mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	reverts r126226. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@167632 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			435 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			435 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the X86 specific subclass of TargetSubtargetInfo.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "subtarget"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/Host.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
 | 
						|
#define GET_SUBTARGETINFO_TARGET_DESC
 | 
						|
#define GET_SUBTARGETINFO_CTOR
 | 
						|
#include "X86GenSubtargetInfo.inc"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#include <intrin.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/// ClassifyBlockAddressReference - Classify a blockaddress reference for the
 | 
						|
/// current subtarget according to how we should reference it in a non-pcrel
 | 
						|
/// context.
 | 
						|
unsigned char X86Subtarget::
 | 
						|
ClassifyBlockAddressReference() const {
 | 
						|
  if (isPICStyleGOT())    // 32-bit ELF targets.
 | 
						|
    return X86II::MO_GOTOFF;
 | 
						|
 | 
						|
  if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
 | 
						|
    return X86II::MO_PIC_BASE_OFFSET;
 | 
						|
 | 
						|
  // Direct static reference to label.
 | 
						|
  return X86II::MO_NO_FLAG;
 | 
						|
}
 | 
						|
 | 
						|
/// ClassifyGlobalReference - Classify a global variable reference for the
 | 
						|
/// current subtarget according to how we should reference it in a non-pcrel
 | 
						|
/// context.
 | 
						|
unsigned char X86Subtarget::
 | 
						|
ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
 | 
						|
  // DLLImport only exists on windows, it is implemented as a load from a
 | 
						|
  // DLLIMPORT stub.
 | 
						|
  if (GV->hasDLLImportLinkage())
 | 
						|
    return X86II::MO_DLLIMPORT;
 | 
						|
 | 
						|
  // Determine whether this is a reference to a definition or a declaration.
 | 
						|
  // Materializable GVs (in JIT lazy compilation mode) do not require an extra
 | 
						|
  // load from stub.
 | 
						|
  bool isDecl = GV->hasAvailableExternallyLinkage();
 | 
						|
  if (GV->isDeclaration() && !GV->isMaterializable())
 | 
						|
    isDecl = true;
 | 
						|
 | 
						|
  // X86-64 in PIC mode.
 | 
						|
  if (isPICStyleRIPRel()) {
 | 
						|
    // Large model never uses stubs.
 | 
						|
    if (TM.getCodeModel() == CodeModel::Large)
 | 
						|
      return X86II::MO_NO_FLAG;
 | 
						|
 | 
						|
    if (isTargetDarwin()) {
 | 
						|
      // If symbol visibility is hidden, the extra load is not needed if
 | 
						|
      // target is x86-64 or the symbol is definitely defined in the current
 | 
						|
      // translation unit.
 | 
						|
      if (GV->hasDefaultVisibility() &&
 | 
						|
          (isDecl || GV->isWeakForLinker()))
 | 
						|
        return X86II::MO_GOTPCREL;
 | 
						|
    } else if (!isTargetWin64()) {
 | 
						|
      assert(isTargetELF() && "Unknown rip-relative target");
 | 
						|
 | 
						|
      // Extra load is needed for all externally visible.
 | 
						|
      if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
 | 
						|
        return X86II::MO_GOTPCREL;
 | 
						|
    }
 | 
						|
 | 
						|
    return X86II::MO_NO_FLAG;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isPICStyleGOT()) {   // 32-bit ELF targets.
 | 
						|
    // Extra load is needed for all externally visible.
 | 
						|
    if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
 | 
						|
      return X86II::MO_GOTOFF;
 | 
						|
    return X86II::MO_GOT;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
 | 
						|
    // Determine whether we have a stub reference and/or whether the reference
 | 
						|
    // is relative to the PIC base or not.
 | 
						|
 | 
						|
    // If this is a strong reference to a definition, it is definitely not
 | 
						|
    // through a stub.
 | 
						|
    if (!isDecl && !GV->isWeakForLinker())
 | 
						|
      return X86II::MO_PIC_BASE_OFFSET;
 | 
						|
 | 
						|
    // Unless we have a symbol with hidden visibility, we have to go through a
 | 
						|
    // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | 
						|
    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | 
						|
      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
 | 
						|
 | 
						|
    // If symbol visibility is hidden, we have a stub for common symbol
 | 
						|
    // references and external declarations.
 | 
						|
    if (isDecl || GV->hasCommonLinkage()) {
 | 
						|
      // Hidden $non_lazy_ptr reference.
 | 
						|
      return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, no stub.
 | 
						|
    return X86II::MO_PIC_BASE_OFFSET;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
 | 
						|
    // Determine whether we have a stub reference.
 | 
						|
 | 
						|
    // If this is a strong reference to a definition, it is definitely not
 | 
						|
    // through a stub.
 | 
						|
    if (!isDecl && !GV->isWeakForLinker())
 | 
						|
      return X86II::MO_NO_FLAG;
 | 
						|
 | 
						|
    // Unless we have a symbol with hidden visibility, we have to go through a
 | 
						|
    // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | 
						|
    if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | 
						|
      return X86II::MO_DARWIN_NONLAZY;
 | 
						|
 | 
						|
    // Otherwise, no stub.
 | 
						|
    return X86II::MO_NO_FLAG;
 | 
						|
  }
 | 
						|
 | 
						|
  // Direct static reference to global.
 | 
						|
  return X86II::MO_NO_FLAG;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getBZeroEntry - This function returns the name of a function which has an
 | 
						|
/// interface like the non-standard bzero function, if such a function exists on
 | 
						|
/// the current subtarget and it is considered prefereable over memset with zero
 | 
						|
/// passed as the second argument. Otherwise it returns null.
 | 
						|
const char *X86Subtarget::getBZeroEntry() const {
 | 
						|
  // Darwin 10 has a __bzero entry point for this purpose.
 | 
						|
  if (getTargetTriple().isMacOSX() &&
 | 
						|
      !getTargetTriple().isMacOSXVersionLT(10, 6))
 | 
						|
    return "__bzero";
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
 | 
						|
/// to immediate address.
 | 
						|
bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
 | 
						|
  if (In64BitMode)
 | 
						|
    return false;
 | 
						|
  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
 | 
						|
}
 | 
						|
 | 
						|
void X86Subtarget::AutoDetectSubtargetFeatures() {
 | 
						|
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | 
						|
  unsigned MaxLevel;
 | 
						|
  union {
 | 
						|
    unsigned u[3];
 | 
						|
    char     c[12];
 | 
						|
  } text;
 | 
						|
 | 
						|
  if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
 | 
						|
      MaxLevel < 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
 | 
						|
 | 
						|
  if ((EDX >> 15) & 1) { HasCMov = true;      ToggleFeature(X86::FeatureCMOV); }
 | 
						|
  if ((EDX >> 23) & 1) { X86SSELevel = MMX;   ToggleFeature(X86::FeatureMMX);  }
 | 
						|
  if ((EDX >> 25) & 1) { X86SSELevel = SSE1;  ToggleFeature(X86::FeatureSSE1); }
 | 
						|
  if ((EDX >> 26) & 1) { X86SSELevel = SSE2;  ToggleFeature(X86::FeatureSSE2); }
 | 
						|
  if (ECX & 0x1)       { X86SSELevel = SSE3;  ToggleFeature(X86::FeatureSSE3); }
 | 
						|
  if ((ECX >> 9)  & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
 | 
						|
  if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
 | 
						|
  if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
 | 
						|
  if ((ECX >> 28) & 1) { X86SSELevel = AVX;   ToggleFeature(X86::FeatureAVX); }
 | 
						|
 | 
						|
  bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
 | 
						|
  bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
 | 
						|
 | 
						|
  if ((ECX >> 1) & 0x1) {
 | 
						|
    HasPCLMUL = true;
 | 
						|
    ToggleFeature(X86::FeaturePCLMUL);
 | 
						|
  }
 | 
						|
  if ((ECX >> 12) & 0x1) {
 | 
						|
    HasFMA = true;
 | 
						|
    ToggleFeature(X86::FeatureFMA);
 | 
						|
  }
 | 
						|
  if (IsIntel && ((ECX >> 22) & 0x1)) {
 | 
						|
    HasMOVBE = true;
 | 
						|
    ToggleFeature(X86::FeatureMOVBE);
 | 
						|
  }
 | 
						|
  if ((ECX >> 23) & 0x1) {
 | 
						|
    HasPOPCNT = true;
 | 
						|
    ToggleFeature(X86::FeaturePOPCNT);
 | 
						|
  }
 | 
						|
  if ((ECX >> 25) & 0x1) {
 | 
						|
    HasAES = true;
 | 
						|
    ToggleFeature(X86::FeatureAES);
 | 
						|
  }
 | 
						|
  if ((ECX >> 29) & 0x1) {
 | 
						|
    HasF16C = true;
 | 
						|
    ToggleFeature(X86::FeatureF16C);
 | 
						|
  }
 | 
						|
  if (IsIntel && ((ECX >> 30) & 0x1)) {
 | 
						|
    HasRDRAND = true;
 | 
						|
    ToggleFeature(X86::FeatureRDRAND);
 | 
						|
  }
 | 
						|
 | 
						|
  if ((ECX >> 13) & 0x1) {
 | 
						|
    HasCmpxchg16b = true;
 | 
						|
    ToggleFeature(X86::FeatureCMPXCHG16B);
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsIntel || IsAMD) {
 | 
						|
    // Determine if bit test memory instructions are slow.
 | 
						|
    unsigned Family = 0;
 | 
						|
    unsigned Model  = 0;
 | 
						|
    X86_MC::DetectFamilyModel(EAX, Family, Model);
 | 
						|
    if (IsAMD || (Family == 6 && Model >= 13)) {
 | 
						|
      IsBTMemSlow = true;
 | 
						|
      ToggleFeature(X86::FeatureSlowBTMem);
 | 
						|
    }
 | 
						|
 | 
						|
    // If it's Nehalem, unaligned memory access is fast.
 | 
						|
    // Include Westmere and Sandy Bridge as well.
 | 
						|
    // FIXME: add later processors.
 | 
						|
    if (IsIntel && ((Family == 6 && Model == 26) ||
 | 
						|
        (Family == 6 && Model == 44) ||
 | 
						|
        (Family == 6 && Model == 42))) {
 | 
						|
      IsUAMemFast = true;
 | 
						|
      ToggleFeature(X86::FeatureFastUAMem);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set processor type. Currently only Atom is detected.
 | 
						|
    if (Family == 6 &&
 | 
						|
        (Model == 28 || Model == 38 || Model == 39
 | 
						|
         || Model == 53 || Model == 54)) {
 | 
						|
      X86ProcFamily = IntelAtom;
 | 
						|
 | 
						|
      UseLeaForSP = true;
 | 
						|
      ToggleFeature(X86::FeatureLeaForSP);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned MaxExtLevel;
 | 
						|
    X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
 | 
						|
 | 
						|
    if (MaxExtLevel >= 0x80000001) {
 | 
						|
      X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | 
						|
      if ((EDX >> 29) & 0x1) {
 | 
						|
        HasX86_64 = true;
 | 
						|
        ToggleFeature(X86::Feature64Bit);
 | 
						|
      }
 | 
						|
      if ((ECX >> 5) & 0x1) {
 | 
						|
        HasLZCNT = true;
 | 
						|
        ToggleFeature(X86::FeatureLZCNT);
 | 
						|
      }
 | 
						|
      if (IsAMD) {
 | 
						|
        if ((ECX >> 6) & 0x1) {
 | 
						|
          HasSSE4A = true;
 | 
						|
          ToggleFeature(X86::FeatureSSE4A);
 | 
						|
        }
 | 
						|
        if ((ECX >> 11) & 0x1) {
 | 
						|
          HasXOP = true;
 | 
						|
          ToggleFeature(X86::FeatureXOP);
 | 
						|
        }
 | 
						|
        if ((ECX >> 16) & 0x1) {
 | 
						|
          HasFMA4 = true;
 | 
						|
          ToggleFeature(X86::FeatureFMA4);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (MaxLevel >= 7) {
 | 
						|
    if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
 | 
						|
      if (IsIntel && (EBX & 0x1)) {
 | 
						|
        HasFSGSBase = true;
 | 
						|
        ToggleFeature(X86::FeatureFSGSBase);
 | 
						|
      }
 | 
						|
      if ((EBX >> 3) & 0x1) {
 | 
						|
        HasBMI = true;
 | 
						|
        ToggleFeature(X86::FeatureBMI);
 | 
						|
      }
 | 
						|
      if (IsIntel && ((EBX >> 5) & 0x1)) {
 | 
						|
        X86SSELevel = AVX2;
 | 
						|
        ToggleFeature(X86::FeatureAVX2);
 | 
						|
      }
 | 
						|
      if (IsIntel && ((EBX >> 8) & 0x1)) {
 | 
						|
        HasBMI2 = true;
 | 
						|
        ToggleFeature(X86::FeatureBMI2);
 | 
						|
      }
 | 
						|
      if (IsIntel && ((EBX >> 11) & 0x1)) {
 | 
						|
        HasRTM = true;
 | 
						|
        ToggleFeature(X86::FeatureRTM);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
 | 
						|
                           const std::string &FS,
 | 
						|
                           unsigned StackAlignOverride, bool is64Bit)
 | 
						|
  : X86GenSubtargetInfo(TT, CPU, FS)
 | 
						|
  , X86ProcFamily(Others)
 | 
						|
  , PICStyle(PICStyles::None)
 | 
						|
  , X86SSELevel(NoMMXSSE)
 | 
						|
  , X863DNowLevel(NoThreeDNow)
 | 
						|
  , HasCMov(false)
 | 
						|
  , HasX86_64(false)
 | 
						|
  , HasPOPCNT(false)
 | 
						|
  , HasSSE4A(false)
 | 
						|
  , HasAES(false)
 | 
						|
  , HasPCLMUL(false)
 | 
						|
  , HasFMA(false)
 | 
						|
  , HasFMA4(false)
 | 
						|
  , HasXOP(false)
 | 
						|
  , HasMOVBE(false)
 | 
						|
  , HasRDRAND(false)
 | 
						|
  , HasF16C(false)
 | 
						|
  , HasFSGSBase(false)
 | 
						|
  , HasLZCNT(false)
 | 
						|
  , HasBMI(false)
 | 
						|
  , HasBMI2(false)
 | 
						|
  , HasRTM(false)
 | 
						|
  , IsBTMemSlow(false)
 | 
						|
  , IsUAMemFast(false)
 | 
						|
  , HasVectorUAMem(false)
 | 
						|
  , HasCmpxchg16b(false)
 | 
						|
  , UseLeaForSP(false)
 | 
						|
  , HasSlowDivide(false)
 | 
						|
  , PostRAScheduler(false)
 | 
						|
  , stackAlignment(4)
 | 
						|
  // FIXME: this is a known good value for Yonah. How about others?
 | 
						|
  , MaxInlineSizeThreshold(128)
 | 
						|
  , TargetTriple(TT)
 | 
						|
  , In64BitMode(is64Bit) {
 | 
						|
  // Determine default and user specified characteristics
 | 
						|
  std::string CPUName = CPU;
 | 
						|
  if (!FS.empty() || !CPU.empty()) {
 | 
						|
    if (CPUName.empty()) {
 | 
						|
#if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
 | 
						|
    || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
 | 
						|
      CPUName = sys::getHostCPUName();
 | 
						|
#else
 | 
						|
      CPUName = "generic";
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure 64-bit features are available in 64-bit mode. (But make sure
 | 
						|
    // SSE2 can be turned off explicitly.)
 | 
						|
    std::string FullFS = FS;
 | 
						|
    if (In64BitMode) {
 | 
						|
      if (!FullFS.empty())
 | 
						|
        FullFS = "+64bit,+sse2," + FullFS;
 | 
						|
      else
 | 
						|
        FullFS = "+64bit,+sse2";
 | 
						|
    }
 | 
						|
 | 
						|
    // If feature string is not empty, parse features string.
 | 
						|
    ParseSubtargetFeatures(CPUName, FullFS);
 | 
						|
  } else {
 | 
						|
    if (CPUName.empty()) {
 | 
						|
#if defined (__x86_64__) || defined(__i386__)
 | 
						|
      CPUName = sys::getHostCPUName();
 | 
						|
#else
 | 
						|
      CPUName = "generic";
 | 
						|
#endif
 | 
						|
    }
 | 
						|
    // Otherwise, use CPUID to auto-detect feature set.
 | 
						|
    AutoDetectSubtargetFeatures();
 | 
						|
 | 
						|
    // Make sure 64-bit features are available in 64-bit mode.
 | 
						|
    if (In64BitMode) {
 | 
						|
      HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
 | 
						|
      HasCMov = true;   ToggleFeature(X86::FeatureCMOV);
 | 
						|
 | 
						|
      if (X86SSELevel < SSE2) {
 | 
						|
        X86SSELevel = SSE2;
 | 
						|
        ToggleFeature(X86::FeatureSSE1);
 | 
						|
        ToggleFeature(X86::FeatureSSE2);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // CPUName may have been set by the CPU detection code. Make sure the
 | 
						|
  // new MCSchedModel is used.
 | 
						|
  InitMCProcessorInfo(CPUName, FS);
 | 
						|
 | 
						|
  if (X86ProcFamily == IntelAtom)
 | 
						|
    PostRAScheduler = true;
 | 
						|
 | 
						|
  InstrItins = getInstrItineraryForCPU(CPUName);
 | 
						|
 | 
						|
  // It's important to keep the MCSubtargetInfo feature bits in sync with
 | 
						|
  // target data structure which is shared with MC code emitter, etc.
 | 
						|
  if (In64BitMode)
 | 
						|
    ToggleFeature(X86::Mode64Bit);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
 | 
						|
               << ", 3DNowLevel " << X863DNowLevel
 | 
						|
               << ", 64bit " << HasX86_64 << "\n");
 | 
						|
  assert((!In64BitMode || HasX86_64) &&
 | 
						|
         "64-bit code requested on a subtarget that doesn't support it!");
 | 
						|
 | 
						|
  // Stack alignment is 16 bytes on Darwin, Linux and Solaris (both
 | 
						|
  // 32 and 64 bit) and for all 64-bit targets.
 | 
						|
  if (StackAlignOverride)
 | 
						|
    stackAlignment = StackAlignOverride;
 | 
						|
  else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
 | 
						|
           In64BitMode)
 | 
						|
    stackAlignment = 16;
 | 
						|
}
 | 
						|
 | 
						|
bool X86Subtarget::enablePostRAScheduler(
 | 
						|
           CodeGenOpt::Level OptLevel,
 | 
						|
           TargetSubtargetInfo::AntiDepBreakMode& Mode,
 | 
						|
           RegClassVector& CriticalPathRCs) const {
 | 
						|
  Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL;
 | 
						|
  CriticalPathRCs.clear();
 | 
						|
  return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
 | 
						|
}
 |