mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164768 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			303 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Dominators.cpp - Dominator Calculation -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements simple dominator construction algorithms for finding
 | |
| // forward dominators.  Postdominators are available in libanalysis, but are not
 | |
| // included in libvmcore, because it's not needed.  Forward dominators are
 | |
| // needed to support the Verifier pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/DominatorInternals.h"
 | |
| #include "llvm/Assembly/Writer.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Always verify dominfo if expensive checking is enabled.
 | |
| #ifdef XDEBUG
 | |
| static bool VerifyDomInfo = true;
 | |
| #else
 | |
| static bool VerifyDomInfo = false;
 | |
| #endif
 | |
| static cl::opt<bool,true>
 | |
| VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
 | |
|                cl::desc("Verify dominator info (time consuming)"));
 | |
| 
 | |
| bool BasicBlockEdge::isSingleEdge() const {
 | |
|   const TerminatorInst *TI = Start->getTerminator();
 | |
|   unsigned NumEdgesToEnd = 0;
 | |
|   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
 | |
|     if (TI->getSuccessor(i) == End)
 | |
|       ++NumEdgesToEnd;
 | |
|     if (NumEdgesToEnd >= 2)
 | |
|       return false;
 | |
|   }
 | |
|   assert(NumEdgesToEnd == 1);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  DominatorTree Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Provide public access to DominatorTree information.  Implementation details
 | |
| // can be found in DominatorInternals.h.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
 | |
| TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
 | |
| 
 | |
| char DominatorTree::ID = 0;
 | |
| INITIALIZE_PASS(DominatorTree, "domtree",
 | |
|                 "Dominator Tree Construction", true, true)
 | |
| 
 | |
| bool DominatorTree::runOnFunction(Function &F) {
 | |
|   DT->recalculate(F);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void DominatorTree::verifyAnalysis() const {
 | |
|   if (!VerifyDomInfo) return;
 | |
| 
 | |
|   Function &F = *getRoot()->getParent();
 | |
| 
 | |
|   DominatorTree OtherDT;
 | |
|   OtherDT.getBase().recalculate(F);
 | |
|   if (compare(OtherDT)) {
 | |
|     errs() << "DominatorTree is not up to date!\nComputed:\n";
 | |
|     print(errs());
 | |
|     errs() << "\nActual:\n";
 | |
|     OtherDT.print(errs());
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void DominatorTree::print(raw_ostream &OS, const Module *) const {
 | |
|   DT->print(OS);
 | |
| }
 | |
| 
 | |
| // dominates - Return true if Def dominates a use in User. This performs
 | |
| // the special checks necessary if Def and User are in the same basic block.
 | |
| // Note that Def doesn't dominate a use in Def itself!
 | |
| bool DominatorTree::dominates(const Instruction *Def,
 | |
|                               const Instruction *User) const {
 | |
|   const BasicBlock *UseBB = User->getParent();
 | |
|   const BasicBlock *DefBB = Def->getParent();
 | |
| 
 | |
|   // Any unreachable use is dominated, even if Def == User.
 | |
|   if (!isReachableFromEntry(UseBB))
 | |
|     return true;
 | |
| 
 | |
|   // Unreachable definitions don't dominate anything.
 | |
|   if (!isReachableFromEntry(DefBB))
 | |
|     return false;
 | |
| 
 | |
|   // An instruction doesn't dominate a use in itself.
 | |
|   if (Def == User)
 | |
|     return false;
 | |
| 
 | |
|   // The value defined by an invoke dominates an instruction only if
 | |
|   // it dominates every instruction in UseBB.
 | |
|   // A PHI is dominated only if the instruction dominates every possible use
 | |
|   // in the UseBB.
 | |
|   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
 | |
|     return dominates(Def, UseBB);
 | |
| 
 | |
|   if (DefBB != UseBB)
 | |
|     return dominates(DefBB, UseBB);
 | |
| 
 | |
|   // Loop through the basic block until we find Def or User.
 | |
|   BasicBlock::const_iterator I = DefBB->begin();
 | |
|   for (; &*I != Def && &*I != User; ++I)
 | |
|     /*empty*/;
 | |
| 
 | |
|   return &*I == Def;
 | |
| }
 | |
| 
 | |
| // true if Def would dominate a use in any instruction in UseBB.
 | |
| // note that dominates(Def, Def->getParent()) is false.
 | |
| bool DominatorTree::dominates(const Instruction *Def,
 | |
|                               const BasicBlock *UseBB) const {
 | |
|   const BasicBlock *DefBB = Def->getParent();
 | |
| 
 | |
|   // Any unreachable use is dominated, even if DefBB == UseBB.
 | |
|   if (!isReachableFromEntry(UseBB))
 | |
|     return true;
 | |
| 
 | |
|   // Unreachable definitions don't dominate anything.
 | |
|   if (!isReachableFromEntry(DefBB))
 | |
|     return false;
 | |
| 
 | |
|   if (DefBB == UseBB)
 | |
|     return false;
 | |
| 
 | |
|   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
 | |
|   if (!II)
 | |
|     return dominates(DefBB, UseBB);
 | |
| 
 | |
|   // Invoke results are only usable in the normal destination, not in the
 | |
|   // exceptional destination.
 | |
|   BasicBlock *NormalDest = II->getNormalDest();
 | |
|   BasicBlockEdge E(DefBB, NormalDest);
 | |
|   return dominates(E, UseBB);
 | |
| }
 | |
| 
 | |
| bool DominatorTree::dominates(const BasicBlockEdge &BBE,
 | |
|                               const BasicBlock *UseBB) const {
 | |
|   // Assert that we have a single edge. We could handle them by simply
 | |
|   // returning false, but since isSingleEdge is linear on the number of
 | |
|   // edges, the callers can normally handle them more efficiently.
 | |
|   assert(BBE.isSingleEdge());
 | |
| 
 | |
|   // If the BB the edge ends in doesn't dominate the use BB, then the
 | |
|   // edge also doesn't.
 | |
|   const BasicBlock *Start = BBE.getStart();
 | |
|   const BasicBlock *End = BBE.getEnd();
 | |
|   if (!dominates(End, UseBB))
 | |
|     return false;
 | |
| 
 | |
|   // Simple case: if the end BB has a single predecessor, the fact that it
 | |
|   // dominates the use block implies that the edge also does.
 | |
|   if (End->getSinglePredecessor())
 | |
|     return true;
 | |
| 
 | |
|   // The normal edge from the invoke is critical. Conceptually, what we would
 | |
|   // like to do is split it and check if the new block dominates the use.
 | |
|   // With X being the new block, the graph would look like:
 | |
|   //
 | |
|   //        DefBB
 | |
|   //          /\      .  .
 | |
|   //         /  \     .  .
 | |
|   //        /    \    .  .
 | |
|   //       /      \   |  |
 | |
|   //      A        X  B  C
 | |
|   //      |         \ | /
 | |
|   //      .          \|/
 | |
|   //      .      NormalDest
 | |
|   //      .
 | |
|   //
 | |
|   // Given the definition of dominance, NormalDest is dominated by X iff X
 | |
|   // dominates all of NormalDest's predecessors (X, B, C in the example). X
 | |
|   // trivially dominates itself, so we only have to find if it dominates the
 | |
|   // other predecessors. Since the only way out of X is via NormalDest, X can
 | |
|   // only properly dominate a node if NormalDest dominates that node too.
 | |
|   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
 | |
|        PI != E; ++PI) {
 | |
|     const BasicBlock *BB = *PI;
 | |
|     if (BB == Start)
 | |
|       continue;
 | |
| 
 | |
|     if (!dominates(End, BB))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool DominatorTree::dominates(const BasicBlockEdge &BBE,
 | |
|                               const Use &U) const {
 | |
|   // Assert that we have a single edge. We could handle them by simply
 | |
|   // returning false, but since isSingleEdge is linear on the number of
 | |
|   // edges, the callers can normally handle them more efficiently.
 | |
|   assert(BBE.isSingleEdge());
 | |
| 
 | |
|   Instruction *UserInst = cast<Instruction>(U.getUser());
 | |
|   // A PHI in the end of the edge is dominated by it.
 | |
|   PHINode *PN = dyn_cast<PHINode>(UserInst);
 | |
|   if (PN && PN->getParent() == BBE.getEnd() &&
 | |
|       PN->getIncomingBlock(U) == BBE.getStart())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise use the edge-dominates-block query, which
 | |
|   // handles the crazy critical edge cases properly.
 | |
|   const BasicBlock *UseBB;
 | |
|   if (PN)
 | |
|     UseBB = PN->getIncomingBlock(U);
 | |
|   else
 | |
|     UseBB = UserInst->getParent();
 | |
|   return dominates(BBE, UseBB);
 | |
| }
 | |
| 
 | |
| bool DominatorTree::dominates(const Instruction *Def,
 | |
|                               const Use &U) const {
 | |
|   Instruction *UserInst = cast<Instruction>(U.getUser());
 | |
|   const BasicBlock *DefBB = Def->getParent();
 | |
| 
 | |
|   // Determine the block in which the use happens. PHI nodes use
 | |
|   // their operands on edges; simulate this by thinking of the use
 | |
|   // happening at the end of the predecessor block.
 | |
|   const BasicBlock *UseBB;
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
 | |
|     UseBB = PN->getIncomingBlock(U);
 | |
|   else
 | |
|     UseBB = UserInst->getParent();
 | |
| 
 | |
|   // Any unreachable use is dominated, even if Def == User.
 | |
|   if (!isReachableFromEntry(UseBB))
 | |
|     return true;
 | |
| 
 | |
|   // Unreachable definitions don't dominate anything.
 | |
|   if (!isReachableFromEntry(DefBB))
 | |
|     return false;
 | |
| 
 | |
|   // Invoke instructions define their return values on the edges
 | |
|   // to their normal successors, so we have to handle them specially.
 | |
|   // Among other things, this means they don't dominate anything in
 | |
|   // their own block, except possibly a phi, so we don't need to
 | |
|   // walk the block in any case.
 | |
|   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
 | |
|     BasicBlock *NormalDest = II->getNormalDest();
 | |
|     BasicBlockEdge E(DefBB, NormalDest);
 | |
|     return dominates(E, U);
 | |
|   }
 | |
| 
 | |
|   // If the def and use are in different blocks, do a simple CFG dominator
 | |
|   // tree query.
 | |
|   if (DefBB != UseBB)
 | |
|     return dominates(DefBB, UseBB);
 | |
| 
 | |
|   // Ok, def and use are in the same block. If the def is an invoke, it
 | |
|   // doesn't dominate anything in the block. If it's a PHI, it dominates
 | |
|   // everything in the block.
 | |
|   if (isa<PHINode>(UserInst))
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise, just loop through the basic block until we find Def or User.
 | |
|   BasicBlock::const_iterator I = DefBB->begin();
 | |
|   for (; &*I != Def && &*I != UserInst; ++I)
 | |
|     /*empty*/;
 | |
| 
 | |
|   return &*I != UserInst;
 | |
| }
 | |
| 
 | |
| bool DominatorTree::isReachableFromEntry(const Use &U) const {
 | |
|   Instruction *I = dyn_cast<Instruction>(U.getUser());
 | |
| 
 | |
|   // ConstantExprs aren't really reachable from the entry block, but they
 | |
|   // don't need to be treated like unreachable code either.
 | |
|   if (!I) return true;
 | |
| 
 | |
|   // PHI nodes use their operands on their incoming edges.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|     return isReachableFromEntry(PN->getIncomingBlock(U));
 | |
| 
 | |
|   // Everything else uses their operands in their own block.
 | |
|   return isReachableFromEntry(I->getParent());
 | |
| }
 |