output bits.
 | |
|     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If we know the value of all of the demanded bits, return this as a
 | |
|   // constant.
 | |
|   if ((NewMask & (KnownZero|KnownOne)) == NewMask)
 | |
|     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// computeKnownBitsForTargetNode - Determine which of the bits specified
 | |
| /// in Mask are known to be either zero or one and return them in the
 | |
| /// KnownZero/KnownOne bitsets.
 | |
| void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | |
|                                                    APInt &KnownZero,
 | |
|                                                    APInt &KnownOne,
 | |
|                                                    const SelectionDAG &DAG,
 | |
|                                                    unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use MaskedValueIsZero if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
 | |
| }
 | |
| 
 | |
| /// ComputeNumSignBitsForTargetNode - This method can be implemented by
 | |
| /// targets that want to expose additional information about sign bits to the
 | |
| /// DAG Combiner.
 | |
| unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
 | |
|                                                          const SelectionDAG &,
 | |
|                                                          unsigned Depth) const {
 | |
|   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | |
|           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | |
|          "Should use ComputeNumSignBits if you don't know whether Op"
 | |
|          " is a target node!");
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
 | |
| /// one bit set. This differs from computeKnownBits in that it doesn't need to
 | |
| /// determine which bit is set.
 | |
| ///
 | |
| static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
 | |
|   // A left-shift of a constant one will have exactly one bit set, because
 | |
|   // shifting the bit off the end is undefined.
 | |
|   if (Val.getOpcode() == ISD::SHL)
 | |
|     if (ConstantSDNode *C =
 | |
|          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
 | |
|       if (C->getAPIntValue() == 1)
 | |
|         return true;
 | |
| 
 | |
|   // Similarly, a right-shift of a constant sign-bit will have exactly
 | |
|   // one bit set.
 | |
|   if (Val.getOpcode() == ISD::SRL)
 | |
|     if (ConstantSDNode *C =
 | |
|          dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
 | |
|       if (C->getAPIntValue().isSignBit())
 | |
|         return true;
 | |
| 
 | |
|   // More could be done here, though the above checks are enough
 | |
|   // to handle some common cases.
 | |
| 
 | |
|   // Fall back to computeKnownBits to catch other known cases.
 | |
|   EVT OpVT = Val.getValueType();
 | |
|   unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
 | |
|   APInt KnownZero, KnownOne;
 | |
|   DAG.computeKnownBits(Val, KnownZero, KnownOne);
 | |
|   return (KnownZero.countPopulation() == BitWidth - 1) &&
 | |
|          (KnownOne.countPopulation() == 1);
 | |
| }
 | |
| 
 | |
| bool TargetLowering::isConstTrueVal(const SDNode *N) const {
 | |
|   if (!N)
 | |
|     return false;
 | |
| 
 | |
|   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | |
|   if (!CN) {
 | |
|     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
 | |
|     if (!BV)
 | |
|       return false;
 | |
| 
 | |
|     BitVector UndefElements;
 | |
|     CN = BV->getConstantSplatNode(&UndefElements);
 | |
|     // Only interested in constant splats, and we don't try to handle undef
 | |
|     // elements in identifying boolean constants.
 | |
|     if (!CN || UndefElements.none())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   switch (getBooleanContents(N->getValueType(0))) {
 | |
|   case UndefinedBooleanContent:
 | |
|     return CN->getAPIntValue()[0];
 | |
|   case ZeroOrOneBooleanContent:
 | |
|     return CN->isOne();
 | |
|   case ZeroOrNegativeOneBooleanContent:
 | |
|     return CN->isAllOnesValue();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Invalid boolean contents");
 | |
| }
 | |
| 
 | |
| bool TargetLowering::isConstFalseVal(const SDNode *N) const {
 | |
|   if (!N)
 | |
|     return false;
 | |
| 
 | |
|   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | |
|   if (!CN) {
 | |
|     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
 | |
|     if (!BV)
 | |
|       return false;
 | |
| 
 | |
|     BitVector UndefElements;
 | |
|     CN = BV->getConstantSplatNode(&UndefElements);
 | |
|     // Only interested in constant splats, and we don't try to handle undef
 | |
|     // elements in identifying boolean constants.
 | |
|     if (!CN || UndefElements.none())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
 | |
|     return !CN->getAPIntValue()[0];
 | |
| 
 | |
|   return CN->isNullValue();
 | |
| }
 | |
| 
 | |
| /// SimplifySetCC - Try to simplify a setcc built with the specified operands
 | |
| /// and cc. If it is unable to simplify it, return a null SDValue.
 | |
| SDValue
 | |
| TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
 | |
|                               ISD::CondCode Cond, bool foldBooleans,
 | |
|                               DAGCombinerInfo &DCI, SDLoc dl) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   // These setcc operations always fold.
 | |
|   switch (Cond) {
 | |
|   default: break;
 | |
|   case ISD::SETFALSE:
 | |
|   case ISD::SETFALSE2: return DAG.getConstant(0, VT);
 | |
|   case ISD::SETTRUE:
 | |
|   case ISD::SETTRUE2: {
 | |
|     TargetLowering::BooleanContent Cnt =
 | |
|         getBooleanContents(N0->getValueType(0));
 | |
|     return DAG.getConstant(
 | |
|         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Ensure that the constant occurs on the RHS, and fold constant
 | |
|   // comparisons.
 | |
|   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
 | |
|   if (isa<ConstantSDNode>(N0.getNode()) &&
 | |
|       (DCI.isBeforeLegalizeOps() ||
 | |
|        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
 | |
|     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
 | |
| 
 | |
|   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | |
|     const APInt &C1 = N1C->getAPIntValue();
 | |
| 
 | |
|     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
 | |
|     // equality comparison, then we're just comparing whether X itself is
 | |
|     // zero.
 | |
|     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
 | |
|         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
 | |
|         N0.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|       const APInt &ShAmt
 | |
|         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | |
|       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
 | |
|         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
 | |
|           // (srl (ctlz x), 5) == 0  -> X != 0
 | |
|           // (srl (ctlz x), 5) != 1  -> X != 0
 | |
|           Cond = ISD::SETNE;
 | |
|         } else {
 | |
|           // (srl (ctlz x), 5) != 0  -> X == 0
 | |
|           // (srl (ctlz x), 5) == 1  -> X == 0
 | |
|           Cond = ISD::SETEQ;
 | |
|         }
 | |
|         SDValue Zero = DAG.getConstant(0, N0.getValueType());
 | |
|         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
 | |
|                             Zero, Cond);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SDValue CTPOP = N0;
 | |
|     // Look through truncs that don't change the value of a ctpop.
 | |
|     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
 | |
|       CTPOP = N0.getOperand(0);
 | |
| 
 | |
|     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
 | |
|         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
 | |
|                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
 | |
|       EVT CTVT = CTPOP.getValueType();
 | |
|       SDValue CTOp = CTPOP.getOperand(0);
 | |
| 
 | |
|       // (ctpop x) u< 2 -> (x & x-1) == 0
 | |
|       // (ctpop x) u> 1 -> (x & x-1) != 0
 | |
|       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
 | |
|         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
 | |
|                                   DAG.getConstant(1, CTVT));
 | |
|         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
 | |
|         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
 | |
|         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
 | |
|       }
 | |
| 
 | |
|       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
 | |
|     }
 | |
| 
 | |
|     // (zext x) == C --> x == (trunc C)
 | |
|     // (sext x) == C --> x == (trunc C)
 | |
|     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|         DCI.isBeforeLegalize() && N0->hasOneUse()) {
 | |
|       unsigned MinBits = N0.getValueSizeInBits();
 | |
|       SDValue PreExt;
 | |
|       bool Signed = false;
 | |
|       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
 | |
|         // ZExt
 | |
|         MinBits = N0->getOperand(0).getValueSizeInBits();
 | |
|         PreExt = N0->getOperand(0);
 | |
|       } else if (N0->getOpcode() == ISD::AND) {
 | |
|         // DAGCombine turns costly ZExts into ANDs
 | |
|         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
 | |
|           if ((C->getAPIntValue()+1).isPowerOf2()) {
 | |
|             MinBits = C->getAPIntValue().countTrailingOnes();
 | |
|             PreExt = N0->getOperand(0);
 | |
|           }
 | |
|       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
 | |
|         // SExt
 | |
|         MinBits = N0->getOperand(0).getValueSizeInBits();
 | |
|         PreExt = N0->getOperand(0);
 | |
|         Signed = true;
 | |
|       } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
 | |
|         // ZEXTLOAD / SEXTLOAD
 | |
|         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
 | |
|           MinBits = LN0->getMemoryVT().getSizeInBits();
 | |
|           PreExt = N0;
 | |
|         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
 | |
|           Signed = true;
 | |
|           MinBits = LN0->getMemoryVT().getSizeInBits();
 | |
|           PreExt = N0;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Figure out how many bits we need to preserve this constant.
 | |
|       unsigned ReqdBits = Signed ?
 | |
|         C1.getBitWidth() - C1.getNumSignBits() + 1 :
 | |
|         C1.getActiveBits();
 | |
| 
 | |
|       // Make sure we're not losing bits from the constant.
 | |
|       if (MinBits > 0 &&
 | |
|           MinBits < C1.getBitWidth() &&
 | |
|           MinBits >= ReqdBits) {
 | |
|         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
 | |
|         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
 | |
|           // Will get folded away.
 | |
|           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
 | |
|           SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
 | |
|           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the LHS is '(and load, const)', the RHS is 0,
 | |
|     // the test is for equality or unsigned, and all 1 bits of the const are
 | |
|     // in the same partial word, see if we can shorten the load.
 | |
|     if (DCI.isBeforeLegalize() &&
 | |
|         !ISD::isSignedIntSetCC(Cond) &&
 | |
|         N0.getOpcode() == ISD::AND && C1 == 0 &&
 | |
|         N0.getNode()->hasOneUse() &&
 | |
|         isa<LoadSDNode>(N0.getOperand(0)) &&
 | |
|         N0.getOperand(0).getNode()->hasOneUse() &&
 | |
|         isa<ConstantSDNode>(N0.getOperand(1))) {
 | |
|       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
 | |
|       APInt bestMask;
 | |
|       unsigned bestWidth = 0, bestOffset = 0;
 | |
|       if (!Lod->isVolatile() && Lod->isUnindexed()) {
 | |
|         unsigned origWidth = N0.getValueType().getSizeInBits();
 | |
|         unsigned maskWidth = origWidth;
 | |
|         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
 | |
|         // 8 bits, but have to be careful...
 | |
|         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
 | |
|           origWidth = Lod->getMemoryVT().getSizeInBits();
 | |
|         const APInt &Mask =
 | |
|           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
 | |
|         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
 | |
|           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
 | |
|           for (unsigned offset=0; offset<origWidth/width; offset++) {
 | |
|             if ((newMask & Mask) == Mask) {
 | |
|               if (!getDataLayout()->isLittleEndian())
 | |
|                 bestOffset = (origWidth/width - offset - 1) * (width/8);
 | |
|               else
 | |
|                 bestOffset = (uint64_t)offset * (width/8);
 | |
|               bestMask = Mask.lshr(offset * (width/8) * 8);
 | |
|               bestWidth = width;
 | |
|               break;
 | |
|             }
 | |
|             newMask = newMask << width;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (bestWidth) {
 | |
|         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
 | |
|         if (newVT.isRound()) {
 | |
|           EVT PtrType = Lod->getOperand(1).getValueType();
 | |
|           SDValue Ptr = Lod->getBasePtr();
 | |
|           if (bestOffset != 0)
 | |
|             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
 | |
|                               DAG.getConstant(bestOffset, PtrType));
 | |
|           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
 | |
|           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
 | |
|                                 Lod->getPointerInfo().getWithOffset(bestOffset),
 | |
|                                         false, false, false, NewAlign);
 | |
|           return DAG.getSetCC(dl, VT,
 | |
|                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
 | |
|                                       DAG.getConstant(bestMask.trunc(bestWidth),
 | |
|                                                       newVT)),
 | |
|                               DAG.getConstant(0LL, newVT), Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
 | |
|     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
 | |
|       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
 | |
| 
 | |
|       // If the comparison constant has bits in the upper part, the
 | |
|       // zero-extended value could never match.
 | |
|       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
 | |
|                                               C1.getBitWidth() - InSize))) {
 | |
|         switch (Cond) {
 | |
|         case ISD::SETUGT:
 | |
|         case ISD::SETUGE:
 | |
|         case ISD::SETEQ: return DAG.getConstant(0, VT);
 | |
|         case ISD::SETULT:
 | |
|         case ISD::SETULE:
 | |
|         case ISD::SETNE: return DAG.getConstant(1, VT);
 | |
|         case ISD::SETGT:
 | |
|         case ISD::SETGE:
 | |
|           // True if the sign bit of C1 is set.
 | |
|           return DAG.getConstant(C1.isNegative(), VT);
 | |
|         case ISD::SETLT:
 | |
|         case ISD::SETLE:
 | |
|           // True if the sign bit of C1 isn't set.
 | |
|           return DAG.getConstant(C1.isNonNegative(), VT);
 | |
|         default:
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Otherwise, we can perform the comparison with the low bits.
 | |
|       switch (Cond) {
 | |
|       case ISD::SETEQ:
 | |
|       case ISD::SETNE:
 | |
|       case ISD::SETUGT:
 | |
|       case ISD::SETUGE:
 | |
|       case ISD::SETULT:
 | |
|       case ISD::SETULE: {
 | |
|         EVT newVT = N0.getOperand(0).getValueType();
 | |
|         if (DCI.isBeforeLegalizeOps() ||
 | |
|             (isOperationLegal(ISD::SETCC, newVT) &&
 | |
|              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
 | |
|           EVT NewSetCCVT = getSetCCResultType(*DAG.getContext(), newVT);
 | |
|           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), newVT);
 | |
| 
 | |
|           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
 | |
|                                           NewConst, Cond);
 | |
|           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       default:
 | |
|         break;   // todo, be more careful with signed comparisons
 | |
|       }
 | |
|     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | |
|       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
 | |
|       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
 | |
|       EVT ExtDstTy = N0.getValueType();
 | |
|       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
 | |
| 
 | |
|       // If the constant doesn't fit into the number of bits for the source of
 | |
|       // the sign extension, it is impossible for both sides to be equal.
 | |
|       if (C1.getMinSignedBits() > ExtSrcTyBits)
 | |
|         return DAG.getConstant(Cond == ISD::SETNE, VT);
 | |
| 
 | |
|       SDValue ZextOp;
 | |
|       EVT Op0Ty = N0.getOperand(0).getValueType();
 | |
|       if (Op0Ty == ExtSrcTy) {
 | |
|         ZextOp = N0.getOperand(0);
 | |
|       } else {
 | |
|         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
 | |
|         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
 | |
|                               DAG.getConstant(Imm, Op0Ty));
 | |
|       }
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(ZextOp.getNode());
 | |
|       // Otherwise, make this a use of a zext.
 | |
|       return DAG.getSetCC(dl, VT, ZextOp,
 | |
|                           DAG.getConstant(C1 & APInt::getLowBitsSet(
 | |
|                                                               ExtDstTyBits,
 | |
|                                                               ExtSrcTyBits),
 | |
|                                           ExtDstTy),
 | |
|                           Cond);
 | |
|     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
 | |
|                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | |
|       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
 | |
|       if (N0.getOpcode() == ISD::SETCC &&
 | |
|           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
 | |
|         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
 | |
|         if (TrueWhenTrue)
 | |
|           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
 | |
|         // Invert the condition.
 | |
|         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
 | |
|         CC = ISD::getSetCCInverse(CC,
 | |
|                                   N0.getOperand(0).getValueType().isInteger());
 | |
|         if (DCI.isBeforeLegalizeOps() ||
 | |
|             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
 | |
|       }
 | |
| 
 | |
|       if ((N0.getOpcode() == ISD::XOR ||
 | |
|            (N0.getOpcode() == ISD::AND &&
 | |
|             N0.getOperand(0).getOpcode() == ISD::XOR &&
 | |
|             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
 | |
|           isa<ConstantSDNode>(N0.getOperand(1)) &&
 | |
|           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
 | |
|         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
 | |
|         // can only do this if the top bits are known zero.
 | |
|         unsigned BitWidth = N0.getValueSizeInBits();
 | |
|         if (DAG.MaskedValueIsZero(N0,
 | |
|                                   APInt::getHighBitsSet(BitWidth,
 | |
|                                                         BitWidth-1))) {
 | |
|           // Okay, get the un-inverted input value.
 | |
|           SDValue Val;
 | |
|           if (N0.getOpcode() == ISD::XOR)
 | |
|             Val = N0.getOperand(0);
 | |
|           else {
 | |
|             assert(N0.getOpcode() == ISD::AND &&
 | |
|                     N0.getOperand(0).getOpcode() == ISD::XOR);
 | |
|             // ((X^1)&1)^1 -> X & 1
 | |
|             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
 | |
|                               N0.getOperand(0).getOperand(0),
 | |
|                               N0.getOperand(1));
 | |
|           }
 | |
| 
 | |
|           return DAG.getSetCC(dl, VT, Val, N1,
 | |
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|         }
 | |
|       } else if (N1C->getAPIntValue() == 1 &&
 | |
|                  (VT == MVT::i1 ||
 | |
|                   getBooleanContents(N0->getValueType(0)) ==
 | |
|                       ZeroOrOneBooleanContent)) {
 | |
|         SDValue Op0 = N0;
 | |
|         if (Op0.getOpcode() == ISD::TRUNCATE)
 | |
|           Op0 = Op0.getOperand(0);
 | |
| 
 | |
|         if ((Op0.getOpcode() == ISD::XOR) &&
 | |
|             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
 | |
|             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
 | |
|           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
 | |
|           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
 | |
|           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
 | |
|                               Cond);
 | |
|         }
 | |
|         if (Op0.getOpcode() == ISD::AND &&
 | |
|             isa<ConstantSDNode>(Op0.getOperand(1)) &&
 | |
|             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
 | |
|           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
 | |
|           if (Op0.getValueType().bitsGT(VT))
 | |
|             Op0 = DAG.getNode(ISD::AND, dl, VT,
 | |
|                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
 | |
|                           DAG.getConstant(1, VT));
 | |
|           else if (Op0.getValueType().bitsLT(VT))
 | |
|             Op0 = DAG.getNode(ISD::AND, dl, VT,
 | |
|                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
 | |
|                         DAG.getConstant(1, VT));
 | |
| 
 | |
|           return DAG.getSetCC(dl, VT, Op0,
 | |
|                               DAG.getConstant(0, Op0.getValueType()),
 | |
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|         }
 | |
|         if (Op0.getOpcode() == ISD::AssertZext &&
 | |
|             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
 | |
|           return DAG.getSetCC(dl, VT, Op0,
 | |
|                               DAG.getConstant(0, Op0.getValueType()),
 | |
|                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     APInt MinVal, MaxVal;
 | |
|     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
 | |
|     if (ISD::isSignedIntSetCC(Cond)) {
 | |
|       MinVal = APInt::getSignedMinValue(OperandBitSize);
 | |
|       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
 | |
|     } else {
 | |
|       MinVal = APInt::getMinValue(OperandBitSize);
 | |
|       MaxVal = APInt::getMaxValue(OperandBitSize);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
 | |
|     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
 | |
|       if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
 | |
|       // X >= C0 --> X > (C0 - 1)
 | |
|       APInt C = C1 - 1;
 | |
|       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
 | |
|       if ((DCI.isBeforeLegalizeOps() ||
 | |
|            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | |
|           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
 | |
|                                 isLegalICmpImmediate(C.getSExtValue())))) {
 | |
|         return DAG.getSetCC(dl, VT, N0,
 | |
|                             DAG.getConstant(C, N1.getValueType()),
 | |
|                             NewCC);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
 | |
|       if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
 | |
|       // X <= C0 --> X < (C0 + 1)
 | |
|       APInt C = C1 + 1;
 | |
|       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
 | |
|       if ((DCI.isBeforeLegalizeOps() ||
 | |
|            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | |
|           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
 | |
|                                 isLegalICmpImmediate(C.getSExtValue())))) {
 | |
|         return DAG.getSetCC(dl, VT, N0,
 | |
|                             DAG.getConstant(C, N1.getValueType()),
 | |
|                             NewCC);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
 | |
|       return DAG.getConstant(0, VT);      // X < MIN --> false
 | |
|     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
 | |
|       return DAG.getConstant(1, VT);      // X >= MIN --> true
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
 | |
|       return DAG.getConstant(0, VT);      // X > MAX --> false
 | |
|     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
 | |
|       return DAG.getConstant(1, VT);      // X <= MAX --> true
 | |
| 
 | |
|     // Canonicalize setgt X, Min --> setne X, Min
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | |
|     // Canonicalize setlt X, Max --> setne X, Max
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | |
| 
 | |
|     // If we have setult X, 1, turn it into seteq X, 0
 | |
|     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
 | |
|       return DAG.getSetCC(dl, VT, N0,
 | |
|                           DAG.getConstant(MinVal, N0.getValueType()),
 | |
|                           ISD::SETEQ);
 | |
|     // If we have setugt X, Max-1, turn it into seteq X, Max
 | |
|     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
 | |
|       return DAG.getSetCC(dl, VT, N0,
 | |
|                           DAG.getConstant(MaxVal, N0.getValueType()),
 | |
|                           ISD::SETEQ);
 | |
| 
 | |
|     // If we have "setcc X, C0", check to see if we can shrink the immediate
 | |
|     // by changing cc.
 | |
| 
 | |
|     // SETUGT X, SINTMAX  -> SETLT X, 0
 | |
|     if (Cond == ISD::SETUGT &&
 | |
|         C1 == APInt::getSignedMaxValue(OperandBitSize))
 | |
|       return DAG.getSetCC(dl, VT, N0,
 | |
|                           DAG.getConstant(0, N1.getValueType()),
 | |
|                           ISD::SETLT);
 | |
| 
 | |
|     // SETULT X, SINTMIN  -> SETGT X, -1
 | |
|     if (Cond == ISD::SETULT &&
 | |
|         C1 == APInt::getSignedMinValue(OperandBitSize)) {
 | |
|       SDValue ConstMinusOne =
 | |
|           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
 | |
|                           N1.getValueType());
 | |
|       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
 | |
|     }
 | |
| 
 | |
|     // Fold bit comparisons when we can.
 | |
|     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|         (VT == N0.getValueType() ||
 | |
|          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
 | |
|         N0.getOpcode() == ISD::AND)
 | |
|       if (ConstantSDNode *AndRHS =
 | |
|                   dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|         EVT ShiftTy = DCI.isBeforeLegalize() ?
 | |
|           getPointerTy() : getShiftAmountTy(N0.getValueType());
 | |
|         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
 | |
|           // Perform the xform if the AND RHS is a single bit.
 | |
|           if (AndRHS->getAPIntValue().isPowerOf2()) {
 | |
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | |
|                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
 | |
|                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
 | |
|           }
 | |
|         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
 | |
|           // (X & 8) == 8  -->  (X & 8) >> 3
 | |
|           // Perform the xform if C1 is a single bit.
 | |
|           if (C1.isPowerOf2()) {
 | |
|             return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | |
|                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
 | |
|                                       DAG.getConstant(C1.logBase2(), ShiftTy)));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     if (C1.getMinSignedBits() <= 64 &&
 | |
|         !isLegalICmpImmediate(C1.getSExtValue())) {
 | |
|       // (X & -256) == 256 -> (X >> 8) == 1
 | |
|       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
 | |
|         if (ConstantSDNode *AndRHS =
 | |
|             dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|           const APInt &AndRHSC = AndRHS->getAPIntValue();
 | |
|           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
 | |
|             unsigned ShiftBits = AndRHSC.countTrailingZeros();
 | |
|             EVT ShiftTy = DCI.isBeforeLegalize() ?
 | |
|               getPointerTy() : getShiftAmountTy(N0.getValueType());
 | |
|             EVT CmpTy = N0.getValueType();
 | |
|             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
 | |
|                                         DAG.getConstant(ShiftBits, ShiftTy));
 | |
|             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
 | |
|             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
 | |
|           }
 | |
|         }
 | |
|       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
 | |
|                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
 | |
|         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
 | |
|         // X <  0x100000000 -> (X >> 32) <  1
 | |
|         // X >= 0x100000000 -> (X >> 32) >= 1
 | |
|         // X <= 0x0ffffffff -> (X >> 32) <  1
 | |
|         // X >  0x0ffffffff -> (X >> 32) >= 1
 | |
|         unsigned ShiftBits;
 | |
|         APInt NewC = C1;
 | |
|         ISD::CondCode NewCond = Cond;
 | |
|         if (AdjOne) {
 | |
|           ShiftBits = C1.countTrailingOnes();
 | |
|           NewC = NewC + 1;
 | |
|           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | |
|         } else {
 | |
|           ShiftBits = C1.countTrailingZeros();
 | |
|         }
 | |
|         NewC = NewC.lshr(ShiftBits);
 | |
|         if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
 | |
|           EVT ShiftTy = DCI.isBeforeLegalize() ?
 | |
|             getPointerTy() : getShiftAmountTy(N0.getValueType());
 | |
|           EVT CmpTy = N0.getValueType();
 | |
|           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
 | |
|                                       DAG.getConstant(ShiftBits, ShiftTy));
 | |
|           SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
 | |
|           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<ConstantFPSDNode>(N0.getNode())) {
 | |
|     // Constant fold or commute setcc.
 | |
|     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
 | |
|     if (O.getNode()) return O;
 | |
|   } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
 | |
|     // If the RHS of an FP comparison is a constant, simplify it away in
 | |
|     // some cases.
 | |
|     if (CFP->getValueAPF().isNaN()) {
 | |
|       // If an operand is known to be a nan, we can fold it.
 | |
|       switch (ISD::getUnorderedFlavor(Cond)) {
 | |
|       default: llvm_unreachable("Unknown flavor!");
 | |
|       case 0:  // Known false.
 | |
|         return DAG.getConstant(0, VT);
 | |
|       case 1:  // Known true.
 | |
|         return DAG.getConstant(1, VT);
 | |
|       case 2:  // Undefined.
 | |
|         return DAG.getUNDEF(VT);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
 | |
|     // constant if knowing that the operand is non-nan is enough.  We prefer to
 | |
|     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
 | |
|     // materialize 0.0.
 | |
|     if (Cond == ISD::SETO || Cond == ISD::SETUO)
 | |
|       return DAG.getSetCC(dl, VT, N0, N0, Cond);
 | |
| 
 | |
|     // If the condition is not legal, see if we can find an equivalent one
 | |
|     // which is legal.
 | |
|     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
 | |
|       // If the comparison was an awkward floating-point == or != and one of
 | |
|       // the comparison operands is infinity or negative infinity, convert the
 | |
|       // condition to a less-awkward <= or >=.
 | |
|       if (CFP->getValueAPF().isInfinity()) {
 | |
|         if (CFP->getValueAPF().isNegative()) {
 | |
|           if (Cond == ISD::SETOEQ &&
 | |
|               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
 | |
|           if (Cond == ISD::SETUEQ &&
 | |
|               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
 | |
|           if (Cond == ISD::SETUNE &&
 | |
|               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
 | |
|           if (Cond == ISD::SETONE &&
 | |
|               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
 | |
|         } else {
 | |
|           if (Cond == ISD::SETOEQ &&
 | |
|               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
 | |
|           if (Cond == ISD::SETUEQ &&
 | |
|               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
 | |
|           if (Cond == ISD::SETUNE &&
 | |
|               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
 | |
|           if (Cond == ISD::SETONE &&
 | |
|               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
 | |
|             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N0 == N1) {
 | |
|     // The sext(setcc()) => setcc() optimization relies on the appropriate
 | |
|     // constant being emitted.
 | |
|     uint64_t EqVal = 0;
 | |
|     switch (getBooleanContents(N0.getValueType())) {
 | |
|     case UndefinedBooleanContent:
 | |
|     case ZeroOrOneBooleanContent:
 | |
|       EqVal = ISD::isTrueWhenEqual(Cond);
 | |
|       break;
 | |
|     case ZeroOrNegativeOneBooleanContent:
 | |
|       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We can always fold X == X for integer setcc's.
 | |
|     if (N0.getValueType().isInteger()) {
 | |
|       return DAG.getConstant(EqVal, VT);
 | |
|     }
 | |
|     unsigned UOF = ISD::getUnorderedFlavor(Cond);
 | |
|     if (UOF == 2)   // FP operators that are undefined on NaNs.
 | |
|       return DAG.getConstant(EqVal, VT);
 | |
|     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
 | |
|       return DAG.getConstant(EqVal, VT);
 | |
|     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
 | |
|     // if it is not already.
 | |
|     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
 | |
|     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
 | |
|           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
 | |
|       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
 | |
|   }
 | |
| 
 | |
|   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | |
|       N0.getValueType().isInteger()) {
 | |
|     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
 | |
|         N0.getOpcode() == ISD::XOR) {
 | |
|       // Simplify (X+Y) == (X+Z) -->  Y == Z
 | |
|       if (N0.getOpcode() == N1.getOpcode()) {
 | |
|         if (N0.getOperand(0) == N1.getOperand(0))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
 | |
|         if (N0.getOperand(1) == N1.getOperand(1))
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
 | |
|         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
 | |
|           // If X op Y == Y op X, try other combinations.
 | |
|           if (N0.getOperand(0) == N1.getOperand(1))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
 | |
|                                 Cond);
 | |
|           if (N0.getOperand(1) == N1.getOperand(0))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
 | |
|                                 Cond);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If RHS is a legal immediate value for a compare instruction, we need
 | |
|       // to be careful about increasing register pressure needlessly.
 | |
|       bool LegalRHSImm = false;
 | |
| 
 | |
|       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
 | |
|         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | |
|           // Turn (X+C1) == C2 --> X == C2-C1
 | |
|           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                                 DAG.getConstant(RHSC->getAPIntValue()-
 | |
|                                                 LHSR->getAPIntValue(),
 | |
|                                 N0.getValueType()), Cond);
 | |
|           }
 | |
| 
 | |
|           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
 | |
|           if (N0.getOpcode() == ISD::XOR)
 | |
|             // If we know that all of the inverted bits are zero, don't bother
 | |
|             // performing the inversion.
 | |
|             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
 | |
|               return
 | |
|                 DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                              DAG.getConstant(LHSR->getAPIntValue() ^
 | |
|                                                RHSC->getAPIntValue(),
 | |
|                                              N0.getValueType()),
 | |
|                              Cond);
 | |
|         }
 | |
| 
 | |
|         // Turn (C1-X) == C2 --> X == C1-C2
 | |
|         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
 | |
|           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
 | |
|             return
 | |
|               DAG.getSetCC(dl, VT, N0.getOperand(1),
 | |
|                            DAG.getConstant(SUBC->getAPIntValue() -
 | |
|                                              RHSC->getAPIntValue(),
 | |
|                                            N0.getValueType()),
 | |
|                            Cond);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Could RHSC fold directly into a compare?
 | |
|         if (RHSC->getValueType(0).getSizeInBits() <= 64)
 | |
|           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
 | |
|       }
 | |
| 
 | |
|       // Simplify (X+Z) == X -->  Z == 0
 | |
|       // Don't do this if X is an immediate that can fold into a cmp
 | |
|       // instruction and X+Z has other uses. It could be an induction variable
 | |
|       // chain, and the transform would increase register pressure.
 | |
|       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
 | |
|         if (N0.getOperand(0) == N1)
 | |
|           return DAG.getSetCC(dl, VT, N0.getOperand(1),
 | |
|                               DAG.getConstant(0, N0.getValueType()), Cond);
 | |
|         if (N0.getOperand(1) == N1) {
 | |
|           if (DAG.isCommutativeBinOp(N0.getOpcode()))
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | |
|                                 DAG.getConstant(0, N0.getValueType()), Cond);
 | |
|           if (N0.getNode()->hasOneUse()) {
 | |
|             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
 | |
|             // (Z-X) == X  --> Z == X<<1
 | |
|             SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
 | |
|                        DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
 | |
|             if (!DCI.isCalledByLegalizer())
 | |
|               DCI.AddToWorklist(SH.getNode());
 | |
|             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
 | |
|         N1.getOpcode() == ISD::XOR) {
 | |
|       // Simplify  X == (X+Z) -->  Z == 0
 | |
|       if (N1.getOperand(0) == N0)
 | |
|         return DAG.getSetCC(dl, VT, N1.getOperand(1),
 | |
|                         DAG.getConstant(0, N1.getValueType()), Cond);
 | |
|       if (N1.getOperand(1) == N0) {
 | |
|         if (DAG.isCommutativeBinOp(N1.getOpcode()))
 | |
|           return DAG.getSetCC(dl, VT, N1.getOperand(0),
 | |
|                           DAG.getConstant(0, N1.getValueType()), Cond);
 | |
|         if (N1.getNode()->hasOneUse()) {
 | |
|           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
 | |
|           // X == (Z-X)  --> X<<1 == Z
 | |
|           SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
 | |
|                        DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
 | |
|           if (!DCI.isCalledByLegalizer())
 | |
|             DCI.AddToWorklist(SH.getNode());
 | |
|           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
 | |
|     // Note that where y is variable and is known to have at most
 | |
|     // one bit set (for example, if it is z&1) we cannot do this;
 | |
|     // the expressions are not equivalent when y==0.
 | |
|     if (N0.getOpcode() == ISD::AND)
 | |
|       if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
 | |
|         if (ValueHasExactlyOneBitSet(N1, DAG)) {
 | |
|           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
 | |
|           if (DCI.isBeforeLegalizeOps() ||
 | |
|               isCondCodeLegal(Cond, N0.getSimpleValueType())) {
 | |
|             SDValue Zero = DAG.getConstant(0, N1.getValueType());
 | |
|             return DAG.getSetCC(dl, VT, N0, Zero, Cond);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     if (N1.getOpcode() == ISD::AND)
 | |
|       if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
 | |
|         if (ValueHasExactlyOneBitSet(N0, DAG)) {
 | |
|           Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
 | |
|           if (DCI.isBeforeLegalizeOps() ||
 | |
|               isCondCodeLegal(Cond, N1.getSimpleValueType())) {
 | |
|             SDValue Zero = DAG.getConstant(0, N0.getValueType());
 | |
|             return DAG.getSetCC(dl, VT, N1, Zero, Cond);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Fold away ALL boolean setcc's.
 | |
|   SDValue Temp;
 | |
|   if (N0.getValueType() == MVT::i1 && foldBooleans) {
 | |
|     switch (Cond) {
 | |
|     default: llvm_unreachable("Unknown integer setcc!");
 | |
|     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
 | |
|       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
 | |
|       N0 = DAG.getNOT(dl, Temp, MVT::i1);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETNE:  // X != Y   -->  (X^Y)
 | |
|       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
 | |
|       break;
 | |
|     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | |
|     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | |
|       Temp = DAG.getNOT(dl, N0, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
 | |
|     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
 | |
|       Temp = DAG.getNOT(dl, N1, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
 | |
|     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
 | |
|       Temp = DAG.getNOT(dl, N0, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(Temp.getNode());
 | |
|       break;
 | |
|     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
 | |
|     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
 | |
|       Temp = DAG.getNOT(dl, N1, MVT::i1);
 | |
|       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
 | |
|       break;
 | |
|     }
 | |
|     if (VT != MVT::i1) {
 | |
|       if (!DCI.isCalledByLegalizer())
 | |
|         DCI.AddToWorklist(N0.getNode());
 | |
|       // FIXME: If running after legalize, we probably can't do this.
 | |
|       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
 | |
|     }
 | |
|     return N0;
 | |
|   }
 | |
| 
 | |
|   // Could not fold it.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
 | |
| /// node is a GlobalAddress + offset.
 | |
| bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
 | |
|                                     int64_t &Offset) const {
 | |
|   if (isa<GlobalAddressSDNode>(N)) {
 | |
|     GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
 | |
|     GA = GASD->getGlobal();
 | |
|     Offset += GASD->getOffset();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (N->getOpcode() == ISD::ADD) {
 | |
|     SDValue N1 = N->getOperand(0);
 | |
|     SDValue N2 = N->getOperand(1);
 | |
|     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
 | |
|       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
 | |
|       if (V) {
 | |
|         Offset += V->getSExtValue();
 | |
|         return true;
 | |
|       }
 | |
|     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
 | |
|       ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
 | |
|       if (V) {
 | |
|         Offset += V->getSExtValue();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| SDValue TargetLowering::
 | |
| PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   // Default implementation: no optimization.
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Inline Assembler Implementation Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| TargetLowering::ConstraintType
 | |
| TargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   unsigned S = Constraint.size();
 | |
| 
 | |
|   if (S == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'r': return C_RegisterClass;
 | |
|     case 'm':    // memory
 | |
|     case 'o':    // offsetable
 | |
|     case 'V':    // not offsetable
 | |
|       return C_Memory;
 | |
|     case 'i':    // Simple Integer or Relocatable Constant
 | |
|     case 'n':    // Simple Integer
 | |
|     case 'E':    // Floating Point Constant
 | |
|     case 'F':    // Floating Point Constant
 | |
|     case 's':    // Relocatable Constant
 | |
|     case 'p':    // Address.
 | |
|     case 'X':    // Allow ANY value.
 | |
|     case 'I':    // Target registers.
 | |
|     case 'J':
 | |
|     case 'K':
 | |
|     case 'L':
 | |
|     case 'M':
 | |
|     case 'N':
 | |
|     case 'O':
 | |
|     case 'P':
 | |
|     case '<':
 | |
|     case '>':
 | |
|       return C_Other;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
 | |
|     if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
 | |
|       return C_Memory;
 | |
|     return C_Register;
 | |
|   }
 | |
|   return C_Unknown;
 | |
| }
 | |
| 
 | |
| /// LowerXConstraint - try to replace an X constraint, which matches anything,
 | |
| /// with another that has more specific requirements based on the type of the
 | |
| /// corresponding operand.
 | |
| const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
 | |
|   if (ConstraintVT.isInteger())
 | |
|     return "r";
 | |
|   if (ConstraintVT.isFloatingPoint())
 | |
|     return "f";      // works for many targets
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops.
 | |
| void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | |
|                                                   std::string &Constraint,
 | |
|                                                   std::vector<SDValue> &Ops,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
| 
 | |
|   if (Constraint.length() > 1) return;
 | |
| 
 | |
|   char ConstraintLetter = Constraint[0];
 | |
|   switch (ConstraintLetter) {
 | |
|   default: break;
 | |
|   case 'X':     // Allows any operand; labels (basic block) use this.
 | |
|     if (Op.getOpcode() == ISD::BasicBlock) {
 | |
|       Ops.push_back(Op);
 | |
|       return;
 | |
|     }
 | |
|     // fall through
 | |
|   case 'i':    // Simple Integer or Relocatable Constant
 | |
|   case 'n':    // Simple Integer
 | |
|   case 's': {  // Relocatable Constant
 | |
|     // These operands are interested in values of the form (GV+C), where C may
 | |
|     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
 | |
|     // is possible and fine if either GV or C are missing.
 | |
|     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
 | |
| 
 | |
|     // If we have "(add GV, C)", pull out GV/C
 | |
|     if (Op.getOpcode() == ISD::ADD) {
 | |
|       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | |
|       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
 | |
|       if (!C || !GA) {
 | |
|         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
 | |
|         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
 | |
|       }
 | |
|       if (!C || !GA)
 | |
|         C = nullptr, GA = nullptr;
 | |
|     }
 | |
| 
 | |
|     // If we find a valid operand, map to the TargetXXX version so that the
 | |
|     // value itself doesn't get selected.
 | |
|     if (GA) {   // Either &GV   or   &GV+C
 | |
|       if (ConstraintLetter != 'n') {
 | |
|         int64_t Offs = GA->getOffset();
 | |
|         if (C) Offs += C->getZExtValue();
 | |
|         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
 | |
|                                                  C ? SDLoc(C) : SDLoc(),
 | |
|                                                  Op.getValueType(), Offs));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     if (C) {   // just C, no GV.
 | |
|       // Simple constants are not allowed for 's'.
 | |
|       if (ConstraintLetter != 's') {
 | |
|         // gcc prints these as sign extended.  Sign extend value to 64 bits
 | |
|         // now; without this it would get ZExt'd later in
 | |
|         // ScheduleDAGSDNodes::EmitNode, which is very generic.
 | |
|         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
 | |
|                                             MVT::i64));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
 | |
| getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                              MVT VT) const {
 | |
|   if (Constraint.empty() || Constraint[0] != '{')
 | |
|     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
 | |
|   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
 | |
| 
 | |
|   // Remove the braces from around the name.
 | |
|   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
 | |
| 
 | |
|   std::pair<unsigned, const TargetRegisterClass*> R =
 | |
|     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
 | |
| 
 | |
|   // Figure out which register class contains this reg.
 | |
|   const TargetRegisterInfo *RI =
 | |
|       getTargetMachine().getSubtargetImpl()->getRegisterInfo();
 | |
|   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
 | |
|        E = RI->regclass_end(); RCI != E; ++RCI) {
 | |
|     const TargetRegisterClass *RC = *RCI;
 | |
| 
 | |
|     // If none of the value types for this register class are valid, we
 | |
|     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | |
|     if (!isLegalRC(RC))
 | |
|       continue;
 | |
| 
 | |
|     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
 | |
|          I != E; ++I) {
 | |
|       if (RegName.equals_lower(RI->getName(*I))) {
 | |
|         std::pair<unsigned, const TargetRegisterClass*> S =
 | |
|           std::make_pair(*I, RC);
 | |
| 
 | |
|         // If this register class has the requested value type, return it,
 | |
|         // otherwise keep searching and return the first class found
 | |
|         // if no other is found which explicitly has the requested type.
 | |
|         if (RC->hasType(VT))
 | |
|           return S;
 | |
|         else if (!R.second)
 | |
|           R = S;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Constraint Selection.
 | |
| 
 | |
| /// isMatchingInputConstraint - Return true of this is an input operand that is
 | |
| /// a matching constraint like "4".
 | |
| bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
 | |
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | |
|   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
 | |
| }
 | |
| 
 | |
| /// getMatchedOperand - If this is an input matching constraint, this method
 | |
| /// returns the output operand it matches.
 | |
| unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
 | |
|   assert(!ConstraintCode.empty() && "No known constraint!");
 | |
|   return atoi(ConstraintCode.c_str());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ParseConstraints - Split up the constraint string from the inline
 | |
| /// assembly value into the specific constraints and their prefixes,
 | |
| /// and also tie in the associated operand values.
 | |
| /// If this returns an empty vector, and if the constraint string itself
 | |
| /// isn't empty, there was an error parsing.
 | |
| TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
 | |
|     ImmutableCallSite CS) const {
 | |
|   /// ConstraintOperands - Information about all of the constraints.
 | |
|   AsmOperandInfoVector ConstraintOperands;
 | |
|   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
 | |
|   unsigned maCount = 0; // Largest number of multiple alternative constraints.
 | |
| 
 | |
|   // Do a prepass over the constraints, canonicalizing them, and building up the
 | |
|   // ConstraintOperands list.
 | |
|   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
 | |
|   unsigned ResNo = 0;   // ResNo - The result number of the next output.
 | |
| 
 | |
|   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
 | |
|     ConstraintOperands.emplace_back(std::move(CI));
 | |
|     AsmOperandInfo &OpInfo = ConstraintOperands.back();
 | |
| 
 | |
|     // Update multiple alternative constraint count.
 | |
|     if (OpInfo.multipleAlternatives.size() > maCount)
 | |
|       maCount = OpInfo.multipleAlternatives.size();
 | |
| 
 | |
|     OpInfo.ConstraintVT = MVT::Other;
 | |
| 
 | |
|     // Compute the value type for each operand.
 | |
|     switch (OpInfo.Type) {
 | |
|     case InlineAsm::isOutput:
 | |
|       // Indirect outputs just consume an argument.
 | |
|       if (OpInfo.isIndirect) {
 | |
|         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // The return value of the call is this value.  As such, there is no
 | |
|       // corresponding argument.
 | |
|       assert(!CS.getType()->isVoidTy() &&
 | |
|              "Bad inline asm!");
 | |
|       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
 | |
|         OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
 | |
|       } else {
 | |
|         assert(ResNo == 0 && "Asm only has one result!");
 | |
|         OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
 | |
|       }
 | |
|       ++ResNo;
 | |
|       break;
 | |
|     case InlineAsm::isInput:
 | |
|       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
 | |
|       break;
 | |
|     case InlineAsm::isClobber:
 | |
|       // Nothing to do.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (OpInfo.CallOperandVal) {
 | |
|       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
 | |
|       if (OpInfo.isIndirect) {
 | |
|         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
 | |
|         if (!PtrTy)
 | |
|           report_fatal_error("Indirect operand for inline asm not a pointer!");
 | |
|         OpTy = PtrTy->getElementType();
 | |
|       }
 | |
| 
 | |
|       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
 | |
|       if (StructType *STy = dyn_cast<StructType>(OpTy))
 | |
|         if (STy->getNumElements() == 1)
 | |
|           OpTy = STy->getElementType(0);
 | |
| 
 | |
|       // If OpTy is not a single value, it may be a struct/union that we
 | |
|       // can tile with integers.
 | |
|       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | |
|         unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
 | |
|         switch (BitSize) {
 | |
|         default: break;
 | |
|         case 1:
 | |
|         case 8:
 | |
|         case 16:
 | |
|         case 32:
 | |
|         case 64:
 | |
|         case 128:
 | |
|           OpInfo.ConstraintVT =
 | |
|             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
 | |
|           break;
 | |
|         }
 | |
|       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
 | |
|         unsigned PtrSize
 | |
|           = getDataLayout()->getPointerSizeInBits(PT->getAddressSpace());
 | |
|         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
 | |
|       } else {
 | |
|         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we have multiple alternative constraints, select the best alternative.
 | |
|   if (!ConstraintOperands.empty()) {
 | |
|     if (maCount) {
 | |
|       unsigned bestMAIndex = 0;
 | |
|       int bestWeight = -1;
 | |
|       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
 | |
|       int weight = -1;
 | |
|       unsigned maIndex;
 | |
|       // Compute the sums of the weights for each alternative, keeping track
 | |
|       // of the best (highest weight) one so far.
 | |
|       for (maIndex = 0; maIndex < maCount; ++maIndex) {
 | |
|         int weightSum = 0;
 | |
|         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | |
|             cIndex != eIndex; ++cIndex) {
 | |
|           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
 | |
|           if (OpInfo.Type == InlineAsm::isClobber)
 | |
|             continue;
 | |
| 
 | |
|           // If this is an output operand with a matching input operand,
 | |
|           // look up the matching input. If their types mismatch, e.g. one
 | |
|           // is an integer, the other is floating point, or their sizes are
 | |
|           // different, flag it as an maCantMatch.
 | |
|           if (OpInfo.hasMatchingInput()) {
 | |
|             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | |
|             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | |
|               if ((OpInfo.ConstraintVT.isInteger() !=
 | |
|                    Input.ConstraintVT.isInteger()) ||
 | |
|                   (OpInfo.ConstraintVT.getSizeInBits() !=
 | |
|                    Input.ConstraintVT.getSizeInBits())) {
 | |
|                 weightSum = -1;  // Can't match.
 | |
|                 break;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
 | |
|           if (weight == -1) {
 | |
|             weightSum = -1;
 | |
|             break;
 | |
|           }
 | |
|           weightSum += weight;
 | |
|         }
 | |
|         // Update best.
 | |
|         if (weightSum > bestWeight) {
 | |
|           bestWeight = weightSum;
 | |
|           bestMAIndex = maIndex;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Now select chosen alternative in each constraint.
 | |
|       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | |
|           cIndex != eIndex; ++cIndex) {
 | |
|         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
 | |
|         if (cInfo.Type == InlineAsm::isClobber)
 | |
|           continue;
 | |
|         cInfo.selectAlternative(bestMAIndex);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check and hook up tied operands, choose constraint code to use.
 | |
|   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | |
|       cIndex != eIndex; ++cIndex) {
 | |
|     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
 | |
| 
 | |
|     // If this is an output operand with a matching input operand, look up the
 | |
|     // matching input. If their types mismatch, e.g. one is an integer, the
 | |
|     // other is floating point, or their sizes are different, flag it as an
 | |
|     // error.
 | |
|     if (OpInfo.hasMatchingInput()) {
 | |
|       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | |
| 
 | |
|       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | |
|         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
 | |
|           getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
 | |
|                                        OpInfo.ConstraintVT);
 | |
|         std::pair<unsigned, const TargetRegisterClass*> InputRC =
 | |
|           getRegForInlineAsmConstraint(Input.ConstraintCode,
 | |
|                                        Input.ConstraintVT);
 | |
|         if ((OpInfo.ConstraintVT.isInteger() !=
 | |
|              Input.ConstraintVT.isInteger()) ||
 | |
|             (MatchRC.second != InputRC.second)) {
 | |
|           report_fatal_error("Unsupported asm: input constraint"
 | |
|                              " with a matching output constraint of"
 | |
|                              " incompatible type!");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ConstraintOperands;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getConstraintGenerality - Return an integer indicating how general CT
 | |
| /// is.
 | |
| static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
 | |
|   switch (CT) {
 | |
|   case TargetLowering::C_Other:
 | |
|   case TargetLowering::C_Unknown:
 | |
|     return 0;
 | |
|   case TargetLowering::C_Register:
 | |
|     return 1;
 | |
|   case TargetLowering::C_RegisterClass:
 | |
|     return 2;
 | |
|   case TargetLowering::C_Memory:
 | |
|     return 3;
 | |
|   }
 | |
|   llvm_unreachable("Invalid constraint type");
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
|   TargetLowering::getMultipleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, int maIndex) const {
 | |
|   InlineAsm::ConstraintCodeVector *rCodes;
 | |
|   if (maIndex >= (int)info.multipleAlternatives.size())
 | |
|     rCodes = &info.Codes;
 | |
|   else
 | |
|     rCodes = &info.multipleAlternatives[maIndex].Codes;
 | |
|   ConstraintWeight BestWeight = CW_Invalid;
 | |
| 
 | |
|   // Loop over the options, keeping track of the most general one.
 | |
|   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
 | |
|     ConstraintWeight weight =
 | |
|       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
 | |
|     if (weight > BestWeight)
 | |
|       BestWeight = weight;
 | |
|   }
 | |
| 
 | |
|   return BestWeight;
 | |
| }
 | |
| 
 | |
| /// Examine constraint type and operand type and determine a weight value.
 | |
| /// This object must already have been set up with the operand type
 | |
| /// and the current alternative constraint selected.
 | |
| TargetLowering::ConstraintWeight
 | |
|   TargetLowering::getSingleConstraintMatchWeight(
 | |
|     AsmOperandInfo &info, const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|     // If we don't have a value, we can't do a match,
 | |
|     // but allow it at the lowest weight.
 | |
|   if (!CallOperandVal)
 | |
|     return CW_Default;
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|     case 'i': // immediate integer.
 | |
|     case 'n': // immediate integer with a known value.
 | |
|       if (isa<ConstantInt>(CallOperandVal))
 | |
|         weight = CW_Constant;
 | |
|       break;
 | |
|     case 's': // non-explicit intregal immediate.
 | |
|       if (isa<GlobalValue>(CallOperandVal))
 | |
|         weight = CW_Constant;
 | |
|       break;
 | |
|     case 'E': // immediate float if host format.
 | |
|     case 'F': // immediate float.
 | |
|       if (isa<ConstantFP>(CallOperandVal))
 | |
|         weight = CW_Constant;
 | |
|       break;
 | |
|     case '<': // memory operand with autodecrement.
 | |
|     case '>': // memory operand with autoincrement.
 | |
|     case 'm': // memory operand.
 | |
|     case 'o': // offsettable memory operand
 | |
|     case 'V': // non-offsettable memory operand
 | |
|       weight = CW_Memory;
 | |
|       break;
 | |
|     case 'r': // general register.
 | |
|     case 'g': // general register, memory operand or immediate integer.
 | |
|               // note: Clang converts "g" to "imr".
 | |
|       if (CallOperandVal->getType()->isIntegerTy())
 | |
|         weight = CW_Register;
 | |
|       break;
 | |
|     case 'X': // any operand.
 | |
|     default:
 | |
|       weight = CW_Default;
 | |
|       break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| /// ChooseConstraint - If there are multiple different constraints that we
 | |
| /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
 | |
| /// This is somewhat tricky: constraints fall into four classes:
 | |
| ///    Other         -> immediates and magic values
 | |
| ///    Register      -> one specific register
 | |
| ///    RegisterClass -> a group of regs
 | |
| ///    Memory        -> memory
 | |
| /// Ideally, we would pick the most specific constraint possible: if we have
 | |
| /// something that fits into a register, we would pick it.  The problem here
 | |
| /// is that if we have something that could either be in a register or in
 | |
| /// memory that use of the register could cause selection of *other*
 | |
| /// operands to fail: they might only succeed if we pick memory.  Because of
 | |
| /// this the heuristic we use is:
 | |
| ///
 | |
| ///  1) If there is an 'other' constraint, and if the operand is valid for
 | |
| ///     that constraint, use it.  This makes us take advantage of 'i'
 | |
| ///     constraints when available.
 | |
| ///  2) Otherwise, pick the most general constraint present.  This prefers
 | |
| ///     'm' over 'r', for example.
 | |
| ///
 | |
| static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
 | |
|                              const TargetLowering &TLI,
 | |
|                              SDValue Op, SelectionDAG *DAG) {
 | |
|   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
 | |
|   unsigned BestIdx = 0;
 | |
|   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
 | |
|   int BestGenerality = -1;
 | |
| 
 | |
|   // Loop over the options, keeping track of the most general one.
 | |
|   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
 | |
|     TargetLowering::ConstraintType CType =
 | |
|       TLI.getConstraintType(OpInfo.Codes[i]);
 | |
| 
 | |
|     // If this is an 'other' constraint, see if the operand is valid for it.
 | |
|     // For example, on X86 we might have an 'rI' constraint.  If the operand
 | |
|     // is an integer in the range [0..31] we want to use I (saving a load
 | |
|     // of a register), otherwise we must use 'r'.
 | |
|     if (CType == TargetLowering::C_Other && Op.getNode()) {
 | |
|       assert(OpInfo.Codes[i].size() == 1 &&
 | |
|              "Unhandled multi-letter 'other' constraint");
 | |
|       std::vector<SDValue> ResultOps;
 | |
|       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
 | |
|                                        ResultOps, *DAG);
 | |
|       if (!ResultOps.empty()) {
 | |
|         BestType = CType;
 | |
|         BestIdx = i;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Things with matching constraints can only be registers, per gcc
 | |
|     // documentation.  This mainly affects "g" constraints.
 | |
|     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
 | |
|       continue;
 | |
| 
 | |
|     // This constraint letter is more general than the previous one, use it.
 | |
|     int Generality = getConstraintGenerality(CType);
 | |
|     if (Generality > BestGenerality) {
 | |
|       BestType = CType;
 | |
|       BestIdx = i;
 | |
|       BestGenerality = Generality;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
 | |
|   OpInfo.ConstraintType = BestType;
 | |
| }
 | |
| 
 | |
| /// ComputeConstraintToUse - Determines the constraint code and constraint
 | |
| /// type to use for the specific AsmOperandInfo, setting
 | |
| /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
 | |
| void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | |
|                                             SDValue Op,
 | |
|                                             SelectionDAG *DAG) const {
 | |
|   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
 | |
| 
 | |
|   // Single-letter constraints ('r') are very common.
 | |
|   if (OpInfo.Codes.size() == 1) {
 | |
|     OpInfo.ConstraintCode = OpInfo.Codes[0];
 | |
|     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | |
|   } else {
 | |
|     ChooseConstraint(OpInfo, *this, Op, DAG);
 | |
|   }
 | |
| 
 | |
|   // 'X' matches anything.
 | |
|   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
 | |
|     // Labels and constants are handled elsewhere ('X' is the only thing
 | |
|     // that matches labels).  For Functions, the type here is the type of
 | |
|     // the result, which is not what we want to look at; leave them alone.
 | |
|     Value *v = OpInfo.CallOperandVal;
 | |
|     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
 | |
|       OpInfo.CallOperandVal = v;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, try to resolve it to something we know about by looking at
 | |
|     // the actual operand type.
 | |
|     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
 | |
|       OpInfo.ConstraintCode = Repl;
 | |
|       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Given an exact SDIV by a constant, create a multiplication
 | |
| /// with the multiplicative inverse of the constant.
 | |
| SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
 | |
|                                        SelectionDAG &DAG) const {
 | |
|   ConstantSDNode *C = cast<ConstantSDNode>(Op2);
 | |
|   APInt d = C->getAPIntValue();
 | |
|   assert(d != 0 && "Division by zero!");
 | |
| 
 | |
|   // Shift the value upfront if it is even, so the LSB is one.
 | |
|   unsigned ShAmt = d.countTrailingZeros();
 | |
|   if (ShAmt) {
 | |
|     // TODO: For UDIV use SRL instead of SRA.
 | |
|     SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
 | |
|     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, false, false,
 | |
|                       true);
 | |
|     d = d.ashr(ShAmt);
 | |
|   }
 | |
| 
 | |
|   // Calculate the multiplicative inverse, using Newton's method.
 | |
|   APInt t, xn = d;
 | |
|   while ((t = d*xn) != 1)
 | |
|     xn *= APInt(d.getBitWidth(), 2) - t;
 | |
| 
 | |
|   Op2 = DAG.getConstant(xn, Op1.getValueType());
 | |
|   return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
 | |
| }
 | |
| 
 | |
| /// \brief Given an ISD::SDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.
 | |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | |
| SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
 | |
|                                   SelectionDAG &DAG, bool IsAfterLegalization,
 | |
|                                   std::vector<SDNode *> *Created) const {
 | |
|   assert(Created && "No vector to hold sdiv ops.");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // Check to see if we can do this.
 | |
|   // FIXME: We should be more aggressive here.
 | |
|   if (!isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   APInt::ms magics = Divisor.magic();
 | |
| 
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   // FIXME: We should support doing a MUL in a wider type
 | |
|   SDValue Q;
 | |
|   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
 | |
|                             isOperationLegalOrCustom(ISD::MULHS, VT))
 | |
|     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
 | |
|                     DAG.getConstant(magics.m, VT));
 | |
|   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
 | |
|                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
 | |
|     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
 | |
|                               N->getOperand(0),
 | |
|                               DAG.getConstant(magics.m, VT)).getNode(), 1);
 | |
|   else
 | |
|     return SDValue();       // No mulhs or equvialent
 | |
|   // If d > 0 and m < 0, add the numerator
 | |
|   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
 | |
|     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
 | |
|     Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // If d < 0 and m > 0, subtract the numerator.
 | |
|   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
 | |
|     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
 | |
|     Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // Shift right algebraic if shift value is nonzero
 | |
|   if (magics.s > 0) {
 | |
|     Q = DAG.getNode(ISD::SRA, dl, VT, Q,
 | |
|                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
 | |
|     Created->push_back(Q.getNode());
 | |
|   }
 | |
|   // Extract the sign bit and add it to the quotient
 | |
|   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q,
 | |
|                           DAG.getConstant(VT.getScalarSizeInBits() - 1,
 | |
|                                           getShiftAmountTy(Q.getValueType())));
 | |
|   Created->push_back(T.getNode());
 | |
|   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
 | |
| }
 | |
| 
 | |
| /// \brief Given an ISD::UDIV node expressing a divide by constant,
 | |
| /// return a DAG expression to select that will generate the same value by
 | |
| /// multiplying by a magic number.
 | |
| /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | |
| SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
 | |
|                                   SelectionDAG &DAG, bool IsAfterLegalization,
 | |
|                                   std::vector<SDNode *> *Created) const {
 | |
|   assert(Created && "No vector to hold udiv ops.");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // Check to see if we can do this.
 | |
|   // FIXME: We should be more aggressive here.
 | |
|   if (!isTypeLegal(VT))
 | |
|     return SDValue();
 | |
| 
 | |
|   // FIXME: We should use a narrower constant when the upper
 | |
|   // bits are known to be zero.
 | |
|   APInt::mu magics = Divisor.magicu();
 | |
| 
 | |
|   SDValue Q = N->getOperand(0);
 | |
| 
 | |
|   // If the divisor is even, we can avoid using the expensive fixup by shifting
 | |
|   // the divided value upfront.
 | |
|   if (magics.a != 0 && !Divisor[0]) {
 | |
|     unsigned Shift = Divisor.countTrailingZeros();
 | |
|     Q = DAG.getNode(ISD::SRL, dl, VT, Q,
 | |
|                     DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
 | |
|     Created->push_back(Q.getNode());
 | |
| 
 | |
|     // Get magic number for the shifted divisor.
 | |
|     magics = Divisor.lshr(Shift).magicu(Shift);
 | |
|     assert(magics.a == 0 && "Should use cheap fixup now");
 | |
|   }
 | |
| 
 | |
|   // Multiply the numerator (operand 0) by the magic value
 | |
|   // FIXME: We should support doing a MUL in a wider type
 | |
|   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
 | |
|                             isOperationLegalOrCustom(ISD::MULHU, VT))
 | |
|     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
 | |
|   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
 | |
|                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
 | |
|     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
 | |
|                             DAG.getConstant(magics.m, VT)).getNode(), 1);
 | |
|   else
 | |
|     return SDValue();       // No mulhu or equvialent
 | |
| 
 | |
|   Created->push_back(Q.getNode());
 | |
| 
 | |
|   if (magics.a == 0) {
 | |
|     assert(magics.s < Divisor.getBitWidth() &&
 | |
|            "We shouldn't generate an undefined shift!");
 | |
|     return DAG.getNode(ISD::SRL, dl, VT, Q,
 | |
|                  DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
 | |
|   } else {
 | |
|     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
 | |
|     Created->push_back(NPQ.getNode());
 | |
|     NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
 | |
|                       DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
 | |
|     Created->push_back(NPQ.getNode());
 | |
|     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
 | |
|     Created->push_back(NPQ.getNode());
 | |
|     return DAG.getNode(ISD::SRL, dl, VT, NPQ,
 | |
|              DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool TargetLowering::
 | |
| verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
 | |
|   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
 | |
|     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
 | |
|                                 "be a constant integer");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Legalization Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
 | |
|                                SelectionDAG &DAG, SDValue LL, SDValue LH,
 | |
|                                SDValue RL, SDValue RH) const {
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
 | |
|   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
 | |
|   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
 | |
|   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
 | |
|   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
 | |
|     unsigned OuterBitSize = VT.getSizeInBits();
 | |
|     unsigned InnerBitSize = HiLoVT.getSizeInBits();
 | |
|     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
 | |
|     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
 | |
| 
 | |
|     // LL, LH, RL, and RH must be either all NULL or all set to a value.
 | |
|     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
 | |
|            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
 | |
| 
 | |
|     if (!LL.getNode() && !RL.getNode() &&
 | |
|         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | |
|       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
 | |
|       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
 | |
|     }
 | |
| 
 | |
|     if (!LL.getNode())
 | |
|       return false;
 | |
| 
 | |
|     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
 | |
|     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
 | |
|         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
 | |
|       // The inputs are both zero-extended.
 | |
|       if (HasUMUL_LOHI) {
 | |
|         // We can emit a umul_lohi.
 | |
|         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
 | |
|                          RL);
 | |
|         Hi = SDValue(Lo.getNode(), 1);
 | |
|         return true;
 | |
|       }
 | |
|       if (HasMULHU) {
 | |
|         // We can emit a mulhu+mul.
 | |
|         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
 | |
|         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
 | |
|       // The input values are both sign-extended.
 | |
|       if (HasSMUL_LOHI) {
 | |
|         // We can emit a smul_lohi.
 | |
|         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
 | |
|                          RL);
 | |
|         Hi = SDValue(Lo.getNode(), 1);
 | |
|         return true;
 | |
|       }
 | |
|       if (HasMULHS) {
 | |
|         // We can emit a mulhs+mul.
 | |
|         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
 | |
|         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!LH.getNode() && !RH.getNode() &&
 | |
|         isOperationLegalOrCustom(ISD::SRL, VT) &&
 | |
|         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | |
|       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
 | |
|       SDValue Shift = DAG.getConstant(ShiftAmt, getShiftAmountTy(VT));
 | |
|       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
 | |
|       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
 | |
|       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
 | |
|       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
 | |
|     }
 | |
| 
 | |
|     if (!LH.getNode())
 | |
|       return false;
 | |
| 
 | |
|     if (HasUMUL_LOHI) {
 | |
|       // Lo,Hi = umul LHS, RHS.
 | |
|       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
 | |
|                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
 | |
|       Lo = UMulLOHI;
 | |
|       Hi = UMulLOHI.getValue(1);
 | |
|       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
 | |
|       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
 | |
|       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
 | |
|       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
 | |
|       return true;
 | |
|     }
 | |
|     if (HasMULHU) {
 | |
|       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
 | |
|       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
 | |
|       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
 | |
|       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
 | |
|       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
 | |
|       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
 | |
|                                SelectionDAG &DAG) const {
 | |
|   EVT VT = Node->getOperand(0).getValueType();
 | |
|   EVT NVT = Node->getValueType(0);
 | |
|   SDLoc dl(SDValue(Node, 0));
 | |
| 
 | |
|   // FIXME: Only f32 to i64 conversions are supported.
 | |
|   if (VT != MVT::f32 || NVT != MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   // Expand f32 -> i64 conversion
 | |
|   // This algorithm comes from compiler-rt's implementation of fixsfdi:
 | |
|   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
 | |
|   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
 | |
|                                 VT.getSizeInBits());
 | |
|   SDValue ExponentMask = DAG.getConstant(0x7F800000, IntVT);
 | |
|   SDValue ExponentLoBit = DAG.getConstant(23, IntVT);
 | |
|   SDValue Bias = DAG.getConstant(127, IntVT);
 | |
|   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()),
 | |
|                                      IntVT);
 | |
|   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, IntVT);
 | |
|   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, IntVT);
 | |
| 
 | |
|   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
 | |
| 
 | |
|   SDValue ExponentBits = DAG.getNode(ISD::SRL, dl, IntVT,
 | |
|       DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
 | |
|       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT)));
 | |
|   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
 | |
| 
 | |
|   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
 | |
|       DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
 | |
|       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT)));
 | |
|   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
 | |
| 
 | |
|   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
 | |
|       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
 | |
|       DAG.getConstant(0x00800000, IntVT));
 | |
| 
 | |
|   R = DAG.getZExtOrTrunc(R, dl, NVT);
 | |
| 
 | |
| 
 | |
|   R = DAG.getSelectCC(dl, Exponent, ExponentLoBit,
 | |
|      DAG.getNode(ISD::SHL, dl, NVT, R,
 | |
|                  DAG.getZExtOrTrunc(
 | |
|                     DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
 | |
|                     dl, getShiftAmountTy(IntVT))),
 | |
|      DAG.getNode(ISD::SRL, dl, NVT, R,
 | |
|                  DAG.getZExtOrTrunc(
 | |
|                     DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
 | |
|                     dl, getShiftAmountTy(IntVT))),
 | |
|      ISD::SETGT);
 | |
| 
 | |
|   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
 | |
|       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
 | |
|       Sign);
 | |
| 
 | |
|   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, IntVT),
 | |
|       DAG.getConstant(0, NVT), Ret, ISD::SETLT);
 | |
|   return true;
 | |
| }
 |