mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	remove the analysis group. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133899 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1693 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1693 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the generic RegisterCoalescer interface which
 | |
| // is used as the common interface used by all clients and
 | |
| // implementations of register coalescing.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regcoalescing"
 | |
| #include "RegisterCoalescer.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "LiveDebugVariables.h"
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(numJoins    , "Number of interval joins performed");
 | |
| STATISTIC(numCrossRCs , "Number of cross class joins performed");
 | |
| STATISTIC(numCommutes , "Number of instruction commuting performed");
 | |
| STATISTIC(numExtends  , "Number of copies extended");
 | |
| STATISTIC(NumReMats   , "Number of instructions re-materialized");
 | |
| STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
 | |
| STATISTIC(numAborts   , "Number of times interval joining aborted");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableJoining("join-liveintervals",
 | |
|               cl::desc("Coalesce copies (default=true)"),
 | |
|               cl::init(true));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableCrossClassJoin("disable-cross-class-join",
 | |
|                cl::desc("Avoid coalescing cross register class copies"),
 | |
|                cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnablePhysicalJoin("join-physregs",
 | |
|                    cl::desc("Join physical register copies"),
 | |
|                    cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| VerifyCoalescing("verify-coalescing",
 | |
|          cl::desc("Verify machine instrs before and after register coalescing"),
 | |
|          cl::Hidden);
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
 | |
|                       "Simple Register Coalescing", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
 | |
| INITIALIZE_PASS_DEPENDENCY(PHIElimination)
 | |
| INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
 | |
|                     "Simple Register Coalescing", false, false)
 | |
| 
 | |
| char RegisterCoalescer::ID = 0;
 | |
| 
 | |
| unsigned CoalescerPair::compose(unsigned a, unsigned b) const {
 | |
|   if (!a) return b;
 | |
|   if (!b) return a;
 | |
|   return tri_.composeSubRegIndices(a, b);
 | |
| }
 | |
| 
 | |
| bool CoalescerPair::isMoveInstr(const MachineInstr *MI,
 | |
|                                 unsigned &Src, unsigned &Dst,
 | |
|                                 unsigned &SrcSub, unsigned &DstSub) const {
 | |
|   if (MI->isCopy()) {
 | |
|     Dst = MI->getOperand(0).getReg();
 | |
|     DstSub = MI->getOperand(0).getSubReg();
 | |
|     Src = MI->getOperand(1).getReg();
 | |
|     SrcSub = MI->getOperand(1).getSubReg();
 | |
|   } else if (MI->isSubregToReg()) {
 | |
|     Dst = MI->getOperand(0).getReg();
 | |
|     DstSub = compose(MI->getOperand(0).getSubReg(), MI->getOperand(3).getImm());
 | |
|     Src = MI->getOperand(2).getReg();
 | |
|     SrcSub = MI->getOperand(2).getSubReg();
 | |
|   } else
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CoalescerPair::setRegisters(const MachineInstr *MI) {
 | |
|   srcReg_ = dstReg_ = subIdx_ = 0;
 | |
|   newRC_ = 0;
 | |
|   flipped_ = crossClass_ = false;
 | |
| 
 | |
|   unsigned Src, Dst, SrcSub, DstSub;
 | |
|   if (!isMoveInstr(MI, Src, Dst, SrcSub, DstSub))
 | |
|     return false;
 | |
|   partial_ = SrcSub || DstSub;
 | |
| 
 | |
|   // If one register is a physreg, it must be Dst.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Dst))
 | |
|       return false;
 | |
|     std::swap(Src, Dst);
 | |
|     std::swap(SrcSub, DstSub);
 | |
|     flipped_ = true;
 | |
|   }
 | |
| 
 | |
|   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | |
| 
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
 | |
|     // Eliminate DstSub on a physreg.
 | |
|     if (DstSub) {
 | |
|       Dst = tri_.getSubReg(Dst, DstSub);
 | |
|       if (!Dst) return false;
 | |
|       DstSub = 0;
 | |
|     }
 | |
| 
 | |
|     // Eliminate SrcSub by picking a corresponding Dst superregister.
 | |
|     if (SrcSub) {
 | |
|       Dst = tri_.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
 | |
|       if (!Dst) return false;
 | |
|       SrcSub = 0;
 | |
|     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     // Both registers are virtual.
 | |
| 
 | |
|     // Both registers have subreg indices.
 | |
|     if (SrcSub && DstSub) {
 | |
|       // For now we only handle the case of identical indices in commensurate
 | |
|       // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
 | |
|       // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
 | |
|       if (SrcSub != DstSub)
 | |
|         return false;
 | |
|       const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
 | |
|       const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
 | |
|       if (!getCommonSubClass(DstRC, SrcRC))
 | |
|         return false;
 | |
|       SrcSub = DstSub = 0;
 | |
|     }
 | |
| 
 | |
|     // There can be no SrcSub.
 | |
|     if (SrcSub) {
 | |
|       std::swap(Src, Dst);
 | |
|       DstSub = SrcSub;
 | |
|       SrcSub = 0;
 | |
|       assert(!flipped_ && "Unexpected flip");
 | |
|       flipped_ = true;
 | |
|     }
 | |
| 
 | |
|     // Find the new register class.
 | |
|     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
 | |
|     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
 | |
|     if (DstSub)
 | |
|       newRC_ = tri_.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
 | |
|     else
 | |
|       newRC_ = getCommonSubClass(DstRC, SrcRC);
 | |
|     if (!newRC_)
 | |
|       return false;
 | |
|     crossClass_ = newRC_ != DstRC || newRC_ != SrcRC;
 | |
|   }
 | |
|   // Check our invariants
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
 | |
|   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
 | |
|          "Cannot have a physical SubIdx");
 | |
|   srcReg_ = Src;
 | |
|   dstReg_ = Dst;
 | |
|   subIdx_ = DstSub;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CoalescerPair::flip() {
 | |
|   if (subIdx_ || TargetRegisterInfo::isPhysicalRegister(dstReg_))
 | |
|     return false;
 | |
|   std::swap(srcReg_, dstReg_);
 | |
|   flipped_ = !flipped_;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
 | |
|   if (!MI)
 | |
|     return false;
 | |
|   unsigned Src, Dst, SrcSub, DstSub;
 | |
|   if (!isMoveInstr(MI, Src, Dst, SrcSub, DstSub))
 | |
|     return false;
 | |
| 
 | |
|   // Find the virtual register that is srcReg_.
 | |
|   if (Dst == srcReg_) {
 | |
|     std::swap(Src, Dst);
 | |
|     std::swap(SrcSub, DstSub);
 | |
|   } else if (Src != srcReg_) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Now check that Dst matches dstReg_.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(dstReg_)) {
 | |
|     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
 | |
|       return false;
 | |
|     assert(!subIdx_ && "Inconsistent CoalescerPair state.");
 | |
|     // DstSub could be set for a physreg from INSERT_SUBREG.
 | |
|     if (DstSub)
 | |
|       Dst = tri_.getSubReg(Dst, DstSub);
 | |
|     // Full copy of Src.
 | |
|     if (!SrcSub)
 | |
|       return dstReg_ == Dst;
 | |
|     // This is a partial register copy. Check that the parts match.
 | |
|     return tri_.getSubReg(dstReg_, SrcSub) == Dst;
 | |
|   } else {
 | |
|     // dstReg_ is virtual.
 | |
|     if (dstReg_ != Dst)
 | |
|       return false;
 | |
|     // Registers match, do the subregisters line up?
 | |
|     return compose(subIdx_, SrcSub) == DstSub;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   AU.addRequired<LiveDebugVariables>();
 | |
|   AU.addPreserved<LiveDebugVariables>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   AU.addPreservedID(MachineDominatorsID);
 | |
|   AU.addPreservedID(StrongPHIEliminationID);
 | |
|   AU.addPreservedID(PHIEliminationID);
 | |
|   AU.addPreservedID(TwoAddressInstructionPassID);
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void RegisterCoalescer::markAsJoined(MachineInstr *CopyMI) {
 | |
|   /// Joined copies are not deleted immediately, but kept in JoinedCopies.
 | |
|   JoinedCopies.insert(CopyMI);
 | |
| 
 | |
|   /// Mark all register operands of CopyMI as <undef> so they won't affect dead
 | |
|   /// code elimination.
 | |
|   for (MachineInstr::mop_iterator I = CopyMI->operands_begin(),
 | |
|        E = CopyMI->operands_end(); I != E; ++I)
 | |
|     if (I->isReg())
 | |
|       I->setIsUndef(true);
 | |
| }
 | |
| 
 | |
| /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
 | |
| /// being the source and IntB being the dest, thus this defines a value number
 | |
| /// in IntB.  If the source value number (in IntA) is defined by a copy from B,
 | |
| /// see if we can merge these two pieces of B into a single value number,
 | |
| /// eliminating a copy.  For example:
 | |
| ///
 | |
| ///  A3 = B0
 | |
| ///    ...
 | |
| ///  B1 = A3      <- this copy
 | |
| ///
 | |
| /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
 | |
| /// value number to be replaced with B0 (which simplifies the B liveinterval).
 | |
| ///
 | |
| /// This returns true if an interval was modified.
 | |
| ///
 | |
| bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair &CP,
 | |
|                                                     MachineInstr *CopyMI) {
 | |
|   // Bail if there is no dst interval - can happen when merging physical subreg
 | |
|   // operations.
 | |
|   if (!li_->hasInterval(CP.getDstReg()))
 | |
|     return false;
 | |
| 
 | |
|   LiveInterval &IntA =
 | |
|     li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
 | |
|   LiveInterval &IntB =
 | |
|     li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
 | |
|   SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
 | |
| 
 | |
|   // BValNo is a value number in B that is defined by a copy from A.  'B3' in
 | |
|   // the example above.
 | |
|   LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
 | |
|   if (BLR == IntB.end()) return false;
 | |
|   VNInfo *BValNo = BLR->valno;
 | |
| 
 | |
|   // Get the location that B is defined at.  Two options: either this value has
 | |
|   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
 | |
|   // can't process it.
 | |
|   if (!BValNo->isDefByCopy()) return false;
 | |
|   assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
 | |
| 
 | |
|   // AValNo is the value number in A that defines the copy, A3 in the example.
 | |
|   SlotIndex CopyUseIdx = CopyIdx.getUseIndex();
 | |
|   LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
 | |
|   // The live range might not exist after fun with physreg coalescing.
 | |
|   if (ALR == IntA.end()) return false;
 | |
|   VNInfo *AValNo = ALR->valno;
 | |
|   // If it's re-defined by an early clobber somewhere in the live range, then
 | |
|   // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
 | |
|   // See PR3149:
 | |
|   // 172     %ECX<def> = MOV32rr %reg1039<kill>
 | |
|   // 180     INLINEASM <es:subl $5,$1
 | |
|   //         sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
 | |
|   //         %EAX<kill>,
 | |
|   // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
 | |
|   // 188     %EAX<def> = MOV32rr %EAX<kill>
 | |
|   // 196     %ECX<def> = MOV32rr %ECX<kill>
 | |
|   // 204     %ECX<def> = MOV32rr %ECX<kill>
 | |
|   // 212     %EAX<def> = MOV32rr %EAX<kill>
 | |
|   // 220     %EAX<def> = MOV32rr %EAX
 | |
|   // 228     %reg1039<def> = MOV32rr %ECX<kill>
 | |
|   // The early clobber operand ties ECX input to the ECX def.
 | |
|   //
 | |
|   // The live interval of ECX is represented as this:
 | |
|   // %reg20,inf = [46,47:1)[174,230:0)  0@174-(230) 1@46-(47)
 | |
|   // The coalescer has no idea there was a def in the middle of [174,230].
 | |
|   if (AValNo->hasRedefByEC())
 | |
|     return false;
 | |
| 
 | |
|   // If AValNo is defined as a copy from IntB, we can potentially process this.
 | |
|   // Get the instruction that defines this value number.
 | |
|   if (!CP.isCoalescable(AValNo->getCopy()))
 | |
|     return false;
 | |
| 
 | |
|   // Get the LiveRange in IntB that this value number starts with.
 | |
|   LiveInterval::iterator ValLR =
 | |
|     IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
 | |
|   if (ValLR == IntB.end())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that the end of the live range is inside the same block as
 | |
|   // CopyMI.
 | |
|   MachineInstr *ValLREndInst =
 | |
|     li_->getInstructionFromIndex(ValLR->end.getPrevSlot());
 | |
|   if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we now know that ValLR ends in the same block that the CopyMI
 | |
|   // live-range starts.  If there are no intervening live ranges between them in
 | |
|   // IntB, we can merge them.
 | |
|   if (ValLR+1 != BLR) return false;
 | |
| 
 | |
|   // If a live interval is a physical register, conservatively check if any
 | |
|   // of its aliases is overlapping the live interval of the virtual register.
 | |
|   // If so, do not coalesce.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
 | |
|     for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
 | |
|       if (li_->hasInterval(*AS) && IntA.overlaps(li_->getInterval(*AS))) {
 | |
|         DEBUG({
 | |
|             dbgs() << "\t\tInterfere with alias ";
 | |
|             li_->getInterval(*AS).print(dbgs(), tri_);
 | |
|           });
 | |
|         return false;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   DEBUG({
 | |
|       dbgs() << "Extending: ";
 | |
|       IntB.print(dbgs(), tri_);
 | |
|     });
 | |
| 
 | |
|   SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
 | |
|   // We are about to delete CopyMI, so need to remove it as the 'instruction
 | |
|   // that defines this value #'. Update the valnum with the new defining
 | |
|   // instruction #.
 | |
|   BValNo->def  = FillerStart;
 | |
|   BValNo->setCopy(0);
 | |
| 
 | |
|   // Okay, we can merge them.  We need to insert a new liverange:
 | |
|   // [ValLR.end, BLR.begin) of either value number, then we merge the
 | |
|   // two value numbers.
 | |
|   IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
 | |
| 
 | |
|   // If the IntB live range is assigned to a physical register, and if that
 | |
|   // physreg has sub-registers, update their live intervals as well.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(IntB.reg)) {
 | |
|     for (const unsigned *SR = tri_->getSubRegisters(IntB.reg); *SR; ++SR) {
 | |
|       if (!li_->hasInterval(*SR))
 | |
|         continue;
 | |
|       LiveInterval &SRLI = li_->getInterval(*SR);
 | |
|       SRLI.addRange(LiveRange(FillerStart, FillerEnd,
 | |
|                               SRLI.getNextValue(FillerStart, 0,
 | |
|                                                 li_->getVNInfoAllocator())));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, merge "B1" into the same value number as "B0".
 | |
|   if (BValNo != ValLR->valno) {
 | |
|     // If B1 is killed by a PHI, then the merged live range must also be killed
 | |
|     // by the same PHI, as B0 and B1 can not overlap.
 | |
|     bool HasPHIKill = BValNo->hasPHIKill();
 | |
|     IntB.MergeValueNumberInto(BValNo, ValLR->valno);
 | |
|     if (HasPHIKill)
 | |
|       ValLR->valno->setHasPHIKill(true);
 | |
|   }
 | |
|   DEBUG({
 | |
|       dbgs() << "   result = ";
 | |
|       IntB.print(dbgs(), tri_);
 | |
|       dbgs() << "\n";
 | |
|     });
 | |
| 
 | |
|   // If the source instruction was killing the source register before the
 | |
|   // merge, unset the isKill marker given the live range has been extended.
 | |
|   int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
 | |
|   if (UIdx != -1) {
 | |
|     ValLREndInst->getOperand(UIdx).setIsKill(false);
 | |
|   }
 | |
| 
 | |
|   // If the copy instruction was killing the destination register before the
 | |
|   // merge, find the last use and trim the live range. That will also add the
 | |
|   // isKill marker.
 | |
|   if (ALR->end == CopyIdx)
 | |
|     li_->shrinkToUses(&IntA);
 | |
| 
 | |
|   ++numExtends;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// HasOtherReachingDefs - Return true if there are definitions of IntB
 | |
| /// other than BValNo val# that can reach uses of AValno val# of IntA.
 | |
| bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval &IntA,
 | |
|                                                     LiveInterval &IntB,
 | |
|                                                     VNInfo *AValNo,
 | |
|                                                     VNInfo *BValNo) {
 | |
|   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | |
|        AI != AE; ++AI) {
 | |
|     if (AI->valno != AValNo) continue;
 | |
|     LiveInterval::Ranges::iterator BI =
 | |
|       std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
 | |
|     if (BI != IntB.ranges.begin())
 | |
|       --BI;
 | |
|     for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
 | |
|       if (BI->valno == BValNo)
 | |
|         continue;
 | |
|       if (BI->start <= AI->start && BI->end > AI->start)
 | |
|         return true;
 | |
|       if (BI->start > AI->start && BI->start < AI->end)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
 | |
| /// IntA being the source and IntB being the dest, thus this defines a value
 | |
| /// number in IntB.  If the source value number (in IntA) is defined by a
 | |
| /// commutable instruction and its other operand is coalesced to the copy dest
 | |
| /// register, see if we can transform the copy into a noop by commuting the
 | |
| /// definition. For example,
 | |
| ///
 | |
| ///  A3 = op A2 B0<kill>
 | |
| ///    ...
 | |
| ///  B1 = A3      <- this copy
 | |
| ///    ...
 | |
| ///     = op A3   <- more uses
 | |
| ///
 | |
| /// ==>
 | |
| ///
 | |
| ///  B2 = op B0 A2<kill>
 | |
| ///    ...
 | |
| ///  B1 = B2      <- now an identify copy
 | |
| ///    ...
 | |
| ///     = op B2   <- more uses
 | |
| ///
 | |
| /// This returns true if an interval was modified.
 | |
| ///
 | |
| bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair &CP,
 | |
|                                                         MachineInstr *CopyMI) {
 | |
|   // FIXME: For now, only eliminate the copy by commuting its def when the
 | |
|   // source register is a virtual register. We want to guard against cases
 | |
|   // where the copy is a back edge copy and commuting the def lengthen the
 | |
|   // live interval of the source register to the entire loop.
 | |
|   if (CP.isPhys() && CP.isFlipped())
 | |
|     return false;
 | |
| 
 | |
|   // Bail if there is no dst interval.
 | |
|   if (!li_->hasInterval(CP.getDstReg()))
 | |
|     return false;
 | |
| 
 | |
|   SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
 | |
| 
 | |
|   LiveInterval &IntA =
 | |
|     li_->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
 | |
|   LiveInterval &IntB =
 | |
|     li_->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
 | |
| 
 | |
|   // BValNo is a value number in B that is defined by a copy from A. 'B3' in
 | |
|   // the example above.
 | |
|   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
 | |
|   if (!BValNo || !BValNo->isDefByCopy())
 | |
|     return false;
 | |
| 
 | |
|   assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
 | |
| 
 | |
|   // AValNo is the value number in A that defines the copy, A3 in the example.
 | |
|   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getUseIndex());
 | |
|   assert(AValNo && "COPY source not live");
 | |
| 
 | |
|   // If other defs can reach uses of this def, then it's not safe to perform
 | |
|   // the optimization.
 | |
|   if (AValNo->isPHIDef() || AValNo->isUnused() || AValNo->hasPHIKill())
 | |
|     return false;
 | |
|   MachineInstr *DefMI = li_->getInstructionFromIndex(AValNo->def);
 | |
|   if (!DefMI)
 | |
|     return false;
 | |
|   const TargetInstrDesc &TID = DefMI->getDesc();
 | |
|   if (!TID.isCommutable())
 | |
|     return false;
 | |
|   // If DefMI is a two-address instruction then commuting it will change the
 | |
|   // destination register.
 | |
|   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
 | |
|   assert(DefIdx != -1);
 | |
|   unsigned UseOpIdx;
 | |
|   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
 | |
|     return false;
 | |
|   unsigned Op1, Op2, NewDstIdx;
 | |
|   if (!tii_->findCommutedOpIndices(DefMI, Op1, Op2))
 | |
|     return false;
 | |
|   if (Op1 == UseOpIdx)
 | |
|     NewDstIdx = Op2;
 | |
|   else if (Op2 == UseOpIdx)
 | |
|     NewDstIdx = Op1;
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
 | |
|   unsigned NewReg = NewDstMO.getReg();
 | |
|   if (NewReg != IntB.reg || !NewDstMO.isKill())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure there are no other definitions of IntB that would reach the
 | |
|   // uses which the new definition can reach.
 | |
|   if (HasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
 | |
|     return false;
 | |
| 
 | |
|   // Abort if the aliases of IntB.reg have values that are not simply the
 | |
|   // clobbers from the superreg.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(IntB.reg))
 | |
|     for (const unsigned *AS = tri_->getAliasSet(IntB.reg); *AS; ++AS)
 | |
|       if (li_->hasInterval(*AS) &&
 | |
|           HasOtherReachingDefs(IntA, li_->getInterval(*AS), AValNo, 0))
 | |
|         return false;
 | |
| 
 | |
|   // If some of the uses of IntA.reg is already coalesced away, return false.
 | |
|   // It's not possible to determine whether it's safe to perform the coalescing.
 | |
|   for (MachineRegisterInfo::use_nodbg_iterator UI = 
 | |
|          mri_->use_nodbg_begin(IntA.reg), 
 | |
|        UE = mri_->use_nodbg_end(); UI != UE; ++UI) {
 | |
|     MachineInstr *UseMI = &*UI;
 | |
|     SlotIndex UseIdx = li_->getInstructionIndex(UseMI);
 | |
|     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | |
|     if (ULR == IntA.end())
 | |
|       continue;
 | |
|     if (ULR->valno == AValNo && JoinedCopies.count(UseMI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo->def << '\t'
 | |
|                << *DefMI);
 | |
| 
 | |
|   // At this point we have decided that it is legal to do this
 | |
|   // transformation.  Start by commuting the instruction.
 | |
|   MachineBasicBlock *MBB = DefMI->getParent();
 | |
|   MachineInstr *NewMI = tii_->commuteInstruction(DefMI);
 | |
|   if (!NewMI)
 | |
|     return false;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
 | |
|       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
 | |
|       !mri_->constrainRegClass(IntB.reg, mri_->getRegClass(IntA.reg)))
 | |
|     return false;
 | |
|   if (NewMI != DefMI) {
 | |
|     li_->ReplaceMachineInstrInMaps(DefMI, NewMI);
 | |
|     MBB->insert(DefMI, NewMI);
 | |
|     MBB->erase(DefMI);
 | |
|   }
 | |
|   unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
 | |
|   NewMI->getOperand(OpIdx).setIsKill();
 | |
| 
 | |
|   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
 | |
|   // A = or A, B
 | |
|   // ...
 | |
|   // B = A
 | |
|   // ...
 | |
|   // C = A<kill>
 | |
|   // ...
 | |
|   //   = B
 | |
| 
 | |
|   // Update uses of IntA of the specific Val# with IntB.
 | |
|   for (MachineRegisterInfo::use_iterator UI = mri_->use_begin(IntA.reg),
 | |
|          UE = mri_->use_end(); UI != UE;) {
 | |
|     MachineOperand &UseMO = UI.getOperand();
 | |
|     MachineInstr *UseMI = &*UI;
 | |
|     ++UI;
 | |
|     if (JoinedCopies.count(UseMI))
 | |
|       continue;
 | |
|     if (UseMI->isDebugValue()) {
 | |
|       // FIXME These don't have an instruction index.  Not clear we have enough
 | |
|       // info to decide whether to do this replacement or not.  For now do it.
 | |
|       UseMO.setReg(NewReg);
 | |
|       continue;
 | |
|     }
 | |
|     SlotIndex UseIdx = li_->getInstructionIndex(UseMI).getUseIndex();
 | |
|     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | |
|     if (ULR == IntA.end() || ULR->valno != AValNo)
 | |
|       continue;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
 | |
|       UseMO.substPhysReg(NewReg, *tri_);
 | |
|     else
 | |
|       UseMO.setReg(NewReg);
 | |
|     if (UseMI == CopyMI)
 | |
|       continue;
 | |
|     if (!UseMI->isCopy())
 | |
|       continue;
 | |
|     if (UseMI->getOperand(0).getReg() != IntB.reg ||
 | |
|         UseMI->getOperand(0).getSubReg())
 | |
|       continue;
 | |
| 
 | |
|     // This copy will become a noop. If it's defining a new val#, merge it into
 | |
|     // BValNo.
 | |
|     SlotIndex DefIdx = UseIdx.getDefIndex();
 | |
|     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
 | |
|     if (!DVNI)
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
 | |
|     assert(DVNI->def == DefIdx);
 | |
|     BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
 | |
|     markAsJoined(UseMI);
 | |
|   }
 | |
| 
 | |
|   // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
 | |
|   // is updated.
 | |
|   VNInfo *ValNo = BValNo;
 | |
|   ValNo->def = AValNo->def;
 | |
|   ValNo->setCopy(0);
 | |
|   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | |
|        AI != AE; ++AI) {
 | |
|     if (AI->valno != AValNo) continue;
 | |
|     IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
 | |
|   }
 | |
|   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
 | |
| 
 | |
|   IntA.removeValNo(AValNo);
 | |
|   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
 | |
|   ++numCommutes;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
 | |
| /// computation, replace the copy by rematerialize the definition.
 | |
| bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval &SrcInt,
 | |
|                                                        bool preserveSrcInt,
 | |
|                                                        unsigned DstReg,
 | |
|                                                        unsigned DstSubIdx,
 | |
|                                                        MachineInstr *CopyMI) {
 | |
|   SlotIndex CopyIdx = li_->getInstructionIndex(CopyMI).getUseIndex();
 | |
|   LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
 | |
|   assert(SrcLR != SrcInt.end() && "Live range not found!");
 | |
|   VNInfo *ValNo = SrcLR->valno;
 | |
|   // If other defs can reach uses of this def, then it's not safe to perform
 | |
|   // the optimization.
 | |
|   if (ValNo->isPHIDef() || ValNo->isUnused() || ValNo->hasPHIKill())
 | |
|     return false;
 | |
|   MachineInstr *DefMI = li_->getInstructionFromIndex(ValNo->def);
 | |
|   if (!DefMI)
 | |
|     return false;
 | |
|   assert(DefMI && "Defining instruction disappeared");
 | |
|   const TargetInstrDesc &TID = DefMI->getDesc();
 | |
|   if (!TID.isAsCheapAsAMove())
 | |
|     return false;
 | |
|   if (!tii_->isTriviallyReMaterializable(DefMI, AA))
 | |
|     return false;
 | |
|   bool SawStore = false;
 | |
|   if (!DefMI->isSafeToMove(tii_, AA, SawStore))
 | |
|     return false;
 | |
|   if (TID.getNumDefs() != 1)
 | |
|     return false;
 | |
|   if (!DefMI->isImplicitDef()) {
 | |
|     // Make sure the copy destination register class fits the instruction
 | |
|     // definition register class. The mismatch can happen as a result of earlier
 | |
|     // extract_subreg, insert_subreg, subreg_to_reg coalescing.
 | |
|     const TargetRegisterClass *RC = TID.OpInfo[0].getRegClass(tri_);
 | |
|     if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
 | |
|       if (mri_->getRegClass(DstReg) != RC)
 | |
|         return false;
 | |
|     } else if (!RC->contains(DstReg))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If destination register has a sub-register index on it, make sure it
 | |
|   // matches the instruction register class.
 | |
|   if (DstSubIdx) {
 | |
|     const TargetInstrDesc &TID = DefMI->getDesc();
 | |
|     if (TID.getNumDefs() != 1)
 | |
|       return false;
 | |
|     const TargetRegisterClass *DstRC = mri_->getRegClass(DstReg);
 | |
|     const TargetRegisterClass *DstSubRC =
 | |
|       DstRC->getSubRegisterRegClass(DstSubIdx);
 | |
|     const TargetRegisterClass *DefRC = TID.OpInfo[0].getRegClass(tri_);
 | |
|     if (DefRC == DstRC)
 | |
|       DstSubIdx = 0;
 | |
|     else if (DefRC != DstSubRC)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   RemoveCopyFlag(DstReg, CopyMI);
 | |
| 
 | |
|   MachineBasicBlock *MBB = CopyMI->getParent();
 | |
|   MachineBasicBlock::iterator MII =
 | |
|     llvm::next(MachineBasicBlock::iterator(CopyMI));
 | |
|   tii_->reMaterialize(*MBB, MII, DstReg, DstSubIdx, DefMI, *tri_);
 | |
|   MachineInstr *NewMI = prior(MII);
 | |
| 
 | |
|   // CopyMI may have implicit operands, transfer them over to the newly
 | |
|   // rematerialized instruction. And update implicit def interval valnos.
 | |
|   for (unsigned i = CopyMI->getDesc().getNumOperands(),
 | |
|          e = CopyMI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = CopyMI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isImplicit())
 | |
|       NewMI->addOperand(MO);
 | |
|     if (MO.isDef())
 | |
|       RemoveCopyFlag(MO.getReg(), CopyMI);
 | |
|   }
 | |
| 
 | |
|   NewMI->copyImplicitOps(CopyMI);
 | |
|   li_->ReplaceMachineInstrInMaps(CopyMI, NewMI);
 | |
|   CopyMI->eraseFromParent();
 | |
|   ReMatCopies.insert(CopyMI);
 | |
|   ReMatDefs.insert(DefMI);
 | |
|   DEBUG(dbgs() << "Remat: " << *NewMI);
 | |
|   ++NumReMats;
 | |
| 
 | |
|   // The source interval can become smaller because we removed a use.
 | |
|   if (preserveSrcInt)
 | |
|     li_->shrinkToUses(&SrcInt);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
 | |
| /// update the subregister number if it is not zero. If DstReg is a
 | |
| /// physical register and the existing subregister number of the def / use
 | |
| /// being updated is not zero, make sure to set it to the correct physical
 | |
| /// subregister.
 | |
| void
 | |
| RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair &CP) {
 | |
|   bool DstIsPhys = CP.isPhys();
 | |
|   unsigned SrcReg = CP.getSrcReg();
 | |
|   unsigned DstReg = CP.getDstReg();
 | |
|   unsigned SubIdx = CP.getSubIdx();
 | |
| 
 | |
|   // Update LiveDebugVariables.
 | |
|   ldv_->renameRegister(SrcReg, DstReg, SubIdx);
 | |
| 
 | |
|   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(SrcReg);
 | |
|        MachineInstr *UseMI = I.skipInstruction();) {
 | |
|     // A PhysReg copy that won't be coalesced can perhaps be rematerialized
 | |
|     // instead.
 | |
|     if (DstIsPhys) {
 | |
|       if (UseMI->isCopy() &&
 | |
|           !UseMI->getOperand(1).getSubReg() &&
 | |
|           !UseMI->getOperand(0).getSubReg() &&
 | |
|           UseMI->getOperand(1).getReg() == SrcReg &&
 | |
|           UseMI->getOperand(0).getReg() != SrcReg &&
 | |
|           UseMI->getOperand(0).getReg() != DstReg &&
 | |
|           !JoinedCopies.count(UseMI) &&
 | |
|           ReMaterializeTrivialDef(li_->getInterval(SrcReg), false,
 | |
|                                   UseMI->getOperand(0).getReg(), 0, UseMI))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     SmallVector<unsigned,8> Ops;
 | |
|     bool Reads, Writes;
 | |
|     tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
 | |
|     bool Kills = false, Deads = false;
 | |
| 
 | |
|     // Replace SrcReg with DstReg in all UseMI operands.
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|       MachineOperand &MO = UseMI->getOperand(Ops[i]);
 | |
|       Kills |= MO.isKill();
 | |
|       Deads |= MO.isDead();
 | |
| 
 | |
|       if (DstIsPhys)
 | |
|         MO.substPhysReg(DstReg, *tri_);
 | |
|       else
 | |
|         MO.substVirtReg(DstReg, SubIdx, *tri_);
 | |
|     }
 | |
| 
 | |
|     // This instruction is a copy that will be removed.
 | |
|     if (JoinedCopies.count(UseMI))
 | |
|       continue;
 | |
| 
 | |
|     if (SubIdx) {
 | |
|       // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
 | |
|       // read-modify-write of DstReg.
 | |
|       if (Deads)
 | |
|         UseMI->addRegisterDead(DstReg, tri_);
 | |
|       else if (!Reads && Writes)
 | |
|         UseMI->addRegisterDefined(DstReg, tri_);
 | |
| 
 | |
|       // Kill flags apply to the whole physical register.
 | |
|       if (DstIsPhys && Kills)
 | |
|         UseMI->addRegisterKilled(DstReg, tri_);
 | |
|     }
 | |
| 
 | |
|     DEBUG({
 | |
|         dbgs() << "\t\tupdated: ";
 | |
|         if (!UseMI->isDebugValue())
 | |
|           dbgs() << li_->getInstructionIndex(UseMI) << "\t";
 | |
|         dbgs() << *UseMI;
 | |
|       });
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// removeIntervalIfEmpty - Check if the live interval of a physical register
 | |
| /// is empty, if so remove it and also remove the empty intervals of its
 | |
| /// sub-registers. Return true if live interval is removed.
 | |
| static bool removeIntervalIfEmpty(LiveInterval &li, LiveIntervals *li_,
 | |
|                                   const TargetRegisterInfo *tri_) {
 | |
|   if (li.empty()) {
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(li.reg))
 | |
|       for (const unsigned* SR = tri_->getSubRegisters(li.reg); *SR; ++SR) {
 | |
|         if (!li_->hasInterval(*SR))
 | |
|           continue;
 | |
|         LiveInterval &sli = li_->getInterval(*SR);
 | |
|         if (sli.empty())
 | |
|           li_->removeInterval(*SR);
 | |
|       }
 | |
|     li_->removeInterval(li.reg);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
 | |
| /// the val# it defines. If the live interval becomes empty, remove it as well.
 | |
| bool RegisterCoalescer::RemoveDeadDef(LiveInterval &li,
 | |
|                                              MachineInstr *DefMI) {
 | |
|   SlotIndex DefIdx = li_->getInstructionIndex(DefMI).getDefIndex();
 | |
|   LiveInterval::iterator MLR = li.FindLiveRangeContaining(DefIdx);
 | |
|   if (DefIdx != MLR->valno->def)
 | |
|     return false;
 | |
|   li.removeValNo(MLR->valno);
 | |
|   return removeIntervalIfEmpty(li, li_, tri_);
 | |
| }
 | |
| 
 | |
| void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg,
 | |
|                                               const MachineInstr *CopyMI) {
 | |
|   SlotIndex DefIdx = li_->getInstructionIndex(CopyMI).getDefIndex();
 | |
|   if (li_->hasInterval(DstReg)) {
 | |
|     LiveInterval &LI = li_->getInterval(DstReg);
 | |
|     if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
 | |
|       if (LR->valno->def == DefIdx)
 | |
|         LR->valno->setCopy(0);
 | |
|   }
 | |
|   if (!TargetRegisterInfo::isPhysicalRegister(DstReg))
 | |
|     return;
 | |
|   for (const unsigned* AS = tri_->getAliasSet(DstReg); *AS; ++AS) {
 | |
|     if (!li_->hasInterval(*AS))
 | |
|       continue;
 | |
|     LiveInterval &LI = li_->getInterval(*AS);
 | |
|     if (const LiveRange *LR = LI.getLiveRangeContaining(DefIdx))
 | |
|       if (LR->valno->def == DefIdx)
 | |
|         LR->valno->setCopy(0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
 | |
| /// We need to be careful about coalescing a source physical register with a
 | |
| /// virtual register. Once the coalescing is done, it cannot be broken and these
 | |
| /// are not spillable! If the destination interval uses are far away, think
 | |
| /// twice about coalescing them!
 | |
| bool RegisterCoalescer::shouldJoinPhys(CoalescerPair &CP) {
 | |
|   bool Allocatable = li_->isAllocatable(CP.getDstReg());
 | |
|   LiveInterval &JoinVInt = li_->getInterval(CP.getSrcReg());
 | |
| 
 | |
|   /// Always join simple intervals that are defined by a single copy from a
 | |
|   /// reserved register. This doesn't increase register pressure, so it is
 | |
|   /// always beneficial.
 | |
|   if (!Allocatable && CP.isFlipped() && JoinVInt.containsOneValue())
 | |
|     return true;
 | |
| 
 | |
|   if (!EnablePhysicalJoin) {
 | |
|     DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Only coalesce to allocatable physreg, we don't want to risk modifying
 | |
|   // reserved registers.
 | |
|   if (!Allocatable) {
 | |
|     DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
 | |
|     return false;  // Not coalescable.
 | |
|   }
 | |
| 
 | |
|   // Don't join with physregs that have a ridiculous number of live
 | |
|   // ranges. The data structure performance is really bad when that
 | |
|   // happens.
 | |
|   if (li_->hasInterval(CP.getDstReg()) &&
 | |
|       li_->getInterval(CP.getDstReg()).ranges.size() > 1000) {
 | |
|     ++numAborts;
 | |
|     DEBUG(dbgs()
 | |
|           << "\tPhysical register live interval too complicated, abort!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Why are we skipping this test for partial copies?
 | |
|   //        CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
 | |
|   if (!CP.isPartial()) {
 | |
|     const TargetRegisterClass *RC = mri_->getRegClass(CP.getSrcReg());
 | |
|     unsigned Threshold = RegClassInfo.getNumAllocatableRegs(RC) * 2;
 | |
|     unsigned Length = li_->getApproximateInstructionCount(JoinVInt);
 | |
|     if (Length > Threshold) {
 | |
|       ++numAborts;
 | |
|       DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
 | |
| /// two virtual registers from different register classes.
 | |
| bool
 | |
| RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg,
 | |
|                                              unsigned DstReg,
 | |
|                                              const TargetRegisterClass *SrcRC,
 | |
|                                              const TargetRegisterClass *DstRC,
 | |
|                                              const TargetRegisterClass *NewRC) {
 | |
|   unsigned NewRCCount = RegClassInfo.getNumAllocatableRegs(NewRC);
 | |
|   // This heuristics is good enough in practice, but it's obviously not *right*.
 | |
|   // 4 is a magic number that works well enough for x86, ARM, etc. It filter
 | |
|   // out all but the most restrictive register classes.
 | |
|   if (NewRCCount > 4 ||
 | |
|       // Early exit if the function is fairly small, coalesce aggressively if
 | |
|       // that's the case. For really special register classes with 3 or
 | |
|       // fewer registers, be a bit more careful.
 | |
|       (li_->getFuncInstructionCount() / NewRCCount) < 8)
 | |
|     return true;
 | |
|   LiveInterval &SrcInt = li_->getInterval(SrcReg);
 | |
|   LiveInterval &DstInt = li_->getInterval(DstReg);
 | |
|   unsigned SrcSize = li_->getApproximateInstructionCount(SrcInt);
 | |
|   unsigned DstSize = li_->getApproximateInstructionCount(DstInt);
 | |
| 
 | |
|   // Coalesce aggressively if the intervals are small compared to the number of
 | |
|   // registers in the new class. The number 4 is fairly arbitrary, chosen to be
 | |
|   // less aggressive than the 8 used for the whole function size.
 | |
|   const unsigned ThresSize = 4 * NewRCCount;
 | |
|   if (SrcSize <= ThresSize && DstSize <= ThresSize)
 | |
|     return true;
 | |
| 
 | |
|   // Estimate *register use density*. If it doubles or more, abort.
 | |
|   unsigned SrcUses = std::distance(mri_->use_nodbg_begin(SrcReg),
 | |
|                                    mri_->use_nodbg_end());
 | |
|   unsigned DstUses = std::distance(mri_->use_nodbg_begin(DstReg),
 | |
|                                    mri_->use_nodbg_end());
 | |
|   unsigned NewUses = SrcUses + DstUses;
 | |
|   unsigned NewSize = SrcSize + DstSize;
 | |
|   if (SrcRC != NewRC && SrcSize > ThresSize) {
 | |
|     unsigned SrcRCCount = RegClassInfo.getNumAllocatableRegs(SrcRC);
 | |
|     if (NewUses*SrcSize*SrcRCCount > 2*SrcUses*NewSize*NewRCCount)
 | |
|       return false;
 | |
|   }
 | |
|   if (DstRC != NewRC && DstSize > ThresSize) {
 | |
|     unsigned DstRCCount = RegClassInfo.getNumAllocatableRegs(DstRC);
 | |
|     if (NewUses*DstSize*DstRCCount > 2*DstUses*NewSize*NewRCCount)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
 | |
| /// which are the src/dst of the copy instruction CopyMI.  This returns true
 | |
| /// if the copy was successfully coalesced away. If it is not currently
 | |
| /// possible to coalesce this interval, but it may be possible if other
 | |
| /// things get coalesced, then it returns true by reference in 'Again'.
 | |
| bool RegisterCoalescer::JoinCopy(MachineInstr *CopyMI, bool &Again) {
 | |
| 
 | |
|   Again = false;
 | |
|   if (JoinedCopies.count(CopyMI) || ReMatCopies.count(CopyMI))
 | |
|     return false; // Already done.
 | |
| 
 | |
|   DEBUG(dbgs() << li_->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
 | |
| 
 | |
|   CoalescerPair CP(*tii_, *tri_);
 | |
|   if (!CP.setRegisters(CopyMI)) {
 | |
|     DEBUG(dbgs() << "\tNot coalescable.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If they are already joined we continue.
 | |
|   if (CP.getSrcReg() == CP.getDstReg()) {
 | |
|     markAsJoined(CopyMI);
 | |
|     DEBUG(dbgs() << "\tCopy already coalesced.\n");
 | |
|     return false;  // Not coalescable.
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), tri_)
 | |
|                << " with " << PrintReg(CP.getDstReg(), tri_, CP.getSubIdx())
 | |
|                << "\n");
 | |
| 
 | |
|   // Enforce policies.
 | |
|   if (CP.isPhys()) {
 | |
|     if (!shouldJoinPhys(CP)) {
 | |
|       // Before giving up coalescing, if definition of source is defined by
 | |
|       // trivial computation, try rematerializing it.
 | |
|       if (!CP.isFlipped() &&
 | |
|           ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
 | |
|                                   CP.getDstReg(), 0, CopyMI))
 | |
|         return true;
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     // Avoid constraining virtual register regclass too much.
 | |
|     if (CP.isCrossClass()) {
 | |
|       DEBUG(dbgs() << "\tCross-class to " << CP.getNewRC()->getName() << ".\n");
 | |
|       if (DisableCrossClassJoin) {
 | |
|         DEBUG(dbgs() << "\tCross-class joins disabled.\n");
 | |
|         return false;
 | |
|       }
 | |
|       if (!isWinToJoinCrossClass(CP.getSrcReg(), CP.getDstReg(),
 | |
|                                  mri_->getRegClass(CP.getSrcReg()),
 | |
|                                  mri_->getRegClass(CP.getDstReg()),
 | |
|                                  CP.getNewRC())) {
 | |
|         DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
 | |
|         Again = true;  // May be possible to coalesce later.
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // When possible, let DstReg be the larger interval.
 | |
|     if (!CP.getSubIdx() && li_->getInterval(CP.getSrcReg()).ranges.size() >
 | |
|                            li_->getInterval(CP.getDstReg()).ranges.size())
 | |
|       CP.flip();
 | |
|   }
 | |
| 
 | |
|   // Okay, attempt to join these two intervals.  On failure, this returns false.
 | |
|   // Otherwise, if one of the intervals being joined is a physreg, this method
 | |
|   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
 | |
|   // been modified, so we can use this information below to update aliases.
 | |
|   if (!JoinIntervals(CP)) {
 | |
|     // Coalescing failed.
 | |
| 
 | |
|     // If definition of source is defined by trivial computation, try
 | |
|     // rematerializing it.
 | |
|     if (!CP.isFlipped() &&
 | |
|         ReMaterializeTrivialDef(li_->getInterval(CP.getSrcReg()), true,
 | |
|                                 CP.getDstReg(), 0, CopyMI))
 | |
|       return true;
 | |
| 
 | |
|     // If we can eliminate the copy without merging the live ranges, do so now.
 | |
|     if (!CP.isPartial()) {
 | |
|       if (AdjustCopiesBackFrom(CP, CopyMI) ||
 | |
|           RemoveCopyByCommutingDef(CP, CopyMI)) {
 | |
|         markAsJoined(CopyMI);
 | |
|         DEBUG(dbgs() << "\tTrivial!\n");
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we are unable to join the intervals.
 | |
|     DEBUG(dbgs() << "\tInterference!\n");
 | |
|     Again = true;  // May be possible to coalesce later.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Coalescing to a virtual register that is of a sub-register class of the
 | |
|   // other. Make sure the resulting register is set to the right register class.
 | |
|   if (CP.isCrossClass()) {
 | |
|     ++numCrossRCs;
 | |
|     mri_->setRegClass(CP.getDstReg(), CP.getNewRC());
 | |
|   }
 | |
| 
 | |
|   // Remember to delete the copy instruction.
 | |
|   markAsJoined(CopyMI);
 | |
| 
 | |
|   UpdateRegDefsUses(CP);
 | |
| 
 | |
|   // If we have extended the live range of a physical register, make sure we
 | |
|   // update live-in lists as well.
 | |
|   if (CP.isPhys()) {
 | |
|     SmallVector<MachineBasicBlock*, 16> BlockSeq;
 | |
|     // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
 | |
|     // ranges for this, and they are preserved.
 | |
|     LiveInterval &SrcInt = li_->getInterval(CP.getSrcReg());
 | |
|     for (LiveInterval::const_iterator I = SrcInt.begin(), E = SrcInt.end();
 | |
|          I != E; ++I ) {
 | |
|       li_->findLiveInMBBs(I->start, I->end, BlockSeq);
 | |
|       for (unsigned idx = 0, size = BlockSeq.size(); idx != size; ++idx) {
 | |
|         MachineBasicBlock &block = *BlockSeq[idx];
 | |
|         if (!block.isLiveIn(CP.getDstReg()))
 | |
|           block.addLiveIn(CP.getDstReg());
 | |
|       }
 | |
|       BlockSeq.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // SrcReg is guarateed to be the register whose live interval that is
 | |
|   // being merged.
 | |
|   li_->removeInterval(CP.getSrcReg());
 | |
| 
 | |
|   // Update regalloc hint.
 | |
|   tri_->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *mf_);
 | |
| 
 | |
|   DEBUG({
 | |
|     LiveInterval &DstInt = li_->getInterval(CP.getDstReg());
 | |
|     dbgs() << "\tJoined. Result = ";
 | |
|     DstInt.print(dbgs(), tri_);
 | |
|     dbgs() << "\n";
 | |
|   });
 | |
| 
 | |
|   ++numJoins;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ComputeUltimateVN - Assuming we are going to join two live intervals,
 | |
| /// compute what the resultant value numbers for each value in the input two
 | |
| /// ranges will be.  This is complicated by copies between the two which can
 | |
| /// and will commonly cause multiple value numbers to be merged into one.
 | |
| ///
 | |
| /// VN is the value number that we're trying to resolve.  InstDefiningValue
 | |
| /// keeps track of the new InstDefiningValue assignment for the result
 | |
| /// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
 | |
| /// whether a value in this or other is a copy from the opposite set.
 | |
| /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
 | |
| /// already been assigned.
 | |
| ///
 | |
| /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
 | |
| /// contains the value number the copy is from.
 | |
| ///
 | |
| static unsigned ComputeUltimateVN(VNInfo *VNI,
 | |
|                                   SmallVector<VNInfo*, 16> &NewVNInfo,
 | |
|                                   DenseMap<VNInfo*, VNInfo*> &ThisFromOther,
 | |
|                                   DenseMap<VNInfo*, VNInfo*> &OtherFromThis,
 | |
|                                   SmallVector<int, 16> &ThisValNoAssignments,
 | |
|                                   SmallVector<int, 16> &OtherValNoAssignments) {
 | |
|   unsigned VN = VNI->id;
 | |
| 
 | |
|   // If the VN has already been computed, just return it.
 | |
|   if (ThisValNoAssignments[VN] >= 0)
 | |
|     return ThisValNoAssignments[VN];
 | |
|   assert(ThisValNoAssignments[VN] != -2 && "Cyclic value numbers");
 | |
| 
 | |
|   // If this val is not a copy from the other val, then it must be a new value
 | |
|   // number in the destination.
 | |
|   DenseMap<VNInfo*, VNInfo*>::iterator I = ThisFromOther.find(VNI);
 | |
|   if (I == ThisFromOther.end()) {
 | |
|     NewVNInfo.push_back(VNI);
 | |
|     return ThisValNoAssignments[VN] = NewVNInfo.size()-1;
 | |
|   }
 | |
|   VNInfo *OtherValNo = I->second;
 | |
| 
 | |
|   // Otherwise, this *is* a copy from the RHS.  If the other side has already
 | |
|   // been computed, return it.
 | |
|   if (OtherValNoAssignments[OtherValNo->id] >= 0)
 | |
|     return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo->id];
 | |
| 
 | |
|   // Mark this value number as currently being computed, then ask what the
 | |
|   // ultimate value # of the other value is.
 | |
|   ThisValNoAssignments[VN] = -2;
 | |
|   unsigned UltimateVN =
 | |
|     ComputeUltimateVN(OtherValNo, NewVNInfo, OtherFromThis, ThisFromOther,
 | |
|                       OtherValNoAssignments, ThisValNoAssignments);
 | |
|   return ThisValNoAssignments[VN] = UltimateVN;
 | |
| }
 | |
| 
 | |
| /// JoinIntervals - Attempt to join these two intervals.  On failure, this
 | |
| /// returns false.
 | |
| bool RegisterCoalescer::JoinIntervals(CoalescerPair &CP) {
 | |
|   LiveInterval &RHS = li_->getInterval(CP.getSrcReg());
 | |
|   DEBUG({ dbgs() << "\t\tRHS = "; RHS.print(dbgs(), tri_); dbgs() << "\n"; });
 | |
| 
 | |
|   // If a live interval is a physical register, check for interference with any
 | |
|   // aliases. The interference check implemented here is a bit more conservative
 | |
|   // than the full interfeence check below. We allow overlapping live ranges
 | |
|   // only when one is a copy of the other.
 | |
|   if (CP.isPhys()) {
 | |
|     for (const unsigned *AS = tri_->getAliasSet(CP.getDstReg()); *AS; ++AS){
 | |
|       if (!li_->hasInterval(*AS))
 | |
|         continue;
 | |
|       const LiveInterval &LHS = li_->getInterval(*AS);
 | |
|       LiveInterval::const_iterator LI = LHS.begin();
 | |
|       for (LiveInterval::const_iterator RI = RHS.begin(), RE = RHS.end();
 | |
|            RI != RE; ++RI) {
 | |
|         LI = std::lower_bound(LI, LHS.end(), RI->start);
 | |
|         // Does LHS have an overlapping live range starting before RI?
 | |
|         if ((LI != LHS.begin() && LI[-1].end > RI->start) &&
 | |
|             (RI->start != RI->valno->def ||
 | |
|              !CP.isCoalescable(li_->getInstructionFromIndex(RI->start)))) {
 | |
|           DEBUG({
 | |
|             dbgs() << "\t\tInterference from alias: ";
 | |
|             LHS.print(dbgs(), tri_);
 | |
|             dbgs() << "\n\t\tOverlap at " << RI->start << " and no copy.\n";
 | |
|           });
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // Check that LHS ranges beginning in this range are copies.
 | |
|         for (; LI != LHS.end() && LI->start < RI->end; ++LI) {
 | |
|           if (LI->start != LI->valno->def ||
 | |
|               !CP.isCoalescable(li_->getInstructionFromIndex(LI->start))) {
 | |
|             DEBUG({
 | |
|               dbgs() << "\t\tInterference from alias: ";
 | |
|               LHS.print(dbgs(), tri_);
 | |
|               dbgs() << "\n\t\tDef at " << LI->start << " is not a copy.\n";
 | |
|             });
 | |
|             return false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compute the final value assignment, assuming that the live ranges can be
 | |
|   // coalesced.
 | |
|   SmallVector<int, 16> LHSValNoAssignments;
 | |
|   SmallVector<int, 16> RHSValNoAssignments;
 | |
|   DenseMap<VNInfo*, VNInfo*> LHSValsDefinedFromRHS;
 | |
|   DenseMap<VNInfo*, VNInfo*> RHSValsDefinedFromLHS;
 | |
|   SmallVector<VNInfo*, 16> NewVNInfo;
 | |
| 
 | |
|   LiveInterval &LHS = li_->getOrCreateInterval(CP.getDstReg());
 | |
|   DEBUG({ dbgs() << "\t\tLHS = "; LHS.print(dbgs(), tri_); dbgs() << "\n"; });
 | |
| 
 | |
|   // Loop over the value numbers of the LHS, seeing if any are defined from
 | |
|   // the RHS.
 | |
|   for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
 | |
|        i != e; ++i) {
 | |
|     VNInfo *VNI = *i;
 | |
|     if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
 | |
|       continue;
 | |
| 
 | |
|     // Never join with a register that has EarlyClobber redefs.
 | |
|     if (VNI->hasRedefByEC())
 | |
|       return false;
 | |
| 
 | |
|     // DstReg is known to be a register in the LHS interval.  If the src is
 | |
|     // from the RHS interval, we can use its value #.
 | |
|     if (!CP.isCoalescable(VNI->getCopy()))
 | |
|       continue;
 | |
| 
 | |
|     // Figure out the value # from the RHS.
 | |
|     LiveRange *lr = RHS.getLiveRangeContaining(VNI->def.getPrevSlot());
 | |
|     // The copy could be to an aliased physreg.
 | |
|     if (!lr) continue;
 | |
|     LHSValsDefinedFromRHS[VNI] = lr->valno;
 | |
|   }
 | |
| 
 | |
|   // Loop over the value numbers of the RHS, seeing if any are defined from
 | |
|   // the LHS.
 | |
|   for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
 | |
|        i != e; ++i) {
 | |
|     VNInfo *VNI = *i;
 | |
|     if (VNI->isUnused() || !VNI->isDefByCopy())  // Src not defined by a copy?
 | |
|       continue;
 | |
| 
 | |
|     // Never join with a register that has EarlyClobber redefs.
 | |
|     if (VNI->hasRedefByEC())
 | |
|       return false;
 | |
| 
 | |
|     // DstReg is known to be a register in the RHS interval.  If the src is
 | |
|     // from the LHS interval, we can use its value #.
 | |
|     if (!CP.isCoalescable(VNI->getCopy()))
 | |
|       continue;
 | |
| 
 | |
|     // Figure out the value # from the LHS.
 | |
|     LiveRange *lr = LHS.getLiveRangeContaining(VNI->def.getPrevSlot());
 | |
|     // The copy could be to an aliased physreg.
 | |
|     if (!lr) continue;
 | |
|     RHSValsDefinedFromLHS[VNI] = lr->valno;
 | |
|   }
 | |
| 
 | |
|   LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
 | |
|   RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
 | |
|   NewVNInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
 | |
| 
 | |
|   for (LiveInterval::vni_iterator i = LHS.vni_begin(), e = LHS.vni_end();
 | |
|        i != e; ++i) {
 | |
|     VNInfo *VNI = *i;
 | |
|     unsigned VN = VNI->id;
 | |
|     if (LHSValNoAssignments[VN] >= 0 || VNI->isUnused())
 | |
|       continue;
 | |
|     ComputeUltimateVN(VNI, NewVNInfo,
 | |
|                       LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
 | |
|                       LHSValNoAssignments, RHSValNoAssignments);
 | |
|   }
 | |
|   for (LiveInterval::vni_iterator i = RHS.vni_begin(), e = RHS.vni_end();
 | |
|        i != e; ++i) {
 | |
|     VNInfo *VNI = *i;
 | |
|     unsigned VN = VNI->id;
 | |
|     if (RHSValNoAssignments[VN] >= 0 || VNI->isUnused())
 | |
|       continue;
 | |
|     // If this value number isn't a copy from the LHS, it's a new number.
 | |
|     if (RHSValsDefinedFromLHS.find(VNI) == RHSValsDefinedFromLHS.end()) {
 | |
|       NewVNInfo.push_back(VNI);
 | |
|       RHSValNoAssignments[VN] = NewVNInfo.size()-1;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     ComputeUltimateVN(VNI, NewVNInfo,
 | |
|                       RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
 | |
|                       RHSValNoAssignments, LHSValNoAssignments);
 | |
|   }
 | |
| 
 | |
|   // Armed with the mappings of LHS/RHS values to ultimate values, walk the
 | |
|   // interval lists to see if these intervals are coalescable.
 | |
|   LiveInterval::const_iterator I = LHS.begin();
 | |
|   LiveInterval::const_iterator IE = LHS.end();
 | |
|   LiveInterval::const_iterator J = RHS.begin();
 | |
|   LiveInterval::const_iterator JE = RHS.end();
 | |
| 
 | |
|   // Skip ahead until the first place of potential sharing.
 | |
|   if (I != IE && J != JE) {
 | |
|     if (I->start < J->start) {
 | |
|       I = std::upper_bound(I, IE, J->start);
 | |
|       if (I != LHS.begin()) --I;
 | |
|     } else if (J->start < I->start) {
 | |
|       J = std::upper_bound(J, JE, I->start);
 | |
|       if (J != RHS.begin()) --J;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (I != IE && J != JE) {
 | |
|     // Determine if these two live ranges overlap.
 | |
|     bool Overlaps;
 | |
|     if (I->start < J->start) {
 | |
|       Overlaps = I->end > J->start;
 | |
|     } else {
 | |
|       Overlaps = J->end > I->start;
 | |
|     }
 | |
| 
 | |
|     // If so, check value # info to determine if they are really different.
 | |
|     if (Overlaps) {
 | |
|       // If the live range overlap will map to the same value number in the
 | |
|       // result liverange, we can still coalesce them.  If not, we can't.
 | |
|       if (LHSValNoAssignments[I->valno->id] !=
 | |
|           RHSValNoAssignments[J->valno->id])
 | |
|         return false;
 | |
|       // If it's re-defined by an early clobber somewhere in the live range,
 | |
|       // then conservatively abort coalescing.
 | |
|       if (NewVNInfo[LHSValNoAssignments[I->valno->id]]->hasRedefByEC())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (I->end < J->end)
 | |
|       ++I;
 | |
|     else
 | |
|       ++J;
 | |
|   }
 | |
| 
 | |
|   // Update kill info. Some live ranges are extended due to copy coalescing.
 | |
|   for (DenseMap<VNInfo*, VNInfo*>::iterator I = LHSValsDefinedFromRHS.begin(),
 | |
|          E = LHSValsDefinedFromRHS.end(); I != E; ++I) {
 | |
|     VNInfo *VNI = I->first;
 | |
|     unsigned LHSValID = LHSValNoAssignments[VNI->id];
 | |
|     if (VNI->hasPHIKill())
 | |
|       NewVNInfo[LHSValID]->setHasPHIKill(true);
 | |
|   }
 | |
| 
 | |
|   // Update kill info. Some live ranges are extended due to copy coalescing.
 | |
|   for (DenseMap<VNInfo*, VNInfo*>::iterator I = RHSValsDefinedFromLHS.begin(),
 | |
|          E = RHSValsDefinedFromLHS.end(); I != E; ++I) {
 | |
|     VNInfo *VNI = I->first;
 | |
|     unsigned RHSValID = RHSValNoAssignments[VNI->id];
 | |
|     if (VNI->hasPHIKill())
 | |
|       NewVNInfo[RHSValID]->setHasPHIKill(true);
 | |
|   }
 | |
| 
 | |
|   if (LHSValNoAssignments.empty())
 | |
|     LHSValNoAssignments.push_back(-1);
 | |
|   if (RHSValNoAssignments.empty())
 | |
|     RHSValNoAssignments.push_back(-1);
 | |
| 
 | |
|   // If we get here, we know that we can coalesce the live ranges.  Ask the
 | |
|   // intervals to coalesce themselves now.
 | |
|   LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0], NewVNInfo,
 | |
|            mri_);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // DepthMBBCompare - Comparison predicate that sort first based on the loop
 | |
|   // depth of the basic block (the unsigned), and then on the MBB number.
 | |
|   struct DepthMBBCompare {
 | |
|     typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
 | |
|     bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
 | |
|       // Deeper loops first
 | |
|       if (LHS.first != RHS.first)
 | |
|         return LHS.first > RHS.first;
 | |
| 
 | |
|       // Prefer blocks that are more connected in the CFG. This takes care of
 | |
|       // the most difficult copies first while intervals are short.
 | |
|       unsigned cl = LHS.second->pred_size() + LHS.second->succ_size();
 | |
|       unsigned cr = RHS.second->pred_size() + RHS.second->succ_size();
 | |
|       if (cl != cr)
 | |
|         return cl > cr;
 | |
| 
 | |
|       // As a last resort, sort by block number.
 | |
|       return LHS.second->getNumber() < RHS.second->getNumber();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock *MBB,
 | |
|                                             std::vector<MachineInstr*> &TryAgain) {
 | |
|   DEBUG(dbgs() << MBB->getName() << ":\n");
 | |
| 
 | |
|   SmallVector<MachineInstr*, 8> VirtCopies;
 | |
|   SmallVector<MachineInstr*, 8> PhysCopies;
 | |
|   SmallVector<MachineInstr*, 8> ImpDefCopies;
 | |
|   for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
 | |
|        MII != E;) {
 | |
|     MachineInstr *Inst = MII++;
 | |
| 
 | |
|     // If this isn't a copy nor a extract_subreg, we can't join intervals.
 | |
|     unsigned SrcReg, DstReg;
 | |
|     if (Inst->isCopy()) {
 | |
|       DstReg = Inst->getOperand(0).getReg();
 | |
|       SrcReg = Inst->getOperand(1).getReg();
 | |
|     } else if (Inst->isSubregToReg()) {
 | |
|       DstReg = Inst->getOperand(0).getReg();
 | |
|       SrcReg = Inst->getOperand(2).getReg();
 | |
|     } else
 | |
|       continue;
 | |
| 
 | |
|     bool SrcIsPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
 | |
|     bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | |
|     if (li_->hasInterval(SrcReg) && li_->getInterval(SrcReg).empty())
 | |
|       ImpDefCopies.push_back(Inst);
 | |
|     else if (SrcIsPhys || DstIsPhys)
 | |
|       PhysCopies.push_back(Inst);
 | |
|     else
 | |
|       VirtCopies.push_back(Inst);
 | |
|   }
 | |
| 
 | |
|   // Try coalescing implicit copies and insert_subreg <undef> first,
 | |
|   // followed by copies to / from physical registers, then finally copies
 | |
|   // from virtual registers to virtual registers.
 | |
|   for (unsigned i = 0, e = ImpDefCopies.size(); i != e; ++i) {
 | |
|     MachineInstr *TheCopy = ImpDefCopies[i];
 | |
|     bool Again = false;
 | |
|     if (!JoinCopy(TheCopy, Again))
 | |
|       if (Again)
 | |
|         TryAgain.push_back(TheCopy);
 | |
|   }
 | |
|   for (unsigned i = 0, e = PhysCopies.size(); i != e; ++i) {
 | |
|     MachineInstr *TheCopy = PhysCopies[i];
 | |
|     bool Again = false;
 | |
|     if (!JoinCopy(TheCopy, Again))
 | |
|       if (Again)
 | |
|         TryAgain.push_back(TheCopy);
 | |
|   }
 | |
|   for (unsigned i = 0, e = VirtCopies.size(); i != e; ++i) {
 | |
|     MachineInstr *TheCopy = VirtCopies[i];
 | |
|     bool Again = false;
 | |
|     if (!JoinCopy(TheCopy, Again))
 | |
|       if (Again)
 | |
|         TryAgain.push_back(TheCopy);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegisterCoalescer::joinIntervals() {
 | |
|   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
 | |
| 
 | |
|   std::vector<MachineInstr*> TryAgainList;
 | |
|   if (loopInfo->empty()) {
 | |
|     // If there are no loops in the function, join intervals in function order.
 | |
|     for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | |
|          I != E; ++I)
 | |
|       CopyCoalesceInMBB(I, TryAgainList);
 | |
|   } else {
 | |
|     // Otherwise, join intervals in inner loops before other intervals.
 | |
|     // Unfortunately we can't just iterate over loop hierarchy here because
 | |
|     // there may be more MBB's than BB's.  Collect MBB's for sorting.
 | |
| 
 | |
|     // Join intervals in the function prolog first. We want to join physical
 | |
|     // registers with virtual registers before the intervals got too long.
 | |
|     std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
 | |
|     for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();I != E;++I){
 | |
|       MachineBasicBlock *MBB = I;
 | |
|       MBBs.push_back(std::make_pair(loopInfo->getLoopDepth(MBB), I));
 | |
|     }
 | |
| 
 | |
|     // Sort by loop depth.
 | |
|     std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
 | |
| 
 | |
|     // Finally, join intervals in loop nest order.
 | |
|     for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
 | |
|       CopyCoalesceInMBB(MBBs[i].second, TryAgainList);
 | |
|   }
 | |
| 
 | |
|   // Joining intervals can allow other intervals to be joined.  Iteratively join
 | |
|   // until we make no progress.
 | |
|   bool ProgressMade = true;
 | |
|   while (ProgressMade) {
 | |
|     ProgressMade = false;
 | |
| 
 | |
|     for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
 | |
|       MachineInstr *&TheCopy = TryAgainList[i];
 | |
|       if (!TheCopy)
 | |
|         continue;
 | |
| 
 | |
|       bool Again = false;
 | |
|       bool Success = JoinCopy(TheCopy, Again);
 | |
|       if (Success || !Again) {
 | |
|         TheCopy= 0;   // Mark this one as done.
 | |
|         ProgressMade = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegisterCoalescer::releaseMemory() {
 | |
|   JoinedCopies.clear();
 | |
|   ReMatCopies.clear();
 | |
|   ReMatDefs.clear();
 | |
| }
 | |
| 
 | |
| bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
 | |
|   mf_ = &fn;
 | |
|   mri_ = &fn.getRegInfo();
 | |
|   tm_ = &fn.getTarget();
 | |
|   tri_ = tm_->getRegisterInfo();
 | |
|   tii_ = tm_->getInstrInfo();
 | |
|   li_ = &getAnalysis<LiveIntervals>();
 | |
|   ldv_ = &getAnalysis<LiveDebugVariables>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   loopInfo = &getAnalysis<MachineLoopInfo>();
 | |
| 
 | |
|   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
 | |
|                << "********** Function: "
 | |
|                << ((Value*)mf_->getFunction())->getName() << '\n');
 | |
| 
 | |
|   if (VerifyCoalescing)
 | |
|     mf_->verify(this, "Before register coalescing");
 | |
| 
 | |
|   RegClassInfo.runOnMachineFunction(fn);
 | |
| 
 | |
|   // Join (coalesce) intervals if requested.
 | |
|   if (EnableJoining) {
 | |
|     joinIntervals();
 | |
|     DEBUG({
 | |
|         dbgs() << "********** INTERVALS POST JOINING **********\n";
 | |
|         for (LiveIntervals::iterator I = li_->begin(), E = li_->end();
 | |
|              I != E; ++I){
 | |
|           I->second->print(dbgs(), tri_);
 | |
|           dbgs() << "\n";
 | |
|         }
 | |
|       });
 | |
|   }
 | |
| 
 | |
|   // Perform a final pass over the instructions and compute spill weights
 | |
|   // and remove identity moves.
 | |
|   SmallVector<unsigned, 4> DeadDefs;
 | |
|   for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     MachineBasicBlock* mbb = mbbi;
 | |
|     for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
 | |
|          mii != mie; ) {
 | |
|       MachineInstr *MI = mii;
 | |
|       if (JoinedCopies.count(MI)) {
 | |
|         // Delete all coalesced copies.
 | |
|         bool DoDelete = true;
 | |
|         assert(MI->isCopyLike() && "Unrecognized copy instruction");
 | |
|         unsigned SrcReg = MI->getOperand(MI->isSubregToReg() ? 2 : 1).getReg();
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
 | |
|             MI->getNumOperands() > 2)
 | |
|           // Do not delete extract_subreg, insert_subreg of physical
 | |
|           // registers unless the definition is dead. e.g.
 | |
|           // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
 | |
|           // or else the scavenger may complain. LowerSubregs will
 | |
|           // delete them later.
 | |
|           DoDelete = false;
 | |
| 
 | |
|         if (MI->allDefsAreDead()) {
 | |
|           if (TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|               li_->hasInterval(SrcReg))
 | |
|             li_->shrinkToUses(&li_->getInterval(SrcReg));
 | |
|           DoDelete = true;
 | |
|         }
 | |
|         if (!DoDelete) {
 | |
|           // We need the instruction to adjust liveness, so make it a KILL.
 | |
|           if (MI->isSubregToReg()) {
 | |
|             MI->RemoveOperand(3);
 | |
|             MI->RemoveOperand(1);
 | |
|           }
 | |
|           MI->setDesc(tii_->get(TargetOpcode::KILL));
 | |
|           mii = llvm::next(mii);
 | |
|         } else {
 | |
|           li_->RemoveMachineInstrFromMaps(MI);
 | |
|           mii = mbbi->erase(mii);
 | |
|           ++numPeep;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Now check if this is a remat'ed def instruction which is now dead.
 | |
|       if (ReMatDefs.count(MI)) {
 | |
|         bool isDead = true;
 | |
|         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|           const MachineOperand &MO = MI->getOperand(i);
 | |
|           if (!MO.isReg())
 | |
|             continue;
 | |
|           unsigned Reg = MO.getReg();
 | |
|           if (!Reg)
 | |
|             continue;
 | |
|           if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|             DeadDefs.push_back(Reg);
 | |
|           if (MO.isDead())
 | |
|             continue;
 | |
|           if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
 | |
|               !mri_->use_nodbg_empty(Reg)) {
 | |
|             isDead = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (isDead) {
 | |
|           while (!DeadDefs.empty()) {
 | |
|             unsigned DeadDef = DeadDefs.back();
 | |
|             DeadDefs.pop_back();
 | |
|             RemoveDeadDef(li_->getInterval(DeadDef), MI);
 | |
|           }
 | |
|           li_->RemoveMachineInstrFromMaps(mii);
 | |
|           mii = mbbi->erase(mii);
 | |
|           continue;
 | |
|         } else
 | |
|           DeadDefs.clear();
 | |
|       }
 | |
| 
 | |
|       ++mii;
 | |
| 
 | |
|       // Check for now unnecessary kill flags.
 | |
|       if (li_->isNotInMIMap(MI)) continue;
 | |
|       SlotIndex DefIdx = li_->getInstructionIndex(MI).getDefIndex();
 | |
|       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         if (!MO.isReg() || !MO.isKill()) continue;
 | |
|         unsigned reg = MO.getReg();
 | |
|         if (!reg || !li_->hasInterval(reg)) continue;
 | |
|         if (!li_->getInterval(reg).killedAt(DefIdx)) {
 | |
|           MO.setIsKill(false);
 | |
|           continue;
 | |
|         }
 | |
|         // When leaving a kill flag on a physreg, check if any subregs should
 | |
|         // remain alive.
 | |
|         if (!TargetRegisterInfo::isPhysicalRegister(reg))
 | |
|           continue;
 | |
|         for (const unsigned *SR = tri_->getSubRegisters(reg);
 | |
|              unsigned S = *SR; ++SR)
 | |
|           if (li_->hasInterval(S) && li_->getInterval(S).liveAt(DefIdx))
 | |
|             MI->addRegisterDefined(S, tri_);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dump());
 | |
|   DEBUG(ldv_->dump());
 | |
|   if (VerifyCoalescing)
 | |
|     mf_->verify(this, "After register coalescing");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// print - Implement the dump method.
 | |
| void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
 | |
|    li_->print(O, m);
 | |
| }
 | |
| 
 | |
| RegisterCoalescer *llvm::createRegisterCoalescer() {
 | |
|   return new RegisterCoalescer();
 | |
| }
 |