mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162362 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			826 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			826 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- StrongPHIElimination.cpp - Eliminate PHI nodes by inserting copies -===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass eliminates PHI instructions by aggressively coalescing the copies
 | |
| // that would be inserted by a naive algorithm and only inserting the copies
 | |
| // that are necessary. The coalescing technique initially assumes that all
 | |
| // registers appearing in a PHI instruction do not interfere. It then eliminates
 | |
| // proven interferences, using dominators to only perform a linear number of
 | |
| // interference tests instead of the quadratic number of interference tests
 | |
| // that this would naively require. This is a technique derived from:
 | |
| // 
 | |
| //    Budimlic, et al. Fast copy coalescing and live-range identification.
 | |
| //    In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
 | |
| //    Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
 | |
| //    PLDI '02. ACM, New York, NY, 25-32.
 | |
| //
 | |
| // The original implementation constructs a data structure they call a dominance
 | |
| // forest for this purpose. The dominance forest was shown to be unnecessary,
 | |
| // as it is possible to emulate the creation and traversal of a dominance forest
 | |
| // by directly using the dominator tree, rather than actually constructing the
 | |
| // dominance forest.  This technique is explained in:
 | |
| //
 | |
| //   Boissinot, et al. Revisiting Out-of-SSA Translation for Correctness, Code
 | |
| //     Quality and Efficiency,
 | |
| //   In Proceedings of the 7th annual IEEE/ACM International Symposium on Code
 | |
| //   Generation and Optimization (Seattle, Washington, March 22 - 25, 2009).
 | |
| //   CGO '09. IEEE, Washington, DC, 114-125.
 | |
| //
 | |
| // Careful implementation allows for all of the dominator forest interference
 | |
| // checks to be performed at once in a single depth-first traversal of the
 | |
| // dominator tree, which is what is implemented here.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "strongphielim"
 | |
| #include "PHIEliminationUtils.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   class StrongPHIElimination : public MachineFunctionPass {
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     StrongPHIElimination() : MachineFunctionPass(ID) {
 | |
|       initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage&) const;
 | |
|     bool runOnMachineFunction(MachineFunction&);
 | |
| 
 | |
|   private:
 | |
|     /// This struct represents a single node in the union-find data structure
 | |
|     /// representing the variable congruence classes. There is one difference
 | |
|     /// from a normal union-find data structure. We steal two bits from the parent
 | |
|     /// pointer . One of these bits is used to represent whether the register
 | |
|     /// itself has been isolated, and the other is used to represent whether the
 | |
|     /// PHI with that register as its destination has been isolated.
 | |
|     ///
 | |
|     /// Note that this leads to the strange situation where the leader of a
 | |
|     /// congruence class may no longer logically be a member, due to being
 | |
|     /// isolated.
 | |
|     struct Node {
 | |
|       enum Flags {
 | |
|         kRegisterIsolatedFlag = 1,
 | |
|         kPHIIsolatedFlag = 2
 | |
|       };
 | |
|       Node(unsigned v) : value(v), rank(0) { parent.setPointer(this); }
 | |
| 
 | |
|       Node *getLeader();
 | |
| 
 | |
|       PointerIntPair<Node*, 2> parent;
 | |
|       unsigned value;
 | |
|       unsigned rank;
 | |
|     };
 | |
| 
 | |
|     /// Add a register in a new congruence class containing only itself.
 | |
|     void addReg(unsigned);
 | |
| 
 | |
|     /// Join the congruence classes of two registers. This function is biased
 | |
|     /// towards the left argument, i.e. after
 | |
|     ///
 | |
|     /// addReg(r2);
 | |
|     /// unionRegs(r1, r2);
 | |
|     ///
 | |
|     /// the leader of the unioned congruence class is the same as the leader of
 | |
|     /// r1's congruence class prior to the union. This is actually relied upon
 | |
|     /// in the copy insertion code.
 | |
|     void unionRegs(unsigned, unsigned);
 | |
| 
 | |
|     /// Get the color of a register. The color is 0 if the register has been
 | |
|     /// isolated.
 | |
|     unsigned getRegColor(unsigned);
 | |
| 
 | |
|     // Isolate a register.
 | |
|     void isolateReg(unsigned);
 | |
| 
 | |
|     /// Get the color of a PHI. The color of a PHI is 0 if the PHI has been
 | |
|     /// isolated. Otherwise, it is the original color of its destination and
 | |
|     /// all of its operands (before they were isolated, if they were).
 | |
|     unsigned getPHIColor(MachineInstr*);
 | |
| 
 | |
|     /// Isolate a PHI.
 | |
|     void isolatePHI(MachineInstr*);
 | |
| 
 | |
|     /// Traverses a basic block, splitting any interferences found between
 | |
|     /// registers in the same congruence class. It takes two DenseMaps as
 | |
|     /// arguments that it also updates: CurrentDominatingParent, which maps
 | |
|     /// a color to the register in that congruence class whose definition was
 | |
|     /// most recently seen, and ImmediateDominatingParent, which maps a register
 | |
|     /// to the register in the same congruence class that most immediately
 | |
|     /// dominates it.
 | |
|     ///
 | |
|     /// This function assumes that it is being called in a depth-first traversal
 | |
|     /// of the dominator tree.
 | |
|     void SplitInterferencesForBasicBlock(
 | |
|       MachineBasicBlock&,
 | |
|       DenseMap<unsigned, unsigned> &CurrentDominatingParent,
 | |
|       DenseMap<unsigned, unsigned> &ImmediateDominatingParent);
 | |
| 
 | |
|     // Lowers a PHI instruction, inserting copies of the source and destination
 | |
|     // registers as necessary.
 | |
|     void InsertCopiesForPHI(MachineInstr*, MachineBasicBlock*);
 | |
| 
 | |
|     // Merges the live interval of Reg into NewReg and renames Reg to NewReg
 | |
|     // everywhere that Reg appears. Requires Reg and NewReg to have non-
 | |
|     // overlapping lifetimes.
 | |
|     void MergeLIsAndRename(unsigned Reg, unsigned NewReg);
 | |
| 
 | |
|     MachineRegisterInfo *MRI;
 | |
|     const TargetInstrInfo *TII;
 | |
|     MachineDominatorTree *DT;
 | |
|     LiveIntervals *LI;
 | |
| 
 | |
|     BumpPtrAllocator Allocator;
 | |
| 
 | |
|     DenseMap<unsigned, Node*> RegNodeMap;
 | |
| 
 | |
|     // Maps a basic block to a list of its defs of registers that appear as PHI
 | |
|     // sources.
 | |
|     DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > PHISrcDefs;
 | |
| 
 | |
|     // Maps a color to a pair of a MachineInstr* and a virtual register, which
 | |
|     // is the operand of that PHI corresponding to the current basic block.
 | |
|     DenseMap<unsigned, std::pair<MachineInstr*, unsigned> > CurrentPHIForColor;
 | |
| 
 | |
|     // FIXME: Can these two data structures be combined? Would a std::multimap
 | |
|     // be any better?
 | |
| 
 | |
|     // Stores pairs of predecessor basic blocks and the source registers of
 | |
|     // inserted copy instructions.
 | |
|     typedef DenseSet<std::pair<MachineBasicBlock*, unsigned> > SrcCopySet;
 | |
|     SrcCopySet InsertedSrcCopySet;
 | |
| 
 | |
|     // Maps pairs of predecessor basic blocks and colors to their defining copy
 | |
|     // instructions.
 | |
|     typedef DenseMap<std::pair<MachineBasicBlock*, unsigned>, MachineInstr*>
 | |
|       SrcCopyMap;
 | |
|     SrcCopyMap InsertedSrcCopyMap;
 | |
| 
 | |
|     // Maps inserted destination copy registers to their defining copy
 | |
|     // instructions.
 | |
|     typedef DenseMap<unsigned, MachineInstr*> DestCopyMap;
 | |
|     DestCopyMap InsertedDestCopies;
 | |
|   };
 | |
| 
 | |
|   struct MIIndexCompare {
 | |
|     MIIndexCompare(LiveIntervals *LiveIntervals) : LI(LiveIntervals) { }
 | |
| 
 | |
|     bool operator()(const MachineInstr *LHS, const MachineInstr *RHS) const {
 | |
|       return LI->getInstructionIndex(LHS) < LI->getInstructionIndex(RHS);
 | |
|     }
 | |
| 
 | |
|     LiveIntervals *LI;
 | |
|   };
 | |
| } // namespace
 | |
| 
 | |
| STATISTIC(NumPHIsLowered, "Number of PHIs lowered");
 | |
| STATISTIC(NumDestCopiesInserted, "Number of destination copies inserted");
 | |
| STATISTIC(NumSrcCopiesInserted, "Number of source copies inserted");
 | |
| 
 | |
| char StrongPHIElimination::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(StrongPHIElimination, "strong-phi-node-elimination",
 | |
|   "Eliminate PHI nodes for register allocation, intelligently", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_END(StrongPHIElimination, "strong-phi-node-elimination",
 | |
|   "Eliminate PHI nodes for register allocation, intelligently", false, false)
 | |
| 
 | |
| char &llvm::StrongPHIEliminationID = StrongPHIElimination::ID;
 | |
| 
 | |
| void StrongPHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| static MachineOperand *findLastUse(MachineBasicBlock *MBB, unsigned Reg) {
 | |
|   // FIXME: This only needs to check from the first terminator, as only the
 | |
|   // first terminator can use a virtual register.
 | |
|   for (MachineBasicBlock::reverse_iterator RI = MBB->rbegin(); ; ++RI) {
 | |
|     assert (RI != MBB->rend());
 | |
|     MachineInstr *MI = &*RI;
 | |
| 
 | |
|     for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | |
|          OE = MI->operands_end(); OI != OE; ++OI) {
 | |
|       MachineOperand &MO = *OI;
 | |
|       if (MO.isReg() && MO.isUse() && MO.getReg() == Reg)
 | |
|         return &MO;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool StrongPHIElimination::runOnMachineFunction(MachineFunction &MF) {
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = MF.getTarget().getInstrInfo();
 | |
|   DT = &getAnalysis<MachineDominatorTree>();
 | |
|   LI = &getAnalysis<LiveIntervals>();
 | |
| 
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
 | |
|        I != E; ++I) {
 | |
|     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
 | |
|          BBI != BBE && BBI->isPHI(); ++BBI) {
 | |
|       unsigned DestReg = BBI->getOperand(0).getReg();
 | |
|       addReg(DestReg);
 | |
|       PHISrcDefs[I].push_back(BBI);
 | |
| 
 | |
|       for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
 | |
|         MachineOperand &SrcMO = BBI->getOperand(i);
 | |
|         unsigned SrcReg = SrcMO.getReg();
 | |
|         addReg(SrcReg);
 | |
|         unionRegs(DestReg, SrcReg);
 | |
| 
 | |
|         MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | |
|         if (DefMI)
 | |
|           PHISrcDefs[DefMI->getParent()].push_back(DefMI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Perform a depth-first traversal of the dominator tree, splitting
 | |
|   // interferences amongst PHI-congruence classes.
 | |
|   DenseMap<unsigned, unsigned> CurrentDominatingParent;
 | |
|   DenseMap<unsigned, unsigned> ImmediateDominatingParent;
 | |
|   for (df_iterator<MachineDomTreeNode*> DI = df_begin(DT->getRootNode()),
 | |
|        DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
 | |
|     SplitInterferencesForBasicBlock(*DI->getBlock(),
 | |
|                                     CurrentDominatingParent,
 | |
|                                     ImmediateDominatingParent);
 | |
|   }
 | |
| 
 | |
|   // Insert copies for all PHI source and destination registers.
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
 | |
|        I != E; ++I) {
 | |
|     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
 | |
|          BBI != BBE && BBI->isPHI(); ++BBI) {
 | |
|       InsertCopiesForPHI(BBI, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Preserve the equivalence classes during copy insertion and use
 | |
|   // the preversed equivalence classes instead of recomputing them.
 | |
|   RegNodeMap.clear();
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
 | |
|        I != E; ++I) {
 | |
|     for (MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
 | |
|          BBI != BBE && BBI->isPHI(); ++BBI) {
 | |
|       unsigned DestReg = BBI->getOperand(0).getReg();
 | |
|       addReg(DestReg);
 | |
| 
 | |
|       for (unsigned i = 1; i < BBI->getNumOperands(); i += 2) {
 | |
|         unsigned SrcReg = BBI->getOperand(i).getReg();
 | |
|         addReg(SrcReg);
 | |
|         unionRegs(DestReg, SrcReg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DenseMap<unsigned, unsigned> RegRenamingMap;
 | |
|   bool Changed = false;
 | |
|   for (MachineFunction::iterator I = MF.begin(), E = MF.end();
 | |
|        I != E; ++I) {
 | |
|     MachineBasicBlock::iterator BBI = I->begin(), BBE = I->end();
 | |
|     while (BBI != BBE && BBI->isPHI()) {
 | |
|       MachineInstr *PHI = BBI;
 | |
| 
 | |
|       assert(PHI->getNumOperands() > 0);
 | |
| 
 | |
|       unsigned SrcReg = PHI->getOperand(1).getReg();
 | |
|       unsigned SrcColor = getRegColor(SrcReg);
 | |
|       unsigned NewReg = RegRenamingMap[SrcColor];
 | |
|       if (!NewReg) {
 | |
|         NewReg = SrcReg;
 | |
|         RegRenamingMap[SrcColor] = SrcReg;
 | |
|       }
 | |
|       MergeLIsAndRename(SrcReg, NewReg);
 | |
| 
 | |
|       unsigned DestReg = PHI->getOperand(0).getReg();
 | |
|       if (!InsertedDestCopies.count(DestReg))
 | |
|         MergeLIsAndRename(DestReg, NewReg);
 | |
| 
 | |
|       for (unsigned i = 3; i < PHI->getNumOperands(); i += 2) {
 | |
|         unsigned SrcReg = PHI->getOperand(i).getReg();
 | |
|         MergeLIsAndRename(SrcReg, NewReg);
 | |
|       }
 | |
| 
 | |
|       ++BBI;
 | |
|       LI->RemoveMachineInstrFromMaps(PHI);
 | |
|       PHI->eraseFromParent();
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Due to the insertion of copies to split live ranges, the live intervals are
 | |
|   // guaranteed to not overlap, except in one case: an original PHI source and a
 | |
|   // PHI destination copy. In this case, they have the same value and thus don't
 | |
|   // truly intersect, so we merge them into the value live at that point.
 | |
|   // FIXME: Is there some better way we can handle this?
 | |
|   for (DestCopyMap::iterator I = InsertedDestCopies.begin(),
 | |
|        E = InsertedDestCopies.end(); I != E; ++I) {
 | |
|     unsigned DestReg = I->first;
 | |
|     unsigned DestColor = getRegColor(DestReg);
 | |
|     unsigned NewReg = RegRenamingMap[DestColor];
 | |
| 
 | |
|     LiveInterval &DestLI = LI->getInterval(DestReg);
 | |
|     LiveInterval &NewLI = LI->getInterval(NewReg);
 | |
| 
 | |
|     assert(DestLI.ranges.size() == 1
 | |
|            && "PHI destination copy's live interval should be a single live "
 | |
|                "range from the beginning of the BB to the copy instruction.");
 | |
|     LiveRange *DestLR = DestLI.begin();
 | |
|     VNInfo *NewVNI = NewLI.getVNInfoAt(DestLR->start);
 | |
|     if (!NewVNI) {
 | |
|       NewVNI = NewLI.createValueCopy(DestLR->valno, LI->getVNInfoAllocator());
 | |
|       MachineInstr *CopyInstr = I->second;
 | |
|       CopyInstr->getOperand(1).setIsKill(true);
 | |
|     }
 | |
| 
 | |
|     LiveRange NewLR(DestLR->start, DestLR->end, NewVNI);
 | |
|     NewLI.addRange(NewLR);
 | |
| 
 | |
|     LI->removeInterval(DestReg);
 | |
|     MRI->replaceRegWith(DestReg, NewReg);
 | |
|   }
 | |
| 
 | |
|   // Adjust the live intervals of all PHI source registers to handle the case
 | |
|   // where the PHIs in successor blocks were the only later uses of the source
 | |
|   // register.
 | |
|   for (SrcCopySet::iterator I = InsertedSrcCopySet.begin(),
 | |
|        E = InsertedSrcCopySet.end(); I != E; ++I) {
 | |
|     MachineBasicBlock *MBB = I->first;
 | |
|     unsigned SrcReg = I->second;
 | |
|     if (unsigned RenamedRegister = RegRenamingMap[getRegColor(SrcReg)])
 | |
|       SrcReg = RenamedRegister;
 | |
| 
 | |
|     LiveInterval &SrcLI = LI->getInterval(SrcReg);
 | |
| 
 | |
|     bool isLiveOut = false;
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|          SE = MBB->succ_end(); SI != SE; ++SI) {
 | |
|       if (SrcLI.liveAt(LI->getMBBStartIdx(*SI))) {
 | |
|         isLiveOut = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isLiveOut)
 | |
|       continue;
 | |
| 
 | |
|     MachineOperand *LastUse = findLastUse(MBB, SrcReg);
 | |
|     assert(LastUse);
 | |
|     SlotIndex LastUseIndex = LI->getInstructionIndex(LastUse->getParent());
 | |
|     SrcLI.removeRange(LastUseIndex.getRegSlot(), LI->getMBBEndIdx(MBB));
 | |
|     LastUse->setIsKill(true);
 | |
|   }
 | |
| 
 | |
|   Allocator.Reset();
 | |
|   RegNodeMap.clear();
 | |
|   PHISrcDefs.clear();
 | |
|   InsertedSrcCopySet.clear();
 | |
|   InsertedSrcCopyMap.clear();
 | |
|   InsertedDestCopies.clear();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void StrongPHIElimination::addReg(unsigned Reg) {
 | |
|   Node *&N = RegNodeMap[Reg];
 | |
|   if (!N)
 | |
|     N = new (Allocator) Node(Reg);
 | |
| }
 | |
| 
 | |
| StrongPHIElimination::Node*
 | |
| StrongPHIElimination::Node::getLeader() {
 | |
|   Node *N = this;
 | |
|   Node *Parent = parent.getPointer();
 | |
|   Node *Grandparent = Parent->parent.getPointer();
 | |
| 
 | |
|   while (Parent != Grandparent) {
 | |
|     N->parent.setPointer(Grandparent);
 | |
|     N = Grandparent;
 | |
|     Parent = Parent->parent.getPointer();
 | |
|     Grandparent = Parent->parent.getPointer();
 | |
|   }
 | |
| 
 | |
|   return Parent;
 | |
| }
 | |
| 
 | |
| unsigned StrongPHIElimination::getRegColor(unsigned Reg) {
 | |
|   DenseMap<unsigned, Node*>::iterator RI = RegNodeMap.find(Reg);
 | |
|   if (RI == RegNodeMap.end())
 | |
|     return 0;
 | |
|   Node *Node = RI->second;
 | |
|   if (Node->parent.getInt() & Node::kRegisterIsolatedFlag)
 | |
|     return 0;
 | |
|   return Node->getLeader()->value;
 | |
| }
 | |
| 
 | |
| void StrongPHIElimination::unionRegs(unsigned Reg1, unsigned Reg2) {
 | |
|   Node *Node1 = RegNodeMap[Reg1]->getLeader();
 | |
|   Node *Node2 = RegNodeMap[Reg2]->getLeader();
 | |
| 
 | |
|   if (Node1->rank > Node2->rank) {
 | |
|     Node2->parent.setPointer(Node1->getLeader());
 | |
|   } else if (Node1->rank < Node2->rank) {
 | |
|     Node1->parent.setPointer(Node2->getLeader());
 | |
|   } else if (Node1 != Node2) {
 | |
|     Node2->parent.setPointer(Node1->getLeader());
 | |
|     Node1->rank++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void StrongPHIElimination::isolateReg(unsigned Reg) {
 | |
|   Node *Node = RegNodeMap[Reg];
 | |
|   Node->parent.setInt(Node->parent.getInt() | Node::kRegisterIsolatedFlag);
 | |
| }
 | |
| 
 | |
| unsigned StrongPHIElimination::getPHIColor(MachineInstr *PHI) {
 | |
|   assert(PHI->isPHI());
 | |
| 
 | |
|   unsigned DestReg = PHI->getOperand(0).getReg();
 | |
|   Node *DestNode = RegNodeMap[DestReg];
 | |
|   if (DestNode->parent.getInt() & Node::kPHIIsolatedFlag)
 | |
|     return 0;
 | |
| 
 | |
|   for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
 | |
|     unsigned SrcColor = getRegColor(PHI->getOperand(i).getReg());
 | |
|     if (SrcColor)
 | |
|       return SrcColor;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void StrongPHIElimination::isolatePHI(MachineInstr *PHI) {
 | |
|   assert(PHI->isPHI());
 | |
|   Node *Node = RegNodeMap[PHI->getOperand(0).getReg()];
 | |
|   Node->parent.setInt(Node->parent.getInt() | Node::kPHIIsolatedFlag);
 | |
| }
 | |
| 
 | |
| /// SplitInterferencesForBasicBlock - traverses a basic block, splitting any
 | |
| /// interferences found between registers in the same congruence class. It
 | |
| /// takes two DenseMaps as arguments that it also updates:
 | |
| ///
 | |
| /// 1) CurrentDominatingParent, which maps a color to the register in that
 | |
| ///    congruence class whose definition was most recently seen.
 | |
| ///
 | |
| /// 2) ImmediateDominatingParent, which maps a register to the register in the
 | |
| ///    same congruence class that most immediately dominates it.
 | |
| ///
 | |
| /// This function assumes that it is being called in a depth-first traversal
 | |
| /// of the dominator tree.
 | |
| ///
 | |
| /// The algorithm used here is a generalization of the dominance-based SSA test
 | |
| /// for two variables. If there are variables a_1, ..., a_n such that
 | |
| ///
 | |
| ///   def(a_1) dom ... dom def(a_n),
 | |
| ///
 | |
| /// then we can test for an interference between any two a_i by only using O(n)
 | |
| /// interference tests between pairs of variables. If i < j and a_i and a_j
 | |
| /// interfere, then a_i is alive at def(a_j), so it is also alive at def(a_i+1).
 | |
| /// Thus, in order to test for an interference involving a_i, we need only check
 | |
| /// for a potential interference with a_i+1.
 | |
| ///
 | |
| /// This method can be generalized to arbitrary sets of variables by performing
 | |
| /// a depth-first traversal of the dominator tree. As we traverse down a branch
 | |
| /// of the dominator tree, we keep track of the current dominating variable and
 | |
| /// only perform an interference test with that variable. However, when we go to
 | |
| /// another branch of the dominator tree, the definition of the current dominating
 | |
| /// variable may no longer dominate the current block. In order to correct this,
 | |
| /// we need to use a stack of past choices of the current dominating variable
 | |
| /// and pop from this stack until we find a variable whose definition actually
 | |
| /// dominates the current block.
 | |
| /// 
 | |
| /// There will be one push on this stack for each variable that has become the
 | |
| /// current dominating variable, so instead of using an explicit stack we can
 | |
| /// simply associate the previous choice for a current dominating variable with
 | |
| /// the new choice. This works better in our implementation, where we test for
 | |
| /// interference in multiple distinct sets at once.
 | |
| void
 | |
| StrongPHIElimination::SplitInterferencesForBasicBlock(
 | |
|     MachineBasicBlock &MBB,
 | |
|     DenseMap<unsigned, unsigned> &CurrentDominatingParent,
 | |
|     DenseMap<unsigned, unsigned> &ImmediateDominatingParent) {
 | |
|   // Sort defs by their order in the original basic block, as the code below
 | |
|   // assumes that it is processing definitions in dominance order.
 | |
|   std::vector<MachineInstr*> &DefInstrs = PHISrcDefs[&MBB];
 | |
|   std::sort(DefInstrs.begin(), DefInstrs.end(), MIIndexCompare(LI));
 | |
| 
 | |
|   for (std::vector<MachineInstr*>::const_iterator BBI = DefInstrs.begin(),
 | |
|        BBE = DefInstrs.end(); BBI != BBE; ++BBI) {
 | |
|     for (MachineInstr::const_mop_iterator I = (*BBI)->operands_begin(),
 | |
|          E = (*BBI)->operands_end(); I != E; ++I) {
 | |
|       const MachineOperand &MO = *I;
 | |
| 
 | |
|       // FIXME: This would be faster if it were possible to bail out of checking
 | |
|       // an instruction's operands after the explicit defs, but this is incorrect
 | |
|       // for variadic instructions, which may appear before register allocation
 | |
|       // in the future.
 | |
|       if (!MO.isReg() || !MO.isDef())
 | |
|         continue;
 | |
| 
 | |
|       unsigned DestReg = MO.getReg();
 | |
|       if (!DestReg || !TargetRegisterInfo::isVirtualRegister(DestReg))
 | |
|         continue;
 | |
| 
 | |
|       // If the virtual register being defined is not used in any PHI or has
 | |
|       // already been isolated, then there are no more interferences to check.
 | |
|       unsigned DestColor = getRegColor(DestReg);
 | |
|       if (!DestColor)
 | |
|         continue;
 | |
| 
 | |
|       // The input to this pass sometimes is not in SSA form in every basic
 | |
|       // block, as some virtual registers have redefinitions. We could eliminate
 | |
|       // this by fixing the passes that generate the non-SSA code, or we could
 | |
|       // handle it here by tracking defining machine instructions rather than
 | |
|       // virtual registers. For now, we just handle the situation conservatively
 | |
|       // in a way that will possibly lead to false interferences.
 | |
|       unsigned &CurrentParent = CurrentDominatingParent[DestColor];
 | |
|       unsigned NewParent = CurrentParent;
 | |
|       if (NewParent == DestReg)
 | |
|         continue;
 | |
| 
 | |
|       // Pop registers from the stack represented by ImmediateDominatingParent
 | |
|       // until we find a parent that dominates the current instruction.
 | |
|       while (NewParent && (!DT->dominates(MRI->getVRegDef(NewParent), *BBI)
 | |
|                            || !getRegColor(NewParent)))
 | |
|         NewParent = ImmediateDominatingParent[NewParent];
 | |
| 
 | |
|       // If NewParent is nonzero, then its definition dominates the current
 | |
|       // instruction, so it is only necessary to check for the liveness of
 | |
|       // NewParent in order to check for an interference.
 | |
|       if (NewParent
 | |
|           && LI->getInterval(NewParent).liveAt(LI->getInstructionIndex(*BBI))) {
 | |
|         // If there is an interference, always isolate the new register. This
 | |
|         // could be improved by using a heuristic that decides which of the two
 | |
|         // registers to isolate.
 | |
|         isolateReg(DestReg);
 | |
|         CurrentParent = NewParent;
 | |
|       } else {
 | |
|         // If there is no interference, update ImmediateDominatingParent and set
 | |
|         // the CurrentDominatingParent for this color to the current register.
 | |
|         ImmediateDominatingParent[DestReg] = NewParent;
 | |
|         CurrentParent = DestReg;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We now walk the PHIs in successor blocks and check for interferences. This
 | |
|   // is necessary because the use of a PHI's operands are logically contained in
 | |
|   // the predecessor block. The def of a PHI's destination register is processed
 | |
|   // along with the other defs in a basic block.
 | |
| 
 | |
|   CurrentPHIForColor.clear();
 | |
| 
 | |
|   for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
 | |
|        SE = MBB.succ_end(); SI != SE; ++SI) {
 | |
|     for (MachineBasicBlock::iterator BBI = (*SI)->begin(), BBE = (*SI)->end();
 | |
|          BBI != BBE && BBI->isPHI(); ++BBI) {
 | |
|       MachineInstr *PHI = BBI;
 | |
| 
 | |
|       // If a PHI is already isolated, either by being isolated directly or
 | |
|       // having all of its operands isolated, ignore it.
 | |
|       unsigned Color = getPHIColor(PHI);
 | |
|       if (!Color)
 | |
|         continue;
 | |
| 
 | |
|       // Find the index of the PHI operand that corresponds to this basic block.
 | |
|       unsigned PredIndex;
 | |
|       for (PredIndex = 1; PredIndex < PHI->getNumOperands(); PredIndex += 2) {
 | |
|         if (PHI->getOperand(PredIndex + 1).getMBB() == &MBB)
 | |
|           break;
 | |
|       }
 | |
|       assert(PredIndex < PHI->getNumOperands());
 | |
|       unsigned PredOperandReg = PHI->getOperand(PredIndex).getReg();
 | |
| 
 | |
|       // Pop registers from the stack represented by ImmediateDominatingParent
 | |
|       // until we find a parent that dominates the current instruction.
 | |
|       unsigned &CurrentParent = CurrentDominatingParent[Color];
 | |
|       unsigned NewParent = CurrentParent;
 | |
|       while (NewParent
 | |
|              && (!DT->dominates(MRI->getVRegDef(NewParent)->getParent(), &MBB)
 | |
|                  || !getRegColor(NewParent)))
 | |
|         NewParent = ImmediateDominatingParent[NewParent];
 | |
|       CurrentParent = NewParent;
 | |
| 
 | |
|       // If there is an interference with a register, always isolate the
 | |
|       // register rather than the PHI. It is also possible to isolate the
 | |
|       // PHI, but that introduces copies for all of the registers involved
 | |
|       // in that PHI.
 | |
|       if (NewParent && LI->isLiveOutOfMBB(LI->getInterval(NewParent), &MBB)
 | |
|                     && NewParent != PredOperandReg)
 | |
|         isolateReg(NewParent);
 | |
| 
 | |
|       std::pair<MachineInstr*, unsigned>
 | |
|         &CurrentPHI = CurrentPHIForColor[Color];
 | |
| 
 | |
|       // If two PHIs have the same operand from every shared predecessor, then
 | |
|       // they don't actually interfere. Otherwise, isolate the current PHI. This
 | |
|       // could possibly be improved, e.g. we could isolate the PHI with the
 | |
|       // fewest operands.
 | |
|       if (CurrentPHI.first && CurrentPHI.second != PredOperandReg)
 | |
|         isolatePHI(PHI);
 | |
|       else
 | |
|         CurrentPHI = std::make_pair(PHI, PredOperandReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void StrongPHIElimination::InsertCopiesForPHI(MachineInstr *PHI,
 | |
|                                               MachineBasicBlock *MBB) {
 | |
|   assert(PHI->isPHI());
 | |
|   ++NumPHIsLowered;
 | |
|   unsigned PHIColor = getPHIColor(PHI);
 | |
| 
 | |
|   for (unsigned i = 1; i < PHI->getNumOperands(); i += 2) {
 | |
|     MachineOperand &SrcMO = PHI->getOperand(i);
 | |
| 
 | |
|     // If a source is defined by an implicit def, there is no need to insert a
 | |
|     // copy in the predecessor.
 | |
|     if (SrcMO.isUndef())
 | |
|       continue;
 | |
| 
 | |
|     unsigned SrcReg = SrcMO.getReg();
 | |
|     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|            "Machine PHI Operands must all be virtual registers!");
 | |
| 
 | |
|     MachineBasicBlock *PredBB = PHI->getOperand(i + 1).getMBB();
 | |
|     unsigned SrcColor = getRegColor(SrcReg);
 | |
| 
 | |
|     // If neither the PHI nor the operand were isolated, then we only need to
 | |
|     // set the phi-kill flag on the VNInfo at this PHI.
 | |
|     if (PHIColor && SrcColor == PHIColor) {
 | |
|       LiveInterval &SrcInterval = LI->getInterval(SrcReg);
 | |
|       SlotIndex PredIndex = LI->getMBBEndIdx(PredBB);
 | |
|       VNInfo *SrcVNI = SrcInterval.getVNInfoBefore(PredIndex);
 | |
|       (void)SrcVNI;
 | |
|       assert(SrcVNI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     unsigned CopyReg = 0;
 | |
|     if (PHIColor) {
 | |
|       SrcCopyMap::const_iterator I
 | |
|         = InsertedSrcCopyMap.find(std::make_pair(PredBB, PHIColor));
 | |
|       CopyReg
 | |
|         = I != InsertedSrcCopyMap.end() ? I->second->getOperand(0).getReg() : 0;
 | |
|     }
 | |
| 
 | |
|     if (!CopyReg) {
 | |
|       const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
 | |
|       CopyReg = MRI->createVirtualRegister(RC);
 | |
| 
 | |
|       MachineBasicBlock::iterator
 | |
|         CopyInsertPoint = findPHICopyInsertPoint(PredBB, MBB, SrcReg);
 | |
|       unsigned SrcSubReg = SrcMO.getSubReg();
 | |
|       MachineInstr *CopyInstr = BuildMI(*PredBB,
 | |
|                                         CopyInsertPoint,
 | |
|                                         PHI->getDebugLoc(),
 | |
|                                         TII->get(TargetOpcode::COPY),
 | |
|                                         CopyReg).addReg(SrcReg, 0, SrcSubReg);
 | |
|       LI->InsertMachineInstrInMaps(CopyInstr);
 | |
|       ++NumSrcCopiesInserted;
 | |
| 
 | |
|       // addLiveRangeToEndOfBlock() also adds the phikill flag to the VNInfo for
 | |
|       // the newly added range.
 | |
|       LI->addLiveRangeToEndOfBlock(CopyReg, CopyInstr);
 | |
|       InsertedSrcCopySet.insert(std::make_pair(PredBB, SrcReg));
 | |
| 
 | |
|       addReg(CopyReg);
 | |
|       if (PHIColor) {
 | |
|         unionRegs(PHIColor, CopyReg);
 | |
|         assert(getRegColor(CopyReg) != CopyReg);
 | |
|       } else {
 | |
|         PHIColor = CopyReg;
 | |
|         assert(getRegColor(CopyReg) == CopyReg);
 | |
|       }
 | |
| 
 | |
|       // Insert into map if not already there.
 | |
|       InsertedSrcCopyMap.insert(std::make_pair(std::make_pair(PredBB, PHIColor),
 | |
|                                                CopyInstr));
 | |
|     }
 | |
| 
 | |
|     SrcMO.setReg(CopyReg);
 | |
| 
 | |
|     // If SrcReg is not live beyond the PHI, trim its interval so that it is no
 | |
|     // longer live-in to MBB. Note that SrcReg may appear in other PHIs that are
 | |
|     // processed later, but this is still correct to do at this point because we
 | |
|     // never rely on LiveIntervals being correct while inserting copies.
 | |
|     // FIXME: Should this just count uses at PHIs like the normal PHIElimination
 | |
|     // pass does?
 | |
|     LiveInterval &SrcLI = LI->getInterval(SrcReg);
 | |
|     SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
 | |
|     SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
 | |
|     SlotIndex NextInstrIndex = PHIIndex.getNextIndex();
 | |
|     if (SrcLI.liveAt(MBBStartIndex) && SrcLI.expiredAt(NextInstrIndex))
 | |
|       SrcLI.removeRange(MBBStartIndex, PHIIndex, true);
 | |
|   }
 | |
| 
 | |
|   unsigned DestReg = PHI->getOperand(0).getReg();
 | |
|   unsigned DestColor = getRegColor(DestReg);
 | |
| 
 | |
|   if (PHIColor && DestColor == PHIColor) {
 | |
|     LiveInterval &DestLI = LI->getInterval(DestReg);
 | |
| 
 | |
|     // Set the phi-def flag for the VN at this PHI.
 | |
|     SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
 | |
|     VNInfo *DestVNI = DestLI.getVNInfoAt(PHIIndex.getRegSlot());
 | |
|     assert(DestVNI);
 | |
|   
 | |
|     // Prior to PHI elimination, the live ranges of PHIs begin at their defining
 | |
|     // instruction. After PHI elimination, PHI instructions are replaced by VNs
 | |
|     // with the phi-def flag set, and the live ranges of these VNs start at the
 | |
|     // beginning of the basic block.
 | |
|     SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
 | |
|     DestVNI->def = MBBStartIndex;
 | |
|     DestLI.addRange(LiveRange(MBBStartIndex,
 | |
|                               PHIIndex.getRegSlot(),
 | |
|                               DestVNI));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const TargetRegisterClass *RC = MRI->getRegClass(DestReg);
 | |
|   unsigned CopyReg = MRI->createVirtualRegister(RC);
 | |
| 
 | |
|   MachineInstr *CopyInstr = BuildMI(*MBB,
 | |
|                                     MBB->SkipPHIsAndLabels(MBB->begin()),
 | |
|                                     PHI->getDebugLoc(),
 | |
|                                     TII->get(TargetOpcode::COPY),
 | |
|                                     DestReg).addReg(CopyReg);
 | |
|   LI->InsertMachineInstrInMaps(CopyInstr);
 | |
|   PHI->getOperand(0).setReg(CopyReg);
 | |
|   ++NumDestCopiesInserted;
 | |
| 
 | |
|   // Add the region from the beginning of MBB to the copy instruction to
 | |
|   // CopyReg's live interval, and give the VNInfo the phidef flag.
 | |
|   LiveInterval &CopyLI = LI->getOrCreateInterval(CopyReg);
 | |
|   SlotIndex MBBStartIndex = LI->getMBBStartIdx(MBB);
 | |
|   SlotIndex DestCopyIndex = LI->getInstructionIndex(CopyInstr);
 | |
|   VNInfo *CopyVNI = CopyLI.getNextValue(MBBStartIndex,
 | |
|                                         LI->getVNInfoAllocator());
 | |
|   CopyLI.addRange(LiveRange(MBBStartIndex,
 | |
|                             DestCopyIndex.getRegSlot(),
 | |
|                             CopyVNI));
 | |
| 
 | |
|   // Adjust DestReg's live interval to adjust for its new definition at
 | |
|   // CopyInstr.
 | |
|   LiveInterval &DestLI = LI->getOrCreateInterval(DestReg);
 | |
|   SlotIndex PHIIndex = LI->getInstructionIndex(PHI);
 | |
|   DestLI.removeRange(PHIIndex.getRegSlot(), DestCopyIndex.getRegSlot());
 | |
| 
 | |
|   VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
 | |
|   assert(DestVNI);
 | |
|   DestVNI->def = DestCopyIndex.getRegSlot();
 | |
| 
 | |
|   InsertedDestCopies[CopyReg] = CopyInstr;
 | |
| }
 | |
| 
 | |
| void StrongPHIElimination::MergeLIsAndRename(unsigned Reg, unsigned NewReg) {
 | |
|   if (Reg == NewReg)
 | |
|     return;
 | |
| 
 | |
|   LiveInterval &OldLI = LI->getInterval(Reg);
 | |
|   LiveInterval &NewLI = LI->getInterval(NewReg);
 | |
| 
 | |
|   // Merge the live ranges of the two registers.
 | |
|   DenseMap<VNInfo*, VNInfo*> VNMap;
 | |
|   for (LiveInterval::iterator LRI = OldLI.begin(), LRE = OldLI.end();
 | |
|        LRI != LRE; ++LRI) {
 | |
|     LiveRange OldLR = *LRI;
 | |
|     VNInfo *OldVN = OldLR.valno;
 | |
| 
 | |
|     VNInfo *&NewVN = VNMap[OldVN];
 | |
|     if (!NewVN) {
 | |
|       NewVN = NewLI.createValueCopy(OldVN, LI->getVNInfoAllocator());
 | |
|       VNMap[OldVN] = NewVN;
 | |
|     }
 | |
| 
 | |
|     LiveRange LR(OldLR.start, OldLR.end, NewVN);
 | |
|     NewLI.addRange(LR);
 | |
|   }
 | |
| 
 | |
|   // Remove the LiveInterval for the register being renamed and replace all
 | |
|   // of its defs and uses with the new register.
 | |
|   LI->removeInterval(Reg);
 | |
|   MRI->replaceRegWith(Reg, NewReg);
 | |
| }
 |