llvm-6502/lib/Target/X86
Chris Lattner 594086d494 more mumbling
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25826 91177308-0d34-0410-b5e6-96231b3b80d8
2006-01-31 00:45:37 +00:00
..
.cvsignore ignore generated files 2004-11-21 00:01:54 +00:00
Makefile Added preliminary x86 subtarget support. 2006-01-26 09:53:06 +00:00
README.txt more mumbling 2006-01-31 00:45:37 +00:00
X86.h Bye bye Pattern ISel, hello DAG ISel. 2006-01-27 21:26:54 +00:00
X86.td Fix typo. 2006-01-29 03:45:35 +00:00
X86AsmPrinter.cpp Use the shared asmprinter code for printing special llvm globals 2005-12-13 06:32:50 +00:00
X86AsmPrinter.h Use the shared asmprinter code for printing special llvm globals 2005-12-13 06:32:50 +00:00
X86ATTAsmPrinter.cpp Work around some x86 Darwin assembler bugs 2006-01-26 02:27:43 +00:00
X86ATTAsmPrinter.h No longer track value types for asm printer operands, and remove them as 2005-11-30 18:54:35 +00:00
X86CodeEmitter.cpp Fix a bunch of JIT failures with the new isel 2006-01-28 18:19:37 +00:00
X86ELFWriter.cpp
X86FloatingPoint.cpp Improve compatibility with VC2005, patch by Morten Ofstad! 2006-01-26 20:41:32 +00:00
X86InstrBuilder.h
X86InstrInfo.cpp Properly split f32 and f64 into separate register classes for scalar sse fp 2005-10-14 22:06:00 +00:00
X86InstrInfo.h Eliminate tabs and trailing spaces. 2005-07-27 05:53:44 +00:00
X86InstrInfo.td Always use FP stack instructions to perform i64 to f64 as well as f64 to i64 2006-01-30 08:02:57 +00:00
X86IntelAsmPrinter.cpp Add explicit #includes of <iostream> 2006-01-22 23:41:00 +00:00
X86IntelAsmPrinter.h Fix a typo in my latest change 2005-11-30 18:57:39 +00:00
X86ISelDAGToDAG.cpp x86 CPU detection and proper subtarget support 2006-01-27 08:10:46 +00:00
X86ISelLowering.cpp Don't generate complex sequence for SETOLE, SETOLT, SETULT, and SETUGT. Flip 2006-01-30 23:41:35 +00:00
X86ISelLowering.h Always use FP stack instructions to perform i64 to f64 as well as f64 to i64 2006-01-30 08:02:57 +00:00
X86ISelPattern.cpp remove now-dead code, the legalizer takes care of this for us 2006-01-29 06:45:31 +00:00
X86JITInfo.cpp Improve compatibility with VC2005, patch by Morten Ofstad! 2006-01-26 19:55:20 +00:00
X86JITInfo.h turn off GOT on archs that didn't use it (not that it appeard to harm them much with it on) 2005-07-29 23:32:02 +00:00
X86PeepholeOpt.cpp remove some never-completed and now-obsolete code. 2005-12-12 20:12:20 +00:00
X86RegisterInfo.cpp Support for ADD_PARTS, SUB_PARTS, SHL_PARTS, SHR_PARTS, and SRA_PARTS. 2006-01-09 18:33:28 +00:00
X86RegisterInfo.h Pass extra regclasses into spilling code 2005-09-30 01:29:42 +00:00
X86RegisterInfo.td Remove the uses of STATUS flag register. Rely on node property SDNPInFlag, 2006-01-26 00:29:36 +00:00
X86Relocations.h
X86Subtarget.cpp Flesh out AMD family/models. 2006-01-28 20:30:18 +00:00
X86Subtarget.h x86 CPU detection and proper subtarget support 2006-01-27 08:10:46 +00:00
X86TargetMachine.cpp Bye bye Pattern ISel, hello DAG ISel. 2006-01-27 21:26:54 +00:00
X86TargetMachine.h Add a new option to indicate we want the code generator to emit code quickly,not spending tons of time microoptimizing it. This is useful for an -O0style of build. 2005-11-08 02:11:51 +00:00

//===---------------------------------------------------------------------===//
// Random ideas for the X86 backend.
//===---------------------------------------------------------------------===//

Add a MUL2U and MUL2S nodes to represent a multiply that returns both the
Hi and Lo parts (combination of MUL and MULH[SU] into one node).  Add this to
X86, & make the dag combiner produce it when needed.  This will eliminate one
imul from the code generated for:

long long test(long long X, long long Y) { return X*Y; }

by using the EAX result from the mul.  We should add a similar node for
DIVREM.

another case is:

long long test(int X, int Y) { return (long long)X*Y; }

... which should only be one imul instruction.

//===---------------------------------------------------------------------===//

This should be one DIV/IDIV instruction, not a libcall:

unsigned test(unsigned long long X, unsigned Y) {
        return X/Y;
}

This can be done trivially with a custom legalizer.  What about overflow 
though?  http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224

//===---------------------------------------------------------------------===//

Some targets (e.g. athlons) prefer freep to fstp ST(0):
http://gcc.gnu.org/ml/gcc-patches/2004-04/msg00659.html

//===---------------------------------------------------------------------===//

This should use fiadd on chips where it is profitable:
double foo(double P, int *I) { return P+*I; }

//===---------------------------------------------------------------------===//

The FP stackifier needs to be global.  Also, it should handle simple permutates
to reduce number of shuffle instructions, e.g. turning:

fld P	->		fld Q
fld Q			fld P
fxch

or:

fxch	->		fucomi
fucomi			jl X
jg X

Ideas:
http://gcc.gnu.org/ml/gcc-patches/2004-11/msg02410.html


//===---------------------------------------------------------------------===//

Improvements to the multiply -> shift/add algorithm:
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html

//===---------------------------------------------------------------------===//

Improve code like this (occurs fairly frequently, e.g. in LLVM):
long long foo(int x) { return 1LL << x; }

http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html

Another useful one would be  ~0ULL >> X and ~0ULL << X.

//===---------------------------------------------------------------------===//

Should support emission of the bswap instruction, probably by adding a new
DAG node for byte swapping.  Also useful on PPC which has byte-swapping loads.

//===---------------------------------------------------------------------===//

Compile this:
_Bool f(_Bool a) { return a!=1; }

into:
        movzbl  %dil, %eax
        xorl    $1, %eax
        ret

//===---------------------------------------------------------------------===//

Some isel ideas:

1. Dynamic programming based approach when compile time if not an
   issue.
2. Code duplication (addressing mode) during isel.
3. Other ideas from "Register-Sensitive Selection, Duplication, and
   Sequencing of Instructions".

//===---------------------------------------------------------------------===//

Should we promote i16 to i32 to avoid partial register update stalls?

//===---------------------------------------------------------------------===//

Leave any_extend as pseudo instruction and hint to register
allocator. Delay codegen until post register allocation.

//===---------------------------------------------------------------------===//

Add a target specific hook to DAG combiner to handle SINT_TO_FP and
FP_TO_SINT when the source operand is already in memory.

//===---------------------------------------------------------------------===//

Check if load folding would add a cycle in the dag.

//===---------------------------------------------------------------------===//

Model X86 EFLAGS as a real register to avoid redudant cmp / test. e.g.

	cmpl $1, %eax
	setg %al
	testb %al, %al  # unnecessary
	jne .BB7

//===---------------------------------------------------------------------===//

Count leading zeros and count trailing zeros:

int clz(int X) { return __builtin_clz(X); }
int ctz(int X) { return __builtin_ctz(X); }

$ gcc t.c -S -o - -O3  -fomit-frame-pointer -masm=intel
clz:
        bsr     %eax, DWORD PTR [%esp+4]
        xor     %eax, 31
        ret
ctz:
        bsf     %eax, DWORD PTR [%esp+4]
        ret

however, check that these are defined for 0 and 32.  Our intrinsics are, GCC's
aren't.

//===---------------------------------------------------------------------===//

Use push/pop instructions in prolog/epilog sequences instead of stores off 
ESP (certain code size win, perf win on some [which?] processors).

//===---------------------------------------------------------------------===//

Only use inc/neg/not instructions on processors where they are faster than
add/sub/xor.  They are slower on the P4 due to only updating some processor
flags.

//===---------------------------------------------------------------------===//

Open code rint,floor,ceil,trunc:
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02006.html
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02011.html

//===---------------------------------------------------------------------===//

Combine: a = sin(x), b = cos(x) into a,b = sincos(x).

//===---------------------------------------------------------------------===//

For all targets, not just X86:
When llvm.memcpy, llvm.memset, or llvm.memmove are lowered, they should be 
optimized to a few store instructions if the source is constant and the length
is smallish (< 8). This will greatly help some tests like Shootout/strcat.c

//===---------------------------------------------------------------------===//

Solve this DAG isel folding deficiency:

int X, Y;

void fn1(void)
{
  X = X | (Y << 3);
}

compiles to

fn1:
	movl Y, %eax
	shll $3, %eax
	orl X, %eax
	movl %eax, X
	ret

The problem is the store's chain operand is not the load X but rather
a TokenFactor of the load X and load Y, which prevents the folding.

There are two ways to fix this:

1. The dag combiner can start using alias analysis to realize that y/x
   don't alias, making the store to X not dependent on the load from Y.
2. The generated isel could be made smarter in the case it can't
   disambiguate the pointers.

Number 1 is the preferred solution.

//===---------------------------------------------------------------------===//

The instruction selector sometimes misses folding a load into a compare.  The
pattern is written as (cmp reg, (load p)).  Because the compare isn't 
commutative, it is not matched with the load on both sides.  The dag combiner
should be made smart enough to cannonicalize the load into the RHS of a compare
when it can invert the result of the compare for free.

//===---------------------------------------------------------------------===//

The code generated for 'abs' is truly aweful:

float %foo(float %tmp.38) {
       %tmp.39 = setgt float %tmp.38, 0.000000e+00
        %tmp.45 = sub float -0.000000e+00, %tmp.38
        %mem_tmp.0.0 = select bool %tmp.39, float %tmp.38, float %tmp.45
        ret float %mem_tmp.0.0
}

_foo:
        subl $4, %esp
        movss LCPI1_0, %xmm0
        movss 8(%esp), %xmm1
        subss %xmm1, %xmm0
        xorps %xmm2, %xmm2
        ucomiss %xmm2, %xmm1
        setp %al
        seta %cl
        orb %cl, %al
        testb %al, %al
        jne LBB_foo_2   # 
LBB_foo_1:      # 
        movss %xmm0, %xmm1
LBB_foo_2:      # 
        movss %xmm1, (%esp)
        flds (%esp)
        addl $4, %esp
        ret

This should be a high-priority to fix.  With the fp-stack, this is a single
instruction.  With SSE it could be far better than this.  Why is the sequence
above using 'setp'?  It shouldn't care about nan's.

//===---------------------------------------------------------------------===//

Is there a better way to implement Y = -X (fneg) than the literal code:

float %test(float %X) {
        %Y = sub float -0.0, %X
        ret float %Y
}

        movss LCPI1_0, %xmm0   ;; load -0.0
        subss 8(%esp), %xmm0   ;; subtract

//===---------------------------------------------------------------------===//

None of the SSE instructions are handled in X86RegisterInfo::foldMemoryOperand,
which prevents the spiller from folding spill code into the instructions.

This leads to code like this:

mov %eax, 8(%esp)
cvtsi2sd %eax, %xmm0
instead of:
cvtsi2sd 8(%esp), %xmm0

//===---------------------------------------------------------------------===//

This instruction selector selects 'int X = 0' as 'mov Reg, 0' not 'xor Reg,Reg'
This is bigger and slower.

//===---------------------------------------------------------------------===//

LSR should be turned on for the X86 backend and tuned to take advantage of its
addressing modes.

//===---------------------------------------------------------------------===//

When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
other fast SSE modes.

//===---------------------------------------------------------------------===//

cd Regression/CodeGen/X86
llvm-as < setuge.ll | llc -march=x86 -mcpu=yonah -enable-x86-sse

_cmp:
        subl $4, %esp
1)      leal 20(%esp), %eax
        movss 12(%esp), %xmm0
1)      leal 16(%esp), %ecx
        ucomiss 8(%esp), %xmm0
        cmovb %ecx, %eax
2)      movss (%eax), %xmm0
2)      movss %xmm0, (%esp)
        flds (%esp)
        addl $4, %esp
        ret


1) These LEA's should be adds.  This is tricky because they are FrameIndex's
   before prolog-epilog rewriting.
2) We shouldn't load into XMM regs only to store it back.

//===---------------------------------------------------------------------===//

Think about doing i64 math in SSE regs.