mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168601 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2129 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2129 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
 | |
| // and generates target-independent LLVM-IR. Legalization of the IR is done
 | |
| // in the codegen. However, the vectorizes uses (will use) the codegen
 | |
| // interfaces to generate IR that is likely to result in an optimal binary.
 | |
| //
 | |
| // The loop vectorizer combines consecutive loop iteration into a single
 | |
| // 'wide' iteration. After this transformation the index is incremented
 | |
| // by the SIMD vector width, and not by one.
 | |
| //
 | |
| // This pass has three parts:
 | |
| // 1. The main loop pass that drives the different parts.
 | |
| // 2. LoopVectorizationLegality - A unit that checks for the legality
 | |
| //    of the vectorization.
 | |
| // 3. SingleBlockLoopVectorizer - A unit that performs the actual
 | |
| //    widening of instructions.
 | |
| // 4. LoopVectorizationCostModel - A unit that checks for the profitability
 | |
| //    of vectorization. It decides on the optimal vector width, which
 | |
| //    can be one, if vectorization is not profitable.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The reduction-variable vectorization is based on the paper:
 | |
| //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
 | |
| //
 | |
| // Variable uniformity checks are inspired by:
 | |
| // Karrenberg, R. and Hack, S. Whole Function Vectorization.
 | |
| //
 | |
| // Other ideas/concepts are from:
 | |
| //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
 | |
| //
 | |
| //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
 | |
| //  Vectorizing Compilers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #define LV_NAME "loop-vectorize"
 | |
| #define DEBUG_TYPE LV_NAME
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/TargetTransformInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/DataLayout.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
 | |
|           cl::desc("Set the default vectorization width. Zero is autoselect."));
 | |
| 
 | |
| /// We don't vectorize loops with a known constant trip count below this number.
 | |
| const unsigned TinyTripCountThreshold = 16;
 | |
| 
 | |
| /// When performing a runtime memory check, do not check more than this
 | |
| /// number of pointers. Notice that the check is quadratic!
 | |
| const unsigned RuntimeMemoryCheckThreshold = 2;
 | |
| 
 | |
| /// This is the highest vector width that we try to generate.
 | |
| const unsigned MaxVectorSize = 8;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Forward declarations.
 | |
| class LoopVectorizationLegality;
 | |
| class LoopVectorizationCostModel;
 | |
| 
 | |
| /// SingleBlockLoopVectorizer vectorizes loops which contain only one basic
 | |
| /// block to a specified vectorization factor (VF).
 | |
| /// This class performs the widening of scalars into vectors, or multiple
 | |
| /// scalars. This class also implements the following features:
 | |
| /// * It inserts an epilogue loop for handling loops that don't have iteration
 | |
| ///   counts that are known to be a multiple of the vectorization factor.
 | |
| /// * It handles the code generation for reduction variables.
 | |
| /// * Scalarization (implementation using scalars) of un-vectorizable
 | |
| ///   instructions.
 | |
| /// SingleBlockLoopVectorizer does not perform any vectorization-legality
 | |
| /// checks, and relies on the caller to check for the different legality
 | |
| /// aspects. The SingleBlockLoopVectorizer relies on the
 | |
| /// LoopVectorizationLegality class to provide information about the induction
 | |
| /// and reduction variables that were found to a given vectorization factor.
 | |
| class SingleBlockLoopVectorizer {
 | |
| public:
 | |
|   /// Ctor.
 | |
|   SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
 | |
|                             DominatorTree *Dt, DataLayout *Dl,
 | |
|                             LPPassManager *Lpm,
 | |
|                             unsigned VecWidth):
 | |
|   OrigLoop(Orig), SE(Se), LI(Li), DT(Dt), DL(Dl), LPM(Lpm), VF(VecWidth),
 | |
|   Builder(Se->getContext()), Induction(0), OldInduction(0) { }
 | |
| 
 | |
|   // Perform the actual loop widening (vectorization).
 | |
|   void vectorize(LoopVectorizationLegality *Legal) {
 | |
|     // Create a new empty loop. Unlink the old loop and connect the new one.
 | |
|     createEmptyLoop(Legal);
 | |
|     // Widen each instruction in the old loop to a new one in the new loop.
 | |
|     // Use the Legality module to find the induction and reduction variables.
 | |
|     vectorizeLoop(Legal);
 | |
|     // Register the new loop and update the analysis passes.
 | |
|     updateAnalysis();
 | |
|  }
 | |
| 
 | |
| private:
 | |
|   /// Add code that checks at runtime if the accessed arrays overlap.
 | |
|   /// Returns the comperator value or NULL if no check is needed.
 | |
|   Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
 | |
|                          Instruction *Loc);
 | |
|   /// Create an empty loop, based on the loop ranges of the old loop.
 | |
|   void createEmptyLoop(LoopVectorizationLegality *Legal);
 | |
|   /// Copy and widen the instructions from the old loop.
 | |
|   void vectorizeLoop(LoopVectorizationLegality *Legal);
 | |
|   /// Insert the new loop to the loop hierarchy and pass manager
 | |
|   /// and update the analysis passes.
 | |
|   void updateAnalysis();
 | |
| 
 | |
|   /// This instruction is un-vectorizable. Implement it as a sequence
 | |
|   /// of scalars.
 | |
|   void scalarizeInstruction(Instruction *Instr);
 | |
| 
 | |
|   /// Create a broadcast instruction. This method generates a broadcast
 | |
|   /// instruction (shuffle) for loop invariant values and for the induction
 | |
|   /// value. If this is the induction variable then we extend it to N, N+1, ...
 | |
|   /// this is needed because each iteration in the loop corresponds to a SIMD
 | |
|   /// element.
 | |
|   Value *getBroadcastInstrs(Value *V);
 | |
| 
 | |
|   /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
 | |
|   /// for each element in the vector. Starting from zero.
 | |
|   Value *getConsecutiveVector(Value* Val);
 | |
| 
 | |
|   /// When we go over instructions in the basic block we rely on previous
 | |
|   /// values within the current basic block or on loop invariant values.
 | |
|   /// When we widen (vectorize) values we place them in the map. If the values
 | |
|   /// are not within the map, they have to be loop invariant, so we simply
 | |
|   /// broadcast them into a vector.
 | |
|   Value *getVectorValue(Value *V);
 | |
| 
 | |
|   /// Get a uniform vector of constant integers. We use this to get
 | |
|   /// vectors of ones and zeros for the reduction code.
 | |
|   Constant* getUniformVector(unsigned Val, Type* ScalarTy);
 | |
| 
 | |
|   typedef DenseMap<Value*, Value*> ValueMap;
 | |
| 
 | |
|   /// The original loop.
 | |
|   Loop *OrigLoop;
 | |
|   // Scev analysis to use.
 | |
|   ScalarEvolution *SE;
 | |
|   // Loop Info.
 | |
|   LoopInfo *LI;
 | |
|   // Dominator Tree.
 | |
|   DominatorTree *DT;
 | |
|   // Data Layout.
 | |
|   DataLayout *DL;
 | |
|   // Loop Pass Manager;
 | |
|   LPPassManager *LPM;
 | |
|   // The vectorization factor to use.
 | |
|   unsigned VF;
 | |
| 
 | |
|   // The builder that we use
 | |
|   IRBuilder<> Builder;
 | |
| 
 | |
|   // --- Vectorization state ---
 | |
| 
 | |
|   /// The vector-loop preheader.
 | |
|   BasicBlock *LoopVectorPreHeader;
 | |
|   /// The scalar-loop preheader.
 | |
|   BasicBlock *LoopScalarPreHeader;
 | |
|   /// Middle Block between the vector and the scalar.
 | |
|   BasicBlock *LoopMiddleBlock;
 | |
|   ///The ExitBlock of the scalar loop.
 | |
|   BasicBlock *LoopExitBlock;
 | |
|   ///The vector loop body.
 | |
|   BasicBlock *LoopVectorBody;
 | |
|   ///The scalar loop body.
 | |
|   BasicBlock *LoopScalarBody;
 | |
|   ///The first bypass block.
 | |
|   BasicBlock *LoopBypassBlock;
 | |
| 
 | |
|   /// The new Induction variable which was added to the new block.
 | |
|   PHINode *Induction;
 | |
|   /// The induction variable of the old basic block.
 | |
|   PHINode *OldInduction;
 | |
|   // Maps scalars to widened vectors.
 | |
|   ValueMap WidenMap;
 | |
| };
 | |
| 
 | |
| /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
 | |
| /// to what vectorization factor.
 | |
| /// This class does not look at the profitability of vectorization, only the
 | |
| /// legality. This class has two main kinds of checks:
 | |
| /// * Memory checks - The code in canVectorizeMemory checks if vectorization
 | |
| ///   will change the order of memory accesses in a way that will change the
 | |
| ///   correctness of the program.
 | |
| /// * Scalars checks - The code in canVectorizeBlock checks for a number
 | |
| ///   of different conditions, such as the availability of a single induction
 | |
| ///   variable, that all types are supported and vectorize-able, etc.
 | |
| /// This code reflects the capabilities of SingleBlockLoopVectorizer.
 | |
| /// This class is also used by SingleBlockLoopVectorizer for identifying
 | |
| /// induction variable and the different reduction variables.
 | |
| class LoopVectorizationLegality {
 | |
| public:
 | |
|   LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
 | |
|   TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }
 | |
| 
 | |
|   /// This represents the kinds of reductions that we support.
 | |
|   enum ReductionKind {
 | |
|     NoReduction, /// Not a reduction.
 | |
|     IntegerAdd,  /// Sum of numbers.
 | |
|     IntegerMult, /// Product of numbers.
 | |
|     IntegerOr,   /// Bitwise or logical OR of numbers.
 | |
|     IntegerAnd,  /// Bitwise or logical AND of numbers.
 | |
|     IntegerXor   /// Bitwise or logical XOR of numbers.
 | |
|   };
 | |
| 
 | |
|   /// This POD struct holds information about reduction variables.
 | |
|   struct ReductionDescriptor {
 | |
|     // Default C'tor
 | |
|     ReductionDescriptor():
 | |
|     StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}
 | |
| 
 | |
|     // C'tor.
 | |
|     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
 | |
|     StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
 | |
| 
 | |
|     // The starting value of the reduction.
 | |
|     // It does not have to be zero!
 | |
|     Value *StartValue;
 | |
|     // The instruction who's value is used outside the loop.
 | |
|     Instruction *LoopExitInstr;
 | |
|     // The kind of the reduction.
 | |
|     ReductionKind Kind;
 | |
|   };
 | |
| 
 | |
|   // This POD struct holds information about the memory runtime legality
 | |
|   // check that a group of pointers do not overlap.
 | |
|   struct RuntimePointerCheck {
 | |
|     RuntimePointerCheck(): Need(false) {}
 | |
| 
 | |
|     /// Reset the state of the pointer runtime information.
 | |
|     void reset() {
 | |
|       Need = false;
 | |
|       Pointers.clear();
 | |
|       Starts.clear();
 | |
|       Ends.clear();
 | |
|     }
 | |
| 
 | |
|     /// Insert a pointer and calculate the start and end SCEVs.
 | |
|     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr) {
 | |
|       const SCEV *Sc = SE->getSCEV(Ptr);
 | |
|       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
 | |
|       assert(AR && "Invalid addrec expression");
 | |
|       const SCEV *Ex = SE->getExitCount(Lp, Lp->getHeader());
 | |
|       const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
 | |
|       Pointers.push_back(Ptr);
 | |
|       Starts.push_back(AR->getStart());
 | |
|       Ends.push_back(ScEnd);
 | |
|     }
 | |
| 
 | |
|     /// This flag indicates if we need to add the runtime check.
 | |
|     bool Need;
 | |
|     /// Holds the pointers that we need to check.
 | |
|     SmallVector<Value*, 2> Pointers;
 | |
|     /// Holds the pointer value at the beginning of the loop.
 | |
|     SmallVector<const SCEV*, 2> Starts;
 | |
|     /// Holds the pointer value at the end of the loop.
 | |
|     SmallVector<const SCEV*, 2> Ends;
 | |
|   };
 | |
| 
 | |
|   /// ReductionList contains the reduction descriptors for all
 | |
|   /// of the reductions that were found in the loop.
 | |
|   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
 | |
| 
 | |
|   /// InductionList saves induction variables and maps them to the initial
 | |
|   /// value entring the loop.
 | |
|   typedef DenseMap<PHINode*, Value*> InductionList;
 | |
| 
 | |
|   /// Returns true if it is legal to vectorize this loop.
 | |
|   /// This does not mean that it is profitable to vectorize this
 | |
|   /// loop, only that it is legal to do so.
 | |
|   bool canVectorize();
 | |
| 
 | |
|   /// Returns the Induction variable.
 | |
|   PHINode *getInduction() {return Induction;}
 | |
| 
 | |
|   /// Returns the reduction variables found in the loop.
 | |
|   ReductionList *getReductionVars() { return &Reductions; }
 | |
| 
 | |
|   /// Returns the induction variables found in the loop.
 | |
|   InductionList *getInductionVars() { return &Inductions; }
 | |
| 
 | |
|   /// Check if this  pointer is consecutive when vectorizing. This happens
 | |
|   /// when the last index of the GEP is the induction variable, or that the
 | |
|   /// pointer itself is an induction variable.
 | |
|   /// This check allows us to vectorize A[idx] into a wide load/store.
 | |
|   bool isConsecutivePtr(Value *Ptr);
 | |
| 
 | |
|   /// Returns true if the value V is uniform within the loop.
 | |
|   bool isUniform(Value *V);
 | |
| 
 | |
|   /// Returns true if this instruction will remain scalar after vectorization.
 | |
|   bool isUniformAfterVectorization(Instruction* I) {return Uniforms.count(I);}
 | |
| 
 | |
|   /// Returns the information that we collected about runtime memory check.
 | |
|   RuntimePointerCheck *getRuntimePointerCheck() {return &PtrRtCheck; }
 | |
| private:
 | |
|   /// Check if a single basic block loop is vectorizable.
 | |
|   /// At this point we know that this is a loop with a constant trip count
 | |
|   /// and we only need to check individual instructions.
 | |
|   bool canVectorizeBlock(BasicBlock &BB);
 | |
| 
 | |
|   /// When we vectorize loops we may change the order in which
 | |
|   /// we read and write from memory. This method checks if it is
 | |
|   /// legal to vectorize the code, considering only memory constrains.
 | |
|   /// Returns true if BB is vectorizable
 | |
|   bool canVectorizeMemory(BasicBlock &BB);
 | |
| 
 | |
|   /// Returns True, if 'Phi' is the kind of reduction variable for type
 | |
|   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
 | |
|   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
 | |
|   /// Returns true if the instruction I can be a reduction variable of type
 | |
|   /// 'Kind'.
 | |
|   bool isReductionInstr(Instruction *I, ReductionKind Kind);
 | |
|   /// Returns True, if 'Phi' is an induction variable.
 | |
|   bool isInductionVariable(PHINode *Phi);
 | |
|   /// Return true if can compute the address bounds of Ptr within the loop.
 | |
|   bool hasComputableBounds(Value *Ptr);
 | |
| 
 | |
|   /// The loop that we evaluate.
 | |
|   Loop *TheLoop;
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
|   /// DataLayout analysis.
 | |
|   DataLayout *DL;
 | |
| 
 | |
|   //  ---  vectorization state --- //
 | |
| 
 | |
|   /// Holds the integer induction variable. This is the counter of the
 | |
|   /// loop.
 | |
|   PHINode *Induction;
 | |
|   /// Holds the reduction variables.
 | |
|   ReductionList Reductions;
 | |
|   /// Holds all of the induction variables that we found in the loop.
 | |
|   /// Notice that inductions don't need to start at zero and that induction
 | |
|   /// variables can be pointers.
 | |
|   InductionList Inductions;
 | |
| 
 | |
|   /// Allowed outside users. This holds the reduction
 | |
|   /// vars which can be accessed from outside the loop.
 | |
|   SmallPtrSet<Value*, 4> AllowedExit;
 | |
|   /// This set holds the variables which are known to be uniform after
 | |
|   /// vectorization.
 | |
|   SmallPtrSet<Instruction*, 4> Uniforms;
 | |
|   /// We need to check that all of the pointers in this list are disjoint
 | |
|   /// at runtime.
 | |
|   RuntimePointerCheck PtrRtCheck;
 | |
| };
 | |
| 
 | |
| /// LoopVectorizationCostModel - estimates the expected speedups due to
 | |
| /// vectorization.
 | |
| /// In many cases vectorization is not profitable. This can happen because
 | |
| /// of a number of reasons. In this class we mainly attempt to predict
 | |
| /// the expected speedup/slowdowns due to the supported instruction set.
 | |
| /// We use the VectorTargetTransformInfo to query the different backends
 | |
| /// for the cost of different operations.
 | |
| class LoopVectorizationCostModel {
 | |
| public:
 | |
|   /// C'tor.
 | |
|   LoopVectorizationCostModel(Loop *Lp, ScalarEvolution *Se,
 | |
|                              LoopVectorizationLegality *Leg,
 | |
|                              const VectorTargetTransformInfo *Vtti):
 | |
|   TheLoop(Lp), SE(Se), Legal(Leg), VTTI(Vtti) { }
 | |
| 
 | |
|   /// Returns the most profitable vectorization factor for the loop that is
 | |
|   /// smaller or equal to the VF argument. This method checks every power
 | |
|   /// of two up to VF.
 | |
|   unsigned findBestVectorizationFactor(unsigned VF = MaxVectorSize);
 | |
| 
 | |
| private:
 | |
|   /// Returns the expected execution cost. The unit of the cost does
 | |
|   /// not matter because we use the 'cost' units to compare different
 | |
|   /// vector widths. The cost that is returned is *not* normalized by
 | |
|   /// the factor width.
 | |
|   unsigned expectedCost(unsigned VF);
 | |
| 
 | |
|   /// Returns the execution time cost of an instruction for a given vector
 | |
|   /// width. Vector width of one means scalar.
 | |
|   unsigned getInstructionCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// A helper function for converting Scalar types to vector types.
 | |
|   /// If the incoming type is void, we return void. If the VF is 1, we return
 | |
|   /// the scalar type.
 | |
|   static Type* ToVectorTy(Type *Scalar, unsigned VF);
 | |
| 
 | |
|   /// The loop that we evaluate.
 | |
|   Loop *TheLoop;
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
| 
 | |
|   /// Vectorization legality.
 | |
|   LoopVectorizationLegality *Legal;
 | |
|   /// Vector target information.
 | |
|   const VectorTargetTransformInfo *VTTI;
 | |
| };
 | |
| 
 | |
| struct LoopVectorize : public LoopPass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|   LoopVectorize() : LoopPass(ID) {
 | |
|     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   ScalarEvolution *SE;
 | |
|   DataLayout *DL;
 | |
|   LoopInfo *LI;
 | |
|   TargetTransformInfo *TTI;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|     // We only vectorize innermost loops.
 | |
|     if (!L->empty())
 | |
|       return false;
 | |
| 
 | |
|     SE = &getAnalysis<ScalarEvolution>();
 | |
|     DL = getAnalysisIfAvailable<DataLayout>();
 | |
|     LI = &getAnalysis<LoopInfo>();
 | |
|     TTI = getAnalysisIfAvailable<TargetTransformInfo>();
 | |
|     DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Checking a loop in \"" <<
 | |
|           L->getHeader()->getParent()->getName() << "\"\n");
 | |
| 
 | |
|     // Check if it is legal to vectorize the loop.
 | |
|     LoopVectorizationLegality LVL(L, SE, DL);
 | |
|     if (!LVL.canVectorize()) {
 | |
|       DEBUG(dbgs() << "LV: Not vectorizing.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Select the preffered vectorization factor.
 | |
|     unsigned VF = 1;
 | |
|     if (VectorizationFactor == 0) {
 | |
|       const VectorTargetTransformInfo *VTTI = 0;
 | |
|       if (TTI)
 | |
|         VTTI = TTI->getVectorTargetTransformInfo();
 | |
|       // Use the cost model.
 | |
|       LoopVectorizationCostModel CM(L, SE, &LVL, VTTI);
 | |
|       VF = CM.findBestVectorizationFactor();
 | |
| 
 | |
|       if (VF == 1) {
 | |
|         DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       // Use the user command flag.
 | |
|       VF = VectorizationFactor;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
 | |
|           L->getHeader()->getParent()->getParent()->getModuleIdentifier()<<
 | |
|           "\n");
 | |
| 
 | |
|     // If we decided that it is *legal* to vectorizer the loop then do it.
 | |
|     SingleBlockLoopVectorizer LB(L, SE, LI, DT, DL, &LPM, VF);
 | |
|     LB.vectorize(&LVL);
 | |
| 
 | |
|     DEBUG(verifyFunction(*L->getHeader()->getParent()));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     LoopPass::getAnalysisUsage(AU);
 | |
|     AU.addRequiredID(LoopSimplifyID);
 | |
|     AU.addRequiredID(LCSSAID);
 | |
|     AU.addRequired<LoopInfo>();
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<DominatorTree>();
 | |
|     AU.addPreserved<LoopInfo>();
 | |
|     AU.addPreserved<DominatorTree>();
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
 | |
|   // Create the types.
 | |
|   LLVMContext &C = V->getContext();
 | |
|   Type *VTy = VectorType::get(V->getType(), VF);
 | |
|   Type *I32 = IntegerType::getInt32Ty(C);
 | |
|   Constant *Zero = ConstantInt::get(I32, 0);
 | |
|   Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
 | |
|   Value *UndefVal = UndefValue::get(VTy);
 | |
|   // Insert the value into a new vector.
 | |
|   Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
 | |
|   // Broadcast the scalar into all locations in the vector.
 | |
|   Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
 | |
|                                              "broadcast");
 | |
|   // We are accessing the induction variable. Make sure to promote the
 | |
|   // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
 | |
|   if (V == Induction)
 | |
|     return getConsecutiveVector(Shuf);
 | |
|   return Shuf;
 | |
| }
 | |
| 
 | |
| Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
 | |
|   assert(Val->getType()->isVectorTy() && "Must be a vector");
 | |
|   assert(Val->getType()->getScalarType()->isIntegerTy() &&
 | |
|          "Elem must be an integer");
 | |
|   // Create the types.
 | |
|   Type *ITy = Val->getType()->getScalarType();
 | |
|   VectorType *Ty = cast<VectorType>(Val->getType());
 | |
|   unsigned VLen = Ty->getNumElements();
 | |
|   SmallVector<Constant*, 8> Indices;
 | |
| 
 | |
|   // Create a vector of consecutive numbers from zero to VF.
 | |
|   for (unsigned i = 0; i < VLen; ++i)
 | |
|     Indices.push_back(ConstantInt::get(ITy, i));
 | |
| 
 | |
|   // Add the consecutive indices to the vector value.
 | |
|   Constant *Cv = ConstantVector::get(Indices);
 | |
|   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
 | |
|   return Builder.CreateAdd(Val, Cv, "induction");
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
 | |
|   assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
 | |
| 
 | |
|   // If this pointer is an induction variable, return it.
 | |
|   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
 | |
|   if (Phi && getInductionVars()->count(Phi))
 | |
|     return true;
 | |
| 
 | |
|   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
 | |
|   if (!Gep)
 | |
|     return false;
 | |
| 
 | |
|   unsigned NumOperands = Gep->getNumOperands();
 | |
|   Value *LastIndex = Gep->getOperand(NumOperands - 1);
 | |
| 
 | |
|   // Check that all of the gep indices are uniform except for the last.
 | |
|   for (unsigned i = 0; i < NumOperands - 1; ++i)
 | |
|     if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
 | |
|       return false;
 | |
| 
 | |
|   // We can emit wide load/stores only of the last index is the induction
 | |
|   // variable.
 | |
|   const SCEV *Last = SE->getSCEV(LastIndex);
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
 | |
|     const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|     // The memory is consecutive because the last index is consecutive
 | |
|     // and all other indices are loop invariant.
 | |
|     if (Step->isOne())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isUniform(Value *V) {
 | |
|   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
 | |
| }
 | |
| 
 | |
| Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
 | |
|   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
 | |
|   // If we saved a vectorized copy of V, use it.
 | |
|   Value *&MapEntry = WidenMap[V];
 | |
|   if (MapEntry)
 | |
|     return MapEntry;
 | |
| 
 | |
|   // Broadcast V and save the value for future uses.
 | |
|   Value *B = getBroadcastInstrs(V);
 | |
|   MapEntry = B;
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| Constant*
 | |
| SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
 | |
|   return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
 | |
| }
 | |
| 
 | |
| void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
 | |
|   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
 | |
|   // Holds vector parameters or scalars, in case of uniform vals.
 | |
|   SmallVector<Value*, 8> Params;
 | |
| 
 | |
|   // Find all of the vectorized parameters.
 | |
|   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|     Value *SrcOp = Instr->getOperand(op);
 | |
| 
 | |
|     // If we are accessing the old induction variable, use the new one.
 | |
|     if (SrcOp == OldInduction) {
 | |
|       Params.push_back(getVectorValue(Induction));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try using previously calculated values.
 | |
|     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
 | |
| 
 | |
|     // If the src is an instruction that appeared earlier in the basic block
 | |
|     // then it should already be vectorized.
 | |
|     if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
 | |
|       assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
 | |
|       // The parameter is a vector value from earlier.
 | |
|       Params.push_back(WidenMap[SrcInst]);
 | |
|     } else {
 | |
|       // The parameter is a scalar from outside the loop. Maybe even a constant.
 | |
|       Params.push_back(SrcOp);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(Params.size() == Instr->getNumOperands() &&
 | |
|          "Invalid number of operands");
 | |
| 
 | |
|   // Does this instruction return a value ?
 | |
|   bool IsVoidRetTy = Instr->getType()->isVoidTy();
 | |
|   Value *VecResults = 0;
 | |
| 
 | |
|   // If we have a return value, create an empty vector. We place the scalarized
 | |
|   // instructions in this vector.
 | |
|   if (!IsVoidRetTy)
 | |
|     VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
 | |
| 
 | |
|   // For each scalar that we create:
 | |
|   for (unsigned i = 0; i < VF; ++i) {
 | |
|     Instruction *Cloned = Instr->clone();
 | |
|     if (!IsVoidRetTy)
 | |
|       Cloned->setName(Instr->getName() + ".cloned");
 | |
|     // Replace the operands of the cloned instrucions with extracted scalars.
 | |
|     for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|       Value *Op = Params[op];
 | |
|       // Param is a vector. Need to extract the right lane.
 | |
|       if (Op->getType()->isVectorTy())
 | |
|         Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
 | |
|       Cloned->setOperand(op, Op);
 | |
|     }
 | |
| 
 | |
|     // Place the cloned scalar in the new loop.
 | |
|     Builder.Insert(Cloned);
 | |
| 
 | |
|     // If the original scalar returns a value we need to place it in a vector
 | |
|     // so that future users will be able to use it.
 | |
|     if (!IsVoidRetTy)
 | |
|       VecResults = Builder.CreateInsertElement(VecResults, Cloned,
 | |
|                                                Builder.getInt32(i));
 | |
|   }
 | |
| 
 | |
|   if (!IsVoidRetTy)
 | |
|     WidenMap[Instr] = VecResults;
 | |
| }
 | |
| 
 | |
| Value*
 | |
| SingleBlockLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
 | |
|                                            Instruction *Loc) {
 | |
|   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
 | |
|     Legal->getRuntimePointerCheck();
 | |
| 
 | |
|   if (!PtrRtCheck->Need)
 | |
|     return NULL;
 | |
| 
 | |
|   Value *MemoryRuntimeCheck = 0;
 | |
|   unsigned NumPointers = PtrRtCheck->Pointers.size();
 | |
|   SmallVector<Value* , 2> Starts;
 | |
|   SmallVector<Value* , 2> Ends;
 | |
| 
 | |
|   SCEVExpander Exp(*SE, "induction");
 | |
| 
 | |
|   // Use this type for pointer arithmetic.
 | |
|   Type* PtrArithTy = PtrRtCheck->Pointers[0]->getType();
 | |
| 
 | |
|   for (unsigned i=0; i < NumPointers; ++i) {
 | |
|     Value *Ptr = PtrRtCheck->Pointers[i];
 | |
|     const SCEV *Sc = SE->getSCEV(Ptr);
 | |
| 
 | |
|     if (SE->isLoopInvariant(Sc, OrigLoop)) {
 | |
|       DEBUG(dbgs() << "LV1: Adding RT check for a loop invariant ptr:" <<
 | |
|             *Ptr <<"\n");
 | |
|       Starts.push_back(Ptr);
 | |
|       Ends.push_back(Ptr);
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
 | |
| 
 | |
|       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i],
 | |
|                                        PtrArithTy, Loc);
 | |
|       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
 | |
|       Starts.push_back(Start);
 | |
|       Ends.push_back(End);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     for (unsigned j = i+1; j < NumPointers; ++j) {
 | |
|       Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
 | |
|                                     Starts[i], Ends[j], "bound0", Loc);
 | |
|       Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
 | |
|                                     Starts[j], Ends[i], "bound1", Loc);
 | |
|       Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
 | |
|                                                  "found.conflict", Loc);
 | |
|       if (MemoryRuntimeCheck)
 | |
|         MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
 | |
|                                                     MemoryRuntimeCheck,
 | |
|                                                     IsConflict,
 | |
|                                                     "conflict.rdx", Loc);
 | |
|       else
 | |
|         MemoryRuntimeCheck = IsConflict;
 | |
| 
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MemoryRuntimeCheck;
 | |
| }
 | |
| 
 | |
| void
 | |
| SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
 | |
|   /*
 | |
|    In this function we generate a new loop. The new loop will contain
 | |
|    the vectorized instructions while the old loop will continue to run the
 | |
|    scalar remainder.
 | |
| 
 | |
|     [ ] <-- vector loop bypass.
 | |
|   /  |
 | |
|  /   v
 | |
| |   [ ]     <-- vector pre header.
 | |
| |    |
 | |
| |    v
 | |
| |   [  ] \
 | |
| |   [  ]_|   <-- vector loop.
 | |
| |    |
 | |
|  \   v
 | |
|    >[ ]   <--- middle-block.
 | |
|   /  |
 | |
|  /   v
 | |
| |   [ ]     <--- new preheader.
 | |
| |    |
 | |
| |    v
 | |
| |   [ ] \
 | |
| |   [ ]_|   <-- old scalar loop to handle remainder.
 | |
|  \   |
 | |
|   \  v
 | |
|    >[ ]     <-- exit block.
 | |
|    ...
 | |
|    */
 | |
| 
 | |
|   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
 | |
|   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
 | |
|   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
 | |
|   assert(ExitBlock && "Must have an exit block");
 | |
| 
 | |
|   // Some loops have a single integer induction variable, while other loops
 | |
|   // don't. One example is c++ iterators that often have multiple pointer
 | |
|   // induction variables. In the code below we also support a case where we
 | |
|   // don't have a single induction variable.
 | |
|   OldInduction = Legal->getInduction();
 | |
|   Type *IdxTy = OldInduction ? OldInduction->getType() :
 | |
|     DL->getIntPtrType(SE->getContext());
 | |
| 
 | |
|   // Find the loop boundaries.
 | |
|   const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
 | |
|   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
 | |
| 
 | |
|   // Get the total trip count from the count by adding 1.
 | |
|   ExitCount = SE->getAddExpr(ExitCount,
 | |
|                              SE->getConstant(ExitCount->getType(), 1));
 | |
| 
 | |
|   // Expand the trip count and place the new instructions in the preheader.
 | |
|   // Notice that the pre-header does not change, only the loop body.
 | |
|   SCEVExpander Exp(*SE, "induction");
 | |
| 
 | |
|   // Count holds the overall loop count (N).
 | |
|   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
 | |
|                                    BypassBlock->getTerminator());
 | |
| 
 | |
|   // The loop index does not have to start at Zero. Find the original start
 | |
|   // value from the induction PHI node. If we don't have an induction variable
 | |
|   // then we know that it starts at zero.
 | |
|   Value *StartIdx = OldInduction ?
 | |
|     OldInduction->getIncomingValueForBlock(BypassBlock):
 | |
|     ConstantInt::get(IdxTy, 0);
 | |
| 
 | |
|   assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
 | |
|   assert(BypassBlock && "Invalid loop structure");
 | |
| 
 | |
|   // Generate the code that checks in runtime if arrays overlap.
 | |
|   Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
 | |
|                                               BypassBlock->getTerminator());
 | |
| 
 | |
|   // Split the single block loop into the two loop structure described above.
 | |
|   BasicBlock *VectorPH =
 | |
|       BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
 | |
|   BasicBlock *VecBody =
 | |
|     VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
 | |
|   BasicBlock *MiddleBlock =
 | |
|     VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
 | |
|   BasicBlock *ScalarPH =
 | |
|     MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
 | |
| 
 | |
|   // This is the location in which we add all of the logic for bypassing
 | |
|   // the new vector loop.
 | |
|   Instruction *Loc = BypassBlock->getTerminator();
 | |
| 
 | |
|   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
 | |
|   // inside the loop.
 | |
|   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
 | |
| 
 | |
|   // Generate the induction variable.
 | |
|   Induction = Builder.CreatePHI(IdxTy, 2, "index");
 | |
|   Constant *Step = ConstantInt::get(IdxTy, VF);
 | |
| 
 | |
|   // We may need to extend the index in case there is a type mismatch.
 | |
|   // We know that the count starts at zero and does not overflow.
 | |
|   if (Count->getType() != IdxTy) {
 | |
|     // The exit count can be of pointer type. Convert it to the correct
 | |
|     // integer type.
 | |
|     if (ExitCount->getType()->isPointerTy())
 | |
|       Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
 | |
|     else
 | |
|       Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
 | |
|   }
 | |
| 
 | |
|   // Add the start index to the loop count to get the new end index.
 | |
|   Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
 | |
| 
 | |
|   // Now we need to generate the expression for N - (N % VF), which is
 | |
|   // the part that the vectorized body will execute.
 | |
|   Constant *CIVF = ConstantInt::get(IdxTy, VF);
 | |
|   Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
 | |
|   Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
 | |
|   Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
 | |
|                                                      "end.idx.rnd.down", Loc);
 | |
| 
 | |
|   // Now, compare the new count to zero. If it is zero skip the vector loop and
 | |
|   // jump to the scalar loop.
 | |
|   Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
 | |
|                                IdxEndRoundDown,
 | |
|                                StartIdx,
 | |
|                                "cmp.zero", Loc);
 | |
| 
 | |
|   // If we are using memory runtime checks, include them in.
 | |
|   if (MemoryRuntimeCheck)
 | |
|     Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
 | |
|                                  "CntOrMem", Loc);
 | |
| 
 | |
|   BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
 | |
|   // Remove the old terminator.
 | |
|   Loc->eraseFromParent();
 | |
| 
 | |
|   // We are going to resume the execution of the scalar loop.
 | |
|   // Go over all of the induction variables that we found and fix the
 | |
|   // PHIs that are left in the scalar version of the loop.
 | |
|   // The starting values of PHI nodes depend on the counter of the last
 | |
|   // iteration in the vectorized loop.
 | |
|   // If we come from a bypass edge then we need to start from the original start
 | |
|   // value.
 | |
| 
 | |
|   // This variable saves the new starting index for the scalar loop.
 | |
|   PHINode *ResumeIndex = 0;
 | |
|   LoopVectorizationLegality::InductionList::iterator I, E;
 | |
|   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
 | |
|   for (I = List->begin(), E = List->end(); I != E; ++I) {
 | |
|     PHINode *OrigPhi = I->first;
 | |
|     PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
 | |
|                                            MiddleBlock->getTerminator());
 | |
|     Value *EndValue = 0;
 | |
|     if (OrigPhi->getType()->isIntegerTy()) {
 | |
|       // Handle the integer induction counter:
 | |
|       assert(OrigPhi == OldInduction && "Unknown integer PHI");
 | |
|       // We know what the end value is.
 | |
|       EndValue = IdxEndRoundDown;
 | |
|       // We also know which PHI node holds it.
 | |
|       ResumeIndex = ResumeVal;
 | |
|     } else {
 | |
|       // For pointer induction variables, calculate the offset using
 | |
|       // the end index.
 | |
|       EndValue = GetElementPtrInst::Create(I->second, CountRoundDown,
 | |
|                                            "ptr.ind.end",
 | |
|                                            BypassBlock->getTerminator());
 | |
|     }
 | |
| 
 | |
|     // The new PHI merges the original incoming value, in case of a bypass,
 | |
|     // or the value at the end of the vectorized loop.
 | |
|     ResumeVal->addIncoming(I->second, BypassBlock);
 | |
|     ResumeVal->addIncoming(EndValue, VecBody);
 | |
| 
 | |
|     // Fix the scalar body counter (PHI node).
 | |
|     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
 | |
|     OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
 | |
|   }
 | |
| 
 | |
|   // If we are generating a new induction variable then we also need to
 | |
|   // generate the code that calculates the exit value. This value is not
 | |
|   // simply the end of the counter because we may skip the vectorized body
 | |
|   // in case of a runtime check.
 | |
|   if (!OldInduction){
 | |
|     assert(!ResumeIndex && "Unexpected resume value found");
 | |
|     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
 | |
|                                   MiddleBlock->getTerminator());
 | |
|     ResumeIndex->addIncoming(StartIdx, BypassBlock);
 | |
|     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
 | |
|   }
 | |
| 
 | |
|   // Make sure that we found the index where scalar loop needs to continue.
 | |
|   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
 | |
|          "Invalid resume Index");
 | |
| 
 | |
|   // Add a check in the middle block to see if we have completed
 | |
|   // all of the iterations in the first vector loop.
 | |
|   // If (N - N%VF) == N, then we *don't* need to run the remainder.
 | |
|   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
 | |
|                                 ResumeIndex, "cmp.n",
 | |
|                                 MiddleBlock->getTerminator());
 | |
| 
 | |
|   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
 | |
|   // Remove the old terminator.
 | |
|   MiddleBlock->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Create i+1 and fill the PHINode.
 | |
|   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
 | |
|   Induction->addIncoming(StartIdx, VectorPH);
 | |
|   Induction->addIncoming(NextIdx, VecBody);
 | |
|   // Create the compare.
 | |
|   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
 | |
|   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
 | |
| 
 | |
|   // Now we have two terminators. Remove the old one from the block.
 | |
|   VecBody->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Get ready to start creating new instructions into the vectorized body.
 | |
|   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
 | |
| 
 | |
|   // Register the new loop.
 | |
|   Loop* Lp = new Loop();
 | |
|   LPM->insertLoop(Lp, OrigLoop->getParentLoop());
 | |
| 
 | |
|   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
 | |
| 
 | |
|   Loop *ParentLoop = OrigLoop->getParentLoop();
 | |
|   if (ParentLoop) {
 | |
|     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
 | |
|     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
 | |
|     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
 | |
|   }
 | |
| 
 | |
|   // Save the state.
 | |
|   LoopVectorPreHeader = VectorPH;
 | |
|   LoopScalarPreHeader = ScalarPH;
 | |
|   LoopMiddleBlock = MiddleBlock;
 | |
|   LoopExitBlock = ExitBlock;
 | |
|   LoopVectorBody = VecBody;
 | |
|   LoopScalarBody = OldBasicBlock;
 | |
|   LoopBypassBlock = BypassBlock;
 | |
| }
 | |
| 
 | |
| /// This function returns the identity element (or neutral element) for
 | |
| /// the operation K.
 | |
| static unsigned
 | |
| getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
 | |
|   switch (K) {
 | |
|   case LoopVectorizationLegality::IntegerXor:
 | |
|   case LoopVectorizationLegality::IntegerAdd:
 | |
|   case LoopVectorizationLegality::IntegerOr:
 | |
|     // Adding, Xoring, Oring zero to a number does not change it.
 | |
|     return 0;
 | |
|   case LoopVectorizationLegality::IntegerMult:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return 1;
 | |
|   case LoopVectorizationLegality::IntegerAnd:
 | |
|     // AND-ing a number with an all-1 value does not change it.
 | |
|     return -1;
 | |
|   default:
 | |
|     llvm_unreachable("Unknown reduction kind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
 | |
|   //===------------------------------------------------===//
 | |
|   //
 | |
|   // Notice: any optimization or new instruction that go
 | |
|   // into the code below should be also be implemented in
 | |
|   // the cost-model.
 | |
|   //
 | |
|   //===------------------------------------------------===//
 | |
|   typedef SmallVector<PHINode*, 4> PhiVector;
 | |
|   BasicBlock &BB = *OrigLoop->getHeader();
 | |
|   Constant *Zero = ConstantInt::get(
 | |
|     IntegerType::getInt32Ty(BB.getContext()), 0);
 | |
| 
 | |
|   // In order to support reduction variables we need to be able to vectorize
 | |
|   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
 | |
|   // steages. First, we create a new vector PHI node with no incoming edges.
 | |
|   // We use this value when we vectorize all of the instructions that use the
 | |
|   // PHI. Next, after all of the instructions in the block are complete we
 | |
|   // add the new incoming edges to the PHI. At this point all of the
 | |
|   // instructions in the basic block are vectorized, so we can use them to
 | |
|   // construct the PHI.
 | |
|   PhiVector RdxPHIsToFix;
 | |
| 
 | |
|   // For each instruction in the old loop.
 | |
|   for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
 | |
|     Instruction *Inst = it;
 | |
| 
 | |
|     switch (Inst->getOpcode()) {
 | |
|       case Instruction::Br:
 | |
|         // Nothing to do for PHIs and BR, since we already took care of the
 | |
|         // loop control flow instructions.
 | |
|         continue;
 | |
|       case Instruction::PHI:{
 | |
|         PHINode* P = cast<PHINode>(Inst);
 | |
|         // Handle reduction variables:
 | |
|         if (Legal->getReductionVars()->count(P)) {
 | |
|           // This is phase one of vectorizing PHIs.
 | |
|           Type *VecTy = VectorType::get(Inst->getType(), VF);
 | |
|           WidenMap[Inst] = PHINode::Create(VecTy, 2, "vec.phi",
 | |
|                                   LoopVectorBody->getFirstInsertionPt());
 | |
|           RdxPHIsToFix.push_back(P);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // This PHINode must be an induction variable.
 | |
|         // Make sure that we know about it.
 | |
|         assert(Legal->getInductionVars()->count(P) &&
 | |
|                "Not an induction variable");
 | |
| 
 | |
|         if (P->getType()->isIntegerTy()) {
 | |
|           assert(P == OldInduction && "Unexpected PHI");
 | |
|           WidenMap[Inst] = getBroadcastInstrs(Induction);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Handle pointer inductions.
 | |
|         assert(P->getType()->isPointerTy() && "Unexpected type.");
 | |
|         Value *StartIdx = OldInduction ?
 | |
|           Legal->getInductionVars()->lookup(OldInduction) :
 | |
|           ConstantInt::get(Induction->getType(), 0);
 | |
| 
 | |
|         // This is the pointer value coming into the loop.
 | |
|         Value *StartPtr = Legal->getInductionVars()->lookup(P);
 | |
| 
 | |
|         // This is the normalized GEP that starts counting at zero.
 | |
|         Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
 | |
|                                                  "normalized.idx");
 | |
| 
 | |
|         // This is the vector of results. Notice that we don't generate vector
 | |
|         // geps because scalar geps result in better code.
 | |
|         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
 | |
|         for (unsigned int i = 0; i < VF; ++i) {
 | |
|           Constant *Idx = ConstantInt::get(Induction->getType(), i);
 | |
|           Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
 | |
|           Value *SclrGep = Builder.CreateGEP(StartPtr, GlobalIdx, "next.gep");
 | |
|           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
 | |
|                                                Builder.getInt32(i),
 | |
|                                                "insert.gep");
 | |
|         }
 | |
| 
 | |
|         WidenMap[Inst] = VecVal;
 | |
|         continue;
 | |
|       }
 | |
|       case Instruction::Add:
 | |
|       case Instruction::FAdd:
 | |
|       case Instruction::Sub:
 | |
|       case Instruction::FSub:
 | |
|       case Instruction::Mul:
 | |
|       case Instruction::FMul:
 | |
|       case Instruction::UDiv:
 | |
|       case Instruction::SDiv:
 | |
|       case Instruction::FDiv:
 | |
|       case Instruction::URem:
 | |
|       case Instruction::SRem:
 | |
|       case Instruction::FRem:
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|       case Instruction::AShr:
 | |
|       case Instruction::And:
 | |
|       case Instruction::Or:
 | |
|       case Instruction::Xor: {
 | |
|         // Just widen binops.
 | |
|         BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
 | |
|         Value *A = getVectorValue(Inst->getOperand(0));
 | |
|         Value *B = getVectorValue(Inst->getOperand(1));
 | |
| 
 | |
|         // Use this vector value for all users of the original instruction.
 | |
|         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
 | |
|         WidenMap[Inst] = V;
 | |
| 
 | |
|         // Update the NSW, NUW and Exact flags.
 | |
|         BinaryOperator *VecOp = cast<BinaryOperator>(V);
 | |
|         if (isa<OverflowingBinaryOperator>(BinOp)) {
 | |
|           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
 | |
|           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
 | |
|         }
 | |
|         if (isa<PossiblyExactOperator>(VecOp))
 | |
|           VecOp->setIsExact(BinOp->isExact());
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Select: {
 | |
|         // Widen selects.
 | |
|         // If the selector is loop invariant we can create a select
 | |
|         // instruction with a scalar condition. Otherwise, use vector-select.
 | |
|         Value *Cond = Inst->getOperand(0);
 | |
|         bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);
 | |
| 
 | |
|         // The condition can be loop invariant  but still defined inside the
 | |
|         // loop. This means that we can't just use the original 'cond' value.
 | |
|         // We have to take the 'vectorized' value and pick the first lane.
 | |
|         // Instcombine will make this a no-op.
 | |
|         Cond = getVectorValue(Cond);
 | |
|         if (InvariantCond)
 | |
|           Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));
 | |
| 
 | |
|         Value *Op0 = getVectorValue(Inst->getOperand(1));
 | |
|         Value *Op1 = getVectorValue(Inst->getOperand(2));
 | |
|         WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case Instruction::ICmp:
 | |
|       case Instruction::FCmp: {
 | |
|         // Widen compares. Generate vector compares.
 | |
|         bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
 | |
|         CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
 | |
|         Value *A = getVectorValue(Inst->getOperand(0));
 | |
|         Value *B = getVectorValue(Inst->getOperand(1));
 | |
|         if (FCmp)
 | |
|           WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
 | |
|         else
 | |
|           WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       case Instruction::Store: {
 | |
|         // Attempt to issue a wide store.
 | |
|         StoreInst *SI = dyn_cast<StoreInst>(Inst);
 | |
|         Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
 | |
|         Value *Ptr = SI->getPointerOperand();
 | |
|         unsigned Alignment = SI->getAlignment();
 | |
| 
 | |
|         assert(!Legal->isUniform(Ptr) &&
 | |
|                "We do not allow storing to uniform addresses");
 | |
| 
 | |
|         GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
 | |
| 
 | |
|         // This store does not use GEPs.
 | |
|         if (!Legal->isConsecutivePtr(Ptr)) {
 | |
|           scalarizeInstruction(Inst);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (Gep) {
 | |
|           // The last index does not have to be the induction. It can be
 | |
|           // consecutive and be a function of the index. For example A[I+1];
 | |
|           unsigned NumOperands = Gep->getNumOperands();
 | |
|           Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1));
 | |
|           LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
 | |
| 
 | |
|           // Create the new GEP with the new induction variable.
 | |
|           GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
 | |
|           Gep2->setOperand(NumOperands - 1, LastIndex);
 | |
|           Ptr = Builder.Insert(Gep2);
 | |
|         } else {
 | |
|           // Use the induction element ptr.
 | |
|           assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
 | |
|           Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
 | |
|         }
 | |
|         Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
 | |
|         Value *Val = getVectorValue(SI->getValueOperand());
 | |
|         Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Load: {
 | |
|         // Attempt to issue a wide load.
 | |
|         LoadInst *LI = dyn_cast<LoadInst>(Inst);
 | |
|         Type *RetTy = VectorType::get(LI->getType(), VF);
 | |
|         Value *Ptr = LI->getPointerOperand();
 | |
|         unsigned Alignment = LI->getAlignment();
 | |
|         GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
 | |
| 
 | |
|         // If the pointer is loop invariant or if it is non consecutive,
 | |
|         // scalarize the load.
 | |
|         bool Con = Legal->isConsecutivePtr(Ptr);
 | |
|         if (Legal->isUniform(Ptr) || !Con) {
 | |
|           scalarizeInstruction(Inst);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (Gep) {
 | |
|           // The last index does not have to be the induction. It can be
 | |
|           // consecutive and be a function of the index. For example A[I+1];
 | |
|           unsigned NumOperands = Gep->getNumOperands();
 | |
|           Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
 | |
|           LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
 | |
| 
 | |
|           // Create the new GEP with the new induction variable.
 | |
|           GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
 | |
|           Gep2->setOperand(NumOperands - 1, LastIndex);
 | |
|           Ptr = Builder.Insert(Gep2);
 | |
|         } else {
 | |
|           // Use the induction element ptr.
 | |
|           assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
 | |
|           Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero);
 | |
|         }
 | |
| 
 | |
|         Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
 | |
|         LI = Builder.CreateLoad(Ptr);
 | |
|         LI->setAlignment(Alignment);
 | |
|         // Use this vector value for all users of the load.
 | |
|         WidenMap[Inst] = LI;
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::ZExt:
 | |
|       case Instruction::SExt:
 | |
|       case Instruction::FPToUI:
 | |
|       case Instruction::FPToSI:
 | |
|       case Instruction::FPExt:
 | |
|       case Instruction::PtrToInt:
 | |
|       case Instruction::IntToPtr:
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::UIToFP:
 | |
|       case Instruction::Trunc:
 | |
|       case Instruction::FPTrunc:
 | |
|       case Instruction::BitCast: {
 | |
|         /// Vectorize bitcasts.
 | |
|         CastInst *CI = dyn_cast<CastInst>(Inst);
 | |
|         Value *A = getVectorValue(Inst->getOperand(0));
 | |
|         Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
 | |
|         WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       default:
 | |
|         /// All other instructions are unsupported. Scalarize them.
 | |
|         scalarizeInstruction(Inst);
 | |
|         break;
 | |
|     }// end of switch.
 | |
|   }// end of for_each instr.
 | |
| 
 | |
|   // At this point every instruction in the original loop is widended to
 | |
|   // a vector form. We are almost done. Now, we need to fix the PHI nodes
 | |
|   // that we vectorized. The PHI nodes are currently empty because we did
 | |
|   // not want to introduce cycles. Notice that the remaining PHI nodes
 | |
|   // that we need to fix are reduction variables.
 | |
| 
 | |
|   // Create the 'reduced' values for each of the induction vars.
 | |
|   // The reduced values are the vector values that we scalarize and combine
 | |
|   // after the loop is finished.
 | |
|   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
 | |
|        it != e; ++it) {
 | |
|     PHINode *RdxPhi = *it;
 | |
|     PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
 | |
|     assert(RdxPhi && "Unable to recover vectorized PHI");
 | |
| 
 | |
|     // Find the reduction variable descriptor.
 | |
|     assert(Legal->getReductionVars()->count(RdxPhi) &&
 | |
|            "Unable to find the reduction variable");
 | |
|     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
 | |
|       (*Legal->getReductionVars())[RdxPhi];
 | |
| 
 | |
|     // We need to generate a reduction vector from the incoming scalar.
 | |
|     // To do so, we need to generate the 'identity' vector and overide
 | |
|     // one of the elements with the incoming scalar reduction. We need
 | |
|     // to do it in the vector-loop preheader.
 | |
|     Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
 | |
| 
 | |
|     // This is the vector-clone of the value that leaves the loop.
 | |
|     Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
 | |
|     Type *VecTy = VectorExit->getType();
 | |
| 
 | |
|     // Find the reduction identity variable. Zero for addition, or, xor,
 | |
|     // one for multiplication, -1 for And.
 | |
|     Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
 | |
|                                           VecTy->getScalarType());
 | |
| 
 | |
|     // This vector is the Identity vector where the first element is the
 | |
|     // incoming scalar reduction.
 | |
|     Value *VectorStart = Builder.CreateInsertElement(Identity,
 | |
|                                                     RdxDesc.StartValue, Zero);
 | |
| 
 | |
|     // Fix the vector-loop phi.
 | |
|     // We created the induction variable so we know that the
 | |
|     // preheader is the first entry.
 | |
|     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
 | |
| 
 | |
|     // Reductions do not have to start at zero. They can start with
 | |
|     // any loop invariant values.
 | |
|     VecRdxPhi->addIncoming(VectorStart, VecPreheader);
 | |
|     unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
 | |
|     Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
 | |
|     VecRdxPhi->addIncoming(Val, LoopVectorBody);
 | |
| 
 | |
|     // Before each round, move the insertion point right between
 | |
|     // the PHIs and the values we are going to write.
 | |
|     // This allows us to write both PHINodes and the extractelement
 | |
|     // instructions.
 | |
|     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
 | |
| 
 | |
|     // This PHINode contains the vectorized reduction variable, or
 | |
|     // the initial value vector, if we bypass the vector loop.
 | |
|     PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
 | |
|     NewPhi->addIncoming(VectorStart, LoopBypassBlock);
 | |
|     NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);
 | |
| 
 | |
|     // Extract the first scalar.
 | |
|     Value *Scalar0 =
 | |
|       Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
 | |
|     // Extract and reduce the remaining vector elements.
 | |
|     for (unsigned i=1; i < VF; ++i) {
 | |
|       Value *Scalar1 =
 | |
|         Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
 | |
|       switch (RdxDesc.Kind) {
 | |
|         case LoopVectorizationLegality::IntegerAdd:
 | |
|           Scalar0 = Builder.CreateAdd(Scalar0, Scalar1);
 | |
|           break;
 | |
|         case LoopVectorizationLegality::IntegerMult:
 | |
|           Scalar0 = Builder.CreateMul(Scalar0, Scalar1);
 | |
|           break;
 | |
|         case LoopVectorizationLegality::IntegerOr:
 | |
|           Scalar0 = Builder.CreateOr(Scalar0, Scalar1);
 | |
|           break;
 | |
|         case LoopVectorizationLegality::IntegerAnd:
 | |
|           Scalar0 = Builder.CreateAnd(Scalar0, Scalar1);
 | |
|           break;
 | |
|         case LoopVectorizationLegality::IntegerXor:
 | |
|           Scalar0 = Builder.CreateXor(Scalar0, Scalar1);
 | |
|           break;
 | |
|         default:
 | |
|           llvm_unreachable("Unknown reduction operation");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now, we need to fix the users of the reduction variable
 | |
|     // inside and outside of the scalar remainder loop.
 | |
|     // We know that the loop is in LCSSA form. We need to update the
 | |
|     // PHI nodes in the exit blocks.
 | |
|     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
 | |
|          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
 | |
|       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
 | |
|       if (!LCSSAPhi) continue;
 | |
| 
 | |
|       // All PHINodes need to have a single entry edge, or two if
 | |
|       // we already fixed them.
 | |
|       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
 | |
| 
 | |
|       // We found our reduction value exit-PHI. Update it with the
 | |
|       // incoming bypass edge.
 | |
|       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
 | |
|         // Add an edge coming from the bypass.
 | |
|         LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
 | |
|         break;
 | |
|       }
 | |
|     }// end of the LCSSA phi scan.
 | |
| 
 | |
|     // Fix the scalar loop reduction variable with the incoming reduction sum
 | |
|     // from the vector body and from the backedge value.
 | |
|     int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
 | |
|     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
 | |
|     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
 | |
|     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
 | |
|   }// end of for each redux variable.
 | |
| }
 | |
| 
 | |
| void SingleBlockLoopVectorizer::updateAnalysis() {
 | |
|   // The original basic block.
 | |
|   SE->forgetLoop(OrigLoop);
 | |
| 
 | |
|   // Update the dominator tree information.
 | |
|   assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
 | |
|          "Entry does not dominate exit.");
 | |
| 
 | |
|   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
 | |
|   DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
 | |
|   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
 | |
|   DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
 | |
|   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
 | |
|   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
 | |
| 
 | |
|   DEBUG(DT->verifyAnalysis());
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorize() {
 | |
|   if (!TheLoop->getLoopPreheader()) {
 | |
|     assert(false && "No preheader!!");
 | |
|     DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We can only vectorize single basic block loops.
 | |
|   unsigned NumBlocks = TheLoop->getNumBlocks();
 | |
|   if (NumBlocks != 1) {
 | |
|     DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We need to have a loop header.
 | |
|   BasicBlock *BB = TheLoop->getHeader();
 | |
|   DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
 | |
| 
 | |
|   // ScalarEvolution needs to be able to find the exit count.
 | |
|   const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
 | |
|   if (ExitCount == SE->getCouldNotCompute()) {
 | |
|     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do not loop-vectorize loops with a tiny trip count.
 | |
|   unsigned TC = SE->getSmallConstantTripCount(TheLoop, BB);
 | |
|   if (TC > 0u && TC < TinyTripCountThreshold) {
 | |
|     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
 | |
|           "This loop is not worth vectorizing.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Go over each instruction and look at memory deps.
 | |
|   if (!canVectorizeBlock(*BB)) {
 | |
|     DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
 | |
|         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
 | |
|         <<"!\n");
 | |
| 
 | |
|   // Okay! We can vectorize. At this point we don't have any other mem analysis
 | |
|   // which may limit our maximum vectorization factor, so just return true with
 | |
|   // no restrictions.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
 | |
| 
 | |
|   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
 | |
| 
 | |
|   // Scan the instructions in the block and look for hazards.
 | |
|   for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
 | |
|     Instruction *I = it;
 | |
| 
 | |
|     if (PHINode *Phi = dyn_cast<PHINode>(I)) {
 | |
|       // This should not happen because the loop should be normalized.
 | |
|       if (Phi->getNumIncomingValues() != 2) {
 | |
|         DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // This is the value coming from the preheader.
 | |
|       Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
 | |
| 
 | |
|       // We only look at integer and pointer phi nodes.
 | |
|       if (Phi->getType()->isPointerTy() && isInductionVariable(Phi)) {
 | |
|         DEBUG(dbgs() << "LV: Found a pointer induction variable.\n");
 | |
|         Inductions[Phi] = StartValue;
 | |
|         continue;
 | |
|       } else if (!Phi->getType()->isIntegerTy()) {
 | |
|         DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Handle integer PHIs:
 | |
|       if (isInductionVariable(Phi)) {
 | |
|         if (Induction) {
 | |
|           DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
 | |
|           return false;
 | |
|         }
 | |
|         DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
 | |
|         Induction = Phi;
 | |
|         Inductions[Phi] = StartValue;
 | |
|         continue;
 | |
|       }
 | |
|       if (AddReductionVar(Phi, IntegerAdd)) {
 | |
|         DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
 | |
|         continue;
 | |
|       }
 | |
|       if (AddReductionVar(Phi, IntegerMult)) {
 | |
|         DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
 | |
|         continue;
 | |
|       }
 | |
|       if (AddReductionVar(Phi, IntegerOr)) {
 | |
|         DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
 | |
|         continue;
 | |
|       }
 | |
|       if (AddReductionVar(Phi, IntegerAnd)) {
 | |
|         DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
 | |
|         continue;
 | |
|       }
 | |
|       if (AddReductionVar(Phi, IntegerXor)) {
 | |
|         DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
 | |
|       return false;
 | |
|     }// end of PHI handling
 | |
| 
 | |
|     // We still don't handle functions.
 | |
|     CallInst *CI = dyn_cast<CallInst>(I);
 | |
|     if (CI) {
 | |
|       DEBUG(dbgs() << "LV: Found a call site.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // We do not re-vectorize vectors.
 | |
|     if (!VectorType::isValidElementType(I->getType()) &&
 | |
|         !I->getType()->isVoidTy()) {
 | |
|       DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Reduction instructions are allowed to have exit users.
 | |
|     // All other instructions must not have external users.
 | |
|     if (!AllowedExit.count(I))
 | |
|       //Check that all of the users of the loop are inside the BB.
 | |
|       for (Value::use_iterator it = I->use_begin(), e = I->use_end();
 | |
|            it != e; ++it) {
 | |
|         Instruction *U = cast<Instruction>(*it);
 | |
|         // This user may be a reduction exit value.
 | |
|         BasicBlock *Parent = U->getParent();
 | |
|         if (Parent != &BB) {
 | |
|           DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
 | |
|           return false;
 | |
|         }
 | |
|     }
 | |
|   } // next instr.
 | |
| 
 | |
|   if (!Induction) {
 | |
|     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
 | |
|     assert(getInductionVars()->size() && "No induction variables");
 | |
|   }
 | |
| 
 | |
|   // Don't vectorize if the memory dependencies do not allow vectorization.
 | |
|   if (!canVectorizeMemory(BB))
 | |
|     return false;
 | |
| 
 | |
|   // We now know that the loop is vectorizable!
 | |
|   // Collect variables that will remain uniform after vectorization.
 | |
|   std::vector<Value*> Worklist;
 | |
| 
 | |
|   // Start with the conditional branch and walk up the block.
 | |
|   Worklist.push_back(BB.getTerminator()->getOperand(0));
 | |
| 
 | |
|   while (Worklist.size()) {
 | |
|     Instruction *I = dyn_cast<Instruction>(Worklist.back());
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // Look at instructions inside this block. Stop when reaching PHI nodes.
 | |
|     if (!I || I->getParent() != &BB || isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // This is a known uniform.
 | |
|     Uniforms.insert(I);
 | |
| 
 | |
|     // Insert all operands.
 | |
|     for (int i=0, Op = I->getNumOperands(); i < Op; ++i) {
 | |
|       Worklist.push_back(I->getOperand(i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
 | |
|   typedef SmallVector<Value*, 16> ValueVector;
 | |
|   typedef SmallPtrSet<Value*, 16> ValueSet;
 | |
|   // Holds the Load and Store *instructions*.
 | |
|   ValueVector Loads;
 | |
|   ValueVector Stores;
 | |
|   PtrRtCheck.Pointers.clear();
 | |
|   PtrRtCheck.Need = false;
 | |
| 
 | |
|   // Scan the BB and collect legal loads and stores.
 | |
|   for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
 | |
|     Instruction *I = it;
 | |
| 
 | |
|     // If this is a load, save it. If this instruction can read from memory
 | |
|     // but is not a load, then we quit. Notice that we don't handle function
 | |
|     // calls that read or write.
 | |
|     if (I->mayReadFromMemory()) {
 | |
|       LoadInst *Ld = dyn_cast<LoadInst>(I);
 | |
|       if (!Ld) return false;
 | |
|       if (!Ld->isSimple()) {
 | |
|         DEBUG(dbgs() << "LV: Found a non-simple load.\n");
 | |
|         return false;
 | |
|       }
 | |
|       Loads.push_back(Ld);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Save store instructions. Abort if other instructions write to memory.
 | |
|     if (I->mayWriteToMemory()) {
 | |
|       StoreInst *St = dyn_cast<StoreInst>(I);
 | |
|       if (!St) return false;
 | |
|       if (!St->isSimple()) {
 | |
|         DEBUG(dbgs() << "LV: Found a non-simple store.\n");
 | |
|         return false;
 | |
|       }
 | |
|       Stores.push_back(St);
 | |
|     }
 | |
|   } // next instr.
 | |
| 
 | |
|   // Now we have two lists that hold the loads and the stores.
 | |
|   // Next, we find the pointers that they use.
 | |
| 
 | |
|   // Check if we see any stores. If there are no stores, then we don't
 | |
|   // care if the pointers are *restrict*.
 | |
|   if (!Stores.size()) {
 | |
|         DEBUG(dbgs() << "LV: Found a read-only loop!\n");
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   // Holds the read and read-write *pointers* that we find.
 | |
|   ValueVector Reads;
 | |
|   ValueVector ReadWrites;
 | |
| 
 | |
|   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
 | |
|   // multiple times on the same object. If the ptr is accessed twice, once
 | |
|   // for read and once for write, it will only appear once (on the write
 | |
|   // list). This is okay, since we are going to check for conflicts between
 | |
|   // writes and between reads and writes, but not between reads and reads.
 | |
|   ValueSet Seen;
 | |
| 
 | |
|   ValueVector::iterator I, IE;
 | |
|   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
 | |
|     StoreInst *ST = dyn_cast<StoreInst>(*I);
 | |
|     assert(ST && "Bad StoreInst");
 | |
|     Value* Ptr = ST->getPointerOperand();
 | |
| 
 | |
|     if (isUniform(Ptr)) {
 | |
|       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we did *not* see this pointer before, insert it to
 | |
|     // the read-write list. At this phase it is only a 'write' list.
 | |
|     if (Seen.insert(Ptr))
 | |
|       ReadWrites.push_back(Ptr);
 | |
|   }
 | |
| 
 | |
|   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
 | |
|     LoadInst *LD = dyn_cast<LoadInst>(*I);
 | |
|     assert(LD && "Bad LoadInst");
 | |
|     Value* Ptr = LD->getPointerOperand();
 | |
|     // If we did *not* see this pointer before, insert it to the
 | |
|     // read list. If we *did* see it before, then it is already in
 | |
|     // the read-write list. This allows us to vectorize expressions
 | |
|     // such as A[i] += x;  Because the address of A[i] is a read-write
 | |
|     // pointer. This only works if the index of A[i] is consecutive.
 | |
|     // If the address of i is unknown (for example A[B[i]]) then we may
 | |
|     // read a few words, modify, and write a few words, and some of the
 | |
|     // words may be written to the same address.
 | |
|     if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr))
 | |
|       Reads.push_back(Ptr);
 | |
|   }
 | |
| 
 | |
|   // If we write (or read-write) to a single destination and there are no
 | |
|   // other reads in this loop then is it safe to vectorize.
 | |
|   if (ReadWrites.size() == 1 && Reads.size() == 0) {
 | |
|     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Find pointers with computable bounds. We are going to use this information
 | |
|   // to place a runtime bound check.
 | |
|   bool RT = true;
 | |
|   for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
 | |
|     if (hasComputableBounds(*I)) {
 | |
|       PtrRtCheck.insert(SE, TheLoop, *I);
 | |
|       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
 | |
|     } else {
 | |
|       RT = false;
 | |
|       break;
 | |
|     }
 | |
|   for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
 | |
|     if (hasComputableBounds(*I)) {
 | |
|       PtrRtCheck.insert(SE, TheLoop, *I);
 | |
|       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
 | |
|     } else {
 | |
|       RT = false;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Check that we did not collect too many pointers or found a
 | |
|   // unsizeable pointer.
 | |
|   if (!RT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
 | |
|     PtrRtCheck.reset();
 | |
|     RT = false;
 | |
|   }
 | |
| 
 | |
|   PtrRtCheck.Need = RT;
 | |
| 
 | |
|   if (RT) {
 | |
|     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
 | |
|   }
 | |
| 
 | |
|   // Now that the pointers are in two lists (Reads and ReadWrites), we
 | |
|   // can check that there are no conflicts between each of the writes and
 | |
|   // between the writes to the reads.
 | |
|   ValueSet WriteObjects;
 | |
|   ValueVector TempObjects;
 | |
| 
 | |
|   // Check that the read-writes do not conflict with other read-write
 | |
|   // pointers.
 | |
|   for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
 | |
|     GetUnderlyingObjects(*I, TempObjects, DL);
 | |
|     for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
 | |
|          it != e; ++it) {
 | |
|       if (!isIdentifiedObject(*it)) {
 | |
|         DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
 | |
|         return RT;
 | |
|       }
 | |
|       if (!WriteObjects.insert(*it)) {
 | |
|         DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
 | |
|               << **it <<"\n");
 | |
|         return RT;
 | |
|       }
 | |
|     }
 | |
|     TempObjects.clear();
 | |
|   }
 | |
| 
 | |
|   /// Check that the reads don't conflict with the read-writes.
 | |
|   for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
 | |
|     GetUnderlyingObjects(*I, TempObjects, DL);
 | |
|     for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
 | |
|          it != e; ++it) {
 | |
|       if (!isIdentifiedObject(*it)) {
 | |
|         DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
 | |
|         return RT;
 | |
|       }
 | |
|       if (WriteObjects.count(*it)) {
 | |
|         DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
 | |
|               << **it <<"\n");
 | |
|         return RT;
 | |
|       }
 | |
|     }
 | |
|     TempObjects.clear();
 | |
|   }
 | |
| 
 | |
|   // It is safe to vectorize and we don't need any runtime checks.
 | |
|   DEBUG(dbgs() << "LV: We don't need a runtime memory check.\n");
 | |
|   PtrRtCheck.reset();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
 | |
|                                                 ReductionKind Kind) {
 | |
|   if (Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Find the possible incoming reduction variable.
 | |
|   BasicBlock *BB = Phi->getParent();
 | |
|   int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
 | |
|   int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
 | |
|   Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);
 | |
| 
 | |
|   // ExitInstruction is the single value which is used outside the loop.
 | |
|   // We only allow for a single reduction value to be used outside the loop.
 | |
|   // This includes users of the reduction, variables (which form a cycle
 | |
|   // which ends in the phi node).
 | |
|   Instruction *ExitInstruction = 0;
 | |
| 
 | |
|   // Iter is our iterator. We start with the PHI node and scan for all of the
 | |
|   // users of this instruction. All users must be instructions which can be
 | |
|   // used as reduction variables (such as ADD). We may have a single
 | |
|   // out-of-block user. They cycle must end with the original PHI.
 | |
|   // Also, we can't have multiple block-local users.
 | |
|   Instruction *Iter = Phi;
 | |
|   while (true) {
 | |
|     // Any reduction instr must be of one of the allowed kinds.
 | |
|     if (!isReductionInstr(Iter, Kind))
 | |
|       return false;
 | |
| 
 | |
|     // Did we found a user inside this block ?
 | |
|     bool FoundInBlockUser = false;
 | |
|     // Did we reach the initial PHI node ?
 | |
|     bool FoundStartPHI = false;
 | |
| 
 | |
|     // If the instruction has no users then this is a broken
 | |
|     // chain and can't be a reduction variable.
 | |
|     if (Iter->use_empty())
 | |
|       return false;
 | |
| 
 | |
|     // For each of the *users* of iter.
 | |
|     for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
 | |
|          it != e; ++it) {
 | |
|       Instruction *U = cast<Instruction>(*it);
 | |
|       // We already know that the PHI is a user.
 | |
|       if (U == Phi) {
 | |
|         FoundStartPHI = true;
 | |
|         continue;
 | |
|       }
 | |
|       // Check if we found the exit user.
 | |
|       BasicBlock *Parent = U->getParent();
 | |
|       if (Parent != BB) {
 | |
|         // We must have a single exit instruction.
 | |
|         if (ExitInstruction != 0)
 | |
|           return false;
 | |
|         ExitInstruction = Iter;
 | |
|       }
 | |
|       // We can't have multiple inside users.
 | |
|       if (FoundInBlockUser)
 | |
|         return false;
 | |
|       FoundInBlockUser = true;
 | |
|       Iter = U;
 | |
|     }
 | |
| 
 | |
|     // We found a reduction var if we have reached the original
 | |
|     // phi node and we only have a single instruction with out-of-loop
 | |
|     // users.
 | |
|    if (FoundStartPHI && ExitInstruction) {
 | |
|      // This instruction is allowed to have out-of-loop users.
 | |
|      AllowedExit.insert(ExitInstruction);
 | |
| 
 | |
|      // Save the description of this reduction variable.
 | |
|      ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
 | |
|      Reductions[Phi] = RD;
 | |
|      return true;
 | |
|    }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool
 | |
| LoopVectorizationLegality::isReductionInstr(Instruction *I,
 | |
|                                             ReductionKind Kind) {
 | |
|     switch (I->getOpcode()) {
 | |
|     default:
 | |
|       return false;
 | |
|     case Instruction::PHI:
 | |
|       // possibly.
 | |
|       return true;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|       return Kind == IntegerAdd;
 | |
|     case Instruction::Mul:
 | |
|       return Kind == IntegerMult;
 | |
|     case Instruction::And:
 | |
|       return Kind == IntegerAnd;
 | |
|     case Instruction::Or:
 | |
|       return Kind == IntegerOr;
 | |
|     case Instruction::Xor:
 | |
|       return Kind == IntegerXor;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
 | |
|   Type *PhiTy = Phi->getType();
 | |
|   // We only handle integer and pointer inductions variables.
 | |
|   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | |
|     return false;
 | |
| 
 | |
|   // Check that the PHI is consecutive and starts at zero.
 | |
|   const SCEV *PhiScev = SE->getSCEV(Phi);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
|   if (!AR) {
 | |
|     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | |
|     return false;
 | |
|   }
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|   // Integer inductions need to have a stride of one.
 | |
|   if (PhiTy->isIntegerTy())
 | |
|     return Step->isOne();
 | |
| 
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!C) return false;
 | |
| 
 | |
|   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | |
|   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
 | |
|   return (C->getValue()->equalsInt(Size));
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
 | |
|   const SCEV *PhiScev = SE->getSCEV(Ptr);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
|   if (!AR)
 | |
|     return false;
 | |
| 
 | |
|   return AR->isAffine();
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| LoopVectorizationCostModel::findBestVectorizationFactor(unsigned VF) {
 | |
|   if (!VTTI) {
 | |
|     DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   float Cost = expectedCost(1);
 | |
|   unsigned Width = 1;
 | |
|   DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
 | |
|   for (unsigned i=2; i <= VF; i*=2) {
 | |
|     // Notice that the vector loop needs to be executed less times, so
 | |
|     // we need to divide the cost of the vector loops by the width of
 | |
|     // the vector elements.
 | |
|     float VectorCost = expectedCost(i) / (float)i;
 | |
|     DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
 | |
|           (int)VectorCost << ".\n");
 | |
|     if (VectorCost < Cost) {
 | |
|       Cost = VectorCost;
 | |
|       Width = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
 | |
|   return Width;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
 | |
|   // We can only estimate the cost of single basic block loops.
 | |
|   assert(1 == TheLoop->getNumBlocks() && "Too many blocks in loop");
 | |
| 
 | |
|   BasicBlock *BB = TheLoop->getHeader();
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   // For each instruction in the old loop.
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     Instruction *Inst = it;
 | |
|     unsigned C = getInstructionCost(Inst, VF);
 | |
|     Cost += C;
 | |
|     DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF "<< VF <<
 | |
|           " For instruction: "<< *Inst << "\n");
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
 | |
|   assert(VTTI && "Invalid vector target transformation info");
 | |
| 
 | |
|   // If we know that this instruction will remain uniform, check the cost of
 | |
|   // the scalar version.
 | |
|   if (Legal->isUniformAfterVectorization(I))
 | |
|     VF = 1;
 | |
| 
 | |
|   Type *RetTy = I->getType();
 | |
|   Type *VectorTy = ToVectorTy(RetTy, VF);
 | |
| 
 | |
| 
 | |
|   // TODO: We need to estimate the cost of intrinsic calls.
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::GetElementPtr:
 | |
|       // We mark this instruction as zero-cost because scalar GEPs are usually
 | |
|       // lowered to the intruction addressing mode. At the moment we don't
 | |
|       // generate vector geps.
 | |
|       return 0;
 | |
|     case Instruction::Br: {
 | |
|       return VTTI->getCFInstrCost(I->getOpcode());
 | |
|     }
 | |
|     case Instruction::PHI:
 | |
|       return 0;
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
 | |
|     }
 | |
|     case Instruction::Select: {
 | |
|       SelectInst *SI = cast<SelectInst>(I);
 | |
|       const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
 | |
|       bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
 | |
|       Type *CondTy = SI->getCondition()->getType();
 | |
|       if (ScalarCond)
 | |
|         CondTy = VectorType::get(CondTy, VF);
 | |
| 
 | |
|       return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
 | |
|     }
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp: {
 | |
|       Type *ValTy = I->getOperand(0)->getType();
 | |
|       VectorTy = ToVectorTy(ValTy, VF);
 | |
|       return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
 | |
|     }
 | |
|     case Instruction::Store: {
 | |
|       StoreInst *SI = cast<StoreInst>(I);
 | |
|       Type *ValTy = SI->getValueOperand()->getType();
 | |
|       VectorTy = ToVectorTy(ValTy, VF);
 | |
| 
 | |
|       if (VF == 1)
 | |
|         return VTTI->getMemoryOpCost(I->getOpcode(), ValTy,
 | |
|                               SI->getAlignment(), SI->getPointerAddressSpace());
 | |
| 
 | |
|       // Scalarized stores.
 | |
|       if (!Legal->isConsecutivePtr(SI->getPointerOperand())) {
 | |
|         unsigned Cost = 0;
 | |
|         unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
 | |
|                                               ValTy);
 | |
|         // The cost of extracting from the value vector.
 | |
|         Cost += VF * (ExtCost);
 | |
|         // The cost of the scalar stores.
 | |
|         Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
 | |
|                                            ValTy->getScalarType(),
 | |
|                                            SI->getAlignment(),
 | |
|                                            SI->getPointerAddressSpace());
 | |
|         return Cost;
 | |
|       }
 | |
| 
 | |
|       // Wide stores.
 | |
|       return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(),
 | |
|                                    SI->getPointerAddressSpace());
 | |
|     }
 | |
|     case Instruction::Load: {
 | |
|       LoadInst *LI = cast<LoadInst>(I);
 | |
| 
 | |
|       if (VF == 1)
 | |
|         return VTTI->getMemoryOpCost(I->getOpcode(), RetTy,
 | |
|                                      LI->getAlignment(),
 | |
|                                      LI->getPointerAddressSpace());
 | |
| 
 | |
|       // Scalarized loads.
 | |
|       if (!Legal->isConsecutivePtr(LI->getPointerOperand())) {
 | |
|         unsigned Cost = 0;
 | |
|         unsigned InCost = VTTI->getInstrCost(Instruction::InsertElement, RetTy);
 | |
|         // The cost of inserting the loaded value into the result vector.
 | |
|         Cost += VF * (InCost);
 | |
|         // The cost of the scalar stores.
 | |
|         Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(),
 | |
|                                            RetTy->getScalarType(),
 | |
|                                            LI->getAlignment(),
 | |
|                                            LI->getPointerAddressSpace());
 | |
|         return Cost;
 | |
|       }
 | |
| 
 | |
|       // Wide loads.
 | |
|       return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
 | |
|                                    LI->getPointerAddressSpace());
 | |
|     }
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
 | |
|       return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
 | |
|     }
 | |
|     default: {
 | |
|       // We are scalarizing the instruction. Return the cost of the scalar
 | |
|       // instruction, plus the cost of insert and extract into vector
 | |
|       // elements, times the vector width.
 | |
|       unsigned Cost = 0;
 | |
| 
 | |
|       bool IsVoid = RetTy->isVoidTy();
 | |
| 
 | |
|       unsigned InsCost = (IsVoid ? 0 :
 | |
|                           VTTI->getInstrCost(Instruction::InsertElement,
 | |
|                                              VectorTy));
 | |
| 
 | |
|       unsigned ExtCost = VTTI->getInstrCost(Instruction::ExtractElement,
 | |
|                                             VectorTy);
 | |
| 
 | |
|       // The cost of inserting the results plus extracting each one of the
 | |
|       // operands.
 | |
|       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
 | |
| 
 | |
|       // The cost of executing VF copies of the scalar instruction.
 | |
|       Cost += VF * VTTI->getInstrCost(I->getOpcode(), RetTy);
 | |
|       return Cost;
 | |
|     }
 | |
|   }// end of switch.
 | |
| }
 | |
| 
 | |
| Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
 | |
|   if (Scalar->isVoidTy() || VF == 1)
 | |
|     return Scalar;
 | |
|   return VectorType::get(Scalar, VF);
 | |
| }
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| char LoopVectorize::ID = 0;
 | |
| static const char lv_name[] = "Loop Vectorization";
 | |
| INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
|   Pass *createLoopVectorizePass() {
 | |
|     return new LoopVectorize();
 | |
|   }
 | |
| }
 | |
| 
 |