mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 02:36:06 +00:00
025f4c0fad
that we can't modify the CFG any more, at least not until it's possible to update the dominator tree (PR217). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30469 91177308-0d34-0410-b5e6-96231b3b80d8
778 lines
24 KiB
C++
778 lines
24 KiB
C++
//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Nick Lewycky and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===------------------------------------------------------------------===//
|
|
//
|
|
// Path-sensitive optimizer. In a branch where x == y, replace uses of
|
|
// x with y. Permits further optimization, such as the elimination of
|
|
// the unreachable call:
|
|
//
|
|
// void test(int *p, int *q)
|
|
// {
|
|
// if (p != q)
|
|
// return;
|
|
//
|
|
// if (*p != *q)
|
|
// foo(); // unreachable
|
|
// }
|
|
//
|
|
//===------------------------------------------------------------------===//
|
|
//
|
|
// This optimization works by substituting %q for %p when protected by a
|
|
// conditional that assures us of that fact. Properties are stored as
|
|
// relationships between two values.
|
|
//
|
|
//===------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "predsimplify"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
typedef DominatorTree::Node DTNodeType;
|
|
|
|
namespace {
|
|
Statistic<>
|
|
NumVarsReplaced("predsimplify", "Number of argument substitutions");
|
|
Statistic<>
|
|
NumInstruction("predsimplify", "Number of instructions removed");
|
|
|
|
/// Returns true if V1 is a better choice than V2. Note that it is
|
|
/// not a total ordering.
|
|
struct compare {
|
|
bool operator()(Value *V1, Value *V2) const {
|
|
if (isa<Constant>(V1)) {
|
|
if (!isa<Constant>(V2)) {
|
|
return true;
|
|
}
|
|
} else if (isa<Argument>(V1)) {
|
|
if (!isa<Constant>(V2) && !isa<Argument>(V2)) {
|
|
return true;
|
|
}
|
|
}
|
|
if (User *U = dyn_cast<User>(V2)) {
|
|
for (User::const_op_iterator I = U->op_begin(), E = U->op_end();
|
|
I != E; ++I) {
|
|
if (*I == V1) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// Used for choosing the canonical Value in a synonym set.
|
|
/// Leaves the better choice in V1.
|
|
static void order(Value *&V1, Value *&V2) {
|
|
static compare c;
|
|
if (c(V2, V1))
|
|
std::swap(V1, V2);
|
|
}
|
|
|
|
/// Similar to EquivalenceClasses, this stores the set of equivalent
|
|
/// types. Beyond EquivalenceClasses, it allows the user to specify
|
|
/// which element will act as leader through a StrictWeakOrdering
|
|
/// function.
|
|
template<typename ElemTy, typename StrictWeak>
|
|
class VISIBILITY_HIDDEN Synonyms {
|
|
std::map<ElemTy, unsigned> mapping;
|
|
std::vector<ElemTy> leaders;
|
|
StrictWeak swo;
|
|
|
|
public:
|
|
typedef unsigned iterator;
|
|
typedef const unsigned const_iterator;
|
|
|
|
// Inspection
|
|
|
|
bool empty() const {
|
|
return leaders.empty();
|
|
}
|
|
|
|
unsigned countLeaders() const {
|
|
return leaders.size();
|
|
}
|
|
|
|
iterator findLeader(ElemTy e) {
|
|
typename std::map<ElemTy, unsigned>::iterator MI = mapping.find(e);
|
|
if (MI == mapping.end()) return 0;
|
|
|
|
return MI->second;
|
|
}
|
|
|
|
const_iterator findLeader(ElemTy e) const {
|
|
typename std::map<ElemTy, unsigned>::const_iterator MI =
|
|
mapping.find(e);
|
|
if (MI == mapping.end()) return 0;
|
|
|
|
return MI->second;
|
|
}
|
|
|
|
ElemTy &getLeader(iterator I) {
|
|
assert(I && I <= leaders.size() && "Illegal leader to get.");
|
|
return leaders[I-1];
|
|
}
|
|
|
|
const ElemTy &getLeader(const_iterator I) const {
|
|
assert(I && I <= leaders.size() && "Illegal leaders to get.");
|
|
return leaders[I-1];
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void debug(std::ostream &os) const {
|
|
for (unsigned i = 1, e = leaders.size()+1; i != e; ++i) {
|
|
os << i << ". " << *getLeader(i) << ": [";
|
|
for (std::map<Value *, unsigned>::const_iterator
|
|
I = mapping.begin(), E = mapping.end(); I != E; ++I) {
|
|
if ((*I).second == i && (*I).first != leaders[i-1]) {
|
|
os << *(*I).first << " ";
|
|
}
|
|
}
|
|
os << "]\n";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Mutators
|
|
|
|
/// Combine two sets referring to the same element, inserting the
|
|
/// elements as needed. Returns a valid iterator iff two already
|
|
/// existing disjoint synonym sets were combined. The iterator
|
|
/// points to the removed element.
|
|
iterator unionSets(ElemTy E1, ElemTy E2) {
|
|
if (swo(E2, E1)) std::swap(E1, E2);
|
|
|
|
iterator I1 = findLeader(E1),
|
|
I2 = findLeader(E2);
|
|
|
|
if (!I1 && !I2) { // neither entry is in yet
|
|
leaders.push_back(E1);
|
|
I1 = leaders.size();
|
|
mapping[E1] = I1;
|
|
mapping[E2] = I1;
|
|
return 0;
|
|
}
|
|
|
|
if (!I1 && I2) {
|
|
mapping[E1] = I2;
|
|
std::swap(getLeader(I2), E1);
|
|
return 0;
|
|
}
|
|
|
|
if (I1 && !I2) {
|
|
mapping[E2] = I1;
|
|
return 0;
|
|
}
|
|
|
|
if (I1 == I2) return 0;
|
|
|
|
// This is the case where we have two sets, [%a1, %a2, %a3] and
|
|
// [%p1, %p2, %p3] and someone says that %a2 == %p3. We need to
|
|
// combine the two synsets.
|
|
|
|
if (I1 > I2) --I1;
|
|
|
|
for (std::map<Value *, unsigned>::iterator I = mapping.begin(),
|
|
E = mapping.end(); I != E; ++I) {
|
|
if (I->second == I2) I->second = I1;
|
|
else if (I->second > I2) --I->second;
|
|
}
|
|
|
|
leaders.erase(leaders.begin() + I2 - 1);
|
|
|
|
return I2;
|
|
}
|
|
|
|
/// Returns an iterator pointing to the synonym set containing
|
|
/// element e. If none exists, a new one is created and returned.
|
|
iterator findOrInsert(ElemTy e) {
|
|
iterator I = findLeader(e);
|
|
if (I) return I;
|
|
|
|
leaders.push_back(e);
|
|
I = leaders.size();
|
|
mapping[e] = I;
|
|
return I;
|
|
}
|
|
};
|
|
|
|
/// Represents the set of equivalent Value*s and provides insertion
|
|
/// and fast lookup. Also stores the set of inequality relationships.
|
|
class PropertySet {
|
|
struct Property;
|
|
public:
|
|
class Synonyms<Value *, compare> union_find;
|
|
|
|
typedef std::vector<Property>::iterator PropertyIterator;
|
|
typedef std::vector<Property>::const_iterator ConstPropertyIterator;
|
|
typedef Synonyms<Value *, compare>::iterator SynonymIterator;
|
|
|
|
enum Ops {
|
|
EQ,
|
|
NE
|
|
};
|
|
|
|
Value *canonicalize(Value *V) const {
|
|
Value *C = lookup(V);
|
|
return C ? C : V;
|
|
}
|
|
|
|
Value *lookup(Value *V) const {
|
|
Synonyms<Value *, compare>::iterator SI = union_find.findLeader(V);
|
|
if (!SI) return NULL;
|
|
return union_find.getLeader(SI);
|
|
}
|
|
|
|
bool empty() const {
|
|
return union_find.empty();
|
|
}
|
|
|
|
void addEqual(Value *V1, Value *V2) {
|
|
// If %x = 0. and %y = -0., seteq %x, %y is true, but
|
|
// copysign(%x) is not the same as copysign(%y).
|
|
if (V1->getType()->isFloatingPoint()) return;
|
|
|
|
order(V1, V2);
|
|
if (isa<Constant>(V2)) return; // refuse to set false == true.
|
|
|
|
SynonymIterator deleted = union_find.unionSets(V1, V2);
|
|
if (deleted) {
|
|
SynonymIterator replacement = union_find.findLeader(V1);
|
|
// Move Properties
|
|
for (PropertyIterator I = Properties.begin(), E = Properties.end();
|
|
I != E; ++I) {
|
|
if (I->I1 == deleted) I->I1 = replacement;
|
|
else if (I->I1 > deleted) --I->I1;
|
|
if (I->I2 == deleted) I->I2 = replacement;
|
|
else if (I->I2 > deleted) --I->I2;
|
|
}
|
|
}
|
|
addImpliedProperties(EQ, V1, V2);
|
|
}
|
|
|
|
void addNotEqual(Value *V1, Value *V2) {
|
|
// If %x = NAN then seteq %x, %x is false.
|
|
if (V1->getType()->isFloatingPoint()) return;
|
|
|
|
// For example, %x = setne int 0, 0 causes "0 != 0".
|
|
if (isa<Constant>(V1) && isa<Constant>(V2)) return;
|
|
|
|
if (findProperty(NE, V1, V2) != Properties.end())
|
|
return; // found.
|
|
|
|
// Add the property.
|
|
SynonymIterator I1 = union_find.findOrInsert(V1),
|
|
I2 = union_find.findOrInsert(V2);
|
|
|
|
// Technically this means that the block is unreachable.
|
|
if (I1 == I2) return;
|
|
|
|
Properties.push_back(Property(NE, I1, I2));
|
|
addImpliedProperties(NE, V1, V2);
|
|
}
|
|
|
|
PropertyIterator findProperty(Ops Opcode, Value *V1, Value *V2) {
|
|
assert(Opcode != EQ && "Can't findProperty on EQ."
|
|
"Use the lookup method instead.");
|
|
|
|
SynonymIterator I1 = union_find.findLeader(V1),
|
|
I2 = union_find.findLeader(V2);
|
|
if (!I1 || !I2) return Properties.end();
|
|
|
|
return
|
|
find(Properties.begin(), Properties.end(), Property(Opcode, I1, I2));
|
|
}
|
|
|
|
ConstPropertyIterator
|
|
findProperty(Ops Opcode, Value *V1, Value *V2) const {
|
|
assert(Opcode != EQ && "Can't findProperty on EQ."
|
|
"Use the lookup method instead.");
|
|
|
|
SynonymIterator I1 = union_find.findLeader(V1),
|
|
I2 = union_find.findLeader(V2);
|
|
if (!I1 || !I2) return Properties.end();
|
|
|
|
return
|
|
find(Properties.begin(), Properties.end(), Property(Opcode, I1, I2));
|
|
}
|
|
|
|
private:
|
|
// Represents Head OP [Tail1, Tail2, ...]
|
|
// For example: %x != %a, %x != %b.
|
|
struct VISIBILITY_HIDDEN Property {
|
|
typedef Synonyms<Value *, compare>::iterator Iter;
|
|
|
|
Property(Ops opcode, Iter i1, Iter i2)
|
|
: Opcode(opcode), I1(i1), I2(i2)
|
|
{ assert(opcode != EQ && "Equality belongs in the synonym set, "
|
|
"not a property."); }
|
|
|
|
bool operator==(const Property &P) const {
|
|
return (Opcode == P.Opcode) &&
|
|
((I1 == P.I1 && I2 == P.I2) ||
|
|
(I1 == P.I2 && I2 == P.I1));
|
|
}
|
|
|
|
Ops Opcode;
|
|
Iter I1, I2;
|
|
};
|
|
|
|
void add(Ops Opcode, Value *V1, Value *V2, bool invert) {
|
|
switch (Opcode) {
|
|
case EQ:
|
|
if (invert) addNotEqual(V1, V2);
|
|
else addEqual(V1, V2);
|
|
break;
|
|
case NE:
|
|
if (invert) addEqual(V1, V2);
|
|
else addNotEqual(V1, V2);
|
|
break;
|
|
default:
|
|
assert(0 && "Unknown property opcode.");
|
|
}
|
|
}
|
|
|
|
// Finds the properties implied by an equivalence and adds them too.
|
|
// Example: ("seteq %a, %b", true, EQ) --> (%a, %b, EQ)
|
|
// ("seteq %a, %b", false, EQ) --> (%a, %b, NE)
|
|
void addImpliedProperties(Ops Opcode, Value *V1, Value *V2) {
|
|
order(V1, V2);
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V2)) {
|
|
switch (BO->getOpcode()) {
|
|
case Instruction::SetEQ:
|
|
if (V1 == ConstantBool::True)
|
|
add(Opcode, BO->getOperand(0), BO->getOperand(1), false);
|
|
if (V1 == ConstantBool::False)
|
|
add(Opcode, BO->getOperand(0), BO->getOperand(1), true);
|
|
break;
|
|
case Instruction::SetNE:
|
|
if (V1 == ConstantBool::True)
|
|
add(Opcode, BO->getOperand(0), BO->getOperand(1), true);
|
|
if (V1 == ConstantBool::False)
|
|
add(Opcode, BO->getOperand(0), BO->getOperand(1), false);
|
|
break;
|
|
case Instruction::SetLT:
|
|
case Instruction::SetGT:
|
|
if (V1 == ConstantBool::True)
|
|
add(Opcode, BO->getOperand(0), BO->getOperand(1), true);
|
|
break;
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGE:
|
|
if (V1 == ConstantBool::False)
|
|
add(Opcode, BO->getOperand(0), BO->getOperand(1), true);
|
|
break;
|
|
case Instruction::And:
|
|
if (V1 == ConstantBool::True) {
|
|
add(Opcode, ConstantBool::True, BO->getOperand(0), false);
|
|
add(Opcode, ConstantBool::True, BO->getOperand(1), false);
|
|
}
|
|
break;
|
|
case Instruction::Or:
|
|
if (V1 == ConstantBool::False) {
|
|
add(Opcode, ConstantBool::False, BO->getOperand(0), false);
|
|
add(Opcode, ConstantBool::False, BO->getOperand(1), false);
|
|
}
|
|
break;
|
|
case Instruction::Xor:
|
|
if (V1 == ConstantBool::True) {
|
|
if (BO->getOperand(0) == ConstantBool::True)
|
|
add(Opcode, ConstantBool::False, BO->getOperand(1), false);
|
|
if (BO->getOperand(1) == ConstantBool::True)
|
|
add(Opcode, ConstantBool::False, BO->getOperand(0), false);
|
|
}
|
|
if (V1 == ConstantBool::False) {
|
|
if (BO->getOperand(0) == ConstantBool::True)
|
|
add(Opcode, ConstantBool::True, BO->getOperand(1), false);
|
|
if (BO->getOperand(1) == ConstantBool::True)
|
|
add(Opcode, ConstantBool::True, BO->getOperand(0), false);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (SelectInst *SI = dyn_cast<SelectInst>(V2)) {
|
|
if (Opcode != EQ && Opcode != NE) return;
|
|
|
|
ConstantBool *True = (Opcode==EQ) ? ConstantBool::True
|
|
: ConstantBool::False,
|
|
*False = (Opcode==EQ) ? ConstantBool::False
|
|
: ConstantBool::True;
|
|
|
|
if (V1 == SI->getTrueValue())
|
|
addEqual(SI->getCondition(), True);
|
|
else if (V1 == SI->getFalseValue())
|
|
addEqual(SI->getCondition(), False);
|
|
else if (Opcode == EQ)
|
|
assert("Result of select not equal to either value.");
|
|
}
|
|
}
|
|
|
|
public:
|
|
#ifdef DEBUG
|
|
void debug(std::ostream &os) const {
|
|
static const char *OpcodeTable[] = { "EQ", "NE" };
|
|
|
|
unsigned int size = union_find.countLeaders();
|
|
|
|
union_find.debug(os);
|
|
for (std::vector<Property>::const_iterator I = Properties.begin(),
|
|
E = Properties.end(); I != E; ++I) {
|
|
os << (*I).I1 << " " << OpcodeTable[(*I).Opcode] << " "
|
|
<< (*I).I2 << "\n";
|
|
}
|
|
os << "\n";
|
|
}
|
|
#endif
|
|
|
|
std::vector<Property> Properties;
|
|
};
|
|
|
|
/// PredicateSimplifier - This class is a simplifier that replaces
|
|
/// one equivalent variable with another. It also tracks what
|
|
/// can't be equal and will solve setcc instructions when possible.
|
|
class PredicateSimplifier : public FunctionPass {
|
|
public:
|
|
bool runOnFunction(Function &F);
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
|
|
|
private:
|
|
// Try to replace the Use of the instruction with something simpler.
|
|
Value *resolve(SetCondInst *SCI, const PropertySet &);
|
|
Value *resolve(BinaryOperator *BO, const PropertySet &);
|
|
Value *resolve(SelectInst *SI, const PropertySet &);
|
|
Value *resolve(Value *V, const PropertySet &);
|
|
|
|
// Used by terminator instructions to proceed from the current basic
|
|
// block to the next. Verifies that "current" dominates "next",
|
|
// then calls visitBasicBlock.
|
|
void proceedToSuccessor(TerminatorInst *TI, unsigned edge,
|
|
PropertySet &CurrentPS, PropertySet &NextPS);
|
|
void proceedToSuccessors(PropertySet &CurrentPS, BasicBlock *Current);
|
|
|
|
// Visits each instruction in the basic block.
|
|
void visitBasicBlock(BasicBlock *Block, PropertySet &KnownProperties);
|
|
|
|
// Tries to simplify each Instruction and add new properties to
|
|
// the PropertySet. Returns true if it erase the instruction.
|
|
void visitInstruction(Instruction *I, PropertySet &);
|
|
// For each instruction, add the properties to KnownProperties.
|
|
|
|
void visit(TerminatorInst *TI, PropertySet &);
|
|
void visit(BranchInst *BI, PropertySet &);
|
|
void visit(SwitchInst *SI, PropertySet);
|
|
void visit(LoadInst *LI, PropertySet &);
|
|
void visit(StoreInst *SI, PropertySet &);
|
|
void visit(BinaryOperator *BO, PropertySet &);
|
|
|
|
DominatorTree *DT;
|
|
bool modified;
|
|
};
|
|
|
|
RegisterPass<PredicateSimplifier> X("predsimplify",
|
|
"Predicate Simplifier");
|
|
}
|
|
|
|
FunctionPass *llvm::createPredicateSimplifierPass() {
|
|
return new PredicateSimplifier();
|
|
}
|
|
|
|
bool PredicateSimplifier::runOnFunction(Function &F) {
|
|
DT = &getAnalysis<DominatorTree>();
|
|
|
|
modified = false;
|
|
PropertySet KnownProperties;
|
|
visitBasicBlock(DT->getRootNode()->getBlock(), KnownProperties);
|
|
return modified;
|
|
}
|
|
|
|
void PredicateSimplifier::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<DominatorTree>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
// resolve catches cases addProperty won't because it wasn't used as a
|
|
// condition in the branch, and that visit won't, because the instruction
|
|
// was defined outside of the scope that the properties apply to.
|
|
Value *PredicateSimplifier::resolve(SetCondInst *SCI,
|
|
const PropertySet &KP) {
|
|
// Attempt to resolve the SetCondInst to a boolean.
|
|
|
|
Value *SCI0 = resolve(SCI->getOperand(0), KP),
|
|
*SCI1 = resolve(SCI->getOperand(1), KP);
|
|
|
|
ConstantIntegral *CI1 = dyn_cast<ConstantIntegral>(SCI0),
|
|
*CI2 = dyn_cast<ConstantIntegral>(SCI1);
|
|
|
|
if (!CI1 || !CI2) {
|
|
PropertySet::ConstPropertyIterator NE =
|
|
KP.findProperty(PropertySet::NE, SCI0, SCI1);
|
|
|
|
if (NE != KP.Properties.end()) {
|
|
switch (SCI->getOpcode()) {
|
|
case Instruction::SetEQ:
|
|
return ConstantBool::False;
|
|
case Instruction::SetNE:
|
|
return ConstantBool::True;
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGE:
|
|
case Instruction::SetLT:
|
|
case Instruction::SetGT:
|
|
break;
|
|
default:
|
|
assert(0 && "Unknown opcode in SetCondInst.");
|
|
break;
|
|
}
|
|
}
|
|
return SCI;
|
|
}
|
|
|
|
switch(SCI->getOpcode()) {
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGE:
|
|
case Instruction::SetEQ:
|
|
if (CI1->getRawValue() == CI2->getRawValue())
|
|
return ConstantBool::True;
|
|
else
|
|
return ConstantBool::False;
|
|
case Instruction::SetLT:
|
|
case Instruction::SetGT:
|
|
case Instruction::SetNE:
|
|
if (CI1->getRawValue() == CI2->getRawValue())
|
|
return ConstantBool::False;
|
|
else
|
|
return ConstantBool::True;
|
|
default:
|
|
assert(0 && "Unknown opcode in SetContInst.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
Value *PredicateSimplifier::resolve(BinaryOperator *BO,
|
|
const PropertySet &KP) {
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(BO))
|
|
return resolve(SCI, KP);
|
|
|
|
Value *lhs = resolve(BO->getOperand(0), KP),
|
|
*rhs = resolve(BO->getOperand(1), KP);
|
|
ConstantIntegral *CI1 = dyn_cast<ConstantIntegral>(lhs);
|
|
ConstantIntegral *CI2 = dyn_cast<ConstantIntegral>(rhs);
|
|
|
|
if (!CI1 || !CI2) return BO;
|
|
|
|
Value *V = ConstantExpr::get(BO->getOpcode(), CI1, CI2);
|
|
if (V) return V;
|
|
return BO;
|
|
}
|
|
|
|
Value *PredicateSimplifier::resolve(SelectInst *SI, const PropertySet &KP) {
|
|
Value *Condition = resolve(SI->getCondition(), KP);
|
|
if (Condition == ConstantBool::True)
|
|
return resolve(SI->getTrueValue(), KP);
|
|
else if (Condition == ConstantBool::False)
|
|
return resolve(SI->getFalseValue(), KP);
|
|
return SI;
|
|
}
|
|
|
|
Value *PredicateSimplifier::resolve(Value *V, const PropertySet &KP) {
|
|
if (isa<Constant>(V) || isa<BasicBlock>(V) || KP.empty()) return V;
|
|
|
|
V = KP.canonicalize(V);
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
|
|
return resolve(BO, KP);
|
|
else if (SelectInst *SI = dyn_cast<SelectInst>(V))
|
|
return resolve(SI, KP);
|
|
|
|
return V;
|
|
}
|
|
|
|
void PredicateSimplifier::visitBasicBlock(BasicBlock *BB,
|
|
PropertySet &KnownProperties) {
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
|
|
visitInstruction(I++, KnownProperties);
|
|
}
|
|
}
|
|
|
|
void PredicateSimplifier::visitInstruction(Instruction *I,
|
|
PropertySet &KnownProperties) {
|
|
// Try to replace the whole instruction.
|
|
Value *V = resolve(I, KnownProperties);
|
|
if (V != I) {
|
|
modified = true;
|
|
++NumInstruction;
|
|
I->replaceAllUsesWith(V);
|
|
I->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
// Try to substitute operands.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
Value *Oper = I->getOperand(i);
|
|
Value *V = resolve(Oper, KnownProperties);
|
|
if (V != Oper) {
|
|
modified = true;
|
|
++NumVarsReplaced;
|
|
DEBUG(std::cerr << "resolving " << *I);
|
|
I->setOperand(i, V);
|
|
DEBUG(std::cerr << "into " << *I);
|
|
}
|
|
}
|
|
|
|
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I))
|
|
visit(TI, KnownProperties);
|
|
else if (LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
visit(LI, KnownProperties);
|
|
else if (StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
visit(SI, KnownProperties);
|
|
else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
|
|
visit(BO, KnownProperties);
|
|
}
|
|
|
|
// The basic block on the target of the specified edge must be known
|
|
// to be immediately dominated by the parent of the TerminatorInst.
|
|
void PredicateSimplifier::proceedToSuccessor(TerminatorInst *TI,
|
|
unsigned edge,
|
|
PropertySet &CurrentPS,
|
|
PropertySet &NextPS) {
|
|
assert(edge < TI->getNumSuccessors() && "Invalid index for edge.");
|
|
|
|
BasicBlock *BB = TI->getParent(),
|
|
*BBNext = TI->getSuccessor(edge);
|
|
|
|
if (BBNext->getSinglePredecessor() == BB)
|
|
visitBasicBlock(BBNext, NextPS);
|
|
else
|
|
visitBasicBlock(BBNext, CurrentPS);
|
|
}
|
|
|
|
void PredicateSimplifier::proceedToSuccessors(PropertySet &KP,
|
|
BasicBlock *BBCurrent) {
|
|
DTNodeType *Current = DT->getNode(BBCurrent);
|
|
for (DTNodeType::iterator I = Current->begin(), E = Current->end();
|
|
I != E; ++I) {
|
|
PropertySet Copy(KP);
|
|
visitBasicBlock((*I)->getBlock(), Copy);
|
|
}
|
|
}
|
|
|
|
void PredicateSimplifier::visit(TerminatorInst *TI, PropertySet &KP) {
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
visit(BI, KP);
|
|
return;
|
|
}
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
visit(SI, KP);
|
|
return;
|
|
}
|
|
|
|
proceedToSuccessors(KP, TI->getParent());
|
|
}
|
|
|
|
void PredicateSimplifier::visit(BranchInst *BI, PropertySet &KP) {
|
|
BasicBlock *BB = BI->getParent();
|
|
|
|
if (BI->isUnconditional()) {
|
|
proceedToSuccessors(KP, BB);
|
|
return;
|
|
}
|
|
|
|
Value *Condition = BI->getCondition();
|
|
|
|
BasicBlock *TrueDest = BI->getSuccessor(0),
|
|
*FalseDest = BI->getSuccessor(1);
|
|
|
|
if (Condition == ConstantBool::True || TrueDest == FalseDest) {
|
|
proceedToSuccessors(KP, BB);
|
|
return;
|
|
} else if (Condition == ConstantBool::False) {
|
|
proceedToSuccessors(KP, BB);
|
|
return;
|
|
}
|
|
|
|
DTNodeType *Node = DT->getNode(BB);
|
|
for (DTNodeType::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
|
|
if ((*I)->getBlock() == TrueDest) {
|
|
PropertySet TrueProperties(KP);
|
|
TrueProperties.addEqual(ConstantBool::True, Condition);
|
|
proceedToSuccessor(BI, 0, KP, TrueProperties);
|
|
continue;
|
|
}
|
|
|
|
if ((*I)->getBlock() == FalseDest) {
|
|
PropertySet FalseProperties(KP);
|
|
FalseProperties.addEqual(ConstantBool::False, Condition);
|
|
proceedToSuccessor(BI, 1, KP, FalseProperties);
|
|
continue;
|
|
}
|
|
|
|
visitBasicBlock((*I)->getBlock(), KP);
|
|
}
|
|
}
|
|
|
|
void PredicateSimplifier::visit(SwitchInst *SI, PropertySet KP) {
|
|
Value *Condition = SI->getCondition();
|
|
|
|
// Set the EQProperty in each of the cases BBs,
|
|
// and the NEProperties in the default BB.
|
|
PropertySet DefaultProperties(KP);
|
|
|
|
DTNodeType *Node = DT->getNode(SI->getParent());
|
|
for (DTNodeType::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
|
|
BasicBlock *BB = (*I)->getBlock();
|
|
|
|
PropertySet Copy(KP);
|
|
|
|
if (BB == SI->getDefaultDest()) {
|
|
PropertySet NewProperties(KP);
|
|
for (unsigned i = 1, e = SI->getNumCases(); i < e; ++i)
|
|
NewProperties.addNotEqual(Condition, SI->getCaseValue(i));
|
|
|
|
proceedToSuccessor(SI, 0, Copy, NewProperties);
|
|
} else if (ConstantInt *CI = SI->findCaseDest(BB)) {
|
|
PropertySet NewProperties(KP);
|
|
NewProperties.addEqual(Condition, CI);
|
|
proceedToSuccessor(SI, SI->findCaseValue(CI), Copy, NewProperties);
|
|
} else
|
|
visitBasicBlock(BB, Copy);
|
|
}
|
|
}
|
|
|
|
void PredicateSimplifier::visit(LoadInst *LI, PropertySet &KP) {
|
|
Value *Ptr = LI->getPointerOperand();
|
|
KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr);
|
|
}
|
|
|
|
void PredicateSimplifier::visit(StoreInst *SI, PropertySet &KP) {
|
|
Value *Ptr = SI->getPointerOperand();
|
|
KP.addNotEqual(Constant::getNullValue(Ptr->getType()), Ptr);
|
|
}
|
|
|
|
void PredicateSimplifier::visit(BinaryOperator *BO, PropertySet &KP) {
|
|
Instruction::BinaryOps ops = BO->getOpcode();
|
|
|
|
switch (ops) {
|
|
case Instruction::Div:
|
|
case Instruction::Rem: {
|
|
Value *Divisor = BO->getOperand(1);
|
|
KP.addNotEqual(Constant::getNullValue(Divisor->getType()), Divisor);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|