mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237259 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			584 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			584 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the generic AliasAnalysis interface which is used as the
 | 
						|
// common interface used by all clients and implementations of alias analysis.
 | 
						|
//
 | 
						|
// This file also implements the default version of the AliasAnalysis interface
 | 
						|
// that is to be used when no other implementation is specified.  This does some
 | 
						|
// simple tests that detect obvious cases: two different global pointers cannot
 | 
						|
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
 | 
						|
// etc.
 | 
						|
//
 | 
						|
// This alias analysis implementation really isn't very good for anything, but
 | 
						|
// it is very fast, and makes a nice clean default implementation.  Because it
 | 
						|
// handles lots of little corner cases, other, more complex, alias analysis
 | 
						|
// implementations may choose to rely on this pass to resolve these simple and
 | 
						|
// easy cases.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Register the AliasAnalysis interface, providing a nice name to refer to.
 | 
						|
INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
 | 
						|
char AliasAnalysis::ID = 0;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Default chaining methods
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
  return AA->alias(LocA, LocB);
 | 
						|
}
 | 
						|
 | 
						|
bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
 | 
						|
                                           bool OrLocal) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
  return AA->pointsToConstantMemory(Loc, OrLocal);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location
 | 
						|
AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
 | 
						|
                              AliasAnalysis::ModRefResult &Mask) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
  return AA->getArgLocation(CS, ArgIdx, Mask);
 | 
						|
}
 | 
						|
 | 
						|
void AliasAnalysis::deleteValue(Value *V) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
  AA->deleteValue(V);
 | 
						|
}
 | 
						|
 | 
						|
void AliasAnalysis::copyValue(Value *From, Value *To) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
  AA->copyValue(From, To);
 | 
						|
}
 | 
						|
 | 
						|
void AliasAnalysis::addEscapingUse(Use &U) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
  AA->addEscapingUse(U);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
 | 
						|
  // We may have two calls
 | 
						|
  if (auto CS = ImmutableCallSite(I)) {
 | 
						|
    // Check if the two calls modify the same memory
 | 
						|
    return getModRefInfo(Call, CS);
 | 
						|
  } else {
 | 
						|
    // Otherwise, check if the call modifies or references the
 | 
						|
    // location this memory access defines.  The best we can say
 | 
						|
    // is that if the call references what this instruction
 | 
						|
    // defines, it must be clobbered by this location.
 | 
						|
    const AliasAnalysis::Location DefLoc = AA->getLocation(I);
 | 
						|
    if (getModRefInfo(Call, DefLoc) != AliasAnalysis::NoModRef)
 | 
						|
      return AliasAnalysis::ModRef;
 | 
						|
  }
 | 
						|
  return AliasAnalysis::NoModRef;
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
 | 
						|
                             const Location &Loc) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
 | 
						|
  ModRefBehavior MRB = getModRefBehavior(CS);
 | 
						|
  if (MRB == DoesNotAccessMemory)
 | 
						|
    return NoModRef;
 | 
						|
 | 
						|
  ModRefResult Mask = ModRef;
 | 
						|
  if (onlyReadsMemory(MRB))
 | 
						|
    Mask = Ref;
 | 
						|
 | 
						|
  if (onlyAccessesArgPointees(MRB)) {
 | 
						|
    bool doesAlias = false;
 | 
						|
    ModRefResult AllArgsMask = NoModRef;
 | 
						|
    if (doesAccessArgPointees(MRB)) {
 | 
						|
      for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
 | 
						|
           AI != AE; ++AI) {
 | 
						|
        const Value *Arg = *AI;
 | 
						|
        if (!Arg->getType()->isPointerTy())
 | 
						|
          continue;
 | 
						|
        ModRefResult ArgMask;
 | 
						|
        Location CSLoc =
 | 
						|
          getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
 | 
						|
                         ArgMask);
 | 
						|
        if (!isNoAlias(CSLoc, Loc)) {
 | 
						|
          doesAlias = true;
 | 
						|
          AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!doesAlias)
 | 
						|
      return NoModRef;
 | 
						|
    Mask = ModRefResult(Mask & AllArgsMask);
 | 
						|
  }
 | 
						|
 | 
						|
  // If Loc is a constant memory location, the call definitely could not
 | 
						|
  // modify the memory location.
 | 
						|
  if ((Mask & Mod) && pointsToConstantMemory(Loc))
 | 
						|
    Mask = ModRefResult(Mask & ~Mod);
 | 
						|
 | 
						|
  // If this is the end of the chain, don't forward.
 | 
						|
  if (!AA) return Mask;
 | 
						|
 | 
						|
  // Otherwise, fall back to the next AA in the chain. But we can merge
 | 
						|
  // in any mask we've managed to compute.
 | 
						|
  return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
 | 
						|
  // If CS1 or CS2 are readnone, they don't interact.
 | 
						|
  ModRefBehavior CS1B = getModRefBehavior(CS1);
 | 
						|
  if (CS1B == DoesNotAccessMemory) return NoModRef;
 | 
						|
 | 
						|
  ModRefBehavior CS2B = getModRefBehavior(CS2);
 | 
						|
  if (CS2B == DoesNotAccessMemory) return NoModRef;
 | 
						|
 | 
						|
  // If they both only read from memory, there is no dependence.
 | 
						|
  if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
 | 
						|
    return NoModRef;
 | 
						|
 | 
						|
  AliasAnalysis::ModRefResult Mask = ModRef;
 | 
						|
 | 
						|
  // If CS1 only reads memory, the only dependence on CS2 can be
 | 
						|
  // from CS1 reading memory written by CS2.
 | 
						|
  if (onlyReadsMemory(CS1B))
 | 
						|
    Mask = ModRefResult(Mask & Ref);
 | 
						|
 | 
						|
  // If CS2 only access memory through arguments, accumulate the mod/ref
 | 
						|
  // information from CS1's references to the memory referenced by
 | 
						|
  // CS2's arguments.
 | 
						|
  if (onlyAccessesArgPointees(CS2B)) {
 | 
						|
    AliasAnalysis::ModRefResult R = NoModRef;
 | 
						|
    if (doesAccessArgPointees(CS2B)) {
 | 
						|
      for (ImmutableCallSite::arg_iterator
 | 
						|
           I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
 | 
						|
        const Value *Arg = *I;
 | 
						|
        if (!Arg->getType()->isPointerTy())
 | 
						|
          continue;
 | 
						|
        ModRefResult ArgMask;
 | 
						|
        Location CS2Loc =
 | 
						|
          getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
 | 
						|
                         ArgMask);
 | 
						|
        // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
 | 
						|
        // CS1 on that location is the inverse.
 | 
						|
        if (ArgMask == Mod)
 | 
						|
          ArgMask = ModRef;
 | 
						|
        else if (ArgMask == Ref)
 | 
						|
          ArgMask = Mod;
 | 
						|
 | 
						|
        R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
 | 
						|
        if (R == Mask)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // If CS1 only accesses memory through arguments, check if CS2 references
 | 
						|
  // any of the memory referenced by CS1's arguments. If not, return NoModRef.
 | 
						|
  if (onlyAccessesArgPointees(CS1B)) {
 | 
						|
    AliasAnalysis::ModRefResult R = NoModRef;
 | 
						|
    if (doesAccessArgPointees(CS1B)) {
 | 
						|
      for (ImmutableCallSite::arg_iterator
 | 
						|
           I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
 | 
						|
        const Value *Arg = *I;
 | 
						|
        if (!Arg->getType()->isPointerTy())
 | 
						|
          continue;
 | 
						|
        ModRefResult ArgMask;
 | 
						|
        Location CS1Loc = getArgLocation(
 | 
						|
            CS1, (unsigned)std::distance(CS1.arg_begin(), I), ArgMask);
 | 
						|
        // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
 | 
						|
        // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
 | 
						|
        // might Ref, then we care only about a Mod by CS2.
 | 
						|
        ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
 | 
						|
        if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
 | 
						|
            ((ArgMask & Ref) != NoModRef && (ArgR & Mod)    != NoModRef))
 | 
						|
          R = ModRefResult((R | ArgMask) & Mask);
 | 
						|
 | 
						|
        if (R == Mask)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return R;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the end of the chain, don't forward.
 | 
						|
  if (!AA) return Mask;
 | 
						|
 | 
						|
  // Otherwise, fall back to the next AA in the chain. But we can merge
 | 
						|
  // in any mask we've managed to compute.
 | 
						|
  return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
 | 
						|
  ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
  // Call back into the alias analysis with the other form of getModRefBehavior
 | 
						|
  // to see if it can give a better response.
 | 
						|
  if (const Function *F = CS.getCalledFunction())
 | 
						|
    Min = getModRefBehavior(F);
 | 
						|
 | 
						|
  // If this is the end of the chain, don't forward.
 | 
						|
  if (!AA) return Min;
 | 
						|
 | 
						|
  // Otherwise, fall back to the next AA in the chain. But we can merge
 | 
						|
  // in any result we've managed to compute.
 | 
						|
  return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
AliasAnalysis::getModRefBehavior(const Function *F) {
 | 
						|
  assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | 
						|
  return AA->getModRefBehavior(F);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// AliasAnalysis non-virtual helper method implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
 | 
						|
  AAMDNodes AATags;
 | 
						|
  LI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  return Location(LI->getPointerOperand(),
 | 
						|
                  getTypeStoreSize(LI->getType()), AATags);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
 | 
						|
  AAMDNodes AATags;
 | 
						|
  SI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  return Location(SI->getPointerOperand(),
 | 
						|
                  getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
 | 
						|
  AAMDNodes AATags;
 | 
						|
  VI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  return Location(VI->getPointerOperand(), UnknownSize, AATags);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location
 | 
						|
AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
 | 
						|
  AAMDNodes AATags;
 | 
						|
  CXI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  return Location(CXI->getPointerOperand(),
 | 
						|
                  getTypeStoreSize(CXI->getCompareOperand()->getType()),
 | 
						|
                  AATags);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location
 | 
						|
AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
 | 
						|
  AAMDNodes AATags;
 | 
						|
  RMWI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  return Location(RMWI->getPointerOperand(),
 | 
						|
                  getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location
 | 
						|
AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
 | 
						|
  uint64_t Size = UnknownSize;
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
 | 
						|
    Size = C->getValue().getZExtValue();
 | 
						|
 | 
						|
  // memcpy/memmove can have AA tags. For memcpy, they apply
 | 
						|
  // to both the source and the destination.
 | 
						|
  AAMDNodes AATags;
 | 
						|
  MTI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  return Location(MTI->getRawSource(), Size, AATags);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location
 | 
						|
AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
 | 
						|
  uint64_t Size = UnknownSize;
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
 | 
						|
    Size = C->getValue().getZExtValue();
 | 
						|
 | 
						|
  // memcpy/memmove can have AA tags. For memcpy, they apply
 | 
						|
  // to both the source and the destination.
 | 
						|
  AAMDNodes AATags;
 | 
						|
  MTI->getAAMetadata(AATags);
 | 
						|
 | 
						|
  return Location(MTI->getRawDest(), Size, AATags);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
 | 
						|
  // Be conservative in the face of volatile/atomic.
 | 
						|
  if (!L->isUnordered())
 | 
						|
    return ModRef;
 | 
						|
 | 
						|
  // If the load address doesn't alias the given address, it doesn't read
 | 
						|
  // or write the specified memory.
 | 
						|
  if (Loc.Ptr && !alias(getLocation(L), Loc))
 | 
						|
    return NoModRef;
 | 
						|
 | 
						|
  // Otherwise, a load just reads.
 | 
						|
  return Ref;
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
 | 
						|
  // Be conservative in the face of volatile/atomic.
 | 
						|
  if (!S->isUnordered())
 | 
						|
    return ModRef;
 | 
						|
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    // If the store address cannot alias the pointer in question, then the
 | 
						|
    // specified memory cannot be modified by the store.
 | 
						|
    if (!alias(getLocation(S), Loc))
 | 
						|
      return NoModRef;
 | 
						|
 | 
						|
    // If the pointer is a pointer to constant memory, then it could not have
 | 
						|
    // been modified by this store.
 | 
						|
    if (pointsToConstantMemory(Loc))
 | 
						|
      return NoModRef;
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, a store just writes.
 | 
						|
  return Mod;
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
 | 
						|
 | 
						|
  if (Loc.Ptr) {
 | 
						|
    // If the va_arg address cannot alias the pointer in question, then the
 | 
						|
    // specified memory cannot be accessed by the va_arg.
 | 
						|
    if (!alias(getLocation(V), Loc))
 | 
						|
      return NoModRef;
 | 
						|
 | 
						|
    // If the pointer is a pointer to constant memory, then it could not have
 | 
						|
    // been modified by this va_arg.
 | 
						|
    if (pointsToConstantMemory(Loc))
 | 
						|
      return NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, a va_arg reads and writes.
 | 
						|
  return ModRef;
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
 | 
						|
  // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
 | 
						|
  if (CX->getSuccessOrdering() > Monotonic)
 | 
						|
    return ModRef;
 | 
						|
 | 
						|
  // If the cmpxchg address does not alias the location, it does not access it.
 | 
						|
  if (Loc.Ptr && !alias(getLocation(CX), Loc))
 | 
						|
    return NoModRef;
 | 
						|
 | 
						|
  return ModRef;
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
 | 
						|
  // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
 | 
						|
  if (RMW->getOrdering() > Monotonic)
 | 
						|
    return ModRef;
 | 
						|
 | 
						|
  // If the atomicrmw address does not alias the location, it does not access it.
 | 
						|
  if (Loc.Ptr && !alias(getLocation(RMW), Loc))
 | 
						|
    return NoModRef;
 | 
						|
 | 
						|
  return ModRef;
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: this is really just shoring-up a deficiency in alias analysis.
 | 
						|
// BasicAA isn't willing to spend linear time determining whether an alloca
 | 
						|
// was captured before or after this particular call, while we are. However,
 | 
						|
// with a smarter AA in place, this test is just wasting compile time.
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
AliasAnalysis::callCapturesBefore(const Instruction *I,
 | 
						|
                                  const AliasAnalysis::Location &MemLoc,
 | 
						|
                                  DominatorTree *DT) {
 | 
						|
  if (!DT)
 | 
						|
    return AliasAnalysis::ModRef;
 | 
						|
 | 
						|
  const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL);
 | 
						|
  if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
 | 
						|
      isa<Constant>(Object))
 | 
						|
    return AliasAnalysis::ModRef;
 | 
						|
 | 
						|
  ImmutableCallSite CS(I);
 | 
						|
  if (!CS.getInstruction() || CS.getInstruction() == Object)
 | 
						|
    return AliasAnalysis::ModRef;
 | 
						|
 | 
						|
  if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
 | 
						|
                                       /* StoreCaptures */ true, I, DT,
 | 
						|
                                       /* include Object */ true))
 | 
						|
    return AliasAnalysis::ModRef;
 | 
						|
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
  AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
 | 
						|
  for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | 
						|
       CI != CE; ++CI, ++ArgNo) {
 | 
						|
    // Only look at the no-capture or byval pointer arguments.  If this
 | 
						|
    // pointer were passed to arguments that were neither of these, then it
 | 
						|
    // couldn't be no-capture.
 | 
						|
    if (!(*CI)->getType()->isPointerTy() ||
 | 
						|
        (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this is a no-capture pointer argument, see if we can tell that it
 | 
						|
    // is impossible to alias the pointer we're checking.  If not, we have to
 | 
						|
    // assume that the call could touch the pointer, even though it doesn't
 | 
						|
    // escape.
 | 
						|
    if (isNoAlias(AliasAnalysis::Location(*CI),
 | 
						|
                  AliasAnalysis::Location(Object)))
 | 
						|
      continue;
 | 
						|
    if (CS.doesNotAccessMemory(ArgNo))
 | 
						|
      continue;
 | 
						|
    if (CS.onlyReadsMemory(ArgNo)) {
 | 
						|
      R = AliasAnalysis::Ref;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    return AliasAnalysis::ModRef;
 | 
						|
  }
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
// AliasAnalysis destructor: DO NOT move this to the header file for
 | 
						|
// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
 | 
						|
// the AliasAnalysis.o file in the current .a file, causing alias analysis
 | 
						|
// support to not be included in the tool correctly!
 | 
						|
//
 | 
						|
AliasAnalysis::~AliasAnalysis() {}
 | 
						|
 | 
						|
/// InitializeAliasAnalysis - Subclasses must call this method to initialize the
 | 
						|
/// AliasAnalysis interface before any other methods are called.
 | 
						|
///
 | 
						|
void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) {
 | 
						|
  DL = NewDL;
 | 
						|
  auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
 | 
						|
  TLI = TLIP ? &TLIP->getTLI() : nullptr;
 | 
						|
  AA = &P->getAnalysis<AliasAnalysis>();
 | 
						|
}
 | 
						|
 | 
						|
// getAnalysisUsage - All alias analysis implementations should invoke this
 | 
						|
// directly (using AliasAnalysis::getAnalysisUsage(AU)).
 | 
						|
void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<AliasAnalysis>();         // All AA's chain
 | 
						|
}
 | 
						|
 | 
						|
/// getTypeStoreSize - Return the DataLayout store size for the given type,
 | 
						|
/// if known, or a conservative value otherwise.
 | 
						|
///
 | 
						|
uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
 | 
						|
  return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
 | 
						|
}
 | 
						|
 | 
						|
/// canBasicBlockModify - Return true if it is possible for execution of the
 | 
						|
/// specified basic block to modify the location Loc.
 | 
						|
///
 | 
						|
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
 | 
						|
                                        const Location &Loc) {
 | 
						|
  return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod);
 | 
						|
}
 | 
						|
 | 
						|
/// canInstructionRangeModRef - Return true if it is possible for the
 | 
						|
/// execution of the specified instructions to mod\ref (according to the
 | 
						|
/// mode) the location Loc. The instructions to consider are all
 | 
						|
/// of the instructions in the range of [I1,I2] INCLUSIVE.
 | 
						|
/// I1 and I2 must be in the same basic block.
 | 
						|
bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1,
 | 
						|
                                              const Instruction &I2,
 | 
						|
                                              const Location &Loc,
 | 
						|
                                              const ModRefResult Mode) {
 | 
						|
  assert(I1.getParent() == I2.getParent() &&
 | 
						|
         "Instructions not in same basic block!");
 | 
						|
  BasicBlock::const_iterator I = &I1;
 | 
						|
  BasicBlock::const_iterator E = &I2;
 | 
						|
  ++E;  // Convert from inclusive to exclusive range.
 | 
						|
 | 
						|
  for (; I != E; ++I) // Check every instruction in range
 | 
						|
    if (getModRefInfo(I, Loc) & Mode)
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isNoAliasCall - Return true if this pointer is returned by a noalias
 | 
						|
/// function.
 | 
						|
bool llvm::isNoAliasCall(const Value *V) {
 | 
						|
  if (isa<CallInst>(V) || isa<InvokeInst>(V))
 | 
						|
    return ImmutableCallSite(cast<Instruction>(V))
 | 
						|
      .paramHasAttr(0, Attribute::NoAlias);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isNoAliasArgument - Return true if this is an argument with the noalias
 | 
						|
/// attribute.
 | 
						|
bool llvm::isNoAliasArgument(const Value *V)
 | 
						|
{
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    return A->hasNoAliasAttr();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
 | 
						|
/// identifiable object.  This returns true for:
 | 
						|
///    Global Variables and Functions (but not Global Aliases)
 | 
						|
///    Allocas and Mallocs
 | 
						|
///    ByVal and NoAlias Arguments
 | 
						|
///    NoAlias returns
 | 
						|
///
 | 
						|
bool llvm::isIdentifiedObject(const Value *V) {
 | 
						|
  if (isa<AllocaInst>(V))
 | 
						|
    return true;
 | 
						|
  if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
 | 
						|
    return true;
 | 
						|
  if (isNoAliasCall(V))
 | 
						|
    return true;
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    return A->hasNoAliasAttr() || A->hasByValAttr();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
 | 
						|
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
 | 
						|
/// Further, an IdentifiedFunctionLocal can not alias with any function
 | 
						|
/// arguments other than itself, which is not necessarily true for
 | 
						|
/// IdentifiedObjects.
 | 
						|
bool llvm::isIdentifiedFunctionLocal(const Value *V)
 | 
						|
{
 | 
						|
  return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
 | 
						|
}
 |