mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	renamed since they were last spiffed up, or they just never had proper comments in the first place. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13148 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2904 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2904 lines
		
	
	
		
			119 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- SparcV9InstrSelection.cpp -----------------------------------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
//  BURS instruction selection for SPARC V9 architecture.      
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/CodeGen/InstrForest.h"
 | 
						|
#include "llvm/CodeGen/InstrSelection.h"
 | 
						|
#include "llvm/CodeGen/MachineCodeForInstruction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "MachineInstrAnnot.h"
 | 
						|
#include "SparcV9InstrSelectionSupport.h"
 | 
						|
#include "SparcV9Internals.h"
 | 
						|
#include "SparcV9RegClassInfo.h"
 | 
						|
#include "SparcV9RegInfo.h"
 | 
						|
#include "Support/MathExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
static inline void Add3OperandInstr(unsigned Opcode, InstructionNode* Node,
 | 
						|
                                    std::vector<MachineInstr*>& mvec) {
 | 
						|
  mvec.push_back(BuildMI(Opcode, 3).addReg(Node->leftChild()->getValue())
 | 
						|
                                   .addReg(Node->rightChild()->getValue())
 | 
						|
                                   .addRegDef(Node->getValue()));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Function: FoldGetElemChain
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//   Fold a chain of GetElementPtr instructions containing only
 | 
						|
//   constant offsets into an equivalent (Pointer, IndexVector) pair.
 | 
						|
//   Returns the pointer Value, and stores the resulting IndexVector
 | 
						|
//   in argument chainIdxVec. This is a helper function for
 | 
						|
//   FoldConstantIndices that does the actual folding. 
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
 | 
						|
// Check for a constant 0.
 | 
						|
static inline bool
 | 
						|
IsZero(Value* idx)
 | 
						|
{
 | 
						|
  return (idx == ConstantSInt::getNullValue(idx->getType()));
 | 
						|
}
 | 
						|
 | 
						|
static Value*
 | 
						|
FoldGetElemChain(InstrTreeNode* ptrNode, std::vector<Value*>& chainIdxVec,
 | 
						|
                 bool lastInstHasLeadingNonZero)
 | 
						|
{
 | 
						|
  InstructionNode* gepNode = dyn_cast<InstructionNode>(ptrNode);
 | 
						|
  GetElementPtrInst* gepInst =
 | 
						|
    dyn_cast_or_null<GetElementPtrInst>(gepNode ? gepNode->getInstruction() :0);
 | 
						|
 | 
						|
  // ptr value is not computed in this tree or ptr value does not come from GEP
 | 
						|
  // instruction
 | 
						|
  if (gepInst == NULL)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  // Return NULL if we don't fold any instructions in.
 | 
						|
  Value* ptrVal = NULL;
 | 
						|
 | 
						|
  // Now chase the chain of getElementInstr instructions, if any.
 | 
						|
  // Check for any non-constant indices and stop there.
 | 
						|
  // Also, stop if the first index of child is a non-zero array index
 | 
						|
  // and the last index of the current node is a non-array index:
 | 
						|
  // in that case, a non-array declared type is being accessed as an array
 | 
						|
  // which is not type-safe, but could be legal.
 | 
						|
  // 
 | 
						|
  InstructionNode* ptrChild = gepNode;
 | 
						|
  while (ptrChild && (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
 | 
						|
                      ptrChild->getOpLabel() == GetElemPtrIdx))
 | 
						|
  {
 | 
						|
    // Child is a GetElemPtr instruction
 | 
						|
    gepInst = cast<GetElementPtrInst>(ptrChild->getValue());
 | 
						|
    User::op_iterator OI, firstIdx = gepInst->idx_begin();
 | 
						|
    User::op_iterator lastIdx = gepInst->idx_end();
 | 
						|
    bool allConstantOffsets = true;
 | 
						|
 | 
						|
    // The first index of every GEP must be an array index.
 | 
						|
    assert((*firstIdx)->getType() == Type::LongTy &&
 | 
						|
           "INTERNAL ERROR: Structure index for a pointer type!");
 | 
						|
 | 
						|
    // If the last instruction had a leading non-zero index, check if the
 | 
						|
    // current one references a sequential (i.e., indexable) type.
 | 
						|
    // If not, the code is not type-safe and we would create an illegal GEP
 | 
						|
    // by folding them, so don't fold any more instructions.
 | 
						|
    // 
 | 
						|
    if (lastInstHasLeadingNonZero)
 | 
						|
      if (! isa<SequentialType>(gepInst->getType()->getElementType()))
 | 
						|
        break;   // cannot fold in any preceding getElementPtr instrs.
 | 
						|
 | 
						|
    // Check that all offsets are constant for this instruction
 | 
						|
    for (OI = firstIdx; allConstantOffsets && OI != lastIdx; ++OI)
 | 
						|
      allConstantOffsets = isa<ConstantInt>(*OI);
 | 
						|
 | 
						|
    if (allConstantOffsets) {
 | 
						|
      // Get pointer value out of ptrChild.
 | 
						|
      ptrVal = gepInst->getPointerOperand();
 | 
						|
 | 
						|
      // Insert its index vector at the start, skipping any leading [0]
 | 
						|
      // Remember the old size to check if anything was inserted.
 | 
						|
      unsigned oldSize = chainIdxVec.size();
 | 
						|
      int firstIsZero = IsZero(*firstIdx);
 | 
						|
      chainIdxVec.insert(chainIdxVec.begin(), firstIdx + firstIsZero, lastIdx);
 | 
						|
 | 
						|
      // Remember if it has leading zero index: it will be discarded later.
 | 
						|
      if (oldSize < chainIdxVec.size())
 | 
						|
        lastInstHasLeadingNonZero = !firstIsZero;
 | 
						|
 | 
						|
      // Mark the folded node so no code is generated for it.
 | 
						|
      ((InstructionNode*) ptrChild)->markFoldedIntoParent();
 | 
						|
 | 
						|
      // Get the previous GEP instruction and continue trying to fold
 | 
						|
      ptrChild = dyn_cast<InstructionNode>(ptrChild->leftChild());
 | 
						|
    } else // cannot fold this getElementPtr instr. or any preceding ones
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the first getElementPtr instruction had a leading [0], add it back.
 | 
						|
  // Note that this instruction is the *last* one that was successfully
 | 
						|
  // folded *and* contributed any indices, in the loop above.
 | 
						|
  // 
 | 
						|
  if (ptrVal && ! lastInstHasLeadingNonZero) 
 | 
						|
    chainIdxVec.insert(chainIdxVec.begin(), ConstantSInt::get(Type::LongTy,0));
 | 
						|
 | 
						|
  return ptrVal;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Function: GetGEPInstArgs
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//   Helper function for GetMemInstArgs that handles the final getElementPtr
 | 
						|
//   instruction used by (or same as) the memory operation.
 | 
						|
//   Extracts the indices of the current instruction and tries to fold in
 | 
						|
//   preceding ones if all indices of the current one are constant.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
static Value *
 | 
						|
GetGEPInstArgs(InstructionNode* gepNode,
 | 
						|
               std::vector<Value*>& idxVec,
 | 
						|
               bool& allConstantIndices)
 | 
						|
{
 | 
						|
  allConstantIndices = true;
 | 
						|
  GetElementPtrInst* gepI = cast<GetElementPtrInst>(gepNode->getInstruction());
 | 
						|
 | 
						|
  // Default pointer is the one from the current instruction.
 | 
						|
  Value* ptrVal = gepI->getPointerOperand();
 | 
						|
  InstrTreeNode* ptrChild = gepNode->leftChild(); 
 | 
						|
 | 
						|
  // Extract the index vector of the GEP instruction.
 | 
						|
  // If all indices are constant and first index is zero, try to fold
 | 
						|
  // in preceding GEPs with all constant indices.
 | 
						|
  for (User::op_iterator OI=gepI->idx_begin(),  OE=gepI->idx_end();
 | 
						|
       allConstantIndices && OI != OE; ++OI)
 | 
						|
    if (! isa<Constant>(*OI))
 | 
						|
      allConstantIndices = false;     // note: this also terminates loop!
 | 
						|
 | 
						|
  // If we have only constant indices, fold chains of constant indices
 | 
						|
  // in this and any preceding GetElemPtr instructions.
 | 
						|
  bool foldedGEPs = false;
 | 
						|
  bool leadingNonZeroIdx = gepI && ! IsZero(*gepI->idx_begin());
 | 
						|
  if (allConstantIndices)
 | 
						|
    if (Value* newPtr = FoldGetElemChain(ptrChild, idxVec, leadingNonZeroIdx)) {
 | 
						|
      ptrVal = newPtr;
 | 
						|
      foldedGEPs = true;
 | 
						|
    }
 | 
						|
 | 
						|
  // Append the index vector of the current instruction.
 | 
						|
  // Skip the leading [0] index if preceding GEPs were folded into this.
 | 
						|
  idxVec.insert(idxVec.end(),
 | 
						|
                gepI->idx_begin() + (foldedGEPs && !leadingNonZeroIdx),
 | 
						|
                gepI->idx_end());
 | 
						|
 | 
						|
  return ptrVal;
 | 
						|
}
 | 
						|
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
// Function: GetMemInstArgs
 | 
						|
// 
 | 
						|
// Purpose:
 | 
						|
//   Get the pointer value and the index vector for a memory operation
 | 
						|
//   (GetElementPtr, Load, or Store).  If all indices of the given memory
 | 
						|
//   operation are constant, fold in constant indices in a chain of
 | 
						|
//   preceding GetElementPtr instructions (if any), and return the
 | 
						|
//   pointer value of the first instruction in the chain.
 | 
						|
//   All folded instructions are marked so no code is generated for them.
 | 
						|
//
 | 
						|
// Return values:
 | 
						|
//   Returns the pointer Value to use.
 | 
						|
//   Returns the resulting IndexVector in idxVec.
 | 
						|
//   Returns true/false in allConstantIndices if all indices are/aren't const.
 | 
						|
//---------------------------------------------------------------------------
 | 
						|
 | 
						|
static Value*
 | 
						|
GetMemInstArgs(InstructionNode* memInstrNode,
 | 
						|
               std::vector<Value*>& idxVec,
 | 
						|
               bool& allConstantIndices)
 | 
						|
{
 | 
						|
  allConstantIndices = false;
 | 
						|
  Instruction* memInst = memInstrNode->getInstruction();
 | 
						|
  assert(idxVec.size() == 0 && "Need empty vector to return indices");
 | 
						|
 | 
						|
  // If there is a GetElemPtr instruction to fold in to this instr,
 | 
						|
  // it must be in the left child for Load and GetElemPtr, and in the
 | 
						|
  // right child for Store instructions.
 | 
						|
  InstrTreeNode* ptrChild = (memInst->getOpcode() == Instruction::Store
 | 
						|
                             ? memInstrNode->rightChild()
 | 
						|
                             : memInstrNode->leftChild()); 
 | 
						|
  
 | 
						|
  // Default pointer is the one from the current instruction.
 | 
						|
  Value* ptrVal = ptrChild->getValue(); 
 | 
						|
 | 
						|
  // Find the "last" GetElemPtr instruction: this one or the immediate child.
 | 
						|
  // There will be none if this is a load or a store from a scalar pointer.
 | 
						|
  InstructionNode* gepNode = NULL;
 | 
						|
  if (isa<GetElementPtrInst>(memInst))
 | 
						|
    gepNode = memInstrNode;
 | 
						|
  else if (isa<InstructionNode>(ptrChild) && isa<GetElementPtrInst>(ptrVal)) {
 | 
						|
    // Child of load/store is a GEP and memInst is its only use.
 | 
						|
    // Use its indices and mark it as folded.
 | 
						|
    gepNode = cast<InstructionNode>(ptrChild);
 | 
						|
    gepNode->markFoldedIntoParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are no indices, return the current pointer.
 | 
						|
  // Else extract the pointer from the GEP and fold the indices.
 | 
						|
  return gepNode ? GetGEPInstArgs(gepNode, idxVec, allConstantIndices)
 | 
						|
                 : ptrVal;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//************************ Internal Functions ******************************/
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBprInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode;
 | 
						|
  
 | 
						|
  Instruction* setCCInstr =
 | 
						|
    ((InstructionNode*) instrNode->leftChild())->getInstruction();
 | 
						|
  
 | 
						|
  switch(setCCInstr->getOpcode())
 | 
						|
  {
 | 
						|
  case Instruction::SetEQ: opCode = V9::BRZ;   break;
 | 
						|
  case Instruction::SetNE: opCode = V9::BRNZ;  break;
 | 
						|
  case Instruction::SetLE: opCode = V9::BRLEZ; break;
 | 
						|
  case Instruction::SetGE: opCode = V9::BRGEZ; break;
 | 
						|
  case Instruction::SetLT: opCode = V9::BRLZ;  break;
 | 
						|
  case Instruction::SetGT: opCode = V9::BRGZ;  break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unrecognized VM instruction!");
 | 
						|
    opCode = V9::INVALID_OPCODE;
 | 
						|
    break; 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBpccInstruction(const InstructionNode* instrNode,
 | 
						|
                      const BinaryOperator* setCCInstr)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
 | 
						|
  
 | 
						|
  if (isSigned) {
 | 
						|
    switch(setCCInstr->getOpcode())
 | 
						|
    {
 | 
						|
    case Instruction::SetEQ: opCode = V9::BE;  break;
 | 
						|
    case Instruction::SetNE: opCode = V9::BNE; break;
 | 
						|
    case Instruction::SetLE: opCode = V9::BLE; break;
 | 
						|
    case Instruction::SetGE: opCode = V9::BGE; break;
 | 
						|
    case Instruction::SetLT: opCode = V9::BL;  break;
 | 
						|
    case Instruction::SetGT: opCode = V9::BG;  break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unrecognized VM instruction!");
 | 
						|
      break; 
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch(setCCInstr->getOpcode())
 | 
						|
    {
 | 
						|
    case Instruction::SetEQ: opCode = V9::BE;   break;
 | 
						|
    case Instruction::SetNE: opCode = V9::BNE;  break;
 | 
						|
    case Instruction::SetLE: opCode = V9::BLEU; break;
 | 
						|
    case Instruction::SetGE: opCode = V9::BCC;  break;
 | 
						|
    case Instruction::SetLT: opCode = V9::BCS;  break;
 | 
						|
    case Instruction::SetGT: opCode = V9::BGU;  break;
 | 
						|
    default:
 | 
						|
      assert(0 && "Unrecognized VM instruction!");
 | 
						|
      break; 
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBFpccInstruction(const InstructionNode* instrNode,
 | 
						|
                       const BinaryOperator* setCCInstr)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  switch(setCCInstr->getOpcode())
 | 
						|
  {
 | 
						|
  case Instruction::SetEQ: opCode = V9::FBE;  break;
 | 
						|
  case Instruction::SetNE: opCode = V9::FBNE; break;
 | 
						|
  case Instruction::SetLE: opCode = V9::FBLE; break;
 | 
						|
  case Instruction::SetGE: opCode = V9::FBGE; break;
 | 
						|
  case Instruction::SetLT: opCode = V9::FBL;  break;
 | 
						|
  case Instruction::SetGT: opCode = V9::FBG;  break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unrecognized VM instruction!");
 | 
						|
    break; 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Create a unique TmpInstruction for a boolean value,
 | 
						|
// representing the CC register used by a branch on that value.
 | 
						|
// For now, hack this using a little static cache of TmpInstructions.
 | 
						|
// Eventually the entire BURG instruction selection should be put
 | 
						|
// into a separate class that can hold such information.
 | 
						|
// The static cache is not too bad because the memory for these
 | 
						|
// TmpInstructions will be freed along with the rest of the Function anyway.
 | 
						|
// 
 | 
						|
static TmpInstruction*
 | 
						|
GetTmpForCC(Value* boolVal, const Function *F, const Type* ccType,
 | 
						|
            MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  typedef hash_map<const Value*, TmpInstruction*> BoolTmpCache;
 | 
						|
  static BoolTmpCache boolToTmpCache;     // Map boolVal -> TmpInstruction*
 | 
						|
  static const Function *lastFunction = 0;// Use to flush cache between funcs
 | 
						|
  
 | 
						|
  assert(boolVal->getType() == Type::BoolTy && "Weird but ok! Delete assert");
 | 
						|
  
 | 
						|
  if (lastFunction != F) {
 | 
						|
    lastFunction = F;
 | 
						|
    boolToTmpCache.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Look for tmpI and create a new one otherwise.  The new value is
 | 
						|
  // directly written to map using the ref returned by operator[].
 | 
						|
  TmpInstruction*& tmpI = boolToTmpCache[boolVal];
 | 
						|
  if (tmpI == NULL)
 | 
						|
    tmpI = new TmpInstruction(mcfi, ccType, boolVal);
 | 
						|
  
 | 
						|
  return tmpI;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseBccInstruction(const InstructionNode* instrNode,
 | 
						|
                     const Type*& setCCType)
 | 
						|
{
 | 
						|
  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
 | 
						|
  assert(setCCNode->getOpLabel() == SetCCOp);
 | 
						|
  BinaryOperator* setCCInstr =cast<BinaryOperator>(setCCNode->getInstruction());
 | 
						|
  setCCType = setCCInstr->getOperand(0)->getType();
 | 
						|
  
 | 
						|
  if (setCCType->isFloatingPoint())
 | 
						|
    return ChooseBFpccInstruction(instrNode, setCCInstr);
 | 
						|
  else
 | 
						|
    return ChooseBpccInstruction(instrNode, setCCInstr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// WARNING: since this function has only one caller, it always returns
 | 
						|
// the opcode that expects an immediate and a register. If this function
 | 
						|
// is ever used in cases where an opcode that takes two registers is required,
 | 
						|
// then modify this function and use convertOpcodeFromRegToImm() where required.
 | 
						|
//
 | 
						|
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
 | 
						|
// new cases of opcodes.
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseMovFpcciInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  switch(instrNode->getInstruction()->getOpcode())
 | 
						|
  {
 | 
						|
  case Instruction::SetEQ: opCode = V9::MOVFEi;  break;
 | 
						|
  case Instruction::SetNE: opCode = V9::MOVFNEi; break;
 | 
						|
  case Instruction::SetLE: opCode = V9::MOVFLEi; break;
 | 
						|
  case Instruction::SetGE: opCode = V9::MOVFGEi; break;
 | 
						|
  case Instruction::SetLT: opCode = V9::MOVFLi;  break;
 | 
						|
  case Instruction::SetGT: opCode = V9::MOVFGi;  break;
 | 
						|
  default:
 | 
						|
    assert(0 && "Unrecognized VM instruction!");
 | 
						|
    break; 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ChooseMovpcciForSetCC -- Choose a conditional-move instruction
 | 
						|
// based on the type of SetCC operation.
 | 
						|
// 
 | 
						|
// WARNING: since this function has only one caller, it always returns
 | 
						|
// the opcode that expects an immediate and a register. If this function
 | 
						|
// is ever used in cases where an opcode that takes two registers is required,
 | 
						|
// then modify this function and use convertOpcodeFromRegToImm() where required.
 | 
						|
//
 | 
						|
// It will be necessary to expand convertOpcodeFromRegToImm() to handle the
 | 
						|
// new cases of opcodes.
 | 
						|
// 
 | 
						|
static MachineOpCode
 | 
						|
ChooseMovpcciForSetCC(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
 | 
						|
  const Type* opType = instrNode->leftChild()->getValue()->getType();
 | 
						|
  assert(opType->isIntegral() || isa<PointerType>(opType));
 | 
						|
  bool noSign = opType->isUnsigned() || isa<PointerType>(opType);
 | 
						|
  
 | 
						|
  switch(instrNode->getInstruction()->getOpcode())
 | 
						|
  {
 | 
						|
  case Instruction::SetEQ: opCode = V9::MOVEi;                        break;
 | 
						|
  case Instruction::SetLE: opCode = noSign? V9::MOVLEUi : V9::MOVLEi; break;
 | 
						|
  case Instruction::SetGE: opCode = noSign? V9::MOVCCi  : V9::MOVGEi; break;
 | 
						|
  case Instruction::SetLT: opCode = noSign? V9::MOVCSi  : V9::MOVLi;  break;
 | 
						|
  case Instruction::SetGT: opCode = noSign? V9::MOVGUi  : V9::MOVGi;  break;
 | 
						|
  case Instruction::SetNE: opCode = V9::MOVNEi;                       break;
 | 
						|
  default: assert(0 && "Unrecognized LLVM instr!"); break; 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// ChooseMovpregiForSetCC -- Choose a conditional-move-on-register-value
 | 
						|
// instruction based on the type of SetCC operation.  These instructions
 | 
						|
// compare a register with 0 and perform the move is the comparison is true.
 | 
						|
// 
 | 
						|
// WARNING: like the previous function, this function it always returns
 | 
						|
// the opcode that expects an immediate and a register.  See above.
 | 
						|
// 
 | 
						|
static MachineOpCode
 | 
						|
ChooseMovpregiForSetCC(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  switch(instrNode->getInstruction()->getOpcode())
 | 
						|
  {
 | 
						|
  case Instruction::SetEQ: opCode = V9::MOVRZi;  break;
 | 
						|
  case Instruction::SetLE: opCode = V9::MOVRLEZi; break;
 | 
						|
  case Instruction::SetGE: opCode = V9::MOVRGEZi; break;
 | 
						|
  case Instruction::SetLT: opCode = V9::MOVRLZi;  break;
 | 
						|
  case Instruction::SetGT: opCode = V9::MOVRGZi;  break;
 | 
						|
  case Instruction::SetNE: opCode = V9::MOVRNZi; break;
 | 
						|
  default: assert(0 && "Unrecognized VM instr!"); break; 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode
 | 
						|
ChooseConvertToFloatInstr(const TargetMachine& target,
 | 
						|
                          OpLabel vopCode, const Type* opType)
 | 
						|
{
 | 
						|
  assert((vopCode == ToFloatTy || vopCode == ToDoubleTy) &&
 | 
						|
         "Unrecognized convert-to-float opcode!");
 | 
						|
  assert((opType->isIntegral() || opType->isFloatingPoint() ||
 | 
						|
          isa<PointerType>(opType))
 | 
						|
         && "Trying to convert a non-scalar type to FLOAT/DOUBLE?");
 | 
						|
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
 | 
						|
  unsigned opSize = target.getTargetData().getTypeSize(opType);
 | 
						|
 | 
						|
  if (opType == Type::FloatTy)
 | 
						|
    opCode = (vopCode == ToFloatTy? V9::NOP : V9::FSTOD);
 | 
						|
  else if (opType == Type::DoubleTy)
 | 
						|
    opCode = (vopCode == ToFloatTy? V9::FDTOS : V9::NOP);
 | 
						|
  else if (opSize <= 4)
 | 
						|
    opCode = (vopCode == ToFloatTy? V9::FITOS : V9::FITOD);
 | 
						|
  else {
 | 
						|
    assert(opSize == 8 && "Unrecognized type size > 4 and < 8!");
 | 
						|
    opCode = (vopCode == ToFloatTy? V9::FXTOS : V9::FXTOD);
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseConvertFPToIntInstr(const TargetMachine& target,
 | 
						|
                          const Type* destType, const Type* opType)
 | 
						|
{
 | 
						|
  assert((opType == Type::FloatTy || opType == Type::DoubleTy)
 | 
						|
         && "This function should only be called for FLOAT or DOUBLE");
 | 
						|
  assert((destType->isIntegral() || isa<PointerType>(destType))
 | 
						|
         && "Trying to convert FLOAT/DOUBLE to a non-scalar type?");
 | 
						|
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
 | 
						|
  unsigned destSize = target.getTargetData().getTypeSize(destType);
 | 
						|
 | 
						|
  if (destType == Type::UIntTy)
 | 
						|
    assert(destType != Type::UIntTy && "Expand FP-to-uint beforehand.");
 | 
						|
  else if (destSize <= 4)
 | 
						|
    opCode = (opType == Type::FloatTy)? V9::FSTOI : V9::FDTOI;
 | 
						|
  else {
 | 
						|
    assert(destSize == 8 && "Unrecognized type size > 4 and < 8!");
 | 
						|
    opCode = (opType == Type::FloatTy)? V9::FSTOX : V9::FDTOX;
 | 
						|
  }
 | 
						|
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
static MachineInstr*
 | 
						|
CreateConvertFPToIntInstr(const TargetMachine& target,
 | 
						|
                          Value* srcVal,
 | 
						|
                          Value* destVal,
 | 
						|
                          const Type* destType)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = ChooseConvertFPToIntInstr(target, destType,
 | 
						|
                                                   srcVal->getType());
 | 
						|
  assert(opCode != V9::INVALID_OPCODE && "Expected to need conversion!");
 | 
						|
  return BuildMI(opCode, 2).addReg(srcVal).addRegDef(destVal);
 | 
						|
}
 | 
						|
 | 
						|
// CreateCodeToConvertFloatToInt: Convert FP value to signed or unsigned integer
 | 
						|
// The FP value must be converted to the dest type in an FP register,
 | 
						|
// and the result is then copied from FP to int register via memory.
 | 
						|
// SPARC does not have a float-to-uint conversion, only a float-to-int (fdtoi).
 | 
						|
// Since fdtoi converts to signed integers, any FP value V between MAXINT+1
 | 
						|
// and MAXUNSIGNED (i.e., 2^31 <= V <= 2^32-1) would be converted incorrectly.
 | 
						|
// Therefore, for converting an FP value to uint32_t, we first need to convert
 | 
						|
// to uint64_t and then to uint32_t.
 | 
						|
// 
 | 
						|
static void
 | 
						|
CreateCodeToConvertFloatToInt(const TargetMachine& target,
 | 
						|
                              Value* opVal,
 | 
						|
                              Instruction* destI,
 | 
						|
                              std::vector<MachineInstr*>& mvec,
 | 
						|
                              MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  Function* F = destI->getParent()->getParent();
 | 
						|
 | 
						|
  // Create a temporary to represent the FP register into which the
 | 
						|
  // int value will placed after conversion.  The type of this temporary
 | 
						|
  // depends on the type of FP register to use: single-prec for a 32-bit
 | 
						|
  // int or smaller; double-prec for a 64-bit int.
 | 
						|
  // 
 | 
						|
  size_t destSize = target.getTargetData().getTypeSize(destI->getType());
 | 
						|
 | 
						|
  const Type* castDestType = destI->getType(); // type for the cast instr result
 | 
						|
  const Type* castDestRegType;          // type for cast instruction result reg
 | 
						|
  TmpInstruction* destForCast;          // dest for cast instruction
 | 
						|
  Instruction* fpToIntCopyDest = destI; // dest for fp-reg-to-int-reg copy instr
 | 
						|
 | 
						|
  // For converting an FP value to uint32_t, we first need to convert to
 | 
						|
  // uint64_t and then to uint32_t, as explained above.
 | 
						|
  if (destI->getType() == Type::UIntTy) {
 | 
						|
    castDestType    = Type::ULongTy;       // use this instead of type of destI
 | 
						|
    castDestRegType = Type::DoubleTy;      // uint64_t needs 64-bit FP register.
 | 
						|
    destForCast     = new TmpInstruction(mcfi, castDestRegType, opVal);
 | 
						|
    fpToIntCopyDest = new TmpInstruction(mcfi, castDestType, destForCast);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    castDestRegType = (destSize > 4)? Type::DoubleTy : Type::FloatTy;
 | 
						|
    destForCast = new TmpInstruction(mcfi, castDestRegType, opVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the fp-to-int conversion instruction (src and dest regs are FP regs)
 | 
						|
  mvec.push_back(CreateConvertFPToIntInstr(target, opVal, destForCast,
 | 
						|
                                           castDestType));
 | 
						|
 | 
						|
  // Create the fpreg-to-intreg copy code
 | 
						|
  target.getInstrInfo().CreateCodeToCopyFloatToInt(target, F, destForCast,
 | 
						|
                                                   fpToIntCopyDest, mvec, mcfi);
 | 
						|
 | 
						|
  // Create the uint64_t to uint32_t conversion, if needed
 | 
						|
  if (destI->getType() == Type::UIntTy)
 | 
						|
    target.getInstrInfo().
 | 
						|
      CreateZeroExtensionInstructions(target, F, fpToIntCopyDest, destI,
 | 
						|
                                      /*numLowBits*/ 32, mvec, mcfi);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseAddInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  return ChooseAddInstructionByType(instrNode->getInstruction()->getType());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineInstr* 
 | 
						|
CreateMovFloatInstruction(const InstructionNode* instrNode,
 | 
						|
                          const Type* resultType)
 | 
						|
{
 | 
						|
  return BuildMI((resultType == Type::FloatTy) ? V9::FMOVS : V9::FMOVD, 2)
 | 
						|
                   .addReg(instrNode->leftChild()->getValue())
 | 
						|
                   .addRegDef(instrNode->getValue());
 | 
						|
}
 | 
						|
 | 
						|
static inline MachineInstr* 
 | 
						|
CreateAddConstInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineInstr* minstr = NULL;
 | 
						|
  
 | 
						|
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
 | 
						|
  assert(isa<Constant>(constOp));
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Add with 0 for float or double: use an FMOV of appropriate type,
 | 
						|
  //	 instead of an FADD (1 vs 3 cycles).  There is no integer MOV.
 | 
						|
  // 
 | 
						|
  if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
 | 
						|
    double dval = FPC->getValue();
 | 
						|
    if (dval == 0.0)
 | 
						|
      minstr = CreateMovFloatInstruction(instrNode,
 | 
						|
                                        instrNode->getInstruction()->getType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return minstr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseSubInstructionByType(const Type* resultType)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  if (resultType->isInteger() || isa<PointerType>(resultType)) {
 | 
						|
      opCode = V9::SUBr;
 | 
						|
  } else {
 | 
						|
    switch(resultType->getPrimitiveID())
 | 
						|
    {
 | 
						|
    case Type::FloatTyID:  opCode = V9::FSUBS; break;
 | 
						|
    case Type::DoubleTyID: opCode = V9::FSUBD; break;
 | 
						|
    default: assert(0 && "Invalid type for SUB instruction"); break; 
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineInstr* 
 | 
						|
CreateSubConstInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineInstr* minstr = NULL;
 | 
						|
  
 | 
						|
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
 | 
						|
  assert(isa<Constant>(constOp));
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
 | 
						|
  //	 instead of an FSUB (1 vs 3 cycles).  There is no integer MOV.
 | 
						|
  // 
 | 
						|
  if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
 | 
						|
    double dval = FPC->getValue();
 | 
						|
    if (dval == 0.0)
 | 
						|
      minstr = CreateMovFloatInstruction(instrNode,
 | 
						|
                                        instrNode->getInstruction()->getType());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return minstr;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseFcmpInstruction(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
 | 
						|
  switch(operand->getType()->getPrimitiveID()) {
 | 
						|
  case Type::FloatTyID:  opCode = V9::FCMPS; break;
 | 
						|
  case Type::DoubleTyID: opCode = V9::FCMPD; break;
 | 
						|
  default: assert(0 && "Invalid type for FCMP instruction"); break; 
 | 
						|
  }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Assumes that leftArg and rightArg are both cast instructions.
 | 
						|
//
 | 
						|
static inline bool
 | 
						|
BothFloatToDouble(const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  InstrTreeNode* leftArg = instrNode->leftChild();
 | 
						|
  InstrTreeNode* rightArg = instrNode->rightChild();
 | 
						|
  InstrTreeNode* leftArgArg = leftArg->leftChild();
 | 
						|
  InstrTreeNode* rightArgArg = rightArg->leftChild();
 | 
						|
  assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
 | 
						|
  
 | 
						|
  // Check if both arguments are floats cast to double
 | 
						|
  return (leftArg->getValue()->getType() == Type::DoubleTy &&
 | 
						|
          leftArgArg->getValue()->getType() == Type::FloatTy &&
 | 
						|
          rightArgArg->getValue()->getType() == Type::FloatTy);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseMulInstructionByType(const Type* resultType)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  if (resultType->isInteger())
 | 
						|
    opCode = V9::MULXr;
 | 
						|
  else
 | 
						|
    switch(resultType->getPrimitiveID())
 | 
						|
    {
 | 
						|
    case Type::FloatTyID:  opCode = V9::FMULS; break;
 | 
						|
    case Type::DoubleTyID: opCode = V9::FMULD; break;
 | 
						|
    default: assert(0 && "Invalid type for MUL instruction"); break; 
 | 
						|
    }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static inline MachineInstr*
 | 
						|
CreateIntNegInstruction(const TargetMachine& target,
 | 
						|
                        Value* vreg)
 | 
						|
{
 | 
						|
  return BuildMI(V9::SUBr, 3).addMReg(target.getRegInfo().getZeroRegNum())
 | 
						|
    .addReg(vreg).addRegDef(vreg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Create instruction sequence for any shift operation.
 | 
						|
// SLL or SLLX on an operand smaller than the integer reg. size (64bits)
 | 
						|
// requires a second instruction for explicit sign-extension.
 | 
						|
// Note that we only have to worry about a sign-bit appearing in the
 | 
						|
// most significant bit of the operand after shifting (e.g., bit 32 of
 | 
						|
// Int or bit 16 of Short), so we do not have to worry about results
 | 
						|
// that are as large as a normal integer register.
 | 
						|
// 
 | 
						|
static inline void
 | 
						|
CreateShiftInstructions(const TargetMachine& target,
 | 
						|
                        Function* F,
 | 
						|
                        MachineOpCode shiftOpCode,
 | 
						|
                        Value* argVal1,
 | 
						|
                        Value* optArgVal2, /* Use optArgVal2 if not NULL */
 | 
						|
                        unsigned optShiftNum, /* else use optShiftNum */
 | 
						|
                        Instruction* destVal,
 | 
						|
                        std::vector<MachineInstr*>& mvec,
 | 
						|
                        MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  assert((optArgVal2 != NULL || optShiftNum <= 64) &&
 | 
						|
         "Large shift sizes unexpected, but can be handled below: "
 | 
						|
         "You need to check whether or not it fits in immed field below");
 | 
						|
  
 | 
						|
  // If this is a logical left shift of a type smaller than the standard
 | 
						|
  // integer reg. size, we have to extend the sign-bit into upper bits
 | 
						|
  // of dest, so we need to put the result of the SLL into a temporary.
 | 
						|
  // 
 | 
						|
  Value* shiftDest = destVal;
 | 
						|
  unsigned opSize = target.getTargetData().getTypeSize(argVal1->getType());
 | 
						|
 | 
						|
  if ((shiftOpCode == V9::SLLr5 || shiftOpCode == V9::SLLXr6) && opSize < 8) {
 | 
						|
    // put SLL result into a temporary
 | 
						|
    shiftDest = new TmpInstruction(mcfi, argVal1, optArgVal2, "sllTmp");
 | 
						|
  }
 | 
						|
  
 | 
						|
  MachineInstr* M = (optArgVal2 != NULL)
 | 
						|
    ? BuildMI(shiftOpCode, 3).addReg(argVal1).addReg(optArgVal2)
 | 
						|
                             .addReg(shiftDest, MachineOperand::Def)
 | 
						|
    : BuildMI(shiftOpCode, 3).addReg(argVal1).addZImm(optShiftNum)
 | 
						|
                             .addReg(shiftDest, MachineOperand::Def);
 | 
						|
  mvec.push_back(M);
 | 
						|
  
 | 
						|
  if (shiftDest != destVal) {
 | 
						|
    // extend the sign-bit of the result into all upper bits of dest
 | 
						|
    assert(8*opSize <= 32 && "Unexpected type size > 4 and < IntRegSize?");
 | 
						|
    target.getInstrInfo().
 | 
						|
      CreateSignExtensionInstructions(target, F, shiftDest, destVal,
 | 
						|
                                      8*opSize, mvec, mcfi);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Does not create any instructions if we cannot exploit constant to
 | 
						|
// create a cheaper instruction.
 | 
						|
// This returns the approximate cost of the instructions generated,
 | 
						|
// which is used to pick the cheapest when both operands are constant.
 | 
						|
static unsigned
 | 
						|
CreateMulConstInstruction(const TargetMachine &target, Function* F,
 | 
						|
                          Value* lval, Value* rval, Instruction* destVal,
 | 
						|
                          std::vector<MachineInstr*>& mvec,
 | 
						|
                          MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  /* Use max. multiply cost, viz., cost of MULX */
 | 
						|
  unsigned cost = target.getInstrInfo().minLatency(V9::MULXr);
 | 
						|
  unsigned firstNewInstr = mvec.size();
 | 
						|
  
 | 
						|
  Value* constOp = rval;
 | 
						|
  if (! isa<Constant>(constOp))
 | 
						|
    return cost;
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
 | 
						|
  // (2) Multiply by 2^x for integer types: replace with Shift
 | 
						|
  // 
 | 
						|
  const Type* resultType = destVal->getType();
 | 
						|
  
 | 
						|
  if (resultType->isInteger() || isa<PointerType>(resultType)) {
 | 
						|
    bool isValidConst;
 | 
						|
    int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
 | 
						|
                                     constOp, constOp->getType(), isValidConst);
 | 
						|
    if (isValidConst) {
 | 
						|
      unsigned pow;
 | 
						|
      bool needNeg = false;
 | 
						|
      if (C < 0) {
 | 
						|
        needNeg = true;
 | 
						|
        C = -C;
 | 
						|
      }
 | 
						|
          
 | 
						|
      if (C == 0 || C == 1) {
 | 
						|
        cost = target.getInstrInfo().minLatency(V9::ADDr);
 | 
						|
        unsigned Zero = target.getRegInfo().getZeroRegNum();
 | 
						|
        MachineInstr* M;
 | 
						|
        if (C == 0)
 | 
						|
          M =BuildMI(V9::ADDr,3).addMReg(Zero).addMReg(Zero).addRegDef(destVal);
 | 
						|
        else
 | 
						|
          M = BuildMI(V9::ADDr,3).addReg(lval).addMReg(Zero).addRegDef(destVal);
 | 
						|
        mvec.push_back(M);
 | 
						|
      } else if (isPowerOf2(C, pow)) {
 | 
						|
        unsigned opSize = target.getTargetData().getTypeSize(resultType);
 | 
						|
        MachineOpCode opCode = (opSize <= 32)? V9::SLLr5 : V9::SLLXr6;
 | 
						|
        CreateShiftInstructions(target, F, opCode, lval, NULL, pow,
 | 
						|
                                destVal, mvec, mcfi);
 | 
						|
      }
 | 
						|
          
 | 
						|
      if (mvec.size() > 0 && needNeg) {
 | 
						|
        // insert <reg = SUB 0, reg> after the instr to flip the sign
 | 
						|
        MachineInstr* M = CreateIntNegInstruction(target, destVal);
 | 
						|
        mvec.push_back(M);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
 | 
						|
      double dval = FPC->getValue();
 | 
						|
      if (fabs(dval) == 1) {
 | 
						|
        MachineOpCode opCode =  (dval < 0)
 | 
						|
          ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
 | 
						|
          : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
 | 
						|
        mvec.push_back(BuildMI(opCode,2).addReg(lval).addRegDef(destVal));
 | 
						|
      } 
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (firstNewInstr < mvec.size()) {
 | 
						|
    cost = 0;
 | 
						|
    for (unsigned i=firstNewInstr; i < mvec.size(); ++i)
 | 
						|
      cost += target.getInstrInfo().minLatency(mvec[i]->getOpcode());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return cost;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Does not create any instructions if we cannot exploit constant to
 | 
						|
// create a cheaper instruction.
 | 
						|
// 
 | 
						|
static inline void
 | 
						|
CreateCheapestMulConstInstruction(const TargetMachine &target,
 | 
						|
                                  Function* F,
 | 
						|
                                  Value* lval, Value* rval,
 | 
						|
                                  Instruction* destVal,
 | 
						|
                                  std::vector<MachineInstr*>& mvec,
 | 
						|
                                  MachineCodeForInstruction& mcfi)
 | 
						|
{
 | 
						|
  Value* constOp;
 | 
						|
  if (isa<Constant>(lval) && isa<Constant>(rval)) {
 | 
						|
    // both operands are constant: evaluate and "set" in dest
 | 
						|
    Constant* P = ConstantExpr::get(Instruction::Mul,
 | 
						|
                                    cast<Constant>(lval),
 | 
						|
                                    cast<Constant>(rval));
 | 
						|
    target.getInstrInfo().CreateCodeToLoadConst(target,F,P,destVal,mvec,mcfi);
 | 
						|
  }
 | 
						|
  else if (isa<Constant>(rval))         // rval is constant, but not lval
 | 
						|
    CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
 | 
						|
  else if (isa<Constant>(lval))         // lval is constant, but not rval
 | 
						|
    CreateMulConstInstruction(target, F, lval, rval, destVal, mvec, mcfi);
 | 
						|
  
 | 
						|
  // else neither is constant
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
// Return NULL if we cannot exploit constant to create a cheaper instruction
 | 
						|
static inline void
 | 
						|
CreateMulInstruction(const TargetMachine &target, Function* F,
 | 
						|
                     Value* lval, Value* rval, Instruction* destVal,
 | 
						|
                     std::vector<MachineInstr*>& mvec,
 | 
						|
                     MachineCodeForInstruction& mcfi,
 | 
						|
                     MachineOpCode forceMulOp = -1)
 | 
						|
{
 | 
						|
  unsigned L = mvec.size();
 | 
						|
  CreateCheapestMulConstInstruction(target,F, lval, rval, destVal, mvec, mcfi);
 | 
						|
  if (mvec.size() == L) {
 | 
						|
    // no instructions were added so create MUL reg, reg, reg.
 | 
						|
    // Use FSMULD if both operands are actually floats cast to doubles.
 | 
						|
    // Otherwise, use the default opcode for the appropriate type.
 | 
						|
    MachineOpCode mulOp = ((forceMulOp != -1)
 | 
						|
                           ? forceMulOp 
 | 
						|
                           : ChooseMulInstructionByType(destVal->getType()));
 | 
						|
    mvec.push_back(BuildMI(mulOp, 3).addReg(lval).addReg(rval)
 | 
						|
                   .addRegDef(destVal));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Generate a divide instruction for Div or Rem.
 | 
						|
// For Rem, this assumes that the operand type will be signed if the result
 | 
						|
// type is signed.  This is correct because they must have the same sign.
 | 
						|
// 
 | 
						|
static inline MachineOpCode 
 | 
						|
ChooseDivInstruction(TargetMachine &target,
 | 
						|
                     const InstructionNode* instrNode)
 | 
						|
{
 | 
						|
  MachineOpCode opCode = V9::INVALID_OPCODE;
 | 
						|
  
 | 
						|
  const Type* resultType = instrNode->getInstruction()->getType();
 | 
						|
  
 | 
						|
  if (resultType->isInteger())
 | 
						|
    opCode = resultType->isSigned()? V9::SDIVXr : V9::UDIVXr;
 | 
						|
  else
 | 
						|
    switch(resultType->getPrimitiveID())
 | 
						|
      {
 | 
						|
      case Type::FloatTyID:  opCode = V9::FDIVS; break;
 | 
						|
      case Type::DoubleTyID: opCode = V9::FDIVD; break;
 | 
						|
      default: assert(0 && "Invalid type for DIV instruction"); break; 
 | 
						|
      }
 | 
						|
  
 | 
						|
  return opCode;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Return if we cannot exploit constant to create a cheaper instruction
 | 
						|
static void
 | 
						|
CreateDivConstInstruction(TargetMachine &target,
 | 
						|
                          const InstructionNode* instrNode,
 | 
						|
                          std::vector<MachineInstr*>& mvec)
 | 
						|
{
 | 
						|
  Value* LHS  = instrNode->leftChild()->getValue();
 | 
						|
  Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
 | 
						|
  if (!isa<Constant>(constOp))
 | 
						|
    return;
 | 
						|
 | 
						|
  Instruction* destVal = instrNode->getInstruction();
 | 
						|
  unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
 | 
						|
  
 | 
						|
  // Cases worth optimizing are:
 | 
						|
  // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
 | 
						|
  // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
 | 
						|
  // 
 | 
						|
  const Type* resultType = instrNode->getInstruction()->getType();
 | 
						|
 
 | 
						|
  if (resultType->isInteger()) {
 | 
						|
    unsigned pow;
 | 
						|
    bool isValidConst;
 | 
						|
    int64_t C = (int64_t) target.getInstrInfo().ConvertConstantToIntType(target,
 | 
						|
                                     constOp, constOp->getType(), isValidConst);
 | 
						|
    if (isValidConst) {
 | 
						|
      bool needNeg = false;
 | 
						|
      if (C < 0) {
 | 
						|
        needNeg = true;
 | 
						|
        C = -C;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (C == 1) {
 | 
						|
        mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addMReg(ZeroReg)
 | 
						|
                       .addRegDef(destVal));
 | 
						|
      } else if (isPowerOf2(C, pow)) {
 | 
						|
        unsigned opCode;
 | 
						|
        Value* shiftOperand;
 | 
						|
        unsigned opSize = target.getTargetData().getTypeSize(resultType);
 | 
						|
 | 
						|
        if (resultType->isSigned()) {
 | 
						|
          // For N / 2^k, if the operand N is negative,
 | 
						|
          // we need to add (2^k - 1) before right-shifting by k, i.e.,
 | 
						|
          // 
 | 
						|
          //    (N / 2^k) = N >> k,               if N >= 0;
 | 
						|
          //                (N + 2^k - 1) >> k,   if N < 0
 | 
						|
          // 
 | 
						|
          // If N is <= 32 bits, use:
 | 
						|
          //    sra N, 31, t1           // t1 = ~0,         if N < 0,  0 else
 | 
						|
          //    srl t1, 32-k, t2        // t2 = 2^k - 1,    if N < 0,  0 else
 | 
						|
          //    add t2, N, t3           // t3 = N + 2^k -1, if N < 0,  N else
 | 
						|
	  //    sra t3, k, result       // result = N / 2^k
 | 
						|
          // 
 | 
						|
          // If N is 64 bits, use:
 | 
						|
          //    srax N,  k-1,  t1       // t1 = sign bit in high k positions
 | 
						|
          //    srlx t1, 64-k, t2       // t2 = 2^k - 1,    if N < 0,  0 else
 | 
						|
          //    add t2, N, t3           // t3 = N + 2^k -1, if N < 0,  N else
 | 
						|
	  //    sra t3, k, result       // result = N / 2^k
 | 
						|
          //
 | 
						|
          TmpInstruction *sraTmp, *srlTmp, *addTmp;
 | 
						|
          MachineCodeForInstruction& mcfi
 | 
						|
            = MachineCodeForInstruction::get(destVal);
 | 
						|
          sraTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getSign");
 | 
						|
          srlTmp = new TmpInstruction(mcfi, resultType, LHS, 0, "getPlus2km1");
 | 
						|
          addTmp = new TmpInstruction(mcfi, resultType, LHS, srlTmp,"incIfNeg");
 | 
						|
 | 
						|
          // Create the SRA or SRAX instruction to get the sign bit
 | 
						|
          mvec.push_back(BuildMI((opSize > 4)? V9::SRAXi6 : V9::SRAi5, 3)
 | 
						|
                         .addReg(LHS)
 | 
						|
                         .addSImm((resultType==Type::LongTy)? pow-1 : 31)
 | 
						|
                         .addRegDef(sraTmp));
 | 
						|
 | 
						|
          // Create the SRL or SRLX instruction to get the sign bit
 | 
						|
          mvec.push_back(BuildMI((opSize > 4)? V9::SRLXi6 : V9::SRLi5, 3)
 | 
						|
                         .addReg(sraTmp)
 | 
						|
                         .addSImm((resultType==Type::LongTy)? 64-pow : 32-pow)
 | 
						|
                         .addRegDef(srlTmp));
 | 
						|
 | 
						|
          // Create the ADD instruction to add 2^pow-1 for negative values
 | 
						|
          mvec.push_back(BuildMI(V9::ADDr, 3).addReg(LHS).addReg(srlTmp)
 | 
						|
                         .addRegDef(addTmp));
 | 
						|
 | 
						|
          // Get the shift operand and "right-shift" opcode to do the divide
 | 
						|
          shiftOperand = addTmp;
 | 
						|
          opCode = (opSize > 4)? V9::SRAXi6 : V9::SRAi5;
 | 
						|
        } else {
 | 
						|
          // Get the shift operand and "right-shift" opcode to do the divide
 | 
						|
          shiftOperand = LHS;
 | 
						|
          opCode = (opSize > 4)? V9::SRLXi6 : V9::SRLi5;
 | 
						|
        }
 | 
						|
 | 
						|
        // Now do the actual shift!
 | 
						|
        mvec.push_back(BuildMI(opCode, 3).addReg(shiftOperand).addZImm(pow)
 | 
						|
                       .addRegDef(destVal));
 | 
						|
      }
 | 
						|
          
 | 
						|
      if (needNeg && (C == 1 || isPowerOf2(C, pow))) {
 | 
						|
        // insert <reg = SUB 0, reg> after the instr to flip the sign
 | 
						|
        mvec.push_back(CreateIntNegInstruction(target, destVal));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (ConstantFP *FPC = dyn_cast<ConstantFP>(constOp)) {
 | 
						|
      double dval = FPC->getValue();
 | 
						|
      if (fabs(dval) == 1) {
 | 
						|
        unsigned opCode = 
 | 
						|
          (dval < 0) ? (resultType == Type::FloatTy? V9::FNEGS : V9::FNEGD)
 | 
						|
          : (resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD);
 | 
						|
              
 | 
						|
        mvec.push_back(BuildMI(opCode, 2).addReg(LHS).addRegDef(destVal));
 | 
						|
      } 
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
CreateCodeForVariableSizeAlloca(const TargetMachine& target,
 | 
						|
                                Instruction* result,
 | 
						|
                                unsigned tsize,
 | 
						|
                                Value* numElementsVal,
 | 
						|
                                std::vector<MachineInstr*>& getMvec)
 | 
						|
{
 | 
						|
  Value* totalSizeVal;
 | 
						|
  MachineInstr* M;
 | 
						|
  MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(result);
 | 
						|
  Function *F = result->getParent()->getParent();
 | 
						|
 | 
						|
  // Enforce the alignment constraints on the stack pointer at
 | 
						|
  // compile time if the total size is a known constant.
 | 
						|
  if (isa<Constant>(numElementsVal)) {
 | 
						|
    bool isValid;
 | 
						|
    int64_t numElem = (int64_t) target.getInstrInfo().
 | 
						|
      ConvertConstantToIntType(target, numElementsVal,
 | 
						|
                               numElementsVal->getType(), isValid);
 | 
						|
    assert(isValid && "Unexpectedly large array dimension in alloca!");
 | 
						|
    int64_t total = numElem * tsize;
 | 
						|
    if (int extra= total % target.getFrameInfo().getStackFrameSizeAlignment())
 | 
						|
      total += target.getFrameInfo().getStackFrameSizeAlignment() - extra;
 | 
						|
    totalSizeVal = ConstantSInt::get(Type::IntTy, total);
 | 
						|
  } else {
 | 
						|
    // The size is not a constant.  Generate code to compute it and
 | 
						|
    // code to pad the size for stack alignment.
 | 
						|
    // Create a Value to hold the (constant) element size
 | 
						|
    Value* tsizeVal = ConstantSInt::get(Type::IntTy, tsize);
 | 
						|
 | 
						|
    // Create temporary values to hold the result of MUL, SLL, SRL
 | 
						|
    // To pad `size' to next smallest multiple of 16:
 | 
						|
    //          size = (size + 15) & (-16 = 0xfffffffffffffff0)
 | 
						|
    // 
 | 
						|
    TmpInstruction* tmpProd = new TmpInstruction(mcfi,numElementsVal, tsizeVal);
 | 
						|
    TmpInstruction* tmpAdd15= new TmpInstruction(mcfi,numElementsVal, tmpProd);
 | 
						|
    TmpInstruction* tmpAndf0= new TmpInstruction(mcfi,numElementsVal, tmpAdd15);
 | 
						|
 | 
						|
    // Instruction 1: mul numElements, typeSize -> tmpProd
 | 
						|
    // This will optimize the MUL as far as possible.
 | 
						|
    CreateMulInstruction(target, F, numElementsVal, tsizeVal, tmpProd, getMvec,
 | 
						|
                         mcfi, -1);
 | 
						|
 | 
						|
    // Instruction 2: andn tmpProd, 0x0f -> tmpAndn
 | 
						|
    getMvec.push_back(BuildMI(V9::ADDi, 3).addReg(tmpProd).addSImm(15)
 | 
						|
                      .addReg(tmpAdd15, MachineOperand::Def));
 | 
						|
 | 
						|
    // Instruction 3: add tmpAndn, 0x10 -> tmpAdd16
 | 
						|
    getMvec.push_back(BuildMI(V9::ANDi, 3).addReg(tmpAdd15).addSImm(-16)
 | 
						|
                      .addReg(tmpAndf0, MachineOperand::Def));
 | 
						|
 | 
						|
    totalSizeVal = tmpAndf0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the constant offset from SP for dynamically allocated storage
 | 
						|
  // and create a temporary Value to hold it.
 | 
						|
  MachineFunction& mcInfo = MachineFunction::get(F);
 | 
						|
  bool growUp;
 | 
						|
  ConstantSInt* dynamicAreaOffset =
 | 
						|
    ConstantSInt::get(Type::IntTy,
 | 
						|
                     target.getFrameInfo().getDynamicAreaOffset(mcInfo,growUp));
 | 
						|
  assert(! growUp && "Has SPARC v9 stack frame convention changed?");
 | 
						|
 | 
						|
  unsigned SPReg = target.getRegInfo().getStackPointer();
 | 
						|
 | 
						|
  // Instruction 2: sub %sp, totalSizeVal -> %sp
 | 
						|
  getMvec.push_back(BuildMI(V9::SUBr, 3).addMReg(SPReg).addReg(totalSizeVal)
 | 
						|
                    .addMReg(SPReg,MachineOperand::Def));
 | 
						|
 | 
						|
  // Instruction 3: add %sp, frameSizeBelowDynamicArea -> result
 | 
						|
  getMvec.push_back(BuildMI(V9::ADDr,3).addMReg(SPReg).addReg(dynamicAreaOffset)
 | 
						|
                    .addRegDef(result));
 | 
						|
}        
 | 
						|
 | 
						|
 | 
						|
static void
 | 
						|
CreateCodeForFixedSizeAlloca(const TargetMachine& target,
 | 
						|
                             Instruction* result,
 | 
						|
                             unsigned tsize,
 | 
						|
                             unsigned numElements,
 | 
						|
                             std::vector<MachineInstr*>& getMvec)
 | 
						|
{
 | 
						|
  assert(result && result->getParent() &&
 | 
						|
         "Result value is not part of a function?");
 | 
						|
  Function *F = result->getParent()->getParent();
 | 
						|
  MachineFunction &mcInfo = MachineFunction::get(F);
 | 
						|
 | 
						|
  // If the alloca is of zero bytes (which is perfectly legal) we bump it up to
 | 
						|
  // one byte.  This is unnecessary, but I really don't want to break any
 | 
						|
  // fragile logic in this code.  FIXME.
 | 
						|
  if (tsize == 0)
 | 
						|
    tsize = 1;
 | 
						|
 | 
						|
 | 
						|
  // Put the variable in the dynamically sized area of the frame if either:
 | 
						|
  // (a) The offset is too large to use as an immediate in load/stores
 | 
						|
  //     (check LDX because all load/stores have the same-size immed. field).
 | 
						|
  // (b) The object is "large", so it could cause many other locals,
 | 
						|
  //     spills, and temporaries to have large offsets.
 | 
						|
  //     NOTE: We use LARGE = 8 * argSlotSize = 64 bytes.
 | 
						|
  // You've gotta love having only 13 bits for constant offset values :-|.
 | 
						|
  // 
 | 
						|
  unsigned paddedSize;
 | 
						|
  int offsetFromFP = mcInfo.getInfo()->computeOffsetforLocalVar(result,
 | 
						|
                                                                paddedSize,
 | 
						|
                                                         tsize * numElements);
 | 
						|
 | 
						|
  if (((int)paddedSize) > 8 * target.getFrameInfo().getSizeOfEachArgOnStack() ||
 | 
						|
      ! target.getInstrInfo().constantFitsInImmedField(V9::LDXi,offsetFromFP)) {
 | 
						|
    CreateCodeForVariableSizeAlloca(target, result, tsize, 
 | 
						|
				    ConstantSInt::get(Type::IntTy,numElements),
 | 
						|
				    getMvec);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // else offset fits in immediate field so go ahead and allocate it.
 | 
						|
  offsetFromFP = mcInfo.getInfo()->allocateLocalVar(result, tsize *numElements);
 | 
						|
  
 | 
						|
  // Create a temporary Value to hold the constant offset.
 | 
						|
  // This is needed because it may not fit in the immediate field.
 | 
						|
  ConstantSInt* offsetVal = ConstantSInt::get(Type::IntTy, offsetFromFP);
 | 
						|
  
 | 
						|
  // Instruction 1: add %fp, offsetFromFP -> result
 | 
						|
  unsigned FPReg = target.getRegInfo().getFramePointer();
 | 
						|
  getMvec.push_back(BuildMI(V9::ADDr, 3).addMReg(FPReg).addReg(offsetVal)
 | 
						|
                    .addRegDef(result));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// Function SetOperandsForMemInstr
 | 
						|
//
 | 
						|
// Choose addressing mode for the given load or store instruction.
 | 
						|
// Use [reg+reg] if it is an indexed reference, and the index offset is
 | 
						|
//		 not a constant or if it cannot fit in the offset field.
 | 
						|
// Use [reg+offset] in all other cases.
 | 
						|
// 
 | 
						|
// This assumes that all array refs are "lowered" to one of these forms:
 | 
						|
//	%x = load (subarray*) ptr, constant	; single constant offset
 | 
						|
//	%x = load (subarray*) ptr, offsetVal	; single non-constant offset
 | 
						|
// Generally, this should happen via strength reduction + LICM.
 | 
						|
// Also, strength reduction should take care of using the same register for
 | 
						|
// the loop index variable and an array index, when that is profitable.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
static void
 | 
						|
SetOperandsForMemInstr(unsigned Opcode,
 | 
						|
                       std::vector<MachineInstr*>& mvec,
 | 
						|
                       InstructionNode* vmInstrNode,
 | 
						|
                       const TargetMachine& target)
 | 
						|
{
 | 
						|
  Instruction* memInst = vmInstrNode->getInstruction();
 | 
						|
  // Index vector, ptr value, and flag if all indices are const.
 | 
						|
  std::vector<Value*> idxVec;
 | 
						|
  bool allConstantIndices;
 | 
						|
  Value* ptrVal = GetMemInstArgs(vmInstrNode, idxVec, allConstantIndices);
 | 
						|
 | 
						|
  // Now create the appropriate operands for the machine instruction.
 | 
						|
  // First, initialize so we default to storing the offset in a register.
 | 
						|
  int64_t smallConstOffset = 0;
 | 
						|
  Value* valueForRegOffset = NULL;
 | 
						|
  MachineOperand::MachineOperandType offsetOpType =
 | 
						|
    MachineOperand::MO_VirtualRegister;
 | 
						|
 | 
						|
  // Check if there is an index vector and if so, compute the
 | 
						|
  // right offset for structures and for arrays 
 | 
						|
  // 
 | 
						|
  if (!idxVec.empty()) {
 | 
						|
    const PointerType* ptrType = cast<PointerType>(ptrVal->getType());
 | 
						|
      
 | 
						|
    // If all indices are constant, compute the combined offset directly.
 | 
						|
    if (allConstantIndices) {
 | 
						|
      // Compute the offset value using the index vector. Create a
 | 
						|
      // virtual reg. for it since it may not fit in the immed field.
 | 
						|
      uint64_t offset = target.getTargetData().getIndexedOffset(ptrType,idxVec);
 | 
						|
      valueForRegOffset = ConstantSInt::get(Type::LongTy, offset);
 | 
						|
    } else {
 | 
						|
      // There is at least one non-constant offset.  Therefore, this must
 | 
						|
      // be an array ref, and must have been lowered to a single non-zero
 | 
						|
      // offset.  (An extra leading zero offset, if any, can be ignored.)
 | 
						|
      // Generate code sequence to compute address from index.
 | 
						|
      // 
 | 
						|
      bool firstIdxIsZero = IsZero(idxVec[0]);
 | 
						|
      assert(idxVec.size() == 1U + firstIdxIsZero 
 | 
						|
             && "Array refs must be lowered before Instruction Selection");
 | 
						|
 | 
						|
      Value* idxVal = idxVec[firstIdxIsZero];
 | 
						|
 | 
						|
      std::vector<MachineInstr*> mulVec;
 | 
						|
      Instruction* addr =
 | 
						|
        new TmpInstruction(MachineCodeForInstruction::get(memInst),
 | 
						|
                           Type::ULongTy, memInst);
 | 
						|
 | 
						|
      // Get the array type indexed by idxVal, and compute its element size.
 | 
						|
      // The call to getTypeSize() will fail if size is not constant.
 | 
						|
      const Type* vecType = (firstIdxIsZero
 | 
						|
                             ? GetElementPtrInst::getIndexedType(ptrType,
 | 
						|
                                           std::vector<Value*>(1U, idxVec[0]),
 | 
						|
                                           /*AllowCompositeLeaf*/ true)
 | 
						|
                                 : ptrType);
 | 
						|
      const Type* eltType = cast<SequentialType>(vecType)->getElementType();
 | 
						|
      ConstantUInt* eltSizeVal = ConstantUInt::get(Type::ULongTy,
 | 
						|
                                   target.getTargetData().getTypeSize(eltType));
 | 
						|
 | 
						|
      // CreateMulInstruction() folds constants intelligently enough.
 | 
						|
      CreateMulInstruction(target, memInst->getParent()->getParent(),
 | 
						|
                           idxVal,         /* lval, not likely to be const*/
 | 
						|
                           eltSizeVal,     /* rval, likely to be constant */
 | 
						|
                           addr,           /* result */
 | 
						|
                           mulVec, MachineCodeForInstruction::get(memInst),
 | 
						|
                           -1);
 | 
						|
 | 
						|
      assert(mulVec.size() > 0 && "No multiply code created?");
 | 
						|
      mvec.insert(mvec.end(), mulVec.begin(), mulVec.end());
 | 
						|
      
 | 
						|
      valueForRegOffset = addr;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    offsetOpType = MachineOperand::MO_SignExtendedImmed;
 | 
						|
    smallConstOffset = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // For STORE:
 | 
						|
  //   Operand 0 is value, operand 1 is ptr, operand 2 is offset
 | 
						|
  // For LOAD or GET_ELEMENT_PTR,
 | 
						|
  //   Operand 0 is ptr, operand 1 is offset, operand 2 is result.
 | 
						|
  // 
 | 
						|
  unsigned offsetOpNum, ptrOpNum;
 | 
						|
  MachineInstr *MI;
 | 
						|
  if (memInst->getOpcode() == Instruction::Store) {
 | 
						|
    if (offsetOpType == MachineOperand::MO_VirtualRegister) {
 | 
						|
      MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
 | 
						|
                             .addReg(ptrVal).addReg(valueForRegOffset);
 | 
						|
    } else {
 | 
						|
      Opcode = convertOpcodeFromRegToImm(Opcode);
 | 
						|
      MI = BuildMI(Opcode, 3).addReg(vmInstrNode->leftChild()->getValue())
 | 
						|
                             .addReg(ptrVal).addSImm(smallConstOffset);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (offsetOpType == MachineOperand::MO_VirtualRegister) {
 | 
						|
      MI = BuildMI(Opcode, 3).addReg(ptrVal).addReg(valueForRegOffset)
 | 
						|
                             .addRegDef(memInst);
 | 
						|
    } else {
 | 
						|
      Opcode = convertOpcodeFromRegToImm(Opcode);
 | 
						|
      MI = BuildMI(Opcode, 3).addReg(ptrVal).addSImm(smallConstOffset)
 | 
						|
                             .addRegDef(memInst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  mvec.push_back(MI);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// 
 | 
						|
// Substitute operand `operandNum' of the instruction in node `treeNode'
 | 
						|
// in place of the use(s) of that instruction in node `parent'.
 | 
						|
// Check both explicit and implicit operands!
 | 
						|
// Also make sure to skip over a parent who:
 | 
						|
// (1) is a list node in the Burg tree, or
 | 
						|
// (2) itself had its results forwarded to its parent
 | 
						|
// 
 | 
						|
static void
 | 
						|
ForwardOperand(InstructionNode* treeNode,
 | 
						|
               InstrTreeNode*   parent,
 | 
						|
               int operandNum)
 | 
						|
{
 | 
						|
  assert(treeNode && parent && "Invalid invocation of ForwardOperand");
 | 
						|
  
 | 
						|
  Instruction* unusedOp = treeNode->getInstruction();
 | 
						|
  Value* fwdOp = unusedOp->getOperand(operandNum);
 | 
						|
 | 
						|
  // The parent itself may be a list node, so find the real parent instruction
 | 
						|
  while (parent->getNodeType() != InstrTreeNode::NTInstructionNode)
 | 
						|
    {
 | 
						|
      parent = parent->parent();
 | 
						|
      assert(parent && "ERROR: Non-instruction node has no parent in tree.");
 | 
						|
    }
 | 
						|
  InstructionNode* parentInstrNode = (InstructionNode*) parent;
 | 
						|
  
 | 
						|
  Instruction* userInstr = parentInstrNode->getInstruction();
 | 
						|
  MachineCodeForInstruction &mvec = MachineCodeForInstruction::get(userInstr);
 | 
						|
 | 
						|
  // The parent's mvec would be empty if it was itself forwarded.
 | 
						|
  // Recursively call ForwardOperand in that case...
 | 
						|
  //
 | 
						|
  if (mvec.size() == 0) {
 | 
						|
    assert(parent->parent() != NULL &&
 | 
						|
           "Parent could not have been forwarded, yet has no instructions?");
 | 
						|
    ForwardOperand(treeNode, parent->parent(), operandNum);
 | 
						|
  } else {
 | 
						|
    for (unsigned i=0, N=mvec.size(); i < N; i++) {
 | 
						|
      MachineInstr* minstr = mvec[i];
 | 
						|
      for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; ++i) {
 | 
						|
        const MachineOperand& mop = minstr->getOperand(i);
 | 
						|
        if (mop.getType() == MachineOperand::MO_VirtualRegister &&
 | 
						|
            mop.getVRegValue() == unusedOp)
 | 
						|
        {
 | 
						|
          minstr->SetMachineOperandVal(i, MachineOperand::MO_VirtualRegister,
 | 
						|
                                       fwdOp);
 | 
						|
        }
 | 
						|
      }
 | 
						|
          
 | 
						|
      for (unsigned i=0,numOps=minstr->getNumImplicitRefs(); i<numOps; ++i)
 | 
						|
        if (minstr->getImplicitRef(i) == unusedOp)
 | 
						|
          minstr->setImplicitRef(i, fwdOp);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline bool
 | 
						|
AllUsesAreBranches(const Instruction* setccI)
 | 
						|
{
 | 
						|
  for (Value::use_const_iterator UI=setccI->use_begin(), UE=setccI->use_end();
 | 
						|
       UI != UE; ++UI)
 | 
						|
    if (! isa<TmpInstruction>(*UI)     // ignore tmp instructions here
 | 
						|
        && cast<Instruction>(*UI)->getOpcode() != Instruction::Br)
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Generate code for any intrinsic that needs a special code sequence
 | 
						|
// instead of a regular call.  If not that kind of intrinsic, do nothing.
 | 
						|
// Returns true if code was generated, otherwise false.
 | 
						|
// 
 | 
						|
static bool CodeGenIntrinsic(Intrinsic::ID iid, CallInst &callInstr,
 | 
						|
                             TargetMachine &target,
 | 
						|
                             std::vector<MachineInstr*>& mvec) {
 | 
						|
  switch (iid) {
 | 
						|
  default:
 | 
						|
    assert(0 && "Unknown intrinsic function call should have been lowered!");
 | 
						|
  case Intrinsic::vastart: {
 | 
						|
    // Get the address of the first incoming vararg argument on the stack
 | 
						|
    bool ignore;
 | 
						|
    Function* func = cast<Function>(callInstr.getParent()->getParent());
 | 
						|
    int numFixedArgs   = func->getFunctionType()->getNumParams();
 | 
						|
    int fpReg          = target.getFrameInfo().getIncomingArgBaseRegNum();
 | 
						|
    int argSize        = target.getFrameInfo().getSizeOfEachArgOnStack();
 | 
						|
    int firstVarArgOff = numFixedArgs * argSize + target.getFrameInfo().
 | 
						|
      getFirstIncomingArgOffset(MachineFunction::get(func), ignore);
 | 
						|
    mvec.push_back(BuildMI(V9::ADDi, 3).addMReg(fpReg).addSImm(firstVarArgOff).
 | 
						|
                   addRegDef(&callInstr));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  case Intrinsic::vaend:
 | 
						|
    return true;                        // no-op on SparcV9
 | 
						|
 | 
						|
  case Intrinsic::vacopy:
 | 
						|
    // Simple copy of current va_list (arg1) to new va_list (result)
 | 
						|
    mvec.push_back(BuildMI(V9::ORr, 3).
 | 
						|
                   addMReg(target.getRegInfo().getZeroRegNum()).
 | 
						|
                   addReg(callInstr.getOperand(1)).
 | 
						|
                   addRegDef(&callInstr));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//******************* Externally Visible Functions *************************/
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// External Function: ThisIsAChainRule
 | 
						|
//
 | 
						|
// Purpose:
 | 
						|
//   Check if a given BURG rule is a chain rule.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
extern bool
 | 
						|
ThisIsAChainRule(int eruleno)
 | 
						|
{
 | 
						|
  switch(eruleno)
 | 
						|
    {
 | 
						|
    case 111:	// stmt:  reg
 | 
						|
    case 123:
 | 
						|
    case 124:
 | 
						|
    case 125:
 | 
						|
    case 126:
 | 
						|
    case 127:
 | 
						|
    case 128:
 | 
						|
    case 129:
 | 
						|
    case 130:
 | 
						|
    case 131:
 | 
						|
    case 132:
 | 
						|
    case 133:
 | 
						|
    case 155:
 | 
						|
    case 221:
 | 
						|
    case 222:
 | 
						|
    case 241:
 | 
						|
    case 242:
 | 
						|
    case 243:
 | 
						|
    case 244:
 | 
						|
    case 245:
 | 
						|
    case 321:
 | 
						|
      return true; break;
 | 
						|
 | 
						|
    default:
 | 
						|
      return false; break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
// External Function: GetInstructionsByRule
 | 
						|
//
 | 
						|
// Purpose:
 | 
						|
//   Choose machine instructions for the SPARC according to the
 | 
						|
//   patterns chosen by the BURG-generated parser.
 | 
						|
//------------------------------------------------------------------------ 
 | 
						|
 | 
						|
void
 | 
						|
GetInstructionsByRule(InstructionNode* subtreeRoot,
 | 
						|
                      int ruleForNode,
 | 
						|
                      short* nts,
 | 
						|
                      TargetMachine &target,
 | 
						|
                      std::vector<MachineInstr*>& mvec)
 | 
						|
{
 | 
						|
  bool checkCast = false;		// initialize here to use fall-through
 | 
						|
  bool maskUnsignedResult = false;
 | 
						|
  int nextRule;
 | 
						|
  int forwardOperandNum = -1;
 | 
						|
  unsigned allocaSize = 0;
 | 
						|
  MachineInstr* M, *M2;
 | 
						|
  unsigned L;
 | 
						|
  bool foldCase = false;
 | 
						|
 | 
						|
  mvec.clear(); 
 | 
						|
  
 | 
						|
  // If the code for this instruction was folded into the parent (user),
 | 
						|
  // then do nothing!
 | 
						|
  if (subtreeRoot->isFoldedIntoParent())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  // 
 | 
						|
  // Let's check for chain rules outside the switch so that we don't have
 | 
						|
  // to duplicate the list of chain rule production numbers here again
 | 
						|
  // 
 | 
						|
  if (ThisIsAChainRule(ruleForNode)) {
 | 
						|
    // Chain rules have a single nonterminal on the RHS.
 | 
						|
    // Get the rule that matches the RHS non-terminal and use that instead.
 | 
						|
    // 
 | 
						|
    assert(nts[0] && ! nts[1]
 | 
						|
           && "A chain rule should have only one RHS non-terminal!");
 | 
						|
    nextRule = burm_rule(subtreeRoot->state, nts[0]);
 | 
						|
    nts = burm_nts[nextRule];
 | 
						|
    GetInstructionsByRule(subtreeRoot, nextRule, nts, target, mvec);
 | 
						|
  } else {
 | 
						|
    switch(ruleForNode) {
 | 
						|
      case 1:   // stmt:   Ret
 | 
						|
      case 2:   // stmt:   RetValue(reg)
 | 
						|
      {         // NOTE: Prepass of register allocation is responsible
 | 
						|
                //	 for moving return value to appropriate register.
 | 
						|
                // Copy the return value to the required return register.
 | 
						|
                // Mark the return Value as an implicit ref of the RET instr..
 | 
						|
                // Mark the return-address register as a hidden virtual reg.
 | 
						|
         	// Finally put a NOP in the delay slot.
 | 
						|
        ReturnInst *returnInstr=cast<ReturnInst>(subtreeRoot->getInstruction());
 | 
						|
        Value* retVal = returnInstr->getReturnValue();
 | 
						|
        MachineCodeForInstruction& mcfi =
 | 
						|
          MachineCodeForInstruction::get(returnInstr);
 | 
						|
 | 
						|
        // Create a hidden virtual reg to represent the return address register
 | 
						|
        // used by the machine instruction but not represented in LLVM.
 | 
						|
        // 
 | 
						|
        Instruction* returnAddrTmp = new TmpInstruction(mcfi, returnInstr);
 | 
						|
 | 
						|
        MachineInstr* retMI = 
 | 
						|
          BuildMI(V9::JMPLRETi, 3).addReg(returnAddrTmp).addSImm(8)
 | 
						|
          .addMReg(target.getRegInfo().getZeroRegNum(), MachineOperand::Def);
 | 
						|
      
 | 
						|
        // If there is a value to return, we need to:
 | 
						|
        // (a) Sign-extend the value if it is smaller than 8 bytes (reg size)
 | 
						|
        // (b) Insert a copy to copy the return value to the appropriate reg.
 | 
						|
        //     -- For FP values, create a FMOVS or FMOVD instruction
 | 
						|
        //     -- For non-FP values, create an add-with-0 instruction
 | 
						|
        // 
 | 
						|
        if (retVal != NULL) {
 | 
						|
          const SparcV9RegInfo& regInfo =
 | 
						|
            (SparcV9RegInfo&) target.getRegInfo();
 | 
						|
          const Type* retType = retVal->getType();
 | 
						|
          unsigned regClassID = regInfo.getRegClassIDOfType(retType);
 | 
						|
          unsigned retRegNum = (retType->isFloatingPoint()
 | 
						|
                                ? (unsigned) SparcV9FloatRegClass::f0
 | 
						|
                                : (unsigned) SparcV9IntRegClass::i0);
 | 
						|
          retRegNum = regInfo.getUnifiedRegNum(regClassID, retRegNum);
 | 
						|
 | 
						|
          // () Insert sign-extension instructions for small signed values.
 | 
						|
          // 
 | 
						|
          Value* retValToUse = retVal;
 | 
						|
          if (retType->isIntegral() && retType->isSigned()) {
 | 
						|
            unsigned retSize = target.getTargetData().getTypeSize(retType);
 | 
						|
            if (retSize <= 4) {
 | 
						|
              // create a temporary virtual reg. to hold the sign-extension
 | 
						|
              retValToUse = new TmpInstruction(mcfi, retVal);
 | 
						|
 | 
						|
              // sign-extend retVal and put the result in the temporary reg.
 | 
						|
              target.getInstrInfo().CreateSignExtensionInstructions
 | 
						|
                (target, returnInstr->getParent()->getParent(),
 | 
						|
                 retVal, retValToUse, 8*retSize, mvec, mcfi);
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // (b) Now, insert a copy to to the appropriate register:
 | 
						|
          //     -- For FP values, create a FMOVS or FMOVD instruction
 | 
						|
          //     -- For non-FP values, create an add-with-0 instruction
 | 
						|
          // 
 | 
						|
          // First, create a virtual register to represent the register and
 | 
						|
          // mark this vreg as being an implicit operand of the ret MI.
 | 
						|
          TmpInstruction* retVReg = 
 | 
						|
            new TmpInstruction(mcfi, retValToUse, NULL, "argReg");
 | 
						|
          
 | 
						|
          retMI->addImplicitRef(retVReg);
 | 
						|
          
 | 
						|
          if (retType->isFloatingPoint())
 | 
						|
            M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
 | 
						|
                 .addReg(retValToUse).addReg(retVReg, MachineOperand::Def));
 | 
						|
          else
 | 
						|
            M = (BuildMI(ChooseAddInstructionByType(retType), 3)
 | 
						|
                 .addReg(retValToUse).addSImm((int64_t) 0)
 | 
						|
                 .addReg(retVReg, MachineOperand::Def));
 | 
						|
 | 
						|
          // Mark the operand with the register it should be assigned
 | 
						|
          M->SetRegForOperand(M->getNumOperands()-1, retRegNum);
 | 
						|
          retMI->SetRegForImplicitRef(retMI->getNumImplicitRefs()-1, retRegNum);
 | 
						|
 | 
						|
          mvec.push_back(M);
 | 
						|
        }
 | 
						|
        
 | 
						|
        // Now insert the RET instruction and a NOP for the delay slot
 | 
						|
        mvec.push_back(retMI);
 | 
						|
        mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
        
 | 
						|
        break;
 | 
						|
      }  
 | 
						|
        
 | 
						|
      case 3:	// stmt:   Store(reg,reg)
 | 
						|
      case 4:	// stmt:   Store(reg,ptrreg)
 | 
						|
        SetOperandsForMemInstr(ChooseStoreInstruction(
 | 
						|
                        subtreeRoot->leftChild()->getValue()->getType()),
 | 
						|
                               mvec, subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 5:	// stmt:   BrUncond
 | 
						|
        {
 | 
						|
          BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
 | 
						|
          mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(0)));
 | 
						|
        
 | 
						|
          // delay slot
 | 
						|
          mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      case 206:	// stmt:   BrCond(setCCconst)
 | 
						|
      { // setCCconst => boolean was computed with `%b = setCC type reg1 const'
 | 
						|
        // If the constant is ZERO, we can use the branch-on-integer-register
 | 
						|
        // instructions and avoid the SUBcc instruction entirely.
 | 
						|
        // Otherwise this is just the same as case 5, so just fall through.
 | 
						|
        // 
 | 
						|
        InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
 | 
						|
        assert(constNode &&
 | 
						|
               constNode->getNodeType() ==InstrTreeNode::NTConstNode);
 | 
						|
        Constant *constVal = cast<Constant>(constNode->getValue());
 | 
						|
        bool isValidConst;
 | 
						|
        
 | 
						|
        if ((constVal->getType()->isInteger()
 | 
						|
             || isa<PointerType>(constVal->getType()))
 | 
						|
            && target.getInstrInfo().ConvertConstantToIntType(target,
 | 
						|
                             constVal, constVal->getType(), isValidConst) == 0
 | 
						|
            && isValidConst)
 | 
						|
          {
 | 
						|
            // That constant is a zero after all...
 | 
						|
            // Use the left child of setCC as the first argument!
 | 
						|
            // Mark the setCC node so that no code is generated for it.
 | 
						|
            InstructionNode* setCCNode = (InstructionNode*)
 | 
						|
                                         subtreeRoot->leftChild();
 | 
						|
            assert(setCCNode->getOpLabel() == SetCCOp);
 | 
						|
            setCCNode->markFoldedIntoParent();
 | 
						|
            
 | 
						|
            BranchInst* brInst=cast<BranchInst>(subtreeRoot->getInstruction());
 | 
						|
            
 | 
						|
            M = BuildMI(ChooseBprInstruction(subtreeRoot), 2)
 | 
						|
                                .addReg(setCCNode->leftChild()->getValue())
 | 
						|
                                .addPCDisp(brInst->getSuccessor(0));
 | 
						|
            mvec.push_back(M);
 | 
						|
            
 | 
						|
            // delay slot
 | 
						|
            mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
 | 
						|
            // false branch
 | 
						|
            mvec.push_back(BuildMI(V9::BA, 1)
 | 
						|
                           .addPCDisp(brInst->getSuccessor(1)));
 | 
						|
            
 | 
						|
            // delay slot
 | 
						|
            mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
      }
 | 
						|
 | 
						|
      case 6:	// stmt:   BrCond(setCC)
 | 
						|
      { // bool => boolean was computed with SetCC.
 | 
						|
        // The branch to use depends on whether it is FP, signed, or unsigned.
 | 
						|
        // If it is an integer CC, we also need to find the unique
 | 
						|
        // TmpInstruction representing that CC.
 | 
						|
        // 
 | 
						|
        BranchInst* brInst = cast<BranchInst>(subtreeRoot->getInstruction());
 | 
						|
        const Type* setCCType;
 | 
						|
        unsigned Opcode = ChooseBccInstruction(subtreeRoot, setCCType);
 | 
						|
        Value* ccValue = GetTmpForCC(subtreeRoot->leftChild()->getValue(),
 | 
						|
                                     brInst->getParent()->getParent(),
 | 
						|
                                     setCCType,
 | 
						|
                                     MachineCodeForInstruction::get(brInst));
 | 
						|
        M = BuildMI(Opcode, 2).addCCReg(ccValue)
 | 
						|
                              .addPCDisp(brInst->getSuccessor(0));
 | 
						|
        mvec.push_back(M);
 | 
						|
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
 | 
						|
        // false branch
 | 
						|
        mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(brInst->getSuccessor(1)));
 | 
						|
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case 208:	// stmt:   BrCond(boolconst)
 | 
						|
      {
 | 
						|
        // boolconst => boolean is a constant; use BA to first or second label
 | 
						|
        Constant* constVal = 
 | 
						|
          cast<Constant>(subtreeRoot->leftChild()->getValue());
 | 
						|
        unsigned dest = cast<ConstantBool>(constVal)->getValue()? 0 : 1;
 | 
						|
        
 | 
						|
        M = BuildMI(V9::BA, 1).addPCDisp(
 | 
						|
          cast<BranchInst>(subtreeRoot->getInstruction())->getSuccessor(dest));
 | 
						|
        mvec.push_back(M);
 | 
						|
        
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
        
 | 
						|
      case   8:	// stmt:   BrCond(boolreg)
 | 
						|
      { // boolreg   => boolean is recorded in an integer register.
 | 
						|
        //              Use branch-on-integer-register instruction.
 | 
						|
        // 
 | 
						|
        BranchInst *BI = cast<BranchInst>(subtreeRoot->getInstruction());
 | 
						|
        M = BuildMI(V9::BRNZ, 2).addReg(subtreeRoot->leftChild()->getValue())
 | 
						|
          .addPCDisp(BI->getSuccessor(0));
 | 
						|
        mvec.push_back(M);
 | 
						|
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
 | 
						|
        // false branch
 | 
						|
        mvec.push_back(BuildMI(V9::BA, 1).addPCDisp(BI->getSuccessor(1)));
 | 
						|
        
 | 
						|
        // delay slot
 | 
						|
        mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
        break;
 | 
						|
      }  
 | 
						|
      
 | 
						|
      case 9:	// stmt:   Switch(reg)
 | 
						|
        assert(0 && "*** SWITCH instruction is not implemented yet.");
 | 
						|
        break;
 | 
						|
 | 
						|
      case 10:	// reg:   VRegList(reg, reg)
 | 
						|
        assert(0 && "VRegList should never be the topmost non-chain rule");
 | 
						|
        break;
 | 
						|
 | 
						|
      case 21:	// bool:  Not(bool,reg): Compute with a conditional-move-on-reg
 | 
						|
      { // First find the unary operand. It may be left or right, usually right.
 | 
						|
        Instruction* notI = subtreeRoot->getInstruction();
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(subtreeRoot->getInstruction()));
 | 
						|
        unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
 | 
						|
 | 
						|
        // Unconditionally set register to 0
 | 
						|
        mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(notI));
 | 
						|
 | 
						|
        // Now conditionally move 1 into the register.
 | 
						|
        // Mark the register as a use (as well as a def) because the old
 | 
						|
        // value will be retained if the condition is false.
 | 
						|
        mvec.push_back(BuildMI(V9::MOVRZi, 3).addReg(notArg).addZImm(1)
 | 
						|
                       .addReg(notI, MachineOperand::UseAndDef));
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 421:	// reg:   BNot(reg,reg): Compute as reg = reg XOR-NOT 0
 | 
						|
      { // First find the unary operand. It may be left or right, usually right.
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(subtreeRoot->getInstruction()));
 | 
						|
        unsigned ZeroReg = target.getRegInfo().getZeroRegNum();
 | 
						|
        mvec.push_back(BuildMI(V9::XNORr, 3).addReg(notArg).addMReg(ZeroReg)
 | 
						|
                                       .addRegDef(subtreeRoot->getValue()));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 322:	// reg:   Not(tobool, reg):
 | 
						|
        // Fold CAST-TO-BOOL with NOT by inverting the sense of cast-to-bool
 | 
						|
        foldCase = true;
 | 
						|
        // Just fall through!
 | 
						|
 | 
						|
      case 22:	// reg:   ToBoolTy(reg):
 | 
						|
      {
 | 
						|
        Instruction* castI = subtreeRoot->getInstruction();
 | 
						|
        Value* opVal = subtreeRoot->leftChild()->getValue();
 | 
						|
        assert(opVal->getType()->isIntegral() ||
 | 
						|
               isa<PointerType>(opVal->getType()));
 | 
						|
 | 
						|
        // Unconditionally set register to 0
 | 
						|
        mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(castI));
 | 
						|
 | 
						|
        // Now conditionally move 1 into the register.
 | 
						|
        // Mark the register as a use (as well as a def) because the old
 | 
						|
        // value will be retained if the condition is false.
 | 
						|
        MachineOpCode opCode = foldCase? V9::MOVRZi : V9::MOVRNZi;
 | 
						|
        mvec.push_back(BuildMI(opCode, 3).addReg(opVal).addZImm(1)
 | 
						|
                       .addReg(castI, MachineOperand::UseAndDef));
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 23:	// reg:   ToUByteTy(reg)
 | 
						|
      case 24:	// reg:   ToSByteTy(reg)
 | 
						|
      case 25:	// reg:   ToUShortTy(reg)
 | 
						|
      case 26:	// reg:   ToShortTy(reg)
 | 
						|
      case 27:	// reg:   ToUIntTy(reg)
 | 
						|
      case 28:	// reg:   ToIntTy(reg)
 | 
						|
      case 29:	// reg:   ToULongTy(reg)
 | 
						|
      case 30:	// reg:   ToLongTy(reg)
 | 
						|
      {
 | 
						|
        //======================================================================
 | 
						|
        // Rules for integer conversions:
 | 
						|
        // 
 | 
						|
        //--------
 | 
						|
        // From ISO 1998 C++ Standard, Sec. 4.7:
 | 
						|
        //
 | 
						|
        // 2. If the destination type is unsigned, the resulting value is
 | 
						|
        // the least unsigned integer congruent to the source integer
 | 
						|
        // (modulo 2n where n is the number of bits used to represent the
 | 
						|
        // unsigned type). [Note: In a two s complement representation,
 | 
						|
        // this conversion is conceptual and there is no change in the
 | 
						|
        // bit pattern (if there is no truncation). ]
 | 
						|
        // 
 | 
						|
        // 3. If the destination type is signed, the value is unchanged if
 | 
						|
        // it can be represented in the destination type (and bitfield width);
 | 
						|
        // otherwise, the value is implementation-defined.
 | 
						|
        //--------
 | 
						|
        // 
 | 
						|
        // Since we assume 2s complement representations, this implies:
 | 
						|
        // 
 | 
						|
        // -- If operand is smaller than destination, zero-extend or sign-extend
 | 
						|
        //    according to the signedness of the *operand*: source decides:
 | 
						|
        //    (1) If operand is signed, sign-extend it.
 | 
						|
        //        If dest is unsigned, zero-ext the result!
 | 
						|
        //    (2) If operand is unsigned, our current invariant is that
 | 
						|
        //        it's high bits are correct, so zero-extension is not needed.
 | 
						|
        // 
 | 
						|
        // -- If operand is same size as or larger than destination,
 | 
						|
        //    zero-extend or sign-extend according to the signedness of
 | 
						|
        //    the *destination*: destination decides:
 | 
						|
        //    (1) If destination is signed, sign-extend (truncating if needed)
 | 
						|
        //        This choice is implementation defined.  We sign-extend the
 | 
						|
        //        operand, which matches both Sun's cc and gcc3.2.
 | 
						|
        //    (2) If destination is unsigned, zero-extend (truncating if needed)
 | 
						|
        //======================================================================
 | 
						|
 | 
						|
        Instruction* destI =  subtreeRoot->getInstruction();
 | 
						|
        Function* currentFunc = destI->getParent()->getParent();
 | 
						|
        MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(destI);
 | 
						|
 | 
						|
        Value* opVal = subtreeRoot->leftChild()->getValue();
 | 
						|
        const Type* opType = opVal->getType();
 | 
						|
        const Type* destType = destI->getType();
 | 
						|
        unsigned opSize   = target.getTargetData().getTypeSize(opType);
 | 
						|
        unsigned destSize = target.getTargetData().getTypeSize(destType);
 | 
						|
        
 | 
						|
        bool isIntegral = opType->isIntegral() || isa<PointerType>(opType);
 | 
						|
 | 
						|
        if (opType == Type::BoolTy ||
 | 
						|
            opType == destType ||
 | 
						|
            isIntegral && opSize == destSize && opSize == 8) {
 | 
						|
          // nothing to do in all these cases
 | 
						|
          forwardOperandNum = 0;          // forward first operand to user
 | 
						|
 | 
						|
        } else if (opType->isFloatingPoint()) {
 | 
						|
 | 
						|
          CreateCodeToConvertFloatToInt(target, opVal, destI, mvec, mcfi);
 | 
						|
          if (destI->getType()->isUnsigned() && destI->getType() !=Type::UIntTy)
 | 
						|
            maskUnsignedResult = true; // not handled by fp->int code
 | 
						|
 | 
						|
        } else if (isIntegral) {
 | 
						|
 | 
						|
          bool opSigned     = opType->isSigned();
 | 
						|
          bool destSigned   = destType->isSigned();
 | 
						|
          unsigned extSourceInBits = 8 * std::min<unsigned>(opSize, destSize);
 | 
						|
 | 
						|
          assert(! (opSize == destSize && opSigned == destSigned) &&
 | 
						|
                 "How can different int types have same size and signedness?");
 | 
						|
 | 
						|
          bool signExtend = (opSize <  destSize && opSigned ||
 | 
						|
                             opSize >= destSize && destSigned);
 | 
						|
 | 
						|
          bool signAndZeroExtend = (opSize < destSize && destSize < 8u &&
 | 
						|
                                    opSigned && !destSigned);
 | 
						|
          assert(!signAndZeroExtend || signExtend);
 | 
						|
 | 
						|
          bool zeroExtendOnly = opSize >= destSize && !destSigned;
 | 
						|
          assert(!zeroExtendOnly || !signExtend);
 | 
						|
 | 
						|
          if (signExtend) {
 | 
						|
            Value* signExtDest = (signAndZeroExtend
 | 
						|
                                  ? new TmpInstruction(mcfi, destType, opVal)
 | 
						|
                                  : destI);
 | 
						|
 | 
						|
            target.getInstrInfo().CreateSignExtensionInstructions
 | 
						|
              (target, currentFunc,opVal,signExtDest,extSourceInBits,mvec,mcfi);
 | 
						|
 | 
						|
            if (signAndZeroExtend)
 | 
						|
              target.getInstrInfo().CreateZeroExtensionInstructions
 | 
						|
              (target, currentFunc, signExtDest, destI, 8*destSize, mvec, mcfi);
 | 
						|
          }
 | 
						|
          else if (zeroExtendOnly) {
 | 
						|
            target.getInstrInfo().CreateZeroExtensionInstructions
 | 
						|
              (target, currentFunc, opVal, destI, extSourceInBits, mvec, mcfi);
 | 
						|
          }
 | 
						|
          else
 | 
						|
            forwardOperandNum = 0;          // forward first operand to user
 | 
						|
 | 
						|
        } else
 | 
						|
          assert(0 && "Unrecognized operand type for convert-to-integer");
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case  31:	// reg:   ToFloatTy(reg):
 | 
						|
      case  32:	// reg:   ToDoubleTy(reg):
 | 
						|
      case 232:	// reg:   ToDoubleTy(Constant):
 | 
						|
      
 | 
						|
        // If this instruction has a parent (a user) in the tree 
 | 
						|
        // and the user is translated as an FsMULd instruction,
 | 
						|
        // then the cast is unnecessary.  So check that first.
 | 
						|
        // In the future, we'll want to do the same for the FdMULq instruction,
 | 
						|
        // so do the check here instead of only for ToFloatTy(reg).
 | 
						|
        // 
 | 
						|
        if (subtreeRoot->parent() != NULL) {
 | 
						|
          const MachineCodeForInstruction& mcfi =
 | 
						|
            MachineCodeForInstruction::get(
 | 
						|
                cast<InstructionNode>(subtreeRoot->parent())->getInstruction());
 | 
						|
          if (mcfi.size() == 0 || mcfi.front()->getOpcode() == V9::FSMULD)
 | 
						|
            forwardOperandNum = 0;    // forward first operand to user
 | 
						|
        }
 | 
						|
 | 
						|
        if (forwardOperandNum != 0) {    // we do need the cast
 | 
						|
          Value* leftVal = subtreeRoot->leftChild()->getValue();
 | 
						|
          const Type* opType = leftVal->getType();
 | 
						|
          MachineOpCode opCode=ChooseConvertToFloatInstr(target,
 | 
						|
                                       subtreeRoot->getOpLabel(), opType);
 | 
						|
          if (opCode == V9::NOP) {      // no conversion needed
 | 
						|
            forwardOperandNum = 0;      // forward first operand to user
 | 
						|
          } else {
 | 
						|
            // If the source operand is a non-FP type it must be
 | 
						|
            // first copied from int to float register via memory!
 | 
						|
            Instruction *dest = subtreeRoot->getInstruction();
 | 
						|
            Value* srcForCast;
 | 
						|
            int n = 0;
 | 
						|
            if (! opType->isFloatingPoint()) {
 | 
						|
              // Create a temporary to represent the FP register
 | 
						|
              // into which the integer will be copied via memory.
 | 
						|
              // The type of this temporary will determine the FP
 | 
						|
              // register used: single-prec for a 32-bit int or smaller,
 | 
						|
              // double-prec for a 64-bit int.
 | 
						|
              // 
 | 
						|
              uint64_t srcSize =
 | 
						|
                target.getTargetData().getTypeSize(leftVal->getType());
 | 
						|
              Type* tmpTypeToUse =
 | 
						|
                (srcSize <= 4)? Type::FloatTy : Type::DoubleTy;
 | 
						|
              MachineCodeForInstruction &destMCFI = 
 | 
						|
                MachineCodeForInstruction::get(dest);
 | 
						|
              srcForCast = new TmpInstruction(destMCFI, tmpTypeToUse, dest);
 | 
						|
 | 
						|
              target.getInstrInfo().CreateCodeToCopyIntToFloat(target,
 | 
						|
                         dest->getParent()->getParent(),
 | 
						|
                         leftVal, cast<Instruction>(srcForCast),
 | 
						|
                         mvec, destMCFI);
 | 
						|
            } else
 | 
						|
              srcForCast = leftVal;
 | 
						|
 | 
						|
            M = BuildMI(opCode, 2).addReg(srcForCast).addRegDef(dest);
 | 
						|
            mvec.push_back(M);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
      case 19:	// reg:   ToArrayTy(reg):
 | 
						|
      case 20:	// reg:   ToPointerTy(reg):
 | 
						|
        forwardOperandNum = 0;          // forward first operand to user
 | 
						|
        break;
 | 
						|
 | 
						|
      case 233:	// reg:   Add(reg, Constant)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        M = CreateAddConstInstruction(subtreeRoot);
 | 
						|
        if (M != NULL) {
 | 
						|
          mvec.push_back(M);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
        
 | 
						|
      case 33:	// reg:   Add(reg, reg)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        Add3OperandInstr(ChooseAddInstruction(subtreeRoot), subtreeRoot, mvec);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 234:	// reg:   Sub(reg, Constant)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        M = CreateSubConstInstruction(subtreeRoot);
 | 
						|
        if (M != NULL) {
 | 
						|
          mvec.push_back(M);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
        
 | 
						|
      case 34:	// reg:   Sub(reg, reg)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        Add3OperandInstr(ChooseSubInstructionByType(
 | 
						|
                                   subtreeRoot->getInstruction()->getType()),
 | 
						|
                         subtreeRoot, mvec);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 135:	// reg:   Mul(todouble, todouble)
 | 
						|
        checkCast = true;
 | 
						|
        // FALL THROUGH 
 | 
						|
 | 
						|
      case 35:	// reg:   Mul(reg, reg)
 | 
						|
      {
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
 | 
						|
                                 ? (MachineOpCode)V9::FSMULD
 | 
						|
                                 : -1);
 | 
						|
        Instruction* mulInstr = subtreeRoot->getInstruction();
 | 
						|
        CreateMulInstruction(target, mulInstr->getParent()->getParent(),
 | 
						|
                             subtreeRoot->leftChild()->getValue(),
 | 
						|
                             subtreeRoot->rightChild()->getValue(),
 | 
						|
                             mulInstr, mvec,
 | 
						|
                             MachineCodeForInstruction::get(mulInstr),forceOp);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case 335:	// reg:   Mul(todouble, todoubleConst)
 | 
						|
        checkCast = true;
 | 
						|
        // FALL THROUGH 
 | 
						|
 | 
						|
      case 235:	// reg:   Mul(reg, Constant)
 | 
						|
      {
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        MachineOpCode forceOp = ((checkCast && BothFloatToDouble(subtreeRoot))
 | 
						|
                                 ? (MachineOpCode)V9::FSMULD
 | 
						|
                                 : -1);
 | 
						|
        Instruction* mulInstr = subtreeRoot->getInstruction();
 | 
						|
        CreateMulInstruction(target, mulInstr->getParent()->getParent(),
 | 
						|
                             subtreeRoot->leftChild()->getValue(),
 | 
						|
                             subtreeRoot->rightChild()->getValue(),
 | 
						|
                             mulInstr, mvec,
 | 
						|
                             MachineCodeForInstruction::get(mulInstr),
 | 
						|
                             forceOp);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case 236:	// reg:   Div(reg, Constant)
 | 
						|
        maskUnsignedResult = true;
 | 
						|
        L = mvec.size();
 | 
						|
        CreateDivConstInstruction(target, subtreeRoot, mvec);
 | 
						|
        if (mvec.size() > L)
 | 
						|
          break;
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
      
 | 
						|
      case 36:	// reg:   Div(reg, reg)
 | 
						|
      {
 | 
						|
        maskUnsignedResult = true;
 | 
						|
 | 
						|
        // If either operand of divide is smaller than 64 bits, we have
 | 
						|
        // to make sure the unused top bits are correct because they affect
 | 
						|
        // the result.  These bits are already correct for unsigned values.
 | 
						|
        // They may be incorrect for signed values, so sign extend to fill in.
 | 
						|
        Instruction* divI = subtreeRoot->getInstruction();
 | 
						|
        Value* divOp1 = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value* divOp2 = subtreeRoot->rightChild()->getValue();
 | 
						|
        Value* divOp1ToUse = divOp1;
 | 
						|
        Value* divOp2ToUse = divOp2;
 | 
						|
        if (divI->getType()->isSigned()) {
 | 
						|
          unsigned opSize=target.getTargetData().getTypeSize(divI->getType());
 | 
						|
          if (opSize < 8) {
 | 
						|
            MachineCodeForInstruction& mcfi=MachineCodeForInstruction::get(divI);
 | 
						|
            divOp1ToUse = new TmpInstruction(mcfi, divOp1);
 | 
						|
            divOp2ToUse = new TmpInstruction(mcfi, divOp2);
 | 
						|
            target.getInstrInfo().
 | 
						|
              CreateSignExtensionInstructions(target,
 | 
						|
                                              divI->getParent()->getParent(),
 | 
						|
                                              divOp1, divOp1ToUse,
 | 
						|
                                              8*opSize, mvec, mcfi);
 | 
						|
            target.getInstrInfo().
 | 
						|
              CreateSignExtensionInstructions(target,
 | 
						|
                                              divI->getParent()->getParent(),
 | 
						|
                                              divOp2, divOp2ToUse,
 | 
						|
                                              8*opSize, mvec, mcfi);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
 | 
						|
                       .addReg(divOp1ToUse)
 | 
						|
                       .addReg(divOp2ToUse)
 | 
						|
                       .addRegDef(divI));
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case  37:	// reg:   Rem(reg, reg)
 | 
						|
      case 237:	// reg:   Rem(reg, Constant)
 | 
						|
      {
 | 
						|
        maskUnsignedResult = true;
 | 
						|
 | 
						|
        Instruction* remI   = subtreeRoot->getInstruction();
 | 
						|
        Value* divOp1 = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value* divOp2 = subtreeRoot->rightChild()->getValue();
 | 
						|
 | 
						|
        MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(remI);
 | 
						|
        
 | 
						|
        // If second operand of divide is smaller than 64 bits, we have
 | 
						|
        // to make sure the unused top bits are correct because they affect
 | 
						|
        // the result.  These bits are already correct for unsigned values.
 | 
						|
        // They may be incorrect for signed values, so sign extend to fill in.
 | 
						|
        // 
 | 
						|
        Value* divOpToUse = divOp2;
 | 
						|
        if (divOp2->getType()->isSigned()) {
 | 
						|
          unsigned opSize=target.getTargetData().getTypeSize(divOp2->getType());
 | 
						|
          if (opSize < 8) {
 | 
						|
            divOpToUse = new TmpInstruction(mcfi, divOp2);
 | 
						|
            target.getInstrInfo().
 | 
						|
              CreateSignExtensionInstructions(target,
 | 
						|
                                              remI->getParent()->getParent(),
 | 
						|
                                              divOp2, divOpToUse,
 | 
						|
                                              8*opSize, mvec, mcfi);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Now compute: result = rem V1, V2 as:
 | 
						|
        //      result = V1 - (V1 / signExtend(V2)) * signExtend(V2)
 | 
						|
        // 
 | 
						|
        TmpInstruction* quot = new TmpInstruction(mcfi, divOp1, divOpToUse);
 | 
						|
        TmpInstruction* prod = new TmpInstruction(mcfi, quot, divOpToUse);
 | 
						|
 | 
						|
        mvec.push_back(BuildMI(ChooseDivInstruction(target, subtreeRoot), 3)
 | 
						|
                       .addReg(divOp1).addReg(divOpToUse).addRegDef(quot));
 | 
						|
        
 | 
						|
        mvec.push_back(BuildMI(ChooseMulInstructionByType(remI->getType()), 3)
 | 
						|
                       .addReg(quot).addReg(divOpToUse).addRegDef(prod));
 | 
						|
        
 | 
						|
        mvec.push_back(BuildMI(ChooseSubInstructionByType(remI->getType()), 3)
 | 
						|
                       .addReg(divOp1).addReg(prod).addRegDef(remI));
 | 
						|
        
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case  38:	// bool:   And(bool, bool)
 | 
						|
      case 138:	// bool:   And(bool, not)
 | 
						|
      case 238:	// bool:   And(bool, boolconst)
 | 
						|
      case 338:	// reg :   BAnd(reg, reg)
 | 
						|
      case 538:	// reg :   BAnd(reg, Constant)
 | 
						|
        Add3OperandInstr(V9::ANDr, subtreeRoot, mvec);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 438:	// bool:   BAnd(bool, bnot)
 | 
						|
      { // Use the argument of NOT as the second argument!
 | 
						|
        // Mark the NOT node so that no code is generated for it.
 | 
						|
        // If the type is boolean, set 1 or 0 in the result register.
 | 
						|
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(notNode->getInstruction()));
 | 
						|
        notNode->markFoldedIntoParent();
 | 
						|
        Value *lhs = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value *dest = subtreeRoot->getValue();
 | 
						|
        mvec.push_back(BuildMI(V9::ANDNr, 3).addReg(lhs).addReg(notArg)
 | 
						|
                                       .addReg(dest, MachineOperand::Def));
 | 
						|
 | 
						|
        if (notArg->getType() == Type::BoolTy) {
 | 
						|
          // set 1 in result register if result of above is non-zero
 | 
						|
          mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
 | 
						|
                         .addReg(dest, MachineOperand::UseAndDef));
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case  39:	// bool:   Or(bool, bool)
 | 
						|
      case 139:	// bool:   Or(bool, not)
 | 
						|
      case 239:	// bool:   Or(bool, boolconst)
 | 
						|
      case 339:	// reg :   BOr(reg, reg)
 | 
						|
      case 539:	// reg :   BOr(reg, Constant)
 | 
						|
        Add3OperandInstr(V9::ORr, subtreeRoot, mvec);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 439:	// bool:   BOr(bool, bnot)
 | 
						|
      { // Use the argument of NOT as the second argument!
 | 
						|
        // Mark the NOT node so that no code is generated for it.
 | 
						|
        // If the type is boolean, set 1 or 0 in the result register.
 | 
						|
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(notNode->getInstruction()));
 | 
						|
        notNode->markFoldedIntoParent();
 | 
						|
        Value *lhs = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value *dest = subtreeRoot->getValue();
 | 
						|
 | 
						|
        mvec.push_back(BuildMI(V9::ORNr, 3).addReg(lhs).addReg(notArg)
 | 
						|
                       .addReg(dest, MachineOperand::Def));
 | 
						|
 | 
						|
        if (notArg->getType() == Type::BoolTy) {
 | 
						|
          // set 1 in result register if result of above is non-zero
 | 
						|
          mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
 | 
						|
                         .addReg(dest, MachineOperand::UseAndDef));
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case  40:	// bool:   Xor(bool, bool)
 | 
						|
      case 140:	// bool:   Xor(bool, not)
 | 
						|
      case 240:	// bool:   Xor(bool, boolconst)
 | 
						|
      case 340:	// reg :   BXor(reg, reg)
 | 
						|
      case 540:	// reg :   BXor(reg, Constant)
 | 
						|
        Add3OperandInstr(V9::XORr, subtreeRoot, mvec);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 440:	// bool:   BXor(bool, bnot)
 | 
						|
      { // Use the argument of NOT as the second argument!
 | 
						|
        // Mark the NOT node so that no code is generated for it.
 | 
						|
        // If the type is boolean, set 1 or 0 in the result register.
 | 
						|
        InstructionNode* notNode = (InstructionNode*) subtreeRoot->rightChild();
 | 
						|
        Value* notArg = BinaryOperator::getNotArgument(
 | 
						|
                           cast<BinaryOperator>(notNode->getInstruction()));
 | 
						|
        notNode->markFoldedIntoParent();
 | 
						|
        Value *lhs = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value *dest = subtreeRoot->getValue();
 | 
						|
        mvec.push_back(BuildMI(V9::XNORr, 3).addReg(lhs).addReg(notArg)
 | 
						|
                       .addReg(dest, MachineOperand::Def));
 | 
						|
 | 
						|
        if (notArg->getType() == Type::BoolTy) {
 | 
						|
          // set 1 in result register if result of above is non-zero
 | 
						|
          mvec.push_back(BuildMI(V9::MOVRNZi, 3).addReg(dest).addZImm(1)
 | 
						|
                         .addReg(dest, MachineOperand::UseAndDef));
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 41:	// setCCconst:   SetCC(reg, Constant)
 | 
						|
      { // Comparison is with a constant:
 | 
						|
        // 
 | 
						|
        // If the bool result must be computed into a register (see below),
 | 
						|
        // and the constant is int ZERO, we can use the MOVR[op] instructions
 | 
						|
        // and avoid the SUBcc instruction entirely.
 | 
						|
        // Otherwise this is just the same as case 42, so just fall through.
 | 
						|
        // 
 | 
						|
        // The result of the SetCC must be computed and stored in a register if
 | 
						|
        // it is used outside the current basic block (so it must be computed
 | 
						|
        // as a boolreg) or it is used by anything other than a branch.
 | 
						|
        // We will use a conditional move to do this.
 | 
						|
        // 
 | 
						|
        Instruction* setCCInstr = subtreeRoot->getInstruction();
 | 
						|
        bool computeBoolVal = (subtreeRoot->parent() == NULL ||
 | 
						|
                               ! AllUsesAreBranches(setCCInstr));
 | 
						|
 | 
						|
        if (computeBoolVal) {
 | 
						|
          InstrTreeNode* constNode = subtreeRoot->rightChild();
 | 
						|
          assert(constNode &&
 | 
						|
                 constNode->getNodeType() ==InstrTreeNode::NTConstNode);
 | 
						|
          Constant *constVal = cast<Constant>(constNode->getValue());
 | 
						|
          bool isValidConst;
 | 
						|
          
 | 
						|
          if ((constVal->getType()->isInteger()
 | 
						|
               || isa<PointerType>(constVal->getType()))
 | 
						|
              && target.getInstrInfo().ConvertConstantToIntType(target,
 | 
						|
                             constVal, constVal->getType(), isValidConst) == 0
 | 
						|
              && isValidConst)
 | 
						|
          {
 | 
						|
            // That constant is an integer zero after all...
 | 
						|
            // Use a MOVR[op] to compute the boolean result
 | 
						|
            // Unconditionally set register to 0
 | 
						|
            mvec.push_back(BuildMI(V9::SETHI, 2).addZImm(0)
 | 
						|
                           .addRegDef(setCCInstr));
 | 
						|
                
 | 
						|
            // Now conditionally move 1 into the register.
 | 
						|
            // Mark the register as a use (as well as a def) because the old
 | 
						|
            // value will be retained if the condition is false.
 | 
						|
            MachineOpCode movOpCode = ChooseMovpregiForSetCC(subtreeRoot);
 | 
						|
            mvec.push_back(BuildMI(movOpCode, 3)
 | 
						|
                           .addReg(subtreeRoot->leftChild()->getValue())
 | 
						|
                           .addZImm(1)
 | 
						|
                           .addReg(setCCInstr, MachineOperand::UseAndDef));
 | 
						|
                
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // ELSE FALL THROUGH
 | 
						|
      }
 | 
						|
 | 
						|
      case 42:	// bool:   SetCC(reg, reg):
 | 
						|
      {
 | 
						|
        // This generates a SUBCC instruction, putting the difference in a
 | 
						|
        // result reg. if needed, and/or setting a condition code if needed.
 | 
						|
        // 
 | 
						|
        Instruction* setCCInstr = subtreeRoot->getInstruction();
 | 
						|
        Value* leftVal  = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value* rightVal = subtreeRoot->rightChild()->getValue();
 | 
						|
        const Type* opType = leftVal->getType();
 | 
						|
        bool isFPCompare = opType->isFloatingPoint();
 | 
						|
        
 | 
						|
        // If the boolean result of the SetCC is used outside the current basic
 | 
						|
        // block (so it must be computed as a boolreg) or is used by anything
 | 
						|
        // other than a branch, the boolean must be computed and stored
 | 
						|
        // in a result register.  We will use a conditional move to do this.
 | 
						|
        // 
 | 
						|
        bool computeBoolVal = (subtreeRoot->parent() == NULL ||
 | 
						|
                               ! AllUsesAreBranches(setCCInstr));
 | 
						|
        
 | 
						|
        // A TmpInstruction is created to represent the CC "result".
 | 
						|
        // Unlike other instances of TmpInstruction, this one is used
 | 
						|
        // by machine code of multiple LLVM instructions, viz.,
 | 
						|
        // the SetCC and the branch.  Make sure to get the same one!
 | 
						|
        // Note that we do this even for FP CC registers even though they
 | 
						|
        // are explicit operands, because the type of the operand
 | 
						|
        // needs to be a floating point condition code, not an integer
 | 
						|
        // condition code.  Think of this as casting the bool result to
 | 
						|
        // a FP condition code register.
 | 
						|
        // Later, we mark the 4th operand as being a CC register, and as a def.
 | 
						|
        // 
 | 
						|
        TmpInstruction* tmpForCC = GetTmpForCC(setCCInstr,
 | 
						|
                                    setCCInstr->getParent()->getParent(),
 | 
						|
                                    leftVal->getType(),
 | 
						|
                                    MachineCodeForInstruction::get(setCCInstr));
 | 
						|
 | 
						|
        // If the operands are signed values smaller than 4 bytes, then they
 | 
						|
        // must be sign-extended in order to do a valid 32-bit comparison
 | 
						|
        // and get the right result in the 32-bit CC register (%icc).
 | 
						|
        // 
 | 
						|
        Value* leftOpToUse  = leftVal;
 | 
						|
        Value* rightOpToUse = rightVal;
 | 
						|
        if (opType->isIntegral() && opType->isSigned()) {
 | 
						|
          unsigned opSize = target.getTargetData().getTypeSize(opType);
 | 
						|
          if (opSize < 4) {
 | 
						|
            MachineCodeForInstruction& mcfi =
 | 
						|
              MachineCodeForInstruction::get(setCCInstr); 
 | 
						|
 | 
						|
            // create temporary virtual regs. to hold the sign-extensions
 | 
						|
            leftOpToUse  = new TmpInstruction(mcfi, leftVal);
 | 
						|
            rightOpToUse = new TmpInstruction(mcfi, rightVal);
 | 
						|
            
 | 
						|
            // sign-extend each operand and put the result in the temporary reg.
 | 
						|
            target.getInstrInfo().CreateSignExtensionInstructions
 | 
						|
              (target, setCCInstr->getParent()->getParent(),
 | 
						|
               leftVal, leftOpToUse, 8*opSize, mvec, mcfi);
 | 
						|
            target.getInstrInfo().CreateSignExtensionInstructions
 | 
						|
              (target, setCCInstr->getParent()->getParent(),
 | 
						|
               rightVal, rightOpToUse, 8*opSize, mvec, mcfi);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (! isFPCompare) {
 | 
						|
          // Integer condition: set CC and discard result.
 | 
						|
          mvec.push_back(BuildMI(V9::SUBccr, 4)
 | 
						|
                         .addReg(leftOpToUse)
 | 
						|
                         .addReg(rightOpToUse)
 | 
						|
                         .addMReg(target.getRegInfo()
 | 
						|
                                   .getZeroRegNum(), MachineOperand::Def)
 | 
						|
                         .addCCReg(tmpForCC, MachineOperand::Def));
 | 
						|
        } else {
 | 
						|
          // FP condition: dest of FCMP should be some FCCn register
 | 
						|
          mvec.push_back(BuildMI(ChooseFcmpInstruction(subtreeRoot), 3)
 | 
						|
                         .addCCReg(tmpForCC, MachineOperand::Def)
 | 
						|
                         .addReg(leftOpToUse)
 | 
						|
                         .addReg(rightOpToUse));
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (computeBoolVal) {
 | 
						|
          MachineOpCode movOpCode = (isFPCompare
 | 
						|
                                     ? ChooseMovFpcciInstruction(subtreeRoot)
 | 
						|
                                     : ChooseMovpcciForSetCC(subtreeRoot));
 | 
						|
 | 
						|
          // Unconditionally set register to 0
 | 
						|
          M = BuildMI(V9::SETHI, 2).addZImm(0).addRegDef(setCCInstr);
 | 
						|
          mvec.push_back(M);
 | 
						|
          
 | 
						|
          // Now conditionally move 1 into the register.
 | 
						|
          // Mark the register as a use (as well as a def) because the old
 | 
						|
          // value will be retained if the condition is false.
 | 
						|
          M = (BuildMI(movOpCode, 3).addCCReg(tmpForCC).addZImm(1)
 | 
						|
               .addReg(setCCInstr, MachineOperand::UseAndDef));
 | 
						|
          mvec.push_back(M);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }    
 | 
						|
      
 | 
						|
      case 51:	// reg:   Load(reg)
 | 
						|
      case 52:	// reg:   Load(ptrreg)
 | 
						|
        SetOperandsForMemInstr(ChooseLoadInstruction(
 | 
						|
                                   subtreeRoot->getValue()->getType()),
 | 
						|
                               mvec, subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 55:	// reg:   GetElemPtr(reg)
 | 
						|
      case 56:	// reg:   GetElemPtrIdx(reg,reg)
 | 
						|
        // If the GetElemPtr was folded into the user (parent), it will be
 | 
						|
        // caught above.  For other cases, we have to compute the address.
 | 
						|
        SetOperandsForMemInstr(V9::ADDr, mvec, subtreeRoot, target);
 | 
						|
        break;
 | 
						|
 | 
						|
      case 57:	// reg:  Alloca: Implement as 1 instruction:
 | 
						|
      {         //	    add %fp, offsetFromFP -> result
 | 
						|
        AllocationInst* instr =
 | 
						|
          cast<AllocationInst>(subtreeRoot->getInstruction());
 | 
						|
        unsigned tsize =
 | 
						|
          target.getTargetData().getTypeSize(instr->getAllocatedType());
 | 
						|
        assert(tsize != 0);
 | 
						|
        CreateCodeForFixedSizeAlloca(target, instr, tsize, 1, mvec);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 58:	// reg:   Alloca(reg): Implement as 3 instructions:
 | 
						|
                //	mul num, typeSz -> tmp
 | 
						|
                //	sub %sp, tmp    -> %sp
 | 
						|
      {         //	add %sp, frameSizeBelowDynamicArea -> result
 | 
						|
        AllocationInst* instr =
 | 
						|
          cast<AllocationInst>(subtreeRoot->getInstruction());
 | 
						|
        const Type* eltType = instr->getAllocatedType();
 | 
						|
        
 | 
						|
        // If #elements is constant, use simpler code for fixed-size allocas
 | 
						|
        int tsize = (int) target.getTargetData().getTypeSize(eltType);
 | 
						|
        Value* numElementsVal = NULL;
 | 
						|
        bool isArray = instr->isArrayAllocation();
 | 
						|
        
 | 
						|
        if (!isArray || isa<Constant>(numElementsVal = instr->getArraySize())) {
 | 
						|
          // total size is constant: generate code for fixed-size alloca
 | 
						|
          unsigned numElements = isArray? 
 | 
						|
            cast<ConstantUInt>(numElementsVal)->getValue() : 1;
 | 
						|
          CreateCodeForFixedSizeAlloca(target, instr, tsize,
 | 
						|
                                       numElements, mvec);
 | 
						|
        } else {
 | 
						|
          // total size is not constant.
 | 
						|
          CreateCodeForVariableSizeAlloca(target, instr, tsize,
 | 
						|
                                          numElementsVal, mvec);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 61:	// reg:   Call
 | 
						|
      {         // Generate a direct (CALL) or indirect (JMPL) call.
 | 
						|
                // Mark the return-address register, the indirection
 | 
						|
                // register (for indirect calls), the operands of the Call,
 | 
						|
                // and the return value (if any) as implicit operands
 | 
						|
                // of the machine instruction.
 | 
						|
                // 
 | 
						|
                // If this is a varargs function, floating point arguments
 | 
						|
                // have to passed in integer registers so insert
 | 
						|
                // copy-float-to-int instructions for each float operand.
 | 
						|
                // 
 | 
						|
        CallInst *callInstr = cast<CallInst>(subtreeRoot->getInstruction());
 | 
						|
        Value *callee = callInstr->getCalledValue();
 | 
						|
        Function* calledFunc = dyn_cast<Function>(callee);
 | 
						|
 | 
						|
        // Check if this is an intrinsic function that needs a special code
 | 
						|
        // sequence (e.g., va_start).  Indirect calls cannot be special.
 | 
						|
        // 
 | 
						|
        bool specialIntrinsic = false;
 | 
						|
        Intrinsic::ID iid;
 | 
						|
        if (calledFunc && (iid=(Intrinsic::ID)calledFunc->getIntrinsicID()))
 | 
						|
          specialIntrinsic = CodeGenIntrinsic(iid, *callInstr, target, mvec);
 | 
						|
 | 
						|
        // If not, generate the normal call sequence for the function.
 | 
						|
        // This can also handle any intrinsics that are just function calls.
 | 
						|
        // 
 | 
						|
        if (! specialIntrinsic) {
 | 
						|
          Function* currentFunc = callInstr->getParent()->getParent();
 | 
						|
          MachineFunction& MF = MachineFunction::get(currentFunc);
 | 
						|
          MachineCodeForInstruction& mcfi =
 | 
						|
            MachineCodeForInstruction::get(callInstr); 
 | 
						|
          const SparcV9RegInfo& regInfo =
 | 
						|
            (SparcV9RegInfo&) target.getRegInfo();
 | 
						|
          const TargetFrameInfo& frameInfo = target.getFrameInfo();
 | 
						|
 | 
						|
          // Create hidden virtual register for return address with type void*
 | 
						|
          TmpInstruction* retAddrReg =
 | 
						|
            new TmpInstruction(mcfi, PointerType::get(Type::VoidTy), callInstr);
 | 
						|
 | 
						|
          // Generate the machine instruction and its operands.
 | 
						|
          // Use CALL for direct function calls; this optimistically assumes
 | 
						|
          // the PC-relative address fits in the CALL address field (22 bits).
 | 
						|
          // Use JMPL for indirect calls.
 | 
						|
          // This will be added to mvec later, after operand copies.
 | 
						|
          // 
 | 
						|
          MachineInstr* callMI;
 | 
						|
          if (calledFunc)             // direct function call
 | 
						|
            callMI = BuildMI(V9::CALL, 1).addPCDisp(callee);
 | 
						|
          else                        // indirect function call
 | 
						|
            callMI = (BuildMI(V9::JMPLCALLi,3).addReg(callee)
 | 
						|
                      .addSImm((int64_t)0).addRegDef(retAddrReg));
 | 
						|
 | 
						|
          const FunctionType* funcType =
 | 
						|
            cast<FunctionType>(cast<PointerType>(callee->getType())
 | 
						|
                               ->getElementType());
 | 
						|
          bool isVarArgs = funcType->isVarArg();
 | 
						|
          bool noPrototype = isVarArgs && funcType->getNumParams() == 0;
 | 
						|
        
 | 
						|
          // Use a descriptor to pass information about call arguments
 | 
						|
          // to the register allocator.  This descriptor will be "owned"
 | 
						|
          // and freed automatically when the MachineCodeForInstruction
 | 
						|
          // object for the callInstr goes away.
 | 
						|
          CallArgsDescriptor* argDesc =
 | 
						|
            new CallArgsDescriptor(callInstr, retAddrReg,isVarArgs,noPrototype);
 | 
						|
          assert(callInstr->getOperand(0) == callee
 | 
						|
                 && "This is assumed in the loop below!");
 | 
						|
 | 
						|
          // Insert sign-extension instructions for small signed values,
 | 
						|
          // if this is an unknown function (i.e., called via a funcptr)
 | 
						|
          // or an external one (i.e., which may not be compiled by llc).
 | 
						|
          // 
 | 
						|
          if (calledFunc == NULL || calledFunc->isExternal()) {
 | 
						|
            for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
 | 
						|
              Value* argVal = callInstr->getOperand(i);
 | 
						|
              const Type* argType = argVal->getType();
 | 
						|
              if (argType->isIntegral() && argType->isSigned()) {
 | 
						|
                unsigned argSize = target.getTargetData().getTypeSize(argType);
 | 
						|
                if (argSize <= 4) {
 | 
						|
                  // create a temporary virtual reg. to hold the sign-extension
 | 
						|
                  TmpInstruction* argExtend = new TmpInstruction(mcfi, argVal);
 | 
						|
 | 
						|
                  // sign-extend argVal and put the result in the temporary reg.
 | 
						|
                  target.getInstrInfo().CreateSignExtensionInstructions
 | 
						|
                    (target, currentFunc, argVal, argExtend,
 | 
						|
                     8*argSize, mvec, mcfi);
 | 
						|
 | 
						|
                  // replace argVal with argExtend in CallArgsDescriptor
 | 
						|
                  argDesc->getArgInfo(i-1).replaceArgVal(argExtend);
 | 
						|
                }
 | 
						|
              }
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // Insert copy instructions to get all the arguments into
 | 
						|
          // all the places that they need to be.
 | 
						|
          // 
 | 
						|
          for (unsigned i=1, N=callInstr->getNumOperands(); i < N; ++i) {
 | 
						|
            int argNo = i-1;
 | 
						|
            CallArgInfo& argInfo = argDesc->getArgInfo(argNo);
 | 
						|
            Value* argVal = argInfo.getArgVal(); // don't use callInstr arg here
 | 
						|
            const Type* argType = argVal->getType();
 | 
						|
            unsigned regType = regInfo.getRegTypeForDataType(argType);
 | 
						|
            unsigned argSize = target.getTargetData().getTypeSize(argType);
 | 
						|
            int regNumForArg = TargetRegInfo::getInvalidRegNum();
 | 
						|
            unsigned regClassIDOfArgReg;
 | 
						|
 | 
						|
            // Check for FP arguments to varargs functions.
 | 
						|
            // Any such argument in the first $K$ args must be passed in an
 | 
						|
            // integer register.  If there is no prototype, it must also
 | 
						|
            // be passed as an FP register.
 | 
						|
            // K = #integer argument registers.
 | 
						|
            bool isFPArg = argVal->getType()->isFloatingPoint();
 | 
						|
            if (isVarArgs && isFPArg) {
 | 
						|
 | 
						|
              if (noPrototype) {
 | 
						|
                // It is a function with no prototype: pass value
 | 
						|
                // as an FP value as well as a varargs value.  The FP value
 | 
						|
                // may go in a register or on the stack.  The copy instruction
 | 
						|
                // to the outgoing reg/stack is created by the normal argument
 | 
						|
                // handling code since this is the "normal" passing mode.
 | 
						|
                // 
 | 
						|
                regNumForArg = regInfo.regNumForFPArg(regType,
 | 
						|
                                                      false, false, argNo,
 | 
						|
                                                      regClassIDOfArgReg);
 | 
						|
                if (regNumForArg == regInfo.getInvalidRegNum())
 | 
						|
                  argInfo.setUseStackSlot();
 | 
						|
                else
 | 
						|
                  argInfo.setUseFPArgReg();
 | 
						|
              }
 | 
						|
              
 | 
						|
              // If this arg. is in the first $K$ regs, add special copy-
 | 
						|
              // float-to-int instructions to pass the value as an int.
 | 
						|
              // To check if it is in the first $K$, get the register
 | 
						|
              // number for the arg #i.  These copy instructions are
 | 
						|
              // generated here because they are extra cases and not needed
 | 
						|
              // for the normal argument handling (some code reuse is
 | 
						|
              // possible though -- later).
 | 
						|
              // 
 | 
						|
              int copyRegNum = regInfo.regNumForIntArg(false, false, argNo,
 | 
						|
                                                       regClassIDOfArgReg);
 | 
						|
              if (copyRegNum != regInfo.getInvalidRegNum()) {
 | 
						|
                // Create a virtual register to represent copyReg. Mark
 | 
						|
                // this vreg as being an implicit operand of the call MI
 | 
						|
                const Type* loadTy = (argType == Type::FloatTy
 | 
						|
                                      ? Type::IntTy : Type::LongTy);
 | 
						|
                TmpInstruction* argVReg = new TmpInstruction(mcfi, loadTy,
 | 
						|
                                                             argVal, NULL,
 | 
						|
                                                             "argRegCopy");
 | 
						|
                callMI->addImplicitRef(argVReg);
 | 
						|
                
 | 
						|
                // Get a temp stack location to use to copy
 | 
						|
                // float-to-int via the stack.
 | 
						|
                // 
 | 
						|
                // FIXME: For now, we allocate permanent space because
 | 
						|
                // the stack frame manager does not allow locals to be
 | 
						|
                // allocated (e.g., for alloca) after a temp is
 | 
						|
                // allocated!
 | 
						|
                // 
 | 
						|
                // int tmpOffset = MF.getInfo()->pushTempValue(argSize);
 | 
						|
                int tmpOffset = MF.getInfo()->allocateLocalVar(argVReg);
 | 
						|
                    
 | 
						|
                // Generate the store from FP reg to stack
 | 
						|
                unsigned StoreOpcode = ChooseStoreInstruction(argType);
 | 
						|
                M = BuildMI(convertOpcodeFromRegToImm(StoreOpcode), 3)
 | 
						|
                  .addReg(argVal).addMReg(regInfo.getFramePointer())
 | 
						|
                  .addSImm(tmpOffset);
 | 
						|
                mvec.push_back(M);
 | 
						|
                        
 | 
						|
                // Generate the load from stack to int arg reg
 | 
						|
                unsigned LoadOpcode = ChooseLoadInstruction(loadTy);
 | 
						|
                M = BuildMI(convertOpcodeFromRegToImm(LoadOpcode), 3)
 | 
						|
                  .addMReg(regInfo.getFramePointer()).addSImm(tmpOffset)
 | 
						|
                  .addReg(argVReg, MachineOperand::Def);
 | 
						|
 | 
						|
                // Mark operand with register it should be assigned
 | 
						|
                // both for copy and for the callMI
 | 
						|
                M->SetRegForOperand(M->getNumOperands()-1, copyRegNum);
 | 
						|
                callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
 | 
						|
                                             copyRegNum);
 | 
						|
                mvec.push_back(M);
 | 
						|
 | 
						|
                // Add info about the argument to the CallArgsDescriptor
 | 
						|
                argInfo.setUseIntArgReg();
 | 
						|
                argInfo.setArgCopy(copyRegNum);
 | 
						|
              } else {
 | 
						|
                // Cannot fit in first $K$ regs so pass arg on stack
 | 
						|
                argInfo.setUseStackSlot();
 | 
						|
              }
 | 
						|
            } else if (isFPArg) {
 | 
						|
              // Get the outgoing arg reg to see if there is one.
 | 
						|
              regNumForArg = regInfo.regNumForFPArg(regType, false, false,
 | 
						|
                                                    argNo, regClassIDOfArgReg);
 | 
						|
              if (regNumForArg == regInfo.getInvalidRegNum())
 | 
						|
                argInfo.setUseStackSlot();
 | 
						|
              else {
 | 
						|
                argInfo.setUseFPArgReg();
 | 
						|
                regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
 | 
						|
                                                       regNumForArg);
 | 
						|
              }
 | 
						|
            } else {
 | 
						|
              // Get the outgoing arg reg to see if there is one.
 | 
						|
              regNumForArg = regInfo.regNumForIntArg(false,false,
 | 
						|
                                                     argNo, regClassIDOfArgReg);
 | 
						|
              if (regNumForArg == regInfo.getInvalidRegNum())
 | 
						|
                argInfo.setUseStackSlot();
 | 
						|
              else {
 | 
						|
                argInfo.setUseIntArgReg();
 | 
						|
                regNumForArg =regInfo.getUnifiedRegNum(regClassIDOfArgReg,
 | 
						|
                                                       regNumForArg);
 | 
						|
              }
 | 
						|
            }                
 | 
						|
 | 
						|
            // 
 | 
						|
            // Now insert copy instructions to stack slot or arg. register
 | 
						|
            // 
 | 
						|
            if (argInfo.usesStackSlot()) {
 | 
						|
              // Get the stack offset for this argument slot.
 | 
						|
              // FP args on stack are right justified so adjust offset!
 | 
						|
              // int arguments are also right justified but they are
 | 
						|
              // always loaded as a full double-word so the offset does
 | 
						|
              // not need to be adjusted.
 | 
						|
              int argOffset = frameInfo.getOutgoingArgOffset(MF, argNo);
 | 
						|
              if (argType->isFloatingPoint()) {
 | 
						|
                unsigned slotSize = frameInfo.getSizeOfEachArgOnStack();
 | 
						|
                assert(argSize <= slotSize && "Insufficient slot size!");
 | 
						|
                argOffset += slotSize - argSize;
 | 
						|
              }
 | 
						|
 | 
						|
              // Now generate instruction to copy argument to stack
 | 
						|
              MachineOpCode storeOpCode =
 | 
						|
                (argType->isFloatingPoint()
 | 
						|
                 ? ((argSize == 4)? V9::STFi : V9::STDFi) : V9::STXi);
 | 
						|
 | 
						|
              M = BuildMI(storeOpCode, 3).addReg(argVal)
 | 
						|
                .addMReg(regInfo.getStackPointer()).addSImm(argOffset);
 | 
						|
              mvec.push_back(M);
 | 
						|
            }
 | 
						|
            else if (regNumForArg != regInfo.getInvalidRegNum()) {
 | 
						|
 | 
						|
              // Create a virtual register to represent the arg reg. Mark
 | 
						|
              // this vreg as being an implicit operand of the call MI.
 | 
						|
              TmpInstruction* argVReg = 
 | 
						|
                new TmpInstruction(mcfi, argVal, NULL, "argReg");
 | 
						|
 | 
						|
              callMI->addImplicitRef(argVReg);
 | 
						|
              
 | 
						|
              // Generate the reg-to-reg copy into the outgoing arg reg.
 | 
						|
              // -- For FP values, create a FMOVS or FMOVD instruction
 | 
						|
              // -- For non-FP values, create an add-with-0 instruction
 | 
						|
              if (argType->isFloatingPoint())
 | 
						|
                M=(BuildMI(argType==Type::FloatTy? V9::FMOVS :V9::FMOVD,2)
 | 
						|
                   .addReg(argVal).addReg(argVReg, MachineOperand::Def));
 | 
						|
              else
 | 
						|
                M = (BuildMI(ChooseAddInstructionByType(argType), 3)
 | 
						|
                     .addReg(argVal).addSImm((int64_t) 0)
 | 
						|
                     .addReg(argVReg, MachineOperand::Def));
 | 
						|
              
 | 
						|
              // Mark the operand with the register it should be assigned
 | 
						|
              M->SetRegForOperand(M->getNumOperands()-1, regNumForArg);
 | 
						|
              callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,
 | 
						|
                                           regNumForArg);
 | 
						|
 | 
						|
              mvec.push_back(M);
 | 
						|
            }
 | 
						|
            else
 | 
						|
              assert(argInfo.getArgCopy() != regInfo.getInvalidRegNum() &&
 | 
						|
                     "Arg. not in stack slot, primary or secondary register?");
 | 
						|
          }
 | 
						|
 | 
						|
          // add call instruction and delay slot before copying return value
 | 
						|
          mvec.push_back(callMI);
 | 
						|
          mvec.push_back(BuildMI(V9::NOP, 0));
 | 
						|
 | 
						|
          // Add the return value as an implicit ref.  The call operands
 | 
						|
          // were added above.  Also, add code to copy out the return value.
 | 
						|
          // This is always register-to-register for int or FP return values.
 | 
						|
          // 
 | 
						|
          if (callInstr->getType() != Type::VoidTy) { 
 | 
						|
            // Get the return value reg.
 | 
						|
            const Type* retType = callInstr->getType();
 | 
						|
 | 
						|
            int regNum = (retType->isFloatingPoint()
 | 
						|
                          ? (unsigned) SparcV9FloatRegClass::f0 
 | 
						|
                          : (unsigned) SparcV9IntRegClass::o0);
 | 
						|
            unsigned regClassID = regInfo.getRegClassIDOfType(retType);
 | 
						|
            regNum = regInfo.getUnifiedRegNum(regClassID, regNum);
 | 
						|
 | 
						|
            // Create a virtual register to represent it and mark
 | 
						|
            // this vreg as being an implicit operand of the call MI
 | 
						|
            TmpInstruction* retVReg = 
 | 
						|
              new TmpInstruction(mcfi, callInstr, NULL, "argReg");
 | 
						|
 | 
						|
            callMI->addImplicitRef(retVReg, /*isDef*/ true);
 | 
						|
 | 
						|
            // Generate the reg-to-reg copy from the return value reg.
 | 
						|
            // -- For FP values, create a FMOVS or FMOVD instruction
 | 
						|
            // -- For non-FP values, create an add-with-0 instruction
 | 
						|
            if (retType->isFloatingPoint())
 | 
						|
              M = (BuildMI(retType==Type::FloatTy? V9::FMOVS : V9::FMOVD, 2)
 | 
						|
                   .addReg(retVReg).addReg(callInstr, MachineOperand::Def));
 | 
						|
            else
 | 
						|
              M = (BuildMI(ChooseAddInstructionByType(retType), 3)
 | 
						|
                   .addReg(retVReg).addSImm((int64_t) 0)
 | 
						|
                   .addReg(callInstr, MachineOperand::Def));
 | 
						|
 | 
						|
            // Mark the operand with the register it should be assigned
 | 
						|
            // Also mark the implicit ref of the call defining this operand
 | 
						|
            M->SetRegForOperand(0, regNum);
 | 
						|
            callMI->SetRegForImplicitRef(callMI->getNumImplicitRefs()-1,regNum);
 | 
						|
 | 
						|
            mvec.push_back(M);
 | 
						|
          }
 | 
						|
 | 
						|
          // For the CALL instruction, the ret. addr. reg. is also implicit
 | 
						|
          if (isa<Function>(callee))
 | 
						|
            callMI->addImplicitRef(retAddrReg, /*isDef*/ true);
 | 
						|
 | 
						|
          MF.getInfo()->popAllTempValues();  // free temps used for this inst
 | 
						|
        }
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 62:	// reg:   Shl(reg, reg)
 | 
						|
      {
 | 
						|
        Value* argVal1 = subtreeRoot->leftChild()->getValue();
 | 
						|
        Value* argVal2 = subtreeRoot->rightChild()->getValue();
 | 
						|
        Instruction* shlInstr = subtreeRoot->getInstruction();
 | 
						|
        
 | 
						|
        const Type* opType = argVal1->getType();
 | 
						|
        assert((opType->isInteger() || isa<PointerType>(opType)) &&
 | 
						|
               "Shl unsupported for other types");
 | 
						|
        unsigned opSize = target.getTargetData().getTypeSize(opType);
 | 
						|
        
 | 
						|
        CreateShiftInstructions(target, shlInstr->getParent()->getParent(),
 | 
						|
                                (opSize > 4)? V9::SLLXr6:V9::SLLr5,
 | 
						|
                                argVal1, argVal2, 0, shlInstr, mvec,
 | 
						|
                                MachineCodeForInstruction::get(shlInstr));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 63:	// reg:   Shr(reg, reg)
 | 
						|
      { 
 | 
						|
        const Type* opType = subtreeRoot->leftChild()->getValue()->getType();
 | 
						|
        assert((opType->isInteger() || isa<PointerType>(opType)) &&
 | 
						|
               "Shr unsupported for other types");
 | 
						|
        unsigned opSize = target.getTargetData().getTypeSize(opType);
 | 
						|
        Add3OperandInstr(opType->isSigned()
 | 
						|
                         ? (opSize > 4? V9::SRAXr6 : V9::SRAr5)
 | 
						|
                         : (opSize > 4? V9::SRLXr6 : V9::SRLr5),
 | 
						|
                         subtreeRoot, mvec);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 64:	// reg:   Phi(reg,reg)
 | 
						|
        break;                          // don't forward the value
 | 
						|
 | 
						|
      case 65:	// reg:   VANext(reg):  the va_next(va_list, type) instruction
 | 
						|
      { // Increment the va_list pointer register according to the type.
 | 
						|
        // All LLVM argument types are <= 64 bits, so use one doubleword.
 | 
						|
        Instruction* vaNextI = subtreeRoot->getInstruction();
 | 
						|
        assert(target.getTargetData().getTypeSize(vaNextI->getType()) <= 8 &&
 | 
						|
               "We assumed that all LLVM parameter types <= 8 bytes!");
 | 
						|
        int argSize = target.getFrameInfo().getSizeOfEachArgOnStack();
 | 
						|
        mvec.push_back(BuildMI(V9::ADDi, 3).addReg(vaNextI->getOperand(0)).
 | 
						|
                       addSImm(argSize).addRegDef(vaNextI));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case 66:	// reg:   VAArg (reg): the va_arg instruction
 | 
						|
      { // Load argument from stack using current va_list pointer value.
 | 
						|
        // Use 64-bit load for all non-FP args, and LDDF or double for FP.
 | 
						|
        Instruction* vaArgI = subtreeRoot->getInstruction();
 | 
						|
        MachineOpCode loadOp = (vaArgI->getType()->isFloatingPoint()
 | 
						|
                                ? (vaArgI->getType() == Type::FloatTy
 | 
						|
                                   ? V9::LDFi : V9::LDDFi)
 | 
						|
                                : V9::LDXi);
 | 
						|
        mvec.push_back(BuildMI(loadOp, 3).addReg(vaArgI->getOperand(0)).
 | 
						|
                       addSImm(0).addRegDef(vaArgI));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      case 71:	// reg:     VReg
 | 
						|
      case 72:	// reg:     Constant
 | 
						|
        break;                          // don't forward the value
 | 
						|
 | 
						|
      default:
 | 
						|
        assert(0 && "Unrecognized BURG rule");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  if (forwardOperandNum >= 0) {
 | 
						|
    // We did not generate a machine instruction but need to use operand.
 | 
						|
    // If user is in the same tree, replace Value in its machine operand.
 | 
						|
    // If not, insert a copy instruction which should get coalesced away
 | 
						|
    // by register allocation.
 | 
						|
    if (subtreeRoot->parent() != NULL)
 | 
						|
      ForwardOperand(subtreeRoot, subtreeRoot->parent(), forwardOperandNum);
 | 
						|
    else {
 | 
						|
      std::vector<MachineInstr*> minstrVec;
 | 
						|
      Instruction* instr = subtreeRoot->getInstruction();
 | 
						|
      target.getInstrInfo().
 | 
						|
        CreateCopyInstructionsByType(target,
 | 
						|
                                     instr->getParent()->getParent(),
 | 
						|
                                     instr->getOperand(forwardOperandNum),
 | 
						|
                                     instr, minstrVec,
 | 
						|
                                     MachineCodeForInstruction::get(instr));
 | 
						|
      assert(minstrVec.size() > 0);
 | 
						|
      mvec.insert(mvec.end(), minstrVec.begin(), minstrVec.end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (maskUnsignedResult) {
 | 
						|
    // If result is unsigned and smaller than int reg size,
 | 
						|
    // we need to clear high bits of result value.
 | 
						|
    assert(forwardOperandNum < 0 && "Need mask but no instruction generated");
 | 
						|
    Instruction* dest = subtreeRoot->getInstruction();
 | 
						|
    if (dest->getType()->isUnsigned()) {
 | 
						|
      unsigned destSize=target.getTargetData().getTypeSize(dest->getType());
 | 
						|
      if (destSize <= 4) {
 | 
						|
        // Mask high 64 - N bits, where N = 4*destSize.
 | 
						|
        
 | 
						|
        // Use a TmpInstruction to represent the
 | 
						|
        // intermediate result before masking.  Since those instructions
 | 
						|
        // have already been generated, go back and substitute tmpI
 | 
						|
        // for dest in the result position of each one of them.
 | 
						|
        // 
 | 
						|
        MachineCodeForInstruction& mcfi = MachineCodeForInstruction::get(dest);
 | 
						|
        TmpInstruction *tmpI = new TmpInstruction(mcfi, dest->getType(),
 | 
						|
                                                  dest, NULL, "maskHi");
 | 
						|
        Value* srlArgToUse = tmpI;
 | 
						|
 | 
						|
        unsigned numSubst = 0;
 | 
						|
        for (unsigned i=0, N=mvec.size(); i < N; ++i) {
 | 
						|
 | 
						|
          // Make sure we substitute all occurrences of dest in these instrs.
 | 
						|
          // Otherwise, we will have bogus code.
 | 
						|
          bool someArgsWereIgnored = false;
 | 
						|
 | 
						|
          // Make sure not to substitute an upwards-exposed use -- that would
 | 
						|
          // introduce a use of `tmpI' with no preceding def.  Therefore,
 | 
						|
          // substitute a use or def-and-use operand only if a previous def
 | 
						|
          // operand has already been substituted (i.e., numSusbt > 0).
 | 
						|
          // 
 | 
						|
          numSubst += mvec[i]->substituteValue(dest, tmpI,
 | 
						|
                                               /*defsOnly*/ numSubst == 0,
 | 
						|
                                               /*notDefsAndUses*/ numSubst > 0,
 | 
						|
                                               someArgsWereIgnored);
 | 
						|
          assert(!someArgsWereIgnored &&
 | 
						|
                 "Operand `dest' exists but not replaced: probably bogus!");
 | 
						|
        }
 | 
						|
        assert(numSubst > 0 && "Operand `dest' not replaced: probably bogus!");
 | 
						|
 | 
						|
        // Left shift 32-N if size (N) is less than 32 bits.
 | 
						|
        // Use another tmp. virtual register to represent this result.
 | 
						|
        if (destSize < 4) {
 | 
						|
          srlArgToUse = new TmpInstruction(mcfi, dest->getType(),
 | 
						|
                                           tmpI, NULL, "maskHi2");
 | 
						|
          mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpI)
 | 
						|
                         .addZImm(8*(4-destSize))
 | 
						|
                         .addReg(srlArgToUse, MachineOperand::Def));
 | 
						|
        }
 | 
						|
 | 
						|
        // Logical right shift 32-N to get zero extension in top 64-N bits.
 | 
						|
        mvec.push_back(BuildMI(V9::SRLi5, 3).addReg(srlArgToUse)
 | 
						|
                         .addZImm(8*(4-destSize))
 | 
						|
                         .addReg(dest, MachineOperand::Def));
 | 
						|
 | 
						|
      } else if (destSize < 8) {
 | 
						|
        assert(0 && "Unsupported type size: 32 < size < 64 bits");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}
 |