mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219069 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1248 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1248 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the SystemZ implementation of the TargetInstrInfo class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SystemZInstrInfo.h"
 | 
						|
#include "SystemZInstrBuilder.h"
 | 
						|
#include "SystemZTargetMachine.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define GET_INSTRINFO_CTOR_DTOR
 | 
						|
#define GET_INSTRMAP_INFO
 | 
						|
#include "SystemZGenInstrInfo.inc"
 | 
						|
 | 
						|
// Return a mask with Count low bits set.
 | 
						|
static uint64_t allOnes(unsigned int Count) {
 | 
						|
  return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
 | 
						|
}
 | 
						|
 | 
						|
// Reg should be a 32-bit GPR.  Return true if it is a high register rather
 | 
						|
// than a low register.
 | 
						|
static bool isHighReg(unsigned int Reg) {
 | 
						|
  if (SystemZ::GRH32BitRegClass.contains(Reg))
 | 
						|
    return true;
 | 
						|
  assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Pin the vtable to this file.
 | 
						|
void SystemZInstrInfo::anchor() {}
 | 
						|
 | 
						|
SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
 | 
						|
  : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
 | 
						|
    RI(), STI(sti) {
 | 
						|
}
 | 
						|
 | 
						|
// MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
 | 
						|
// each having the opcode given by NewOpcode.
 | 
						|
void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
 | 
						|
                                 unsigned NewOpcode) const {
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MachineFunction &MF = *MBB->getParent();
 | 
						|
 | 
						|
  // Get two load or store instructions.  Use the original instruction for one
 | 
						|
  // of them (arbitrarily the second here) and create a clone for the other.
 | 
						|
  MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
 | 
						|
  MBB->insert(MI, EarlierMI);
 | 
						|
 | 
						|
  // Set up the two 64-bit registers.
 | 
						|
  MachineOperand &HighRegOp = EarlierMI->getOperand(0);
 | 
						|
  MachineOperand &LowRegOp = MI->getOperand(0);
 | 
						|
  HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
 | 
						|
  LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
 | 
						|
 | 
						|
  // The address in the first (high) instruction is already correct.
 | 
						|
  // Adjust the offset in the second (low) instruction.
 | 
						|
  MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
 | 
						|
  MachineOperand &LowOffsetOp = MI->getOperand(2);
 | 
						|
  LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
 | 
						|
 | 
						|
  // Set the opcodes.
 | 
						|
  unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
 | 
						|
  unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
 | 
						|
  assert(HighOpcode && LowOpcode && "Both offsets should be in range");
 | 
						|
 | 
						|
  EarlierMI->setDesc(get(HighOpcode));
 | 
						|
  MI->setDesc(get(LowOpcode));
 | 
						|
}
 | 
						|
 | 
						|
// Split ADJDYNALLOC instruction MI.
 | 
						|
void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MachineFunction &MF = *MBB->getParent();
 | 
						|
  MachineFrameInfo *MFFrame = MF.getFrameInfo();
 | 
						|
  MachineOperand &OffsetMO = MI->getOperand(2);
 | 
						|
 | 
						|
  uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
 | 
						|
                     SystemZMC::CallFrameSize +
 | 
						|
                     OffsetMO.getImm());
 | 
						|
  unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
 | 
						|
  assert(NewOpcode && "No support for huge argument lists yet");
 | 
						|
  MI->setDesc(get(NewOpcode));
 | 
						|
  OffsetMO.setImm(Offset);
 | 
						|
}
 | 
						|
 | 
						|
// MI is an RI-style pseudo instruction.  Replace it with LowOpcode
 | 
						|
// if the first operand is a low GR32 and HighOpcode if the first operand
 | 
						|
// is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
 | 
						|
// and HighOpcode takes an unsigned 32-bit operand.  In those cases,
 | 
						|
// MI has the same kind of operand as LowOpcode, so needs to be converted
 | 
						|
// if HighOpcode is used.
 | 
						|
void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
 | 
						|
                                      unsigned HighOpcode,
 | 
						|
                                      bool ConvertHigh) const {
 | 
						|
  unsigned Reg = MI->getOperand(0).getReg();
 | 
						|
  bool IsHigh = isHighReg(Reg);
 | 
						|
  MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
 | 
						|
  if (IsHigh && ConvertHigh)
 | 
						|
    MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
 | 
						|
}
 | 
						|
 | 
						|
// MI is a three-operand RIE-style pseudo instruction.  Replace it with
 | 
						|
// LowOpcode3 if the registers are both low GR32s, otherwise use a move
 | 
						|
// followed by HighOpcode or LowOpcode, depending on whether the target
 | 
						|
// is a high or low GR32.
 | 
						|
void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
 | 
						|
                                       unsigned LowOpcodeK,
 | 
						|
                                       unsigned HighOpcode) const {
 | 
						|
  unsigned DestReg = MI->getOperand(0).getReg();
 | 
						|
  unsigned SrcReg = MI->getOperand(1).getReg();
 | 
						|
  bool DestIsHigh = isHighReg(DestReg);
 | 
						|
  bool SrcIsHigh = isHighReg(SrcReg);
 | 
						|
  if (!DestIsHigh && !SrcIsHigh)
 | 
						|
    MI->setDesc(get(LowOpcodeK));
 | 
						|
  else {
 | 
						|
    emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
 | 
						|
                  DestReg, SrcReg, SystemZ::LR, 32,
 | 
						|
                  MI->getOperand(1).isKill());
 | 
						|
    MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
 | 
						|
    MI->getOperand(1).setReg(DestReg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
 | 
						|
// if the first operand is a low GR32 and HighOpcode if the first operand
 | 
						|
// is a high GR32.
 | 
						|
void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
 | 
						|
                                       unsigned HighOpcode) const {
 | 
						|
  unsigned Reg = MI->getOperand(0).getReg();
 | 
						|
  unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
 | 
						|
                                       MI->getOperand(2).getImm());
 | 
						|
  MI->setDesc(get(Opcode));
 | 
						|
}
 | 
						|
 | 
						|
// MI is an RR-style pseudo instruction that zero-extends the low Size bits
 | 
						|
// of one GRX32 into another.  Replace it with LowOpcode if both operands
 | 
						|
// are low registers, otherwise use RISB[LH]G.
 | 
						|
void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
 | 
						|
                                        unsigned Size) const {
 | 
						|
  emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
 | 
						|
                MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
 | 
						|
                LowOpcode, Size, MI->getOperand(1).isKill());
 | 
						|
  MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
 | 
						|
// DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
 | 
						|
// are low registers, otherwise use RISB[LH]G.  Size is the number of bits
 | 
						|
// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
 | 
						|
// KillSrc is true if this move is the last use of SrcReg.
 | 
						|
void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
 | 
						|
                                     MachineBasicBlock::iterator MBBI,
 | 
						|
                                     DebugLoc DL, unsigned DestReg,
 | 
						|
                                     unsigned SrcReg, unsigned LowLowOpcode,
 | 
						|
                                     unsigned Size, bool KillSrc) const {
 | 
						|
  unsigned Opcode;
 | 
						|
  bool DestIsHigh = isHighReg(DestReg);
 | 
						|
  bool SrcIsHigh = isHighReg(SrcReg);
 | 
						|
  if (DestIsHigh && SrcIsHigh)
 | 
						|
    Opcode = SystemZ::RISBHH;
 | 
						|
  else if (DestIsHigh && !SrcIsHigh)
 | 
						|
    Opcode = SystemZ::RISBHL;
 | 
						|
  else if (!DestIsHigh && SrcIsHigh)
 | 
						|
    Opcode = SystemZ::RISBLH;
 | 
						|
  else {
 | 
						|
    BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
 | 
						|
      .addReg(SrcReg, getKillRegState(KillSrc));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
 | 
						|
  BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
 | 
						|
    .addReg(DestReg, RegState::Undef)
 | 
						|
    .addReg(SrcReg, getKillRegState(KillSrc))
 | 
						|
    .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
 | 
						|
}
 | 
						|
 | 
						|
// If MI is a simple load or store for a frame object, return the register
 | 
						|
// it loads or stores and set FrameIndex to the index of the frame object.
 | 
						|
// Return 0 otherwise.
 | 
						|
//
 | 
						|
// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
 | 
						|
static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
 | 
						|
                        unsigned Flag) {
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  if ((MCID.TSFlags & Flag) &&
 | 
						|
      MI->getOperand(1).isFI() &&
 | 
						|
      MI->getOperand(2).getImm() == 0 &&
 | 
						|
      MI->getOperand(3).getReg() == 0) {
 | 
						|
    FrameIndex = MI->getOperand(1).getIndex();
 | 
						|
    return MI->getOperand(0).getReg();
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
 | 
						|
                                               int &FrameIndex) const {
 | 
						|
  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | 
						|
                                              int &FrameIndex) const {
 | 
						|
  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
 | 
						|
                                       int &DestFrameIndex,
 | 
						|
                                       int &SrcFrameIndex) const {
 | 
						|
  // Check for MVC 0(Length,FI1),0(FI2)
 | 
						|
  const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
 | 
						|
  if (MI->getOpcode() != SystemZ::MVC ||
 | 
						|
      !MI->getOperand(0).isFI() ||
 | 
						|
      MI->getOperand(1).getImm() != 0 ||
 | 
						|
      !MI->getOperand(3).isFI() ||
 | 
						|
      MI->getOperand(4).getImm() != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that Length covers the full slots.
 | 
						|
  int64_t Length = MI->getOperand(2).getImm();
 | 
						|
  unsigned FI1 = MI->getOperand(0).getIndex();
 | 
						|
  unsigned FI2 = MI->getOperand(3).getIndex();
 | 
						|
  if (MFI->getObjectSize(FI1) != Length ||
 | 
						|
      MFI->getObjectSize(FI2) != Length)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DestFrameIndex = FI1;
 | 
						|
  SrcFrameIndex = FI2;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
 | 
						|
                                     MachineBasicBlock *&TBB,
 | 
						|
                                     MachineBasicBlock *&FBB,
 | 
						|
                                     SmallVectorImpl<MachineOperand> &Cond,
 | 
						|
                                     bool AllowModify) const {
 | 
						|
  // Most of the code and comments here are boilerplate.
 | 
						|
 | 
						|
  // Start from the bottom of the block and work up, examining the
 | 
						|
  // terminator instructions.
 | 
						|
  MachineBasicBlock::iterator I = MBB.end();
 | 
						|
  while (I != MBB.begin()) {
 | 
						|
    --I;
 | 
						|
    if (I->isDebugValue())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Working from the bottom, when we see a non-terminator instruction, we're
 | 
						|
    // done.
 | 
						|
    if (!isUnpredicatedTerminator(I))
 | 
						|
      break;
 | 
						|
 | 
						|
    // A terminator that isn't a branch can't easily be handled by this
 | 
						|
    // analysis.
 | 
						|
    if (!I->isBranch())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Can't handle indirect branches.
 | 
						|
    SystemZII::Branch Branch(getBranchInfo(I));
 | 
						|
    if (!Branch.Target->isMBB())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Punt on compound branches.
 | 
						|
    if (Branch.Type != SystemZII::BranchNormal)
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (Branch.CCMask == SystemZ::CCMASK_ANY) {
 | 
						|
      // Handle unconditional branches.
 | 
						|
      if (!AllowModify) {
 | 
						|
        TBB = Branch.Target->getMBB();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the block has any instructions after a JMP, delete them.
 | 
						|
      while (std::next(I) != MBB.end())
 | 
						|
        std::next(I)->eraseFromParent();
 | 
						|
 | 
						|
      Cond.clear();
 | 
						|
      FBB = nullptr;
 | 
						|
 | 
						|
      // Delete the JMP if it's equivalent to a fall-through.
 | 
						|
      if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
 | 
						|
        TBB = nullptr;
 | 
						|
        I->eraseFromParent();
 | 
						|
        I = MBB.end();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // TBB is used to indicate the unconditinal destination.
 | 
						|
      TBB = Branch.Target->getMBB();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Working from the bottom, handle the first conditional branch.
 | 
						|
    if (Cond.empty()) {
 | 
						|
      // FIXME: add X86-style branch swap
 | 
						|
      FBB = TBB;
 | 
						|
      TBB = Branch.Target->getMBB();
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Handle subsequent conditional branches.
 | 
						|
    assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
 | 
						|
 | 
						|
    // Only handle the case where all conditional branches branch to the same
 | 
						|
    // destination.
 | 
						|
    if (TBB != Branch.Target->getMBB())
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If the conditions are the same, we can leave them alone.
 | 
						|
    unsigned OldCCValid = Cond[0].getImm();
 | 
						|
    unsigned OldCCMask = Cond[1].getImm();
 | 
						|
    if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | 
						|
  // Most of the code and comments here are boilerplate.
 | 
						|
  MachineBasicBlock::iterator I = MBB.end();
 | 
						|
  unsigned Count = 0;
 | 
						|
 | 
						|
  while (I != MBB.begin()) {
 | 
						|
    --I;
 | 
						|
    if (I->isDebugValue())
 | 
						|
      continue;
 | 
						|
    if (!I->isBranch())
 | 
						|
      break;
 | 
						|
    if (!getBranchInfo(I).Target->isMBB())
 | 
						|
      break;
 | 
						|
    // Remove the branch.
 | 
						|
    I->eraseFromParent();
 | 
						|
    I = MBB.end();
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::
 | 
						|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | 
						|
  assert(Cond.size() == 2 && "Invalid condition");
 | 
						|
  Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | 
						|
                               MachineBasicBlock *FBB,
 | 
						|
                               const SmallVectorImpl<MachineOperand> &Cond,
 | 
						|
                               DebugLoc DL) const {
 | 
						|
  // In this function we output 32-bit branches, which should always
 | 
						|
  // have enough range.  They can be shortened and relaxed by later code
 | 
						|
  // in the pipeline, if desired.
 | 
						|
 | 
						|
  // Shouldn't be a fall through.
 | 
						|
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | 
						|
  assert((Cond.size() == 2 || Cond.size() == 0) &&
 | 
						|
         "SystemZ branch conditions have one component!");
 | 
						|
 | 
						|
  if (Cond.empty()) {
 | 
						|
    // Unconditional branch?
 | 
						|
    assert(!FBB && "Unconditional branch with multiple successors!");
 | 
						|
    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Conditional branch.
 | 
						|
  unsigned Count = 0;
 | 
						|
  unsigned CCValid = Cond[0].getImm();
 | 
						|
  unsigned CCMask = Cond[1].getImm();
 | 
						|
  BuildMI(&MBB, DL, get(SystemZ::BRC))
 | 
						|
    .addImm(CCValid).addImm(CCMask).addMBB(TBB);
 | 
						|
  ++Count;
 | 
						|
 | 
						|
  if (FBB) {
 | 
						|
    // Two-way Conditional branch. Insert the second branch.
 | 
						|
    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
 | 
						|
    ++Count;
 | 
						|
  }
 | 
						|
  return Count;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
 | 
						|
                                      unsigned &SrcReg, unsigned &SrcReg2,
 | 
						|
                                      int &Mask, int &Value) const {
 | 
						|
  assert(MI->isCompare() && "Caller should have checked for a comparison");
 | 
						|
 | 
						|
  if (MI->getNumExplicitOperands() == 2 &&
 | 
						|
      MI->getOperand(0).isReg() &&
 | 
						|
      MI->getOperand(1).isImm()) {
 | 
						|
    SrcReg = MI->getOperand(0).getReg();
 | 
						|
    SrcReg2 = 0;
 | 
						|
    Value = MI->getOperand(1).getImm();
 | 
						|
    Mask = ~0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If Reg is a virtual register, return its definition, otherwise return null.
 | 
						|
static MachineInstr *getDef(unsigned Reg,
 | 
						|
                            const MachineRegisterInfo *MRI) {
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
    return nullptr;
 | 
						|
  return MRI->getUniqueVRegDef(Reg);
 | 
						|
}
 | 
						|
 | 
						|
// Return true if MI is a shift of type Opcode by Imm bits.
 | 
						|
static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) {
 | 
						|
  return (MI->getOpcode() == Opcode &&
 | 
						|
          !MI->getOperand(2).getReg() &&
 | 
						|
          MI->getOperand(3).getImm() == Imm);
 | 
						|
}
 | 
						|
 | 
						|
// If the destination of MI has no uses, delete it as dead.
 | 
						|
static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
 | 
						|
  if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
 | 
						|
    MI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
// Compare compares SrcReg against zero.  Check whether SrcReg contains
 | 
						|
// the result of an IPM sequence whose input CC survives until Compare,
 | 
						|
// and whether Compare is therefore redundant.  Delete it and return
 | 
						|
// true if so.
 | 
						|
static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
 | 
						|
                                  const MachineRegisterInfo *MRI,
 | 
						|
                                  const TargetRegisterInfo *TRI) {
 | 
						|
  MachineInstr *LGFR = nullptr;
 | 
						|
  MachineInstr *RLL = getDef(SrcReg, MRI);
 | 
						|
  if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
 | 
						|
    LGFR = RLL;
 | 
						|
    RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
 | 
						|
  }
 | 
						|
  if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
 | 
						|
  if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
 | 
						|
  if (!IPM || IPM->getOpcode() != SystemZ::IPM)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that there are no assignments to CC between the IPM and Compare,
 | 
						|
  if (IPM->getParent() != Compare->getParent())
 | 
						|
    return false;
 | 
						|
  MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
 | 
						|
  for (++MBBI; MBBI != MBBE; ++MBBI) {
 | 
						|
    MachineInstr *MI = MBBI;
 | 
						|
    if (MI->modifiesRegister(SystemZ::CC, TRI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Compare->eraseFromParent();
 | 
						|
  if (LGFR)
 | 
						|
    eraseIfDead(LGFR, MRI);
 | 
						|
  eraseIfDead(RLL, MRI);
 | 
						|
  eraseIfDead(SRL, MRI);
 | 
						|
  eraseIfDead(IPM, MRI);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
 | 
						|
                                       unsigned SrcReg, unsigned SrcReg2,
 | 
						|
                                       int Mask, int Value,
 | 
						|
                                       const MachineRegisterInfo *MRI) const {
 | 
						|
  assert(!SrcReg2 && "Only optimizing constant comparisons so far");
 | 
						|
  bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
 | 
						|
  if (Value == 0 &&
 | 
						|
      !IsLogical &&
 | 
						|
      removeIPMBasedCompare(Compare, SrcReg, MRI, &RI))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If Opcode is a move that has a conditional variant, return that variant,
 | 
						|
// otherwise return 0.
 | 
						|
static unsigned getConditionalMove(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case SystemZ::LR:  return SystemZ::LOCR;
 | 
						|
  case SystemZ::LGR: return SystemZ::LOCGR;
 | 
						|
  default:           return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  if (STI.hasLoadStoreOnCond() &&
 | 
						|
      getConditionalMove(Opcode))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::
 | 
						|
isProfitableToIfCvt(MachineBasicBlock &MBB,
 | 
						|
                    unsigned NumCycles, unsigned ExtraPredCycles,
 | 
						|
                    const BranchProbability &Probability) const {
 | 
						|
  // For now only convert single instructions.
 | 
						|
  return NumCycles == 1;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::
 | 
						|
isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | 
						|
                    unsigned NumCyclesT, unsigned ExtraPredCyclesT,
 | 
						|
                    MachineBasicBlock &FMBB,
 | 
						|
                    unsigned NumCyclesF, unsigned ExtraPredCyclesF,
 | 
						|
                    const BranchProbability &Probability) const {
 | 
						|
  // For now avoid converting mutually-exclusive cases.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::
 | 
						|
PredicateInstruction(MachineInstr *MI,
 | 
						|
                     const SmallVectorImpl<MachineOperand> &Pred) const {
 | 
						|
  assert(Pred.size() == 2 && "Invalid condition");
 | 
						|
  unsigned CCValid = Pred[0].getImm();
 | 
						|
  unsigned CCMask = Pred[1].getImm();
 | 
						|
  assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  if (STI.hasLoadStoreOnCond()) {
 | 
						|
    if (unsigned CondOpcode = getConditionalMove(Opcode)) {
 | 
						|
      MI->setDesc(get(CondOpcode));
 | 
						|
      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
 | 
						|
        .addImm(CCValid).addImm(CCMask)
 | 
						|
        .addReg(SystemZ::CC, RegState::Implicit);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | 
						|
			      MachineBasicBlock::iterator MBBI, DebugLoc DL,
 | 
						|
			      unsigned DestReg, unsigned SrcReg,
 | 
						|
			      bool KillSrc) const {
 | 
						|
  // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
 | 
						|
  if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
 | 
						|
    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
 | 
						|
                RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
 | 
						|
    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
 | 
						|
                RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
 | 
						|
    emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Everything else needs only one instruction.
 | 
						|
  unsigned Opcode;
 | 
						|
  if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opcode = SystemZ::LGR;
 | 
						|
  else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opcode = SystemZ::LER;
 | 
						|
  else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opcode = SystemZ::LDR;
 | 
						|
  else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opcode = SystemZ::LXR;
 | 
						|
  else
 | 
						|
    llvm_unreachable("Impossible reg-to-reg copy");
 | 
						|
 | 
						|
  BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
 | 
						|
    .addReg(SrcReg, getKillRegState(KillSrc));
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | 
						|
				      MachineBasicBlock::iterator MBBI,
 | 
						|
				      unsigned SrcReg, bool isKill,
 | 
						|
				      int FrameIdx,
 | 
						|
				      const TargetRegisterClass *RC,
 | 
						|
				      const TargetRegisterInfo *TRI) const {
 | 
						|
  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 | 
						|
 | 
						|
  // Callers may expect a single instruction, so keep 128-bit moves
 | 
						|
  // together for now and lower them after register allocation.
 | 
						|
  unsigned LoadOpcode, StoreOpcode;
 | 
						|
  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
 | 
						|
  addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
 | 
						|
		    .addReg(SrcReg, getKillRegState(isKill)), FrameIdx);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | 
						|
				       MachineBasicBlock::iterator MBBI,
 | 
						|
				       unsigned DestReg, int FrameIdx,
 | 
						|
				       const TargetRegisterClass *RC,
 | 
						|
				       const TargetRegisterInfo *TRI) const {
 | 
						|
  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 | 
						|
 | 
						|
  // Callers may expect a single instruction, so keep 128-bit moves
 | 
						|
  // together for now and lower them after register allocation.
 | 
						|
  unsigned LoadOpcode, StoreOpcode;
 | 
						|
  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
 | 
						|
  addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
 | 
						|
                    FrameIdx);
 | 
						|
}
 | 
						|
 | 
						|
// Return true if MI is a simple load or store with a 12-bit displacement
 | 
						|
// and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
 | 
						|
static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
 | 
						|
  const MCInstrDesc &MCID = MI->getDesc();
 | 
						|
  return ((MCID.TSFlags & Flag) &&
 | 
						|
          isUInt<12>(MI->getOperand(2).getImm()) &&
 | 
						|
          MI->getOperand(3).getReg() == 0);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct LogicOp {
 | 
						|
  LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
 | 
						|
  LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
 | 
						|
    : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
 | 
						|
 | 
						|
  LLVM_EXPLICIT operator bool() const { return RegSize; }
 | 
						|
 | 
						|
  unsigned RegSize, ImmLSB, ImmSize;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static LogicOp interpretAndImmediate(unsigned Opcode) {
 | 
						|
  switch (Opcode) {
 | 
						|
  case SystemZ::NILMux: return LogicOp(32,  0, 16);
 | 
						|
  case SystemZ::NIHMux: return LogicOp(32, 16, 16);
 | 
						|
  case SystemZ::NILL64: return LogicOp(64,  0, 16);
 | 
						|
  case SystemZ::NILH64: return LogicOp(64, 16, 16);
 | 
						|
  case SystemZ::NIHL64: return LogicOp(64, 32, 16);
 | 
						|
  case SystemZ::NIHH64: return LogicOp(64, 48, 16);
 | 
						|
  case SystemZ::NIFMux: return LogicOp(32,  0, 32);
 | 
						|
  case SystemZ::NILF64: return LogicOp(64,  0, 32);
 | 
						|
  case SystemZ::NIHF64: return LogicOp(64, 32, 32);
 | 
						|
  default:              return LogicOp();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Used to return from convertToThreeAddress after replacing two-address
 | 
						|
// instruction OldMI with three-address instruction NewMI.
 | 
						|
static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
 | 
						|
                                                 MachineInstr *NewMI,
 | 
						|
                                                 LiveVariables *LV) {
 | 
						|
  if (LV) {
 | 
						|
    unsigned NumOps = OldMI->getNumOperands();
 | 
						|
    for (unsigned I = 1; I < NumOps; ++I) {
 | 
						|
      MachineOperand &Op = OldMI->getOperand(I);
 | 
						|
      if (Op.isReg() && Op.isKill())
 | 
						|
        LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NewMI;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *
 | 
						|
SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | 
						|
                                        MachineBasicBlock::iterator &MBBI,
 | 
						|
                                        LiveVariables *LV) const {
 | 
						|
  MachineInstr *MI = MBBI;
 | 
						|
  MachineBasicBlock *MBB = MI->getParent();
 | 
						|
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | 
						|
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
  unsigned NumOps = MI->getNumOperands();
 | 
						|
 | 
						|
  // Try to convert something like SLL into SLLK, if supported.
 | 
						|
  // We prefer to keep the two-operand form where possible both
 | 
						|
  // because it tends to be shorter and because some instructions
 | 
						|
  // have memory forms that can be used during spilling.
 | 
						|
  if (STI.hasDistinctOps()) {
 | 
						|
    MachineOperand &Dest = MI->getOperand(0);
 | 
						|
    MachineOperand &Src = MI->getOperand(1);
 | 
						|
    unsigned DestReg = Dest.getReg();
 | 
						|
    unsigned SrcReg = Src.getReg();
 | 
						|
    // AHIMux is only really a three-operand instruction when both operands
 | 
						|
    // are low registers.  Try to constrain both operands to be low if
 | 
						|
    // possible.
 | 
						|
    if (Opcode == SystemZ::AHIMux &&
 | 
						|
        TargetRegisterInfo::isVirtualRegister(DestReg) &&
 | 
						|
        TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | 
						|
        MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
 | 
						|
        MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
 | 
						|
      MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
 | 
						|
      MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
 | 
						|
    }
 | 
						|
    int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
 | 
						|
    if (ThreeOperandOpcode >= 0) {
 | 
						|
      MachineInstrBuilder MIB =
 | 
						|
        BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode))
 | 
						|
        .addOperand(Dest);
 | 
						|
      // Keep the kill state, but drop the tied flag.
 | 
						|
      MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
 | 
						|
      // Keep the remaining operands as-is.
 | 
						|
      for (unsigned I = 2; I < NumOps; ++I)
 | 
						|
        MIB.addOperand(MI->getOperand(I));
 | 
						|
      return finishConvertToThreeAddress(MI, MIB, LV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to convert an AND into an RISBG-type instruction.
 | 
						|
  if (LogicOp And = interpretAndImmediate(Opcode)) {
 | 
						|
    uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
 | 
						|
    // AND IMMEDIATE leaves the other bits of the register unchanged.
 | 
						|
    Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
 | 
						|
    unsigned Start, End;
 | 
						|
    if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
 | 
						|
      unsigned NewOpcode;
 | 
						|
      if (And.RegSize == 64)
 | 
						|
        NewOpcode = SystemZ::RISBG;
 | 
						|
      else {
 | 
						|
        NewOpcode = SystemZ::RISBMux;
 | 
						|
        Start &= 31;
 | 
						|
        End &= 31;
 | 
						|
      }
 | 
						|
      MachineOperand &Dest = MI->getOperand(0);
 | 
						|
      MachineOperand &Src = MI->getOperand(1);
 | 
						|
      MachineInstrBuilder MIB =
 | 
						|
        BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
 | 
						|
        .addOperand(Dest).addReg(0)
 | 
						|
        .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
 | 
						|
        .addImm(Start).addImm(End + 128).addImm(0);
 | 
						|
      return finishConvertToThreeAddress(MI, MIB, LV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *
 | 
						|
SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | 
						|
                                        MachineInstr *MI,
 | 
						|
                                        const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                        int FrameIndex) const {
 | 
						|
  const MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  unsigned Size = MFI->getObjectSize(FrameIndex);
 | 
						|
  unsigned Opcode = MI->getOpcode();
 | 
						|
 | 
						|
  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | 
						|
    if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
 | 
						|
        isInt<8>(MI->getOperand(2).getImm()) &&
 | 
						|
        !MI->getOperand(3).getReg()) {
 | 
						|
      // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
 | 
						|
      return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI))
 | 
						|
        .addFrameIndex(FrameIndex).addImm(0)
 | 
						|
        .addImm(MI->getOperand(2).getImm());
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // All other cases require a single operand.
 | 
						|
  if (Ops.size() != 1)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned OpNum = Ops[0];
 | 
						|
  assert(Size == MF.getRegInfo()
 | 
						|
         .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
 | 
						|
         "Invalid size combination");
 | 
						|
 | 
						|
  if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
 | 
						|
      OpNum == 0 &&
 | 
						|
      isInt<8>(MI->getOperand(2).getImm())) {
 | 
						|
    // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
 | 
						|
    Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
 | 
						|
    return BuildMI(MF, MI->getDebugLoc(), get(Opcode))
 | 
						|
      .addFrameIndex(FrameIndex).addImm(0)
 | 
						|
      .addImm(MI->getOperand(2).getImm());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
 | 
						|
    bool Op0IsGPR = (Opcode == SystemZ::LGDR);
 | 
						|
    bool Op1IsGPR = (Opcode == SystemZ::LDGR);
 | 
						|
    // If we're spilling the destination of an LDGR or LGDR, store the
 | 
						|
    // source register instead.
 | 
						|
    if (OpNum == 0) {
 | 
						|
      unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
 | 
						|
      return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode))
 | 
						|
        .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex)
 | 
						|
        .addImm(0).addReg(0);
 | 
						|
    }
 | 
						|
    // If we're spilling the source of an LDGR or LGDR, load the
 | 
						|
    // destination register instead.
 | 
						|
    if (OpNum == 1) {
 | 
						|
      unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
 | 
						|
      unsigned Dest = MI->getOperand(0).getReg();
 | 
						|
      return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest)
 | 
						|
        .addFrameIndex(FrameIndex).addImm(0).addReg(0);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Look for cases where the source of a simple store or the destination
 | 
						|
  // of a simple load is being spilled.  Try to use MVC instead.
 | 
						|
  //
 | 
						|
  // Although MVC is in practice a fast choice in these cases, it is still
 | 
						|
  // logically a bytewise copy.  This means that we cannot use it if the
 | 
						|
  // load or store is volatile.  We also wouldn't be able to use MVC if
 | 
						|
  // the two memories partially overlap, but that case cannot occur here,
 | 
						|
  // because we know that one of the memories is a full frame index.
 | 
						|
  //
 | 
						|
  // For performance reasons, we also want to avoid using MVC if the addresses
 | 
						|
  // might be equal.  We don't worry about that case here, because spill slot
 | 
						|
  // coloring happens later, and because we have special code to remove
 | 
						|
  // MVCs that turn out to be redundant.
 | 
						|
  if (OpNum == 0 && MI->hasOneMemOperand()) {
 | 
						|
    MachineMemOperand *MMO = *MI->memoperands_begin();
 | 
						|
    if (MMO->getSize() == Size && !MMO->isVolatile()) {
 | 
						|
      // Handle conversion of loads.
 | 
						|
      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
 | 
						|
        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
 | 
						|
          .addFrameIndex(FrameIndex).addImm(0).addImm(Size)
 | 
						|
          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
 | 
						|
          .addMemOperand(MMO);
 | 
						|
      }
 | 
						|
      // Handle conversion of stores.
 | 
						|
      if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
 | 
						|
        return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC))
 | 
						|
          .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm())
 | 
						|
          .addImm(Size).addFrameIndex(FrameIndex).addImm(0)
 | 
						|
          .addMemOperand(MMO);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the spilled operand is the final one, try to change <INSN>R
 | 
						|
  // into <INSN>.
 | 
						|
  int MemOpcode = SystemZ::getMemOpcode(Opcode);
 | 
						|
  if (MemOpcode >= 0) {
 | 
						|
    unsigned NumOps = MI->getNumExplicitOperands();
 | 
						|
    if (OpNum == NumOps - 1) {
 | 
						|
      const MCInstrDesc &MemDesc = get(MemOpcode);
 | 
						|
      uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
 | 
						|
      assert(AccessBytes != 0 && "Size of access should be known");
 | 
						|
      assert(AccessBytes <= Size && "Access outside the frame index");
 | 
						|
      uint64_t Offset = Size - AccessBytes;
 | 
						|
      MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode));
 | 
						|
      for (unsigned I = 0; I < OpNum; ++I)
 | 
						|
        MIB.addOperand(MI->getOperand(I));
 | 
						|
      MIB.addFrameIndex(FrameIndex).addImm(Offset);
 | 
						|
      if (MemDesc.TSFlags & SystemZII::HasIndex)
 | 
						|
        MIB.addReg(0);
 | 
						|
      return MIB;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *
 | 
						|
SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI,
 | 
						|
                                        const SmallVectorImpl<unsigned> &Ops,
 | 
						|
                                        MachineInstr* LoadMI) const {
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case SystemZ::L128:
 | 
						|
    splitMove(MI, SystemZ::LG);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::ST128:
 | 
						|
    splitMove(MI, SystemZ::STG);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LX:
 | 
						|
    splitMove(MI, SystemZ::LD);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::STX:
 | 
						|
    splitMove(MI, SystemZ::STD);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LBMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LHMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LLCRMux:
 | 
						|
    expandZExtPseudo(MI, SystemZ::LLCR, 8);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LLHRMux:
 | 
						|
    expandZExtPseudo(MI, SystemZ::LLHR, 16);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LLCMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LLHMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::STCMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::STHMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::STMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::LHIMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::IIFMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::IILMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::IIHMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::NIFMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::NILMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::NIHMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::OIFMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::OILMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::OIHMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::XIFMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::TMLMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::TMHMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::AHIMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::AHIMuxK:
 | 
						|
    expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::AFIMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::CFIMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::CLFIMux:
 | 
						|
    expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::CMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::CLMux:
 | 
						|
    expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
 | 
						|
    return true;
 | 
						|
 | 
						|
  case SystemZ::RISBMux: {
 | 
						|
    bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
 | 
						|
    bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
 | 
						|
    if (SrcIsHigh == DestIsHigh)
 | 
						|
      MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
 | 
						|
    else {
 | 
						|
      MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
 | 
						|
      MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case SystemZ::ADJDYNALLOC:
 | 
						|
    splitAdjDynAlloc(MI);
 | 
						|
    return true;
 | 
						|
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
 | 
						|
  if (MI->getOpcode() == TargetOpcode::INLINEASM) {
 | 
						|
    const MachineFunction *MF = MI->getParent()->getParent();
 | 
						|
    const char *AsmStr = MI->getOperand(0).getSymbolName();
 | 
						|
    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
 | 
						|
  }
 | 
						|
  return MI->getDesc().getSize();
 | 
						|
}
 | 
						|
 | 
						|
SystemZII::Branch
 | 
						|
SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case SystemZ::BR:
 | 
						|
  case SystemZ::J:
 | 
						|
  case SystemZ::JG:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
 | 
						|
                             SystemZ::CCMASK_ANY, &MI->getOperand(0));
 | 
						|
 | 
						|
  case SystemZ::BRC:
 | 
						|
  case SystemZ::BRCL:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchNormal,
 | 
						|
                             MI->getOperand(0).getImm(),
 | 
						|
                             MI->getOperand(1).getImm(), &MI->getOperand(2));
 | 
						|
 | 
						|
  case SystemZ::BRCT:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
 | 
						|
                             SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
 | 
						|
 | 
						|
  case SystemZ::BRCTG:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
 | 
						|
                             SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
 | 
						|
 | 
						|
  case SystemZ::CIJ:
 | 
						|
  case SystemZ::CRJ:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
 | 
						|
                             MI->getOperand(2).getImm(), &MI->getOperand(3));
 | 
						|
 | 
						|
  case SystemZ::CLIJ:
 | 
						|
  case SystemZ::CLRJ:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
 | 
						|
                             MI->getOperand(2).getImm(), &MI->getOperand(3));
 | 
						|
 | 
						|
  case SystemZ::CGIJ:
 | 
						|
  case SystemZ::CGRJ:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
 | 
						|
                             MI->getOperand(2).getImm(), &MI->getOperand(3));
 | 
						|
 | 
						|
  case SystemZ::CLGIJ:
 | 
						|
  case SystemZ::CLGRJ:
 | 
						|
    return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
 | 
						|
                             MI->getOperand(2).getImm(), &MI->getOperand(3));
 | 
						|
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unrecognized branch opcode");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
 | 
						|
                                           unsigned &LoadOpcode,
 | 
						|
                                           unsigned &StoreOpcode) const {
 | 
						|
  if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::L;
 | 
						|
    StoreOpcode = SystemZ::ST;
 | 
						|
  } else if (RC == &SystemZ::GRH32BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::LFH;
 | 
						|
    StoreOpcode = SystemZ::STFH;
 | 
						|
  } else if (RC == &SystemZ::GRX32BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::LMux;
 | 
						|
    StoreOpcode = SystemZ::STMux;
 | 
						|
  } else if (RC == &SystemZ::GR64BitRegClass ||
 | 
						|
             RC == &SystemZ::ADDR64BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::LG;
 | 
						|
    StoreOpcode = SystemZ::STG;
 | 
						|
  } else if (RC == &SystemZ::GR128BitRegClass ||
 | 
						|
             RC == &SystemZ::ADDR128BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::L128;
 | 
						|
    StoreOpcode = SystemZ::ST128;
 | 
						|
  } else if (RC == &SystemZ::FP32BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::LE;
 | 
						|
    StoreOpcode = SystemZ::STE;
 | 
						|
  } else if (RC == &SystemZ::FP64BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::LD;
 | 
						|
    StoreOpcode = SystemZ::STD;
 | 
						|
  } else if (RC == &SystemZ::FP128BitRegClass) {
 | 
						|
    LoadOpcode = SystemZ::LX;
 | 
						|
    StoreOpcode = SystemZ::STX;
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Unsupported regclass to load or store");
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
 | 
						|
                                              int64_t Offset) const {
 | 
						|
  const MCInstrDesc &MCID = get(Opcode);
 | 
						|
  int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
 | 
						|
  if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
 | 
						|
    // Get the instruction to use for unsigned 12-bit displacements.
 | 
						|
    int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
 | 
						|
    if (Disp12Opcode >= 0)
 | 
						|
      return Disp12Opcode;
 | 
						|
 | 
						|
    // All address-related instructions can use unsigned 12-bit
 | 
						|
    // displacements.
 | 
						|
    return Opcode;
 | 
						|
  }
 | 
						|
  if (isInt<20>(Offset) && isInt<20>(Offset2)) {
 | 
						|
    // Get the instruction to use for signed 20-bit displacements.
 | 
						|
    int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
 | 
						|
    if (Disp20Opcode >= 0)
 | 
						|
      return Disp20Opcode;
 | 
						|
 | 
						|
    // Check whether Opcode allows signed 20-bit displacements.
 | 
						|
    if (MCID.TSFlags & SystemZII::Has20BitOffset)
 | 
						|
      return Opcode;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
 | 
						|
  switch (Opcode) {
 | 
						|
  case SystemZ::L:    return SystemZ::LT;
 | 
						|
  case SystemZ::LY:   return SystemZ::LT;
 | 
						|
  case SystemZ::LG:   return SystemZ::LTG;
 | 
						|
  case SystemZ::LGF:  return SystemZ::LTGF;
 | 
						|
  case SystemZ::LR:   return SystemZ::LTR;
 | 
						|
  case SystemZ::LGFR: return SystemZ::LTGFR;
 | 
						|
  case SystemZ::LGR:  return SystemZ::LTGR;
 | 
						|
  case SystemZ::LER:  return SystemZ::LTEBR;
 | 
						|
  case SystemZ::LDR:  return SystemZ::LTDBR;
 | 
						|
  case SystemZ::LXR:  return SystemZ::LTXBR;
 | 
						|
  default:            return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Return true if Mask matches the regexp 0*1+0*, given that zero masks
 | 
						|
// have already been filtered out.  Store the first set bit in LSB and
 | 
						|
// the number of set bits in Length if so.
 | 
						|
static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
 | 
						|
  unsigned First = findFirstSet(Mask);
 | 
						|
  uint64_t Top = (Mask >> First) + 1;
 | 
						|
  if ((Top & -Top) == Top) {
 | 
						|
    LSB = First;
 | 
						|
    Length = findFirstSet(Top);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
 | 
						|
                                   unsigned &Start, unsigned &End) const {
 | 
						|
  // Reject trivial all-zero masks.
 | 
						|
  if (Mask == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
 | 
						|
  // the msb and End specifies the index of the lsb.
 | 
						|
  unsigned LSB, Length;
 | 
						|
  if (isStringOfOnes(Mask, LSB, Length)) {
 | 
						|
    Start = 63 - (LSB + Length - 1);
 | 
						|
    End = 63 - LSB;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
 | 
						|
  // of the low 1s and End specifies the lsb of the high 1s.
 | 
						|
  if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
 | 
						|
    assert(LSB > 0 && "Bottom bit must be set");
 | 
						|
    assert(LSB + Length < BitSize && "Top bit must be set");
 | 
						|
    Start = 63 - (LSB - 1);
 | 
						|
    End = 63 - (LSB + Length);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
 | 
						|
                                               const MachineInstr *MI) const {
 | 
						|
  switch (Opcode) {
 | 
						|
  case SystemZ::CR:
 | 
						|
    return SystemZ::CRJ;
 | 
						|
  case SystemZ::CGR:
 | 
						|
    return SystemZ::CGRJ;
 | 
						|
  case SystemZ::CHI:
 | 
						|
    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
 | 
						|
  case SystemZ::CGHI:
 | 
						|
    return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
 | 
						|
  case SystemZ::CLR:
 | 
						|
    return SystemZ::CLRJ;
 | 
						|
  case SystemZ::CLGR:
 | 
						|
    return SystemZ::CLGRJ;
 | 
						|
  case SystemZ::CLFI:
 | 
						|
    return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
 | 
						|
  case SystemZ::CLGFI:
 | 
						|
    return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
 | 
						|
  default:
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
 | 
						|
                                     MachineBasicBlock::iterator MBBI,
 | 
						|
                                     unsigned Reg, uint64_t Value) const {
 | 
						|
  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 | 
						|
  unsigned Opcode;
 | 
						|
  if (isInt<16>(Value))
 | 
						|
    Opcode = SystemZ::LGHI;
 | 
						|
  else if (SystemZ::isImmLL(Value))
 | 
						|
    Opcode = SystemZ::LLILL;
 | 
						|
  else if (SystemZ::isImmLH(Value)) {
 | 
						|
    Opcode = SystemZ::LLILH;
 | 
						|
    Value >>= 16;
 | 
						|
  } else {
 | 
						|
    assert(isInt<32>(Value) && "Huge values not handled yet");
 | 
						|
    Opcode = SystemZ::LGFI;
 | 
						|
  }
 | 
						|
  BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
 | 
						|
}
 |