mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41109 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1219 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1219 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the VirtRegMap class.
 | |
| //
 | |
| // It also contains implementations of the the Spiller interface, which, given a
 | |
| // virtual register map and a machine function, eliminates all virtual
 | |
| // references by replacing them with physical register references - adding spill
 | |
| // code as necessary.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "spiller"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumSpills, "Number of register spills");
 | |
| STATISTIC(NumReMats, "Number of re-materialization");
 | |
| STATISTIC(NumDRM   , "Number of re-materializable defs elided");
 | |
| STATISTIC(NumStores, "Number of stores added");
 | |
| STATISTIC(NumLoads , "Number of loads added");
 | |
| STATISTIC(NumReused, "Number of values reused");
 | |
| STATISTIC(NumDSE   , "Number of dead stores elided");
 | |
| STATISTIC(NumDCE   , "Number of copies elided");
 | |
| 
 | |
| namespace {
 | |
|   enum SpillerName { simple, local };
 | |
| 
 | |
|   static cl::opt<SpillerName>
 | |
|   SpillerOpt("spiller",
 | |
|              cl::desc("Spiller to use: (default: local)"),
 | |
|              cl::Prefix,
 | |
|              cl::values(clEnumVal(simple, "  simple spiller"),
 | |
|                         clEnumVal(local,  "  local spiller"),
 | |
|                         clEnumValEnd),
 | |
|              cl::init(local));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  VirtRegMap implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| VirtRegMap::VirtRegMap(MachineFunction &mf)
 | |
|   : TII(*mf.getTarget().getInstrInfo()), MF(mf), 
 | |
|     Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
 | |
|     Virt2ReMatIdMap(NO_STACK_SLOT), ReMatMap(NULL),
 | |
|     ReMatId(MAX_STACK_SLOT+1) {
 | |
|   grow();
 | |
| }
 | |
| 
 | |
| void VirtRegMap::grow() {
 | |
|   unsigned LastVirtReg = MF.getSSARegMap()->getLastVirtReg();
 | |
|   Virt2PhysMap.grow(LastVirtReg);
 | |
|   Virt2StackSlotMap.grow(LastVirtReg);
 | |
|   Virt2ReMatIdMap.grow(LastVirtReg);
 | |
|   ReMatMap.grow(LastVirtReg);
 | |
| }
 | |
| 
 | |
| int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
 | |
|   assert(MRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign stack slot to already spilled register");
 | |
|   const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(virtReg);
 | |
|   int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
 | |
|                                                         RC->getAlignment());
 | |
|   Virt2StackSlotMap[virtReg] = frameIndex;
 | |
|   ++NumSpills;
 | |
|   return frameIndex;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
 | |
|   assert(MRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign stack slot to already spilled register");
 | |
|   assert((frameIndex >= 0 ||
 | |
|           (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
 | |
|          "illegal fixed frame index");
 | |
|   Virt2StackSlotMap[virtReg] = frameIndex;
 | |
| }
 | |
| 
 | |
| int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
 | |
|   assert(MRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign re-mat id to already spilled register");
 | |
|   Virt2ReMatIdMap[virtReg] = ReMatId;
 | |
|   return ReMatId++;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
 | |
|   assert(MRegisterInfo::isVirtualRegister(virtReg));
 | |
|   assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
 | |
|          "attempt to assign re-mat id to already spilled register");
 | |
|   Virt2ReMatIdMap[virtReg] = id;
 | |
| }
 | |
| 
 | |
| void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
 | |
|                             unsigned OpNo, MachineInstr *NewMI) {
 | |
|   // Move previous memory references folded to new instruction.
 | |
|   MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
 | |
|   for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
 | |
|          E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
 | |
|     MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
 | |
|     MI2VirtMap.erase(I++);
 | |
|   }
 | |
| 
 | |
|   ModRef MRInfo;
 | |
|   const TargetInstrDescriptor *TID = OldMI->getInstrDescriptor();
 | |
|   if (TID->getOperandConstraint(OpNo, TOI::TIED_TO) != -1 ||
 | |
|       TID->findTiedToSrcOperand(OpNo) != -1) {
 | |
|     // Folded a two-address operand.
 | |
|     MRInfo = isModRef;
 | |
|   } else if (OldMI->getOperand(OpNo).isDef()) {
 | |
|     MRInfo = isMod;
 | |
|   } else {
 | |
|     MRInfo = isRef;
 | |
|   }
 | |
| 
 | |
|   // add new memory reference
 | |
|   MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
 | |
| }
 | |
| 
 | |
| void VirtRegMap::print(std::ostream &OS) const {
 | |
|   const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
 | |
| 
 | |
|   OS << "********** REGISTER MAP **********\n";
 | |
|   for (unsigned i = MRegisterInfo::FirstVirtualRegister,
 | |
|          e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i) {
 | |
|     if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
 | |
|       OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
 | |
| 
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = MRegisterInfo::FirstVirtualRegister,
 | |
|          e = MF.getSSARegMap()->getLastVirtReg(); i <= e; ++i)
 | |
|     if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
 | |
|       OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| void VirtRegMap::dump() const {
 | |
|   print(DOUT);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Simple Spiller Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Spiller::~Spiller() {}
 | |
| 
 | |
| namespace {
 | |
|   struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
 | |
|     bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
 | |
|   };
 | |
| }
 | |
| 
 | |
| bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
 | |
|   DOUT << "********** REWRITE MACHINE CODE **********\n";
 | |
|   DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   const MRegisterInfo &MRI = *TM.getRegisterInfo();
 | |
| 
 | |
|   // LoadedRegs - Keep track of which vregs are loaded, so that we only load
 | |
|   // each vreg once (in the case where a spilled vreg is used by multiple
 | |
|   // operands).  This is always smaller than the number of operands to the
 | |
|   // current machine instr, so it should be small.
 | |
|   std::vector<unsigned> LoadedRegs;
 | |
| 
 | |
|   for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     DOUT << MBBI->getBasicBlock()->getName() << ":\n";
 | |
|     MachineBasicBlock &MBB = *MBBI;
 | |
|     for (MachineBasicBlock::iterator MII = MBB.begin(),
 | |
|            E = MBB.end(); MII != E; ++MII) {
 | |
|       MachineInstr &MI = *MII;
 | |
|       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO = MI.getOperand(i);
 | |
|         if (MO.isRegister() && MO.getReg())
 | |
|           if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
 | |
|             unsigned VirtReg = MO.getReg();
 | |
|             unsigned PhysReg = VRM.getPhys(VirtReg);
 | |
|             if (!VRM.isAssignedReg(VirtReg)) {
 | |
|               int StackSlot = VRM.getStackSlot(VirtReg);
 | |
|               const TargetRegisterClass* RC =
 | |
|                 MF.getSSARegMap()->getRegClass(VirtReg);
 | |
| 
 | |
|               if (MO.isUse() &&
 | |
|                   std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
 | |
|                   == LoadedRegs.end()) {
 | |
|                 MRI.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
 | |
|                 LoadedRegs.push_back(VirtReg);
 | |
|                 ++NumLoads;
 | |
|                 DOUT << '\t' << *prior(MII);
 | |
|               }
 | |
| 
 | |
|               if (MO.isDef()) {
 | |
|                 MRI.storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
 | |
|                 ++NumStores;
 | |
|               }
 | |
|             }
 | |
|             MF.setPhysRegUsed(PhysReg);
 | |
|             MI.getOperand(i).setReg(PhysReg);
 | |
|           } else {
 | |
|             MF.setPhysRegUsed(MO.getReg());
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       DOUT << '\t' << MI;
 | |
|       LoadedRegs.clear();
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Local Spiller Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   /// LocalSpiller - This spiller does a simple pass over the machine basic
 | |
|   /// block to attempt to keep spills in registers as much as possible for
 | |
|   /// blocks that have low register pressure (the vreg may be spilled due to
 | |
|   /// register pressure in other blocks).
 | |
|   class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
 | |
|     const MRegisterInfo *MRI;
 | |
|     const TargetInstrInfo *TII;
 | |
|   public:
 | |
|     bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
 | |
|       MRI = MF.getTarget().getRegisterInfo();
 | |
|       TII = MF.getTarget().getInstrInfo();
 | |
|       DOUT << "\n**** Local spiller rewriting function '"
 | |
|            << MF.getFunction()->getName() << "':\n";
 | |
| 
 | |
|       for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
 | |
|            MBB != E; ++MBB)
 | |
|         RewriteMBB(*MBB, VRM);
 | |
|       return true;
 | |
|     }
 | |
|   private:
 | |
|     void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
 | |
| /// top down, keep track of which spills slots or remat are available in each
 | |
| /// register.
 | |
| ///
 | |
| /// Note that not all physregs are created equal here.  In particular, some
 | |
| /// physregs are reloads that we are allowed to clobber or ignore at any time.
 | |
| /// Other physregs are values that the register allocated program is using that
 | |
| /// we cannot CHANGE, but we can read if we like.  We keep track of this on a 
 | |
| /// per-stack-slot / remat id basis as the low bit in the value of the
 | |
| /// SpillSlotsAvailable entries.  The predicate 'canClobberPhysReg()' checks
 | |
| /// this bit and addAvailable sets it if.
 | |
| namespace {
 | |
| class VISIBILITY_HIDDEN AvailableSpills {
 | |
|   const MRegisterInfo *MRI;
 | |
|   const TargetInstrInfo *TII;
 | |
| 
 | |
|   // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
 | |
|   // or remat'ed virtual register values that are still available, due to being
 | |
|   // loaded or stored to, but not invalidated yet.
 | |
|   std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
 | |
|     
 | |
|   // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
 | |
|   // indicating which stack slot values are currently held by a physreg.  This
 | |
|   // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
 | |
|   // physreg is modified.
 | |
|   std::multimap<unsigned, int> PhysRegsAvailable;
 | |
|   
 | |
|   void disallowClobberPhysRegOnly(unsigned PhysReg);
 | |
| 
 | |
|   void ClobberPhysRegOnly(unsigned PhysReg);
 | |
| public:
 | |
|   AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
 | |
|     : MRI(mri), TII(tii) {
 | |
|   }
 | |
|   
 | |
|   const MRegisterInfo *getRegInfo() const { return MRI; }
 | |
| 
 | |
|   /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
 | |
|   /// available in a  physical register, return that PhysReg, otherwise
 | |
|   /// return 0.
 | |
|   unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
 | |
|     std::map<int, unsigned>::const_iterator I =
 | |
|       SpillSlotsOrReMatsAvailable.find(Slot);
 | |
|     if (I != SpillSlotsOrReMatsAvailable.end()) {
 | |
|       return I->second >> 1;  // Remove the CanClobber bit.
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /// addAvailable - Mark that the specified stack slot / remat is available in
 | |
|   /// the specified physreg.  If CanClobber is true, the physreg can be modified
 | |
|   /// at any time without changing the semantics of the program.
 | |
|   void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
 | |
|                     bool CanClobber = true) {
 | |
|     // If this stack slot is thought to be available in some other physreg, 
 | |
|     // remove its record.
 | |
|     ModifyStackSlotOrReMat(SlotOrReMat);
 | |
|     
 | |
|     PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
 | |
|     SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
 | |
|   
 | |
|     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | |
|       DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
 | |
|     else
 | |
|       DOUT << "Remembering SS#" << SlotOrReMat;
 | |
|     DOUT << " in physreg " << MRI->getName(Reg) << "\n";
 | |
|   }
 | |
| 
 | |
|   /// canClobberPhysReg - Return true if the spiller is allowed to change the 
 | |
|   /// value of the specified stackslot register if it desires.  The specified
 | |
|   /// stack slot must be available in a physreg for this query to make sense.
 | |
|   bool canClobberPhysReg(int SlotOrReMat) const {
 | |
|     assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
 | |
|            "Value not available!");
 | |
|     return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
 | |
|   }
 | |
|   
 | |
|   /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | |
|   /// stackslot register. The register is still available but is no longer
 | |
|   /// allowed to be modifed.
 | |
|   void disallowClobberPhysReg(unsigned PhysReg);
 | |
|   
 | |
|   /// ClobberPhysReg - This is called when the specified physreg changes
 | |
|   /// value.  We use this to invalidate any info about stuff we thing lives in
 | |
|   /// it and any of its aliases.
 | |
|   void ClobberPhysReg(unsigned PhysReg);
 | |
| 
 | |
|   /// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | |
|   /// slot changes.  This removes information about which register the previous
 | |
|   /// value for this slot lives in (as the previous value is dead now).
 | |
|   void ModifyStackSlotOrReMat(int SlotOrReMat);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
 | |
| /// stackslot register. The register is still available but is no longer
 | |
| /// allowed to be modifed.
 | |
| void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
 | |
|   std::multimap<unsigned, int>::iterator I =
 | |
|     PhysRegsAvailable.lower_bound(PhysReg);
 | |
|   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | |
|     int SlotOrReMat = I->second;
 | |
|     I++;
 | |
|     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | |
|            "Bidirectional map mismatch!");
 | |
|     SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
 | |
|     DOUT << "PhysReg " << MRI->getName(PhysReg)
 | |
|          << " copied, it is available for use but can no longer be modified\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
 | |
| /// stackslot register and its aliases. The register and its aliases may
 | |
| /// still available but is no longer allowed to be modifed.
 | |
| void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
 | |
|   for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
 | |
|     disallowClobberPhysRegOnly(*AS);
 | |
|   disallowClobberPhysRegOnly(PhysReg);
 | |
| }
 | |
| 
 | |
| /// ClobberPhysRegOnly - This is called when the specified physreg changes
 | |
| /// value.  We use this to invalidate any info about stuff we thing lives in it.
 | |
| void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
 | |
|   std::multimap<unsigned, int>::iterator I =
 | |
|     PhysRegsAvailable.lower_bound(PhysReg);
 | |
|   while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
 | |
|     int SlotOrReMat = I->second;
 | |
|     PhysRegsAvailable.erase(I++);
 | |
|     assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
 | |
|            "Bidirectional map mismatch!");
 | |
|     SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
 | |
|     DOUT << "PhysReg " << MRI->getName(PhysReg)
 | |
|          << " clobbered, invalidating ";
 | |
|     if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
 | |
|       DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
 | |
|     else
 | |
|       DOUT << "SS#" << SlotOrReMat << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ClobberPhysReg - This is called when the specified physreg changes
 | |
| /// value.  We use this to invalidate any info about stuff we thing lives in
 | |
| /// it and any of its aliases.
 | |
| void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
 | |
|   for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
 | |
|     ClobberPhysRegOnly(*AS);
 | |
|   ClobberPhysRegOnly(PhysReg);
 | |
| }
 | |
| 
 | |
| /// ModifyStackSlotOrReMat - This method is called when the value in a stack
 | |
| /// slot changes.  This removes information about which register the previous
 | |
| /// value for this slot lives in (as the previous value is dead now).
 | |
| void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
 | |
|   std::map<int, unsigned>::iterator It =
 | |
|     SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
 | |
|   if (It == SpillSlotsOrReMatsAvailable.end()) return;
 | |
|   unsigned Reg = It->second >> 1;
 | |
|   SpillSlotsOrReMatsAvailable.erase(It);
 | |
|   
 | |
|   // This register may hold the value of multiple stack slots, only remove this
 | |
|   // stack slot from the set of values the register contains.
 | |
|   std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
 | |
|   for (; ; ++I) {
 | |
|     assert(I != PhysRegsAvailable.end() && I->first == Reg &&
 | |
|            "Map inverse broken!");
 | |
|     if (I->second == SlotOrReMat) break;
 | |
|   }
 | |
|   PhysRegsAvailable.erase(I);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// InvalidateKills - MI is going to be deleted. If any of its operands are
 | |
| /// marked kill, then invalidate the information.
 | |
| static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
 | |
|                             std::vector<MachineOperand*> &KillOps,
 | |
|                             SmallVector<unsigned, 1> *KillRegs = NULL) {
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (KillRegs)
 | |
|       KillRegs->push_back(Reg);
 | |
|     if (KillOps[Reg] == &MO) {
 | |
|       RegKills.reset(Reg);
 | |
|       KillOps[Reg] = NULL;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// InvalidateRegDef - If the def operand of the specified def MI is now dead
 | |
| /// (since it's spill instruction is removed), mark it isDead. Also checks if
 | |
| /// the def MI has other definition operands that are not dead. Returns it by
 | |
| /// reference.
 | |
| static bool InvalidateRegDef(MachineBasicBlock::iterator I,
 | |
|                              MachineInstr &NewDef, unsigned Reg,
 | |
|                              bool &HasLiveDef) {
 | |
|   // Due to remat, it's possible this reg isn't being reused. That is,
 | |
|   // the def of this reg (by prev MI) is now dead.
 | |
|   MachineInstr *DefMI = I;
 | |
|   MachineOperand *DefOp = NULL;
 | |
|   for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = DefMI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef()) {
 | |
|       if (MO.getReg() == Reg)
 | |
|         DefOp = &MO;
 | |
|       else if (!MO.isDead())
 | |
|         HasLiveDef = true;
 | |
|     }
 | |
|   }
 | |
|   if (!DefOp)
 | |
|     return false;
 | |
| 
 | |
|   bool FoundUse = false, Done = false;
 | |
|   MachineBasicBlock::iterator E = NewDef;
 | |
|   ++I; ++E;
 | |
|   for (; !Done && I != E; ++I) {
 | |
|     MachineInstr *NMI = I;
 | |
|     for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
 | |
|       MachineOperand &MO = NMI->getOperand(j);
 | |
|       if (!MO.isReg() || MO.getReg() != Reg)
 | |
|         continue;
 | |
|       if (MO.isUse())
 | |
|         FoundUse = true;
 | |
|       Done = true; // Stop after scanning all the operands of this MI.
 | |
|     }
 | |
|   }
 | |
|   if (!FoundUse) {
 | |
|     // Def is dead!
 | |
|     DefOp->setIsDead();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// UpdateKills - Track and update kill info. If a MI reads a register that is
 | |
| /// marked kill, then it must be due to register reuse. Transfer the kill info
 | |
| /// over.
 | |
| static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
 | |
|                         std::vector<MachineOperand*> &KillOps) {
 | |
|   const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0)
 | |
|       continue;
 | |
|     
 | |
|     if (RegKills[Reg]) {
 | |
|       // That can't be right. Register is killed but not re-defined and it's
 | |
|       // being reused. Let's fix that.
 | |
|       KillOps[Reg]->unsetIsKill();
 | |
|       if (i < TID->numOperands &&
 | |
|           TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
 | |
|         // Unless it's a two-address operand, this is the new kill.
 | |
|         MO.setIsKill();
 | |
|     }
 | |
| 
 | |
|     if (MO.isKill()) {
 | |
|       RegKills.set(Reg);
 | |
|       KillOps[Reg] = &MO;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     RegKills.reset(Reg);
 | |
|     KillOps[Reg] = NULL;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // ReusedOp - For each reused operand, we keep track of a bit of information, in
 | |
| // case we need to rollback upon processing a new operand.  See comments below.
 | |
| namespace {
 | |
|   struct ReusedOp {
 | |
|     // The MachineInstr operand that reused an available value.
 | |
|     unsigned Operand;
 | |
| 
 | |
|     // StackSlotOrReMat - The spill slot or remat id of the value being reused.
 | |
|     unsigned StackSlotOrReMat;
 | |
| 
 | |
|     // PhysRegReused - The physical register the value was available in.
 | |
|     unsigned PhysRegReused;
 | |
| 
 | |
|     // AssignedPhysReg - The physreg that was assigned for use by the reload.
 | |
|     unsigned AssignedPhysReg;
 | |
|     
 | |
|     // VirtReg - The virtual register itself.
 | |
|     unsigned VirtReg;
 | |
| 
 | |
|     ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
 | |
|              unsigned vreg)
 | |
|       : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
 | |
|         AssignedPhysReg(apr), VirtReg(vreg) {}
 | |
|   };
 | |
|   
 | |
|   /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
 | |
|   /// is reused instead of reloaded.
 | |
|   class VISIBILITY_HIDDEN ReuseInfo {
 | |
|     MachineInstr &MI;
 | |
|     std::vector<ReusedOp> Reuses;
 | |
|     BitVector PhysRegsClobbered;
 | |
|   public:
 | |
|     ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
 | |
|       PhysRegsClobbered.resize(mri->getNumRegs());
 | |
|     }
 | |
|     
 | |
|     bool hasReuses() const {
 | |
|       return !Reuses.empty();
 | |
|     }
 | |
|     
 | |
|     /// addReuse - If we choose to reuse a virtual register that is already
 | |
|     /// available instead of reloading it, remember that we did so.
 | |
|     void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
 | |
|                   unsigned PhysRegReused, unsigned AssignedPhysReg,
 | |
|                   unsigned VirtReg) {
 | |
|       // If the reload is to the assigned register anyway, no undo will be
 | |
|       // required.
 | |
|       if (PhysRegReused == AssignedPhysReg) return;
 | |
|       
 | |
|       // Otherwise, remember this.
 | |
|       Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused, 
 | |
|                                 AssignedPhysReg, VirtReg));
 | |
|     }
 | |
| 
 | |
|     void markClobbered(unsigned PhysReg) {
 | |
|       PhysRegsClobbered.set(PhysReg);
 | |
|     }
 | |
| 
 | |
|     bool isClobbered(unsigned PhysReg) const {
 | |
|       return PhysRegsClobbered.test(PhysReg);
 | |
|     }
 | |
|     
 | |
|     /// GetRegForReload - We are about to emit a reload into PhysReg.  If there
 | |
|     /// is some other operand that is using the specified register, either pick
 | |
|     /// a new register to use, or evict the previous reload and use this reg. 
 | |
|     unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
 | |
|                              AvailableSpills &Spills,
 | |
|                              std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                              SmallSet<unsigned, 8> &Rejected,
 | |
|                              BitVector &RegKills,
 | |
|                              std::vector<MachineOperand*> &KillOps,
 | |
|                              VirtRegMap &VRM) {
 | |
|       if (Reuses.empty()) return PhysReg;  // This is most often empty.
 | |
| 
 | |
|       for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
 | |
|         ReusedOp &Op = Reuses[ro];
 | |
|         // If we find some other reuse that was supposed to use this register
 | |
|         // exactly for its reload, we can change this reload to use ITS reload
 | |
|         // register. That is, unless its reload register has already been
 | |
|         // considered and subsequently rejected because it has also been reused
 | |
|         // by another operand.
 | |
|         if (Op.PhysRegReused == PhysReg &&
 | |
|             Rejected.count(Op.AssignedPhysReg) == 0) {
 | |
|           // Yup, use the reload register that we didn't use before.
 | |
|           unsigned NewReg = Op.AssignedPhysReg;
 | |
|           Rejected.insert(PhysReg);
 | |
|           return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
 | |
|                                  RegKills, KillOps, VRM);
 | |
|         } else {
 | |
|           // Otherwise, we might also have a problem if a previously reused
 | |
|           // value aliases the new register.  If so, codegen the previous reload
 | |
|           // and use this one.          
 | |
|           unsigned PRRU = Op.PhysRegReused;
 | |
|           const MRegisterInfo *MRI = Spills.getRegInfo();
 | |
|           if (MRI->areAliases(PRRU, PhysReg)) {
 | |
|             // Okay, we found out that an alias of a reused register
 | |
|             // was used.  This isn't good because it means we have
 | |
|             // to undo a previous reuse.
 | |
|             MachineBasicBlock *MBB = MI->getParent();
 | |
|             const TargetRegisterClass *AliasRC =
 | |
|               MBB->getParent()->getSSARegMap()->getRegClass(Op.VirtReg);
 | |
| 
 | |
|             // Copy Op out of the vector and remove it, we're going to insert an
 | |
|             // explicit load for it.
 | |
|             ReusedOp NewOp = Op;
 | |
|             Reuses.erase(Reuses.begin()+ro);
 | |
| 
 | |
|             // Ok, we're going to try to reload the assigned physreg into the
 | |
|             // slot that we were supposed to in the first place.  However, that
 | |
|             // register could hold a reuse.  Check to see if it conflicts or
 | |
|             // would prefer us to use a different register.
 | |
|             unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
 | |
|                                                   MI, Spills, MaybeDeadStores,
 | |
|                                               Rejected, RegKills, KillOps, VRM);
 | |
|             
 | |
|             if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
 | |
|               MRI->reMaterialize(*MBB, MI, NewPhysReg,
 | |
|                                  VRM.getReMaterializedMI(NewOp.VirtReg));
 | |
|               ++NumReMats;
 | |
|             } else {
 | |
|               MRI->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
 | |
|                                         NewOp.StackSlotOrReMat, AliasRC);
 | |
|               // Any stores to this stack slot are not dead anymore.
 | |
|               MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;            
 | |
|               ++NumLoads;
 | |
|             }
 | |
|             Spills.ClobberPhysReg(NewPhysReg);
 | |
|             Spills.ClobberPhysReg(NewOp.PhysRegReused);
 | |
|             
 | |
|             MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
 | |
|             
 | |
|             Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
 | |
|             MachineBasicBlock::iterator MII = MI;
 | |
|             --MII;
 | |
|             UpdateKills(*MII, RegKills, KillOps);
 | |
|             DOUT << '\t' << *MII;
 | |
|             
 | |
|             DOUT << "Reuse undone!\n";
 | |
|             --NumReused;
 | |
|             
 | |
|             // Finally, PhysReg is now available, go ahead and use it.
 | |
|             return PhysReg;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       return PhysReg;
 | |
|     }
 | |
| 
 | |
|     /// GetRegForReload - Helper for the above GetRegForReload(). Add a
 | |
|     /// 'Rejected' set to remember which registers have been considered and
 | |
|     /// rejected for the reload. This avoids infinite looping in case like
 | |
|     /// this:
 | |
|     /// t1 := op t2, t3
 | |
|     /// t2 <- assigned r0 for use by the reload but ended up reuse r1
 | |
|     /// t3 <- assigned r1 for use by the reload but ended up reuse r0
 | |
|     /// t1 <- desires r1
 | |
|     ///       sees r1 is taken by t2, tries t2's reload register r0
 | |
|     ///       sees r0 is taken by t3, tries t3's reload register r1
 | |
|     ///       sees r1 is taken by t2, tries t2's reload register r0 ...
 | |
|     unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
 | |
|                              AvailableSpills &Spills,
 | |
|                              std::vector<MachineInstr*> &MaybeDeadStores,
 | |
|                              BitVector &RegKills,
 | |
|                              std::vector<MachineOperand*> &KillOps,
 | |
|                              VirtRegMap &VRM) {
 | |
|       SmallSet<unsigned, 8> Rejected;
 | |
|       return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
 | |
|                              RegKills, KillOps, VRM);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// rewriteMBB - Keep track of which spills are available even after the
 | |
| /// register allocator is done with them.  If possible, avoid reloading vregs.
 | |
| void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
 | |
|   DOUT << MBB.getBasicBlock()->getName() << ":\n";
 | |
| 
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
| 
 | |
|   // Spills - Keep track of which spilled values are available in physregs so
 | |
|   // that we can choose to reuse the physregs instead of emitting reloads.
 | |
|   AvailableSpills Spills(MRI, TII);
 | |
|   
 | |
|   // MaybeDeadStores - When we need to write a value back into a stack slot,
 | |
|   // keep track of the inserted store.  If the stack slot value is never read
 | |
|   // (because the value was used from some available register, for example), and
 | |
|   // subsequently stored to, the original store is dead.  This map keeps track
 | |
|   // of inserted stores that are not used.  If we see a subsequent store to the
 | |
|   // same stack slot, the original store is deleted.
 | |
|   std::vector<MachineInstr*> MaybeDeadStores;
 | |
|   MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
 | |
| 
 | |
|   // ReMatDefs - These are rematerializable def MIs which are not deleted.
 | |
|   SmallSet<MachineInstr*, 4> ReMatDefs;
 | |
| 
 | |
|   // Keep track of kill information.
 | |
|   BitVector RegKills(MRI->getNumRegs());
 | |
|   std::vector<MachineOperand*>  KillOps;
 | |
|   KillOps.resize(MRI->getNumRegs(), NULL);
 | |
| 
 | |
|   for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
 | |
|        MII != E; ) {
 | |
|     MachineInstr &MI = *MII;
 | |
|     MachineBasicBlock::iterator NextMII = MII; ++NextMII;
 | |
|     VirtRegMap::MI2VirtMapTy::const_iterator I, End;
 | |
| 
 | |
|     bool Erased = false;
 | |
|     bool BackTracked = false;
 | |
| 
 | |
|     /// ReusedOperands - Keep track of operand reuse in case we need to undo
 | |
|     /// reuse.
 | |
|     ReuseInfo ReusedOperands(MI, MRI);
 | |
| 
 | |
|     // Loop over all of the implicit defs, clearing them from our available
 | |
|     // sets.
 | |
|     const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
 | |
|     if (TID->ImplicitDefs) {
 | |
|       const unsigned *ImpDef = TID->ImplicitDefs;
 | |
|       for ( ; *ImpDef; ++ImpDef) {
 | |
|         MF.setPhysRegUsed(*ImpDef);
 | |
|         ReusedOperands.markClobbered(*ImpDef);
 | |
|         Spills.ClobberPhysReg(*ImpDef);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Process all of the spilled uses and all non spilled reg references.
 | |
|     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (!MO.isRegister() || MO.getReg() == 0)
 | |
|         continue;   // Ignore non-register operands.
 | |
|       
 | |
|       if (MRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | |
|         // Ignore physregs for spilling, but remember that it is used by this
 | |
|         // function.
 | |
|         MF.setPhysRegUsed(MO.getReg());
 | |
|         ReusedOperands.markClobbered(MO.getReg());
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       assert(MRegisterInfo::isVirtualRegister(MO.getReg()) &&
 | |
|              "Not a virtual or a physical register?");
 | |
|       
 | |
|       unsigned VirtReg = MO.getReg();
 | |
|       if (VRM.isAssignedReg(VirtReg)) {
 | |
|         // This virtual register was assigned a physreg!
 | |
|         unsigned Phys = VRM.getPhys(VirtReg);
 | |
|         MF.setPhysRegUsed(Phys);
 | |
|         if (MO.isDef())
 | |
|           ReusedOperands.markClobbered(Phys);
 | |
|         MI.getOperand(i).setReg(Phys);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // This virtual register is now known to be a spilled value.
 | |
|       if (!MO.isUse())
 | |
|         continue;  // Handle defs in the loop below (handle use&def here though)
 | |
| 
 | |
|       bool DoReMat = VRM.isReMaterialized(VirtReg);
 | |
|       int SSorRMId = DoReMat
 | |
|         ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
 | |
|       int ReuseSlot = SSorRMId;
 | |
| 
 | |
|       // Check to see if this stack slot is available.
 | |
|       unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
 | |
|       if (!PhysReg && DoReMat) {
 | |
|         // This use is rematerializable. But perhaps the value is available in
 | |
|         // stack if the definition is not deleted. If so, check if we can
 | |
|         // reuse the value.
 | |
|         ReuseSlot = VRM.getStackSlot(VirtReg);
 | |
|         if (ReuseSlot != VirtRegMap::NO_STACK_SLOT)
 | |
|           PhysReg = Spills.getSpillSlotOrReMatPhysReg(ReuseSlot);
 | |
|       }
 | |
|       if (PhysReg) {
 | |
|         // This spilled operand might be part of a two-address operand.  If this
 | |
|         // is the case, then changing it will necessarily require changing the 
 | |
|         // def part of the instruction as well.  However, in some cases, we
 | |
|         // aren't allowed to modify the reused register.  If none of these cases
 | |
|         // apply, reuse it.
 | |
|         bool CanReuse = true;
 | |
|         int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
 | |
|         if (ti != -1 &&
 | |
|             MI.getOperand(ti).isReg() && 
 | |
|             MI.getOperand(ti).getReg() == VirtReg) {
 | |
|           // Okay, we have a two address operand.  We can reuse this physreg as
 | |
|           // long as we are allowed to clobber the value and there isn't an
 | |
|           // earlier def that has already clobbered the physreg.
 | |
|           CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
 | |
|             !ReusedOperands.isClobbered(PhysReg);
 | |
|         }
 | |
|         
 | |
|         if (CanReuse) {
 | |
|           // If this stack slot value is already available, reuse it!
 | |
|           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | |
|             DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
 | |
|           else
 | |
|             DOUT << "Reusing SS#" << ReuseSlot;
 | |
|           DOUT << " from physreg "
 | |
|                << MRI->getName(PhysReg) << " for vreg"
 | |
|                << VirtReg <<" instead of reloading into physreg "
 | |
|                << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
 | |
|           MI.getOperand(i).setReg(PhysReg);
 | |
| 
 | |
|           // The only technical detail we have is that we don't know that
 | |
|           // PhysReg won't be clobbered by a reloaded stack slot that occurs
 | |
|           // later in the instruction.  In particular, consider 'op V1, V2'.
 | |
|           // If V1 is available in physreg R0, we would choose to reuse it
 | |
|           // here, instead of reloading it into the register the allocator
 | |
|           // indicated (say R1).  However, V2 might have to be reloaded
 | |
|           // later, and it might indicate that it needs to live in R0.  When
 | |
|           // this occurs, we need to have information available that
 | |
|           // indicates it is safe to use R1 for the reload instead of R0.
 | |
|           //
 | |
|           // To further complicate matters, we might conflict with an alias,
 | |
|           // or R0 and R1 might not be compatible with each other.  In this
 | |
|           // case, we actually insert a reload for V1 in R1, ensuring that
 | |
|           // we can get at R0 or its alias.
 | |
|           ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
 | |
|                                   VRM.getPhys(VirtReg), VirtReg);
 | |
|           if (ti != -1)
 | |
|             // Only mark it clobbered if this is a use&def operand.
 | |
|             ReusedOperands.markClobbered(PhysReg);
 | |
|           ++NumReused;
 | |
| 
 | |
|           if (MI.getOperand(i).isKill() &&
 | |
|               ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
 | |
|             // This was the last use and the spilled value is still available
 | |
|             // for reuse. That means the spill was unnecessary!
 | |
|             MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
 | |
|             if (DeadStore) {
 | |
|               DOUT << "Removed dead store:\t" << *DeadStore;
 | |
|               InvalidateKills(*DeadStore, RegKills, KillOps);
 | |
|               MBB.erase(DeadStore);
 | |
|               VRM.RemoveFromFoldedVirtMap(DeadStore);
 | |
|               MaybeDeadStores[ReuseSlot] = NULL;
 | |
|               ++NumDSE;
 | |
|             }
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         // Otherwise we have a situation where we have a two-address instruction
 | |
|         // whose mod/ref operand needs to be reloaded.  This reload is already
 | |
|         // available in some register "PhysReg", but if we used PhysReg as the
 | |
|         // operand to our 2-addr instruction, the instruction would modify
 | |
|         // PhysReg.  This isn't cool if something later uses PhysReg and expects
 | |
|         // to get its initial value.
 | |
|         //
 | |
|         // To avoid this problem, and to avoid doing a load right after a store,
 | |
|         // we emit a copy from PhysReg into the designated register for this
 | |
|         // operand.
 | |
|         unsigned DesignatedReg = VRM.getPhys(VirtReg);
 | |
|         assert(DesignatedReg && "Must map virtreg to physreg!");
 | |
| 
 | |
|         // Note that, if we reused a register for a previous operand, the
 | |
|         // register we want to reload into might not actually be
 | |
|         // available.  If this occurs, use the register indicated by the
 | |
|         // reuser.
 | |
|         if (ReusedOperands.hasReuses())
 | |
|           DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI, 
 | |
|                                Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | |
|         
 | |
|         // If the mapped designated register is actually the physreg we have
 | |
|         // incoming, we don't need to inserted a dead copy.
 | |
|         if (DesignatedReg == PhysReg) {
 | |
|           // If this stack slot value is already available, reuse it!
 | |
|           if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
 | |
|             DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
 | |
|           else
 | |
|             DOUT << "Reusing SS#" << ReuseSlot;
 | |
|           DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
 | |
|                << VirtReg
 | |
|                << " instead of reloading into same physreg.\n";
 | |
|           MI.getOperand(i).setReg(PhysReg);
 | |
|           ReusedOperands.markClobbered(PhysReg);
 | |
|           ++NumReused;
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);
 | |
|         MF.setPhysRegUsed(DesignatedReg);
 | |
|         ReusedOperands.markClobbered(DesignatedReg);
 | |
|         MRI->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC);
 | |
| 
 | |
|         MachineInstr *CopyMI = prior(MII);
 | |
|         UpdateKills(*CopyMI, RegKills, KillOps);
 | |
| 
 | |
|         // This invalidates DesignatedReg.
 | |
|         Spills.ClobberPhysReg(DesignatedReg);
 | |
|         
 | |
|         Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
 | |
|         MI.getOperand(i).setReg(DesignatedReg);
 | |
|         DOUT << '\t' << *prior(MII);
 | |
|         ++NumReused;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Otherwise, reload it and remember that we have it.
 | |
|       PhysReg = VRM.getPhys(VirtReg);
 | |
|       assert(PhysReg && "Must map virtreg to physreg!");
 | |
|       const TargetRegisterClass* RC = MF.getSSARegMap()->getRegClass(VirtReg);
 | |
| 
 | |
|       // Note that, if we reused a register for a previous operand, the
 | |
|       // register we want to reload into might not actually be
 | |
|       // available.  If this occurs, use the register indicated by the
 | |
|       // reuser.
 | |
|       if (ReusedOperands.hasReuses())
 | |
|         PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
 | |
|                                Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | |
|       
 | |
|       MF.setPhysRegUsed(PhysReg);
 | |
|       ReusedOperands.markClobbered(PhysReg);
 | |
|       if (DoReMat) {
 | |
|         MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
 | |
|         ++NumReMats;
 | |
|       } else {
 | |
|         MRI->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
 | |
|         ++NumLoads;
 | |
|       }
 | |
|       // This invalidates PhysReg.
 | |
|       Spills.ClobberPhysReg(PhysReg);
 | |
| 
 | |
|       // Any stores to this stack slot are not dead anymore.
 | |
|       if (!DoReMat)
 | |
|         MaybeDeadStores[SSorRMId] = NULL;
 | |
|       Spills.addAvailable(SSorRMId, &MI, PhysReg);
 | |
|       // Assumes this is the last use. IsKill will be unset if reg is reused
 | |
|       // unless it's a two-address operand.
 | |
|       if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
 | |
|         MI.getOperand(i).setIsKill();
 | |
|       MI.getOperand(i).setReg(PhysReg);
 | |
|       UpdateKills(*prior(MII), RegKills, KillOps);
 | |
|       DOUT << '\t' << *prior(MII);
 | |
|     }
 | |
| 
 | |
|     DOUT << '\t' << MI;
 | |
| 
 | |
|     // If we have folded references to memory operands, make sure we clear all
 | |
|     // physical registers that may contain the value of the spilled virtual
 | |
|     // register
 | |
|     SmallSet<int, 1> FoldedSS;
 | |
|     for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
 | |
|       DOUT << "Folded vreg: " << I->second.first << "  MR: "
 | |
|            << I->second.second;
 | |
|       unsigned VirtReg = I->second.first;
 | |
|       VirtRegMap::ModRef MR = I->second.second;
 | |
|       if (VRM.isAssignedReg(VirtReg)) {
 | |
|         DOUT << ": No stack slot!\n";
 | |
|         continue;
 | |
|       }
 | |
|       int SS = VRM.getStackSlot(VirtReg);
 | |
|       FoldedSS.insert(SS);
 | |
|       DOUT << " - StackSlot: " << SS << "\n";
 | |
|       
 | |
|       // If this folded instruction is just a use, check to see if it's a
 | |
|       // straight load from the virt reg slot.
 | |
|       if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
 | |
|         int FrameIdx;
 | |
|         if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
 | |
|           if (FrameIdx == SS) {
 | |
|             // If this spill slot is available, turn it into a copy (or nothing)
 | |
|             // instead of leaving it as a load!
 | |
|             if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
 | |
|               DOUT << "Promoted Load To Copy: " << MI;
 | |
|               if (DestReg != InReg) {
 | |
|                 MRI->copyRegToReg(MBB, &MI, DestReg, InReg,
 | |
|                                   MF.getSSARegMap()->getRegClass(VirtReg));
 | |
|                 // Revisit the copy so we make sure to notice the effects of the
 | |
|                 // operation on the destreg (either needing to RA it if it's 
 | |
|                 // virtual or needing to clobber any values if it's physical).
 | |
|                 NextMII = &MI;
 | |
|                 --NextMII;  // backtrack to the copy.
 | |
|                 BackTracked = true;
 | |
|               } else
 | |
|                 DOUT << "Removing now-noop copy: " << MI;
 | |
| 
 | |
|               VRM.RemoveFromFoldedVirtMap(&MI);
 | |
|               MBB.erase(&MI);
 | |
|               Erased = true;
 | |
|               goto ProcessNextInst;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If this reference is not a use, any previous store is now dead.
 | |
|       // Otherwise, the store to this stack slot is not dead anymore.
 | |
|       MachineInstr* DeadStore = MaybeDeadStores[SS];
 | |
|       if (DeadStore) {
 | |
|         if (!(MR & VirtRegMap::isRef)) {  // Previous store is dead.
 | |
|           // If we get here, the store is dead, nuke it now.
 | |
|           assert(VirtRegMap::isMod && "Can't be modref!");
 | |
|           DOUT << "Removed dead store:\t" << *DeadStore;
 | |
|           InvalidateKills(*DeadStore, RegKills, KillOps);
 | |
|           MBB.erase(DeadStore);
 | |
|           VRM.RemoveFromFoldedVirtMap(DeadStore);
 | |
|           ++NumDSE;
 | |
|         }
 | |
|         MaybeDeadStores[SS] = NULL;
 | |
|       }
 | |
| 
 | |
|       // If the spill slot value is available, and this is a new definition of
 | |
|       // the value, the value is not available anymore.
 | |
|       if (MR & VirtRegMap::isMod) {
 | |
|         // Notice that the value in this stack slot has been modified.
 | |
|         Spills.ModifyStackSlotOrReMat(SS);
 | |
|         
 | |
|         // If this is *just* a mod of the value, check to see if this is just a
 | |
|         // store to the spill slot (i.e. the spill got merged into the copy). If
 | |
|         // so, realize that the vreg is available now, and add the store to the
 | |
|         // MaybeDeadStore info.
 | |
|         int StackSlot;
 | |
|         if (!(MR & VirtRegMap::isRef)) {
 | |
|           if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
 | |
|             assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
 | |
|                    "Src hasn't been allocated yet?");
 | |
|             // Okay, this is certainly a store of SrcReg to [StackSlot].  Mark
 | |
|             // this as a potentially dead store in case there is a subsequent
 | |
|             // store into the stack slot without a read from it.
 | |
|             MaybeDeadStores[StackSlot] = &MI;
 | |
| 
 | |
|             // If the stack slot value was previously available in some other
 | |
|             // register, change it now.  Otherwise, make the register available,
 | |
|             // in PhysReg.
 | |
|             Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Process all of the spilled defs.
 | |
|     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI.getOperand(i);
 | |
|       if (MO.isRegister() && MO.getReg() && MO.isDef()) {
 | |
|         unsigned VirtReg = MO.getReg();
 | |
| 
 | |
|         if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
 | |
|           // Check to see if this is a noop copy.  If so, eliminate the
 | |
|           // instruction before considering the dest reg to be changed.
 | |
|           unsigned Src, Dst;
 | |
|           if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
 | |
|             ++NumDCE;
 | |
|             DOUT << "Removing now-noop copy: " << MI;
 | |
|             MBB.erase(&MI);
 | |
|             Erased = true;
 | |
|             VRM.RemoveFromFoldedVirtMap(&MI);
 | |
|             Spills.disallowClobberPhysReg(VirtReg);
 | |
|             goto ProcessNextInst;
 | |
|           }
 | |
|           
 | |
|           // If it's not a no-op copy, it clobbers the value in the destreg.
 | |
|           Spills.ClobberPhysReg(VirtReg);
 | |
|           ReusedOperands.markClobbered(VirtReg);
 | |
|  
 | |
|           // Check to see if this instruction is a load from a stack slot into
 | |
|           // a register.  If so, this provides the stack slot value in the reg.
 | |
|           int FrameIdx;
 | |
|           if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
 | |
|             assert(DestReg == VirtReg && "Unknown load situation!");
 | |
| 
 | |
|             // If it is a folded reference, then it's not safe to clobber.
 | |
|             bool Folded = FoldedSS.count(FrameIdx);
 | |
|             // Otherwise, if it wasn't available, remember that it is now!
 | |
|             Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
 | |
|             goto ProcessNextInst;
 | |
|           }
 | |
|             
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         bool DoReMat = VRM.isReMaterialized(VirtReg);
 | |
|         if (DoReMat)
 | |
|           ReMatDefs.insert(&MI);
 | |
| 
 | |
|         // The only vregs left are stack slot definitions.
 | |
|         int StackSlot = VRM.getStackSlot(VirtReg);
 | |
|         const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(VirtReg);
 | |
| 
 | |
|         // If this def is part of a two-address operand, make sure to execute
 | |
|         // the store from the correct physical register.
 | |
|         unsigned PhysReg;
 | |
|         int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
 | |
|         if (TiedOp != -1)
 | |
|           PhysReg = MI.getOperand(TiedOp).getReg();
 | |
|         else {
 | |
|           PhysReg = VRM.getPhys(VirtReg);
 | |
|           if (ReusedOperands.isClobbered(PhysReg)) {
 | |
|             // Another def has taken the assigned physreg. It must have been a
 | |
|             // use&def which got it due to reuse. Undo the reuse!
 | |
|             PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI, 
 | |
|                                Spills, MaybeDeadStores, RegKills, KillOps, VRM);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         MF.setPhysRegUsed(PhysReg);
 | |
|         ReusedOperands.markClobbered(PhysReg);
 | |
|         MI.getOperand(i).setReg(PhysReg);
 | |
|         if (!MO.isDead()) {
 | |
|           MRI->storeRegToStackSlot(MBB, next(MII), PhysReg, StackSlot, RC);
 | |
|           DOUT << "Store:\t" << *next(MII);
 | |
| 
 | |
|           // If there is a dead store to this stack slot, nuke it now.
 | |
|           MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
 | |
|           if (LastStore) {
 | |
|             DOUT << "Removed dead store:\t" << *LastStore;
 | |
|             ++NumDSE;
 | |
|             SmallVector<unsigned, 1> KillRegs;
 | |
|             InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
 | |
|             MachineBasicBlock::iterator PrevMII = LastStore;
 | |
|             bool CheckDef = PrevMII != MBB.begin();
 | |
|             if (CheckDef)
 | |
|               --PrevMII;
 | |
|             MBB.erase(LastStore);
 | |
|             VRM.RemoveFromFoldedVirtMap(LastStore);
 | |
|             if (CheckDef) {
 | |
|               // Look at defs of killed registers on the store. Mark the defs
 | |
|               // as dead since the store has been deleted and they aren't
 | |
|               // being reused.
 | |
|               for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
 | |
|                 bool HasOtherDef = false;
 | |
|                 if (InvalidateRegDef(PrevMII, MI, KillRegs[j], HasOtherDef)) {
 | |
|                   MachineInstr *DeadDef = PrevMII;
 | |
|                   if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
 | |
|                     // FIXME: This assumes a remat def does not have side
 | |
|                     // effects.
 | |
|                     MBB.erase(DeadDef);
 | |
|                     VRM.RemoveFromFoldedVirtMap(DeadDef);
 | |
|                     ++NumDRM;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           LastStore = next(MII);
 | |
| 
 | |
|           // If the stack slot value was previously available in some other
 | |
|           // register, change it now.  Otherwise, make the register available,
 | |
|           // in PhysReg.
 | |
|           Spills.ModifyStackSlotOrReMat(StackSlot);
 | |
|           Spills.ClobberPhysReg(PhysReg);
 | |
|           Spills.addAvailable(StackSlot, LastStore, PhysReg);
 | |
|           ++NumStores;
 | |
| 
 | |
|           // Check to see if this is a noop copy.  If so, eliminate the
 | |
|           // instruction before considering the dest reg to be changed.
 | |
|           {
 | |
|             unsigned Src, Dst;
 | |
|             if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
 | |
|               ++NumDCE;
 | |
|               DOUT << "Removing now-noop copy: " << MI;
 | |
|               MBB.erase(&MI);
 | |
|               Erased = true;
 | |
|               VRM.RemoveFromFoldedVirtMap(&MI);
 | |
|               UpdateKills(*LastStore, RegKills, KillOps);
 | |
|               goto ProcessNextInst;
 | |
|             }
 | |
|           }
 | |
|         }    
 | |
|       }
 | |
|     }
 | |
|   ProcessNextInst:
 | |
|     if (!Erased && !BackTracked)
 | |
|       for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
 | |
|         UpdateKills(*II, RegKills, KillOps);
 | |
|     MII = NextMII;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| llvm::Spiller* llvm::createSpiller() {
 | |
|   switch (SpillerOpt) {
 | |
|   default: assert(0 && "Unreachable!");
 | |
|   case local:
 | |
|     return new LocalSpiller();
 | |
|   case simple:
 | |
|     return new SimpleSpiller();
 | |
|   }
 | |
| }
 |