mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-06 20:32:19 +00:00
5680ee6b28
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@873 91177308-0d34-0410-b5e6-96231b3b80d8
264 lines
9.2 KiB
C++
264 lines
9.2 KiB
C++
//===- MethodInlining.cpp - Code to perform method inlining ---------------===//
|
|
//
|
|
// This file implements inlining of methods.
|
|
//
|
|
// Specifically, this:
|
|
// * Exports functionality to inline any method call
|
|
// * Inlines methods that consist of a single basic block
|
|
// * Is able to inline ANY method call
|
|
// . Has a smart heuristic for when to inline a method
|
|
//
|
|
// Notice that:
|
|
// * This pass has a habit of introducing duplicated constant pool entries,
|
|
// and also opens up a lot of opportunities for constant propogation. It is
|
|
// a good idea to to run a constant propogation pass, then a DCE pass
|
|
// sometime after running this pass.
|
|
//
|
|
// TODO: Currently this throws away all of the symbol names in the method being
|
|
// inlined to try to avoid name clashes. Use a name if it's not taken
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Optimizations/MethodInlining.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iOther.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
#include "llvm/Assembly/Writer.h"
|
|
|
|
using namespace opt;
|
|
|
|
// RemapInstruction - Convert the instruction operands from referencing the
|
|
// current values into those specified by ValueMap.
|
|
//
|
|
static inline void RemapInstruction(Instruction *I,
|
|
map<const Value *, Value*> &ValueMap) {
|
|
|
|
for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
|
|
const Value *Op = I->getOperand(op);
|
|
Value *V = ValueMap[Op];
|
|
if (!V && (isa<Method>(Op) || isa<ConstPoolVal>(Op)))
|
|
continue; // Methods and constants don't get relocated
|
|
|
|
if (!V) {
|
|
cerr << "Val = " << endl << Op << "Addr = " << (void*)Op << endl;
|
|
cerr << "Inst = " << I;
|
|
}
|
|
assert(V && "Referenced value not in value map!");
|
|
I->setOperand(op, V);
|
|
}
|
|
}
|
|
|
|
// InlineMethod - This function forcibly inlines the called method into the
|
|
// basic block of the caller. This returns false if it is not possible to
|
|
// inline this call. The program is still in a well defined state if this
|
|
// occurs though.
|
|
//
|
|
// Note that this only does one level of inlining. For example, if the
|
|
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
|
|
// exists in the instruction stream. Similiarly this will inline a recursive
|
|
// method by one level.
|
|
//
|
|
bool opt::InlineMethod(BasicBlock::iterator CIIt) {
|
|
assert(isa<CallInst>(*CIIt) && "InlineMethod only works on CallInst nodes!");
|
|
assert((*CIIt)->getParent() && "Instruction not embedded in basic block!");
|
|
assert((*CIIt)->getParent()->getParent() && "Instruction not in method!");
|
|
|
|
CallInst *CI = cast<CallInst>(*CIIt);
|
|
const Method *CalledMeth = CI->getCalledMethod();
|
|
if (CalledMeth == 0 || // Can't inline external method or indirect call!
|
|
CalledMeth->isExternal()) return false;
|
|
Method *CurrentMeth = CI->getParent()->getParent();
|
|
|
|
//cerr << "Inlining " << CalledMeth->getName() << " into "
|
|
// << CurrentMeth->getName() << endl;
|
|
|
|
BasicBlock *OrigBB = CI->getParent();
|
|
|
|
// Call splitBasicBlock - The original basic block now ends at the instruction
|
|
// immediately before the call. The original basic block now ends with an
|
|
// unconditional branch to NewBB, and NewBB starts with the call instruction.
|
|
//
|
|
BasicBlock *NewBB = OrigBB->splitBasicBlock(CIIt);
|
|
|
|
// Remove (unlink) the CallInst from the start of the new basic block.
|
|
NewBB->getInstList().remove(CI);
|
|
|
|
// If we have a return value generated by this call, convert it into a PHI
|
|
// node that gets values from each of the old RET instructions in the original
|
|
// method.
|
|
//
|
|
PHINode *PHI = 0;
|
|
if (CalledMeth->getReturnType() != Type::VoidTy) {
|
|
PHI = new PHINode(CalledMeth->getReturnType(), CI->getName());
|
|
|
|
// The PHI node should go at the front of the new basic block to merge all
|
|
// possible incoming values.
|
|
//
|
|
NewBB->getInstList().push_front(PHI);
|
|
|
|
// Anything that used the result of the function call should now use the PHI
|
|
// node as their operand.
|
|
//
|
|
CI->replaceAllUsesWith(PHI);
|
|
}
|
|
|
|
// Keep a mapping between the original method's values and the new duplicated
|
|
// code's values. This includes all of: Method arguments, instruction values,
|
|
// constant pool entries, and basic blocks.
|
|
//
|
|
map<const Value *, Value*> ValueMap;
|
|
|
|
// Add the method arguments to the mapping: (start counting at 1 to skip the
|
|
// method reference itself)
|
|
//
|
|
Method::ArgumentListType::const_iterator PTI =
|
|
CalledMeth->getArgumentList().begin();
|
|
for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI)
|
|
ValueMap[*PTI] = CI->getOperand(a);
|
|
|
|
ValueMap[NewBB] = NewBB; // Returns get converted to reference NewBB
|
|
|
|
// Loop over all of the basic blocks in the method, inlining them as
|
|
// appropriate. Keep track of the first basic block of the method...
|
|
//
|
|
for (Method::const_iterator BI = CalledMeth->begin();
|
|
BI != CalledMeth->end(); ++BI) {
|
|
const BasicBlock *BB = *BI;
|
|
assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
|
|
|
|
// Create a new basic block to copy instructions into!
|
|
BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
|
|
|
|
ValueMap[BB] = IBB; // Add basic block mapping.
|
|
|
|
// Make sure to capture the mapping that a return will use...
|
|
// TODO: This assumes that the RET is returning a value computed in the same
|
|
// basic block as the return was issued from!
|
|
//
|
|
const TerminatorInst *TI = BB->getTerminator();
|
|
|
|
// Loop over all instructions copying them over...
|
|
Instruction *NewInst;
|
|
for (BasicBlock::const_iterator II = BB->begin();
|
|
II != (BB->end()-1); ++II) {
|
|
IBB->getInstList().push_back((NewInst = (*II)->clone()));
|
|
ValueMap[*II] = NewInst; // Add instruction map to value.
|
|
}
|
|
|
|
// Copy over the terminator now...
|
|
switch (TI->getOpcode()) {
|
|
case Instruction::Ret: {
|
|
const ReturnInst *RI = cast<const ReturnInst>(TI);
|
|
|
|
if (PHI) { // The PHI node should include this value!
|
|
assert(RI->getReturnValue() && "Ret should have value!");
|
|
assert(RI->getReturnValue()->getType() == PHI->getType() &&
|
|
"Ret value not consistent in method!");
|
|
PHI->addIncoming((Value*)RI->getReturnValue(), cast<BasicBlock>(BB));
|
|
}
|
|
|
|
// Add a branch to the code that was after the original Call.
|
|
IBB->getInstList().push_back(new BranchInst(NewBB));
|
|
break;
|
|
}
|
|
case Instruction::Br:
|
|
IBB->getInstList().push_back(TI->clone());
|
|
break;
|
|
|
|
default:
|
|
cerr << "MethodInlining: Don't know how to handle terminator: " << TI;
|
|
abort();
|
|
}
|
|
}
|
|
|
|
|
|
// Loop over all of the instructions in the method, fixing up operand
|
|
// references as we go. This uses ValueMap to do all the hard work.
|
|
//
|
|
for (Method::const_iterator BI = CalledMeth->begin();
|
|
BI != CalledMeth->end(); ++BI) {
|
|
const BasicBlock *BB = *BI;
|
|
BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
|
|
|
|
// Loop over all instructions, fixing each one as we find it...
|
|
//
|
|
for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); II++)
|
|
RemapInstruction(*II, ValueMap);
|
|
}
|
|
|
|
if (PHI) RemapInstruction(PHI, ValueMap); // Fix the PHI node also...
|
|
|
|
// Change the branch that used to go to NewBB to branch to the first basic
|
|
// block of the inlined method.
|
|
//
|
|
TerminatorInst *Br = OrigBB->getTerminator();
|
|
assert(Br && Br->getOpcode() == Instruction::Br &&
|
|
"splitBasicBlock broken!");
|
|
Br->setOperand(0, ValueMap[CalledMeth->front()]);
|
|
|
|
// Since we are now done with the CallInst, we can finally delete it.
|
|
delete CI;
|
|
return true;
|
|
}
|
|
|
|
bool opt::InlineMethod(CallInst *CI) {
|
|
assert(CI->getParent() && "CallInst not embeded in BasicBlock!");
|
|
BasicBlock *PBB = CI->getParent();
|
|
|
|
BasicBlock::iterator CallIt = find(PBB->begin(), PBB->end(), CI);
|
|
|
|
assert(CallIt != PBB->end() &&
|
|
"CallInst has parent that doesn't contain CallInst?!?");
|
|
return InlineMethod(CallIt);
|
|
}
|
|
|
|
static inline bool ShouldInlineMethod(const CallInst *CI, const Method *M) {
|
|
assert(CI->getParent() && CI->getParent()->getParent() &&
|
|
"Call not embedded into a method!");
|
|
|
|
// Don't inline a recursive call.
|
|
if (CI->getParent()->getParent() == M) return false;
|
|
|
|
// Don't inline something too big. This is a really crappy heuristic
|
|
if (M->size() > 3) return false;
|
|
|
|
// Don't inline into something too big. This is a **really** crappy heuristic
|
|
if (CI->getParent()->getParent()->size() > 10) return false;
|
|
|
|
// Go ahead and try just about anything else.
|
|
return true;
|
|
}
|
|
|
|
|
|
static inline bool DoMethodInlining(BasicBlock *BB) {
|
|
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(*I)) {
|
|
// Check to see if we should inline this method
|
|
Method *M = CI->getCalledMethod();
|
|
if (M && ShouldInlineMethod(CI, M))
|
|
return InlineMethod(I);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool opt::MethodInlining::doMethodInlining(Method *M) {
|
|
bool Changed = false;
|
|
|
|
// Loop through now and inline instructions a basic block at a time...
|
|
for (Method::iterator I = M->begin(); I != M->end(); )
|
|
if (DoMethodInlining(*I)) {
|
|
Changed = true;
|
|
// Iterator is now invalidated by new basic blocks inserted
|
|
I = M->begin();
|
|
} else {
|
|
++I;
|
|
}
|
|
|
|
return Changed;
|
|
}
|