mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72729 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2299 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2299 lines
		
	
	
		
			85 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveInterval analysis pass which is used
 | |
| // by the Linear Scan Register allocator. This pass linearizes the
 | |
| // basic blocks of the function in DFS order and uses the
 | |
| // LiveVariables pass to conservatively compute live intervals for
 | |
| // each virtual and physical register.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "liveintervals"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <limits>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Hidden options for help debugging.
 | |
| static cl::opt<bool> DisableReMat("disable-rematerialization", 
 | |
|                                   cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> SplitAtBB("split-intervals-at-bb", 
 | |
|                                cl::init(true), cl::Hidden);
 | |
| static cl::opt<int> SplitLimit("split-limit",
 | |
|                                cl::init(-1), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> EnableAggressiveRemat("aggressive-remat", cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> EnableFastSpilling("fast-spill",
 | |
|                                         cl::init(false), cl::Hidden);
 | |
| 
 | |
| STATISTIC(numIntervals, "Number of original intervals");
 | |
| STATISTIC(numFolds    , "Number of loads/stores folded into instructions");
 | |
| STATISTIC(numSplits   , "Number of intervals split");
 | |
| 
 | |
| char LiveIntervals::ID = 0;
 | |
| static RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
 | |
| 
 | |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addPreserved<LiveVariables>();
 | |
|   AU.addRequired<LiveVariables>();
 | |
|   AU.addPreservedID(MachineLoopInfoID);
 | |
|   AU.addPreservedID(MachineDominatorsID);
 | |
|   
 | |
|   if (!StrongPHIElim) {
 | |
|     AU.addPreservedID(PHIEliminationID);
 | |
|     AU.addRequiredID(PHIEliminationID);
 | |
|   }
 | |
|   
 | |
|   AU.addRequiredID(TwoAddressInstructionPassID);
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::releaseMemory() {
 | |
|   // Free the live intervals themselves.
 | |
|   for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
 | |
|        E = r2iMap_.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   
 | |
|   MBB2IdxMap.clear();
 | |
|   Idx2MBBMap.clear();
 | |
|   mi2iMap_.clear();
 | |
|   i2miMap_.clear();
 | |
|   r2iMap_.clear();
 | |
|   // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
 | |
|   VNInfoAllocator.Reset();
 | |
|   while (!ClonedMIs.empty()) {
 | |
|     MachineInstr *MI = ClonedMIs.back();
 | |
|     ClonedMIs.pop_back();
 | |
|     mf_->DeleteMachineInstr(MI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::computeNumbering() {
 | |
|   Index2MiMap OldI2MI = i2miMap_;
 | |
|   std::vector<IdxMBBPair> OldI2MBB = Idx2MBBMap;
 | |
|   
 | |
|   Idx2MBBMap.clear();
 | |
|   MBB2IdxMap.clear();
 | |
|   mi2iMap_.clear();
 | |
|   i2miMap_.clear();
 | |
|   
 | |
|   FunctionSize = 0;
 | |
|   
 | |
|   // Number MachineInstrs and MachineBasicBlocks.
 | |
|   // Initialize MBB indexes to a sentinal.
 | |
|   MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
 | |
|   
 | |
|   unsigned MIIndex = 0;
 | |
|   for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
 | |
|        MBB != E; ++MBB) {
 | |
|     unsigned StartIdx = MIIndex;
 | |
| 
 | |
|     // Insert an empty slot at the beginning of each block.
 | |
|     MIIndex += InstrSlots::NUM;
 | |
|     i2miMap_.push_back(0);
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | |
|          I != E; ++I) {
 | |
|       bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
 | |
|       assert(inserted && "multiple MachineInstr -> index mappings");
 | |
|       inserted = true;
 | |
|       i2miMap_.push_back(I);
 | |
|       MIIndex += InstrSlots::NUM;
 | |
|       FunctionSize++;
 | |
|       
 | |
|       // Insert max(1, numdefs) empty slots after every instruction.
 | |
|       unsigned Slots = I->getDesc().getNumDefs();
 | |
|       if (Slots == 0)
 | |
|         Slots = 1;
 | |
|       MIIndex += InstrSlots::NUM * Slots;
 | |
|       while (Slots--)
 | |
|         i2miMap_.push_back(0);
 | |
|     }
 | |
|     
 | |
|     // Set the MBB2IdxMap entry for this MBB.
 | |
|     MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
 | |
|     Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
 | |
|   }
 | |
|   std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
 | |
|   
 | |
|   if (!OldI2MI.empty())
 | |
|     for (iterator OI = begin(), OE = end(); OI != OE; ++OI) {
 | |
|       for (LiveInterval::iterator LI = OI->second->begin(),
 | |
|            LE = OI->second->end(); LI != LE; ++LI) {
 | |
|         
 | |
|         // Remap the start index of the live range to the corresponding new
 | |
|         // number, or our best guess at what it _should_ correspond to if the
 | |
|         // original instruction has been erased.  This is either the following
 | |
|         // instruction or its predecessor.
 | |
|         unsigned index = LI->start / InstrSlots::NUM;
 | |
|         unsigned offset = LI->start % InstrSlots::NUM;
 | |
|         if (offset == InstrSlots::LOAD) {
 | |
|           std::vector<IdxMBBPair>::const_iterator I =
 | |
|                   std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->start);
 | |
|           // Take the pair containing the index
 | |
|           std::vector<IdxMBBPair>::const_iterator J =
 | |
|                     (I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I;
 | |
|           
 | |
|           LI->start = getMBBStartIdx(J->second);
 | |
|         } else {
 | |
|           LI->start = mi2iMap_[OldI2MI[index]] + offset;
 | |
|         }
 | |
|         
 | |
|         // Remap the ending index in the same way that we remapped the start,
 | |
|         // except for the final step where we always map to the immediately
 | |
|         // following instruction.
 | |
|         index = (LI->end - 1) / InstrSlots::NUM;
 | |
|         offset  = LI->end % InstrSlots::NUM;
 | |
|         if (offset == InstrSlots::LOAD) {
 | |
|           // VReg dies at end of block.
 | |
|           std::vector<IdxMBBPair>::const_iterator I =
 | |
|                   std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), LI->end);
 | |
|           --I;
 | |
|           
 | |
|           LI->end = getMBBEndIdx(I->second) + 1;
 | |
|         } else {
 | |
|           unsigned idx = index;
 | |
|           while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
 | |
|           
 | |
|           if (index != OldI2MI.size())
 | |
|             LI->end = mi2iMap_[OldI2MI[index]] + (idx == index ? offset : 0);
 | |
|           else
 | |
|             LI->end = InstrSlots::NUM * i2miMap_.size();
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       for (LiveInterval::vni_iterator VNI = OI->second->vni_begin(),
 | |
|            VNE = OI->second->vni_end(); VNI != VNE; ++VNI) { 
 | |
|         VNInfo* vni = *VNI;
 | |
|         
 | |
|         // Remap the VNInfo def index, which works the same as the
 | |
|         // start indices above. VN's with special sentinel defs
 | |
|         // don't need to be remapped.
 | |
|         if (vni->def != ~0U && vni->def != ~1U) {
 | |
|           unsigned index = vni->def / InstrSlots::NUM;
 | |
|           unsigned offset = vni->def % InstrSlots::NUM;
 | |
|           if (offset == InstrSlots::LOAD) {
 | |
|             std::vector<IdxMBBPair>::const_iterator I =
 | |
|                   std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->def);
 | |
|             // Take the pair containing the index
 | |
|             std::vector<IdxMBBPair>::const_iterator J =
 | |
|                     (I == OldI2MBB.end() && OldI2MBB.size()>0) ? (I-1): I;
 | |
|           
 | |
|             vni->def = getMBBStartIdx(J->second);
 | |
|           } else {
 | |
|             vni->def = mi2iMap_[OldI2MI[index]] + offset;
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         // Remap the VNInfo kill indices, which works the same as
 | |
|         // the end indices above.
 | |
|         for (size_t i = 0; i < vni->kills.size(); ++i) {
 | |
|           // PHI kills don't need to be remapped.
 | |
|           if (!vni->kills[i]) continue;
 | |
|           
 | |
|           unsigned index = (vni->kills[i]-1) / InstrSlots::NUM;
 | |
|           unsigned offset = vni->kills[i] % InstrSlots::NUM;
 | |
|           if (offset == InstrSlots::LOAD) {
 | |
|             std::vector<IdxMBBPair>::const_iterator I =
 | |
|              std::lower_bound(OldI2MBB.begin(), OldI2MBB.end(), vni->kills[i]);
 | |
|             --I;
 | |
| 
 | |
|             vni->kills[i] = getMBBEndIdx(I->second);
 | |
|           } else {
 | |
|             unsigned idx = index;
 | |
|             while (index < OldI2MI.size() && !OldI2MI[index]) ++index;
 | |
|             
 | |
|             if (index != OldI2MI.size())
 | |
|               vni->kills[i] = mi2iMap_[OldI2MI[index]] + 
 | |
|                               (idx == index ? offset : 0);
 | |
|             else
 | |
|               vni->kills[i] = InstrSlots::NUM * i2miMap_.size();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::scaleNumbering(int factor) {
 | |
|   // Need to
 | |
|   //  * scale MBB begin and end points
 | |
|   //  * scale all ranges.
 | |
|   //  * Update VNI structures.
 | |
|   //  * Scale instruction numberings 
 | |
| 
 | |
|   // Scale the MBB indices.
 | |
|   Idx2MBBMap.clear();
 | |
|   for (MachineFunction::iterator MBB = mf_->begin(), MBBE = mf_->end();
 | |
|        MBB != MBBE; ++MBB) {
 | |
|     std::pair<unsigned, unsigned> &mbbIndices = MBB2IdxMap[MBB->getNumber()];
 | |
|     mbbIndices.first = InstrSlots::scale(mbbIndices.first, factor);
 | |
|     mbbIndices.second = InstrSlots::scale(mbbIndices.second, factor);
 | |
|     Idx2MBBMap.push_back(std::make_pair(mbbIndices.first, MBB)); 
 | |
|   }
 | |
|   std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
 | |
| 
 | |
|   // Scale the intervals.
 | |
|   for (iterator LI = begin(), LE = end(); LI != LE; ++LI) {
 | |
|     LI->second->scaleNumbering(factor);
 | |
|   }
 | |
| 
 | |
|   // Scale MachineInstrs.
 | |
|   Mi2IndexMap oldmi2iMap = mi2iMap_;
 | |
|   unsigned highestSlot = 0;
 | |
|   for (Mi2IndexMap::iterator MI = oldmi2iMap.begin(), ME = oldmi2iMap.end();
 | |
|        MI != ME; ++MI) {
 | |
|     unsigned newSlot = InstrSlots::scale(MI->second, factor);
 | |
|     mi2iMap_[MI->first] = newSlot;
 | |
|     highestSlot = std::max(highestSlot, newSlot); 
 | |
|   }
 | |
| 
 | |
|   i2miMap_.clear();
 | |
|   i2miMap_.resize(highestSlot + 1);
 | |
|   for (Mi2IndexMap::iterator MI = mi2iMap_.begin(), ME = mi2iMap_.end();
 | |
|        MI != ME; ++MI) {
 | |
|     i2miMap_[MI->second] = MI->first;
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /// runOnMachineFunction - Register allocate the whole function
 | |
| ///
 | |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | |
|   mf_ = &fn;
 | |
|   mri_ = &mf_->getRegInfo();
 | |
|   tm_ = &fn.getTarget();
 | |
|   tri_ = tm_->getRegisterInfo();
 | |
|   tii_ = tm_->getInstrInfo();
 | |
|   aa_ = &getAnalysis<AliasAnalysis>();
 | |
|   lv_ = &getAnalysis<LiveVariables>();
 | |
|   allocatableRegs_ = tri_->getAllocatableSet(fn);
 | |
| 
 | |
|   computeNumbering();
 | |
|   computeIntervals();
 | |
| 
 | |
|   numIntervals += getNumIntervals();
 | |
| 
 | |
|   DEBUG(dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// print - Implement the dump method.
 | |
| void LiveIntervals::print(std::ostream &O, const Module* ) const {
 | |
|   O << "********** INTERVALS **********\n";
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     I->second->print(O, tri_);
 | |
|     O << "\n";
 | |
|   }
 | |
| 
 | |
|   O << "********** MACHINEINSTRS **********\n";
 | |
|   for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
 | |
|     for (MachineBasicBlock::iterator mii = mbbi->begin(),
 | |
|            mie = mbbi->end(); mii != mie; ++mii) {
 | |
|       O << getInstructionIndex(mii) << '\t' << *mii;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// conflictsWithPhysRegDef - Returns true if the specified register
 | |
| /// is defined during the duration of the specified interval.
 | |
| bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
 | |
|                                             VirtRegMap &vrm, unsigned reg) {
 | |
|   for (LiveInterval::Ranges::const_iterator
 | |
|          I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
 | |
|     for (unsigned index = getBaseIndex(I->start),
 | |
|            end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
 | |
|          index += InstrSlots::NUM) {
 | |
|       // skip deleted instructions
 | |
|       while (index != end && !getInstructionFromIndex(index))
 | |
|         index += InstrSlots::NUM;
 | |
|       if (index == end) break;
 | |
| 
 | |
|       MachineInstr *MI = getInstructionFromIndex(index);
 | |
|       unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | |
|       if (tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
 | |
|         if (SrcReg == li.reg || DstReg == li.reg)
 | |
|           continue;
 | |
|       for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | |
|         MachineOperand& mop = MI->getOperand(i);
 | |
|         if (!mop.isReg())
 | |
|           continue;
 | |
|         unsigned PhysReg = mop.getReg();
 | |
|         if (PhysReg == 0 || PhysReg == li.reg)
 | |
|           continue;
 | |
|         if (TargetRegisterInfo::isVirtualRegister(PhysReg)) {
 | |
|           if (!vrm.hasPhys(PhysReg))
 | |
|             continue;
 | |
|           PhysReg = vrm.getPhys(PhysReg);
 | |
|         }
 | |
|         if (PhysReg && tri_->regsOverlap(PhysReg, reg))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// conflictsWithPhysRegRef - Similar to conflictsWithPhysRegRef except
 | |
| /// it can check use as well.
 | |
| bool LiveIntervals::conflictsWithPhysRegRef(LiveInterval &li,
 | |
|                                             unsigned Reg, bool CheckUse,
 | |
|                                   SmallPtrSet<MachineInstr*,32> &JoinedCopies) {
 | |
|   for (LiveInterval::Ranges::const_iterator
 | |
|          I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
 | |
|     for (unsigned index = getBaseIndex(I->start),
 | |
|            end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
 | |
|          index += InstrSlots::NUM) {
 | |
|       // Skip deleted instructions.
 | |
|       MachineInstr *MI = 0;
 | |
|       while (index != end) {
 | |
|         MI = getInstructionFromIndex(index);
 | |
|         if (MI)
 | |
|           break;
 | |
|         index += InstrSlots::NUM;
 | |
|       }
 | |
|       if (index == end) break;
 | |
| 
 | |
|       if (JoinedCopies.count(MI))
 | |
|         continue;
 | |
|       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand& MO = MI->getOperand(i);
 | |
|         if (!MO.isReg())
 | |
|           continue;
 | |
|         if (MO.isUse() && !CheckUse)
 | |
|           continue;
 | |
|         unsigned PhysReg = MO.getReg();
 | |
|         if (PhysReg == 0 || TargetRegisterInfo::isVirtualRegister(PhysReg))
 | |
|           continue;
 | |
|         if (tri_->isSubRegister(Reg, PhysReg))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void LiveIntervals::printRegName(unsigned reg) const {
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(reg))
 | |
|     cerr << tri_->getName(reg);
 | |
|   else
 | |
|     cerr << "%reg" << reg;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
 | |
|                                              MachineBasicBlock::iterator mi,
 | |
|                                              unsigned MIIdx, MachineOperand& MO,
 | |
|                                              unsigned MOIdx,
 | |
|                                              LiveInterval &interval) {
 | |
|   DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
 | |
|   LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
 | |
| 
 | |
|   if (mi->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
 | |
|     DOUT << "is a implicit_def\n";
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Virtual registers may be defined multiple times (due to phi
 | |
|   // elimination and 2-addr elimination).  Much of what we do only has to be
 | |
|   // done once for the vreg.  We use an empty interval to detect the first
 | |
|   // time we see a vreg.
 | |
|   if (interval.empty()) {
 | |
|     // Get the Idx of the defining instructions.
 | |
|     unsigned defIndex = getDefIndex(MIIdx);
 | |
|     // Earlyclobbers move back one.
 | |
|     if (MO.isEarlyClobber())
 | |
|       defIndex = getUseIndex(MIIdx);
 | |
|     VNInfo *ValNo;
 | |
|     MachineInstr *CopyMI = NULL;
 | |
|     unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | |
|     if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
 | |
|         mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
 | |
|         mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
 | |
|         tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
 | |
|       CopyMI = mi;
 | |
|     // Earlyclobbers move back one.
 | |
|     ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
 | |
| 
 | |
|     assert(ValNo->id == 0 && "First value in interval is not 0?");
 | |
| 
 | |
|     // Loop over all of the blocks that the vreg is defined in.  There are
 | |
|     // two cases we have to handle here.  The most common case is a vreg
 | |
|     // whose lifetime is contained within a basic block.  In this case there
 | |
|     // will be a single kill, in MBB, which comes after the definition.
 | |
|     if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
 | |
|       // FIXME: what about dead vars?
 | |
|       unsigned killIdx;
 | |
|       if (vi.Kills[0] != mi)
 | |
|         killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
 | |
|       else
 | |
|         killIdx = defIndex+1;
 | |
| 
 | |
|       // If the kill happens after the definition, we have an intra-block
 | |
|       // live range.
 | |
|       if (killIdx > defIndex) {
 | |
|         assert(vi.AliveBlocks.empty() &&
 | |
|                "Shouldn't be alive across any blocks!");
 | |
|         LiveRange LR(defIndex, killIdx, ValNo);
 | |
|         interval.addRange(LR);
 | |
|         DOUT << " +" << LR << "\n";
 | |
|         interval.addKill(ValNo, killIdx);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The other case we handle is when a virtual register lives to the end
 | |
|     // of the defining block, potentially live across some blocks, then is
 | |
|     // live into some number of blocks, but gets killed.  Start by adding a
 | |
|     // range that goes from this definition to the end of the defining block.
 | |
|     LiveRange NewLR(defIndex, getMBBEndIdx(mbb)+1, ValNo);
 | |
|     DOUT << " +" << NewLR;
 | |
|     interval.addRange(NewLR);
 | |
| 
 | |
|     // Iterate over all of the blocks that the variable is completely
 | |
|     // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
 | |
|     // live interval.
 | |
|     for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(), 
 | |
|              E = vi.AliveBlocks.end(); I != E; ++I) {
 | |
|       LiveRange LR(getMBBStartIdx(*I),
 | |
|                    getMBBEndIdx(*I)+1,  // MBB ends at -1.
 | |
|                    ValNo);
 | |
|       interval.addRange(LR);
 | |
|       DOUT << " +" << LR;
 | |
|     }
 | |
| 
 | |
|     // Finally, this virtual register is live from the start of any killing
 | |
|     // block to the 'use' slot of the killing instruction.
 | |
|     for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
 | |
|       MachineInstr *Kill = vi.Kills[i];
 | |
|       unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
 | |
|       LiveRange LR(getMBBStartIdx(Kill->getParent()),
 | |
|                    killIdx, ValNo);
 | |
|       interval.addRange(LR);
 | |
|       interval.addKill(ValNo, killIdx);
 | |
|       DOUT << " +" << LR;
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // If this is the second time we see a virtual register definition, it
 | |
|     // must be due to phi elimination or two addr elimination.  If this is
 | |
|     // the result of two address elimination, then the vreg is one of the
 | |
|     // def-and-use register operand.
 | |
|     if (mi->isRegTiedToUseOperand(MOIdx)) {
 | |
|       // If this is a two-address definition, then we have already processed
 | |
|       // the live range.  The only problem is that we didn't realize there
 | |
|       // are actually two values in the live interval.  Because of this we
 | |
|       // need to take the LiveRegion that defines this register and split it
 | |
|       // into two values.
 | |
|       assert(interval.containsOneValue());
 | |
|       unsigned DefIndex = getDefIndex(interval.getValNumInfo(0)->def);
 | |
|       unsigned RedefIndex = getDefIndex(MIIdx);
 | |
|       if (MO.isEarlyClobber())
 | |
|         RedefIndex = getUseIndex(MIIdx);
 | |
| 
 | |
|       const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
 | |
|       VNInfo *OldValNo = OldLR->valno;
 | |
| 
 | |
|       // Delete the initial value, which should be short and continuous,
 | |
|       // because the 2-addr copy must be in the same MBB as the redef.
 | |
|       interval.removeRange(DefIndex, RedefIndex);
 | |
| 
 | |
|       // Two-address vregs should always only be redefined once.  This means
 | |
|       // that at this point, there should be exactly one value number in it.
 | |
|       assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
 | |
| 
 | |
|       // The new value number (#1) is defined by the instruction we claimed
 | |
|       // defined value #0.
 | |
|       VNInfo *ValNo = interval.getNextValue(OldValNo->def, OldValNo->copy,
 | |
|                                             VNInfoAllocator);
 | |
|       
 | |
|       // Value#0 is now defined by the 2-addr instruction.
 | |
|       OldValNo->def  = RedefIndex;
 | |
|       OldValNo->copy = 0;
 | |
|       if (MO.isEarlyClobber())
 | |
|         OldValNo->redefByEC = true;
 | |
|       
 | |
|       // Add the new live interval which replaces the range for the input copy.
 | |
|       LiveRange LR(DefIndex, RedefIndex, ValNo);
 | |
|       DOUT << " replace range with " << LR;
 | |
|       interval.addRange(LR);
 | |
|       interval.addKill(ValNo, RedefIndex);
 | |
| 
 | |
|       // If this redefinition is dead, we need to add a dummy unit live
 | |
|       // range covering the def slot.
 | |
|       if (MO.isDead())
 | |
|         interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
 | |
| 
 | |
|       DOUT << " RESULT: ";
 | |
|       interval.print(DOUT, tri_);
 | |
| 
 | |
|     } else {
 | |
|       // Otherwise, this must be because of phi elimination.  If this is the
 | |
|       // first redefinition of the vreg that we have seen, go back and change
 | |
|       // the live range in the PHI block to be a different value number.
 | |
|       if (interval.containsOneValue()) {
 | |
|         assert(vi.Kills.size() == 1 &&
 | |
|                "PHI elimination vreg should have one kill, the PHI itself!");
 | |
| 
 | |
|         // Remove the old range that we now know has an incorrect number.
 | |
|         VNInfo *VNI = interval.getValNumInfo(0);
 | |
|         MachineInstr *Killer = vi.Kills[0];
 | |
|         unsigned Start = getMBBStartIdx(Killer->getParent());
 | |
|         unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
 | |
|         DOUT << " Removing [" << Start << "," << End << "] from: ";
 | |
|         interval.print(DOUT, tri_); DOUT << "\n";
 | |
|         interval.removeRange(Start, End);
 | |
|         VNI->hasPHIKill = true;
 | |
|         DOUT << " RESULT: "; interval.print(DOUT, tri_);
 | |
| 
 | |
|         // Replace the interval with one of a NEW value number.  Note that this
 | |
|         // value number isn't actually defined by an instruction, weird huh? :)
 | |
|         LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
 | |
|         DOUT << " replace range with " << LR;
 | |
|         interval.addRange(LR);
 | |
|         interval.addKill(LR.valno, End);
 | |
|         DOUT << " RESULT: "; interval.print(DOUT, tri_);
 | |
|       }
 | |
| 
 | |
|       // In the case of PHI elimination, each variable definition is only
 | |
|       // live until the end of the block.  We've already taken care of the
 | |
|       // rest of the live range.
 | |
|       unsigned defIndex = getDefIndex(MIIdx);
 | |
|       if (MO.isEarlyClobber())
 | |
|         defIndex = getUseIndex(MIIdx);
 | |
|       
 | |
|       VNInfo *ValNo;
 | |
|       MachineInstr *CopyMI = NULL;
 | |
|       unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | |
|       if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
 | |
|           mi->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
 | |
|           mi->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
 | |
|           tii_->isMoveInstr(*mi, SrcReg, DstReg, SrcSubReg, DstSubReg))
 | |
|         CopyMI = mi;
 | |
|       ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
 | |
|       
 | |
|       unsigned killIndex = getMBBEndIdx(mbb) + 1;
 | |
|       LiveRange LR(defIndex, killIndex, ValNo);
 | |
|       interval.addRange(LR);
 | |
|       interval.addKill(ValNo, killIndex);
 | |
|       ValNo->hasPHIKill = true;
 | |
|       DOUT << " +" << LR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DOUT << '\n';
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 | |
|                                               MachineBasicBlock::iterator mi,
 | |
|                                               unsigned MIIdx,
 | |
|                                               MachineOperand& MO,
 | |
|                                               LiveInterval &interval,
 | |
|                                               MachineInstr *CopyMI) {
 | |
|   // A physical register cannot be live across basic block, so its
 | |
|   // lifetime must end somewhere in its defining basic block.
 | |
|   DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
 | |
| 
 | |
|   unsigned baseIndex = MIIdx;
 | |
|   unsigned start = getDefIndex(baseIndex);
 | |
|   // Earlyclobbers move back one.
 | |
|   if (MO.isEarlyClobber())
 | |
|     start = getUseIndex(MIIdx);
 | |
|   unsigned end = start;
 | |
| 
 | |
|   // If it is not used after definition, it is considered dead at
 | |
|   // the instruction defining it. Hence its interval is:
 | |
|   // [defSlot(def), defSlot(def)+1)
 | |
|   if (MO.isDead()) {
 | |
|     DOUT << " dead";
 | |
|     end = start + 1;
 | |
|     goto exit;
 | |
|   }
 | |
| 
 | |
|   // If it is not dead on definition, it must be killed by a
 | |
|   // subsequent instruction. Hence its interval is:
 | |
|   // [defSlot(def), useSlot(kill)+1)
 | |
|   baseIndex += InstrSlots::NUM;
 | |
|   while (++mi != MBB->end()) {
 | |
|     while (baseIndex / InstrSlots::NUM < i2miMap_.size() &&
 | |
|            getInstructionFromIndex(baseIndex) == 0)
 | |
|       baseIndex += InstrSlots::NUM;
 | |
|     if (mi->killsRegister(interval.reg, tri_)) {
 | |
|       DOUT << " killed";
 | |
|       end = getUseIndex(baseIndex) + 1;
 | |
|       goto exit;
 | |
|     } else {
 | |
|       int DefIdx = mi->findRegisterDefOperandIdx(interval.reg, false, tri_);
 | |
|       if (DefIdx != -1) {
 | |
|         if (mi->isRegTiedToUseOperand(DefIdx)) {
 | |
|           // Two-address instruction.
 | |
|           end = getDefIndex(baseIndex);
 | |
|           if (mi->getOperand(DefIdx).isEarlyClobber())
 | |
|             end = getUseIndex(baseIndex);
 | |
|         } else {
 | |
|           // Another instruction redefines the register before it is ever read.
 | |
|           // Then the register is essentially dead at the instruction that defines
 | |
|           // it. Hence its interval is:
 | |
|           // [defSlot(def), defSlot(def)+1)
 | |
|           DOUT << " dead";
 | |
|           end = start + 1;
 | |
|         }
 | |
|         goto exit;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     baseIndex += InstrSlots::NUM;
 | |
|   }
 | |
|   
 | |
|   // The only case we should have a dead physreg here without a killing or
 | |
|   // instruction where we know it's dead is if it is live-in to the function
 | |
|   // and never used. Another possible case is the implicit use of the
 | |
|   // physical register has been deleted by two-address pass.
 | |
|   end = start + 1;
 | |
| 
 | |
| exit:
 | |
|   assert(start < end && "did not find end of interval?");
 | |
| 
 | |
|   // Already exists? Extend old live interval.
 | |
|   LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
 | |
|   bool Extend = OldLR != interval.end();
 | |
|   VNInfo *ValNo = Extend
 | |
|     ? OldLR->valno : interval.getNextValue(start, CopyMI, VNInfoAllocator);
 | |
|   if (MO.isEarlyClobber() && Extend)
 | |
|     ValNo->redefByEC = true;
 | |
|   LiveRange LR(start, end, ValNo);
 | |
|   interval.addRange(LR);
 | |
|   interval.addKill(LR.valno, end);
 | |
|   DOUT << " +" << LR << '\n';
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator MI,
 | |
|                                       unsigned MIIdx,
 | |
|                                       MachineOperand& MO,
 | |
|                                       unsigned MOIdx) {
 | |
|   if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | |
|     handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
 | |
|                              getOrCreateInterval(MO.getReg()));
 | |
|   else if (allocatableRegs_[MO.getReg()]) {
 | |
|     MachineInstr *CopyMI = NULL;
 | |
|     unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | |
|     if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG ||
 | |
|         MI->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
 | |
|         MI->getOpcode() == TargetInstrInfo::SUBREG_TO_REG ||
 | |
|         tii_->isMoveInstr(*MI, SrcReg, DstReg, SrcSubReg, DstSubReg))
 | |
|       CopyMI = MI;
 | |
|     handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
 | |
|                               getOrCreateInterval(MO.getReg()), CopyMI);
 | |
|     // Def of a register also defines its sub-registers.
 | |
|     for (const unsigned* AS = tri_->getSubRegisters(MO.getReg()); *AS; ++AS)
 | |
|       // If MI also modifies the sub-register explicitly, avoid processing it
 | |
|       // more than once. Do not pass in TRI here so it checks for exact match.
 | |
|       if (!MI->modifiesRegister(*AS))
 | |
|         handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
 | |
|                                   getOrCreateInterval(*AS), 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
 | |
|                                          unsigned MIIdx,
 | |
|                                          LiveInterval &interval, bool isAlias) {
 | |
|   DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
 | |
| 
 | |
|   // Look for kills, if it reaches a def before it's killed, then it shouldn't
 | |
|   // be considered a livein.
 | |
|   MachineBasicBlock::iterator mi = MBB->begin();
 | |
|   unsigned baseIndex = MIIdx;
 | |
|   unsigned start = baseIndex;
 | |
|   while (baseIndex / InstrSlots::NUM < i2miMap_.size() && 
 | |
|          getInstructionFromIndex(baseIndex) == 0)
 | |
|     baseIndex += InstrSlots::NUM;
 | |
|   unsigned end = baseIndex;
 | |
|   bool SeenDefUse = false;
 | |
|   
 | |
|   while (mi != MBB->end()) {
 | |
|     if (mi->killsRegister(interval.reg, tri_)) {
 | |
|       DOUT << " killed";
 | |
|       end = getUseIndex(baseIndex) + 1;
 | |
|       SeenDefUse = true;
 | |
|       goto exit;
 | |
|     } else if (mi->modifiesRegister(interval.reg, tri_)) {
 | |
|       // Another instruction redefines the register before it is ever read.
 | |
|       // Then the register is essentially dead at the instruction that defines
 | |
|       // it. Hence its interval is:
 | |
|       // [defSlot(def), defSlot(def)+1)
 | |
|       DOUT << " dead";
 | |
|       end = getDefIndex(start) + 1;
 | |
|       SeenDefUse = true;
 | |
|       goto exit;
 | |
|     }
 | |
| 
 | |
|     baseIndex += InstrSlots::NUM;
 | |
|     ++mi;
 | |
|     if (mi != MBB->end()) {
 | |
|       while (baseIndex / InstrSlots::NUM < i2miMap_.size() && 
 | |
|              getInstructionFromIndex(baseIndex) == 0)
 | |
|         baseIndex += InstrSlots::NUM;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| exit:
 | |
|   // Live-in register might not be used at all.
 | |
|   if (!SeenDefUse) {
 | |
|     if (isAlias) {
 | |
|       DOUT << " dead";
 | |
|       end = getDefIndex(MIIdx) + 1;
 | |
|     } else {
 | |
|       DOUT << " live through";
 | |
|       end = baseIndex;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LiveRange LR(start, end, interval.getNextValue(~0U, 0, VNInfoAllocator));
 | |
|   interval.addRange(LR);
 | |
|   interval.addKill(LR.valno, end);
 | |
|   DOUT << " +" << LR << '\n';
 | |
| }
 | |
| 
 | |
| /// computeIntervals - computes the live intervals for virtual
 | |
| /// registers. for some ordering of the machine instructions [1,N] a
 | |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for
 | |
| /// which a variable is live
 | |
| void LiveIntervals::computeIntervals() { 
 | |
| 
 | |
|   DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
 | |
|        << "********** Function: "
 | |
|        << ((Value*)mf_->getFunction())->getName() << '\n';
 | |
|   
 | |
|   for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock *MBB = MBBI;
 | |
|     // Track the index of the current machine instr.
 | |
|     unsigned MIIndex = getMBBStartIdx(MBB);
 | |
|     DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
 | |
| 
 | |
|     MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
 | |
| 
 | |
|     // Create intervals for live-ins to this BB first.
 | |
|     for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
 | |
|            LE = MBB->livein_end(); LI != LE; ++LI) {
 | |
|       handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
 | |
|       // Multiple live-ins can alias the same register.
 | |
|       for (const unsigned* AS = tri_->getSubRegisters(*LI); *AS; ++AS)
 | |
|         if (!hasInterval(*AS))
 | |
|           handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
 | |
|                                true);
 | |
|     }
 | |
|     
 | |
|     // Skip over empty initial indices.
 | |
|     while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
 | |
|            getInstructionFromIndex(MIIndex) == 0)
 | |
|       MIIndex += InstrSlots::NUM;
 | |
|     
 | |
|     for (; MI != miEnd; ++MI) {
 | |
|       DOUT << MIIndex << "\t" << *MI;
 | |
| 
 | |
|       // Handle defs.
 | |
|       for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         // handle register defs - build intervals
 | |
|         if (MO.isReg() && MO.getReg() && MO.isDef()) {
 | |
|           handleRegisterDef(MBB, MI, MIIndex, MO, i);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Skip over the empty slots after each instruction.
 | |
|       unsigned Slots = MI->getDesc().getNumDefs();
 | |
|       if (Slots == 0)
 | |
|         Slots = 1;
 | |
|       MIIndex += InstrSlots::NUM * Slots;
 | |
|       
 | |
|       // Skip over empty indices.
 | |
|       while (MIIndex / InstrSlots::NUM < i2miMap_.size() &&
 | |
|              getInstructionFromIndex(MIIndex) == 0)
 | |
|         MIIndex += InstrSlots::NUM;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::findLiveInMBBs(unsigned Start, unsigned End,
 | |
|                               SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
 | |
|   std::vector<IdxMBBPair>::const_iterator I =
 | |
|     std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
 | |
| 
 | |
|   bool ResVal = false;
 | |
|   while (I != Idx2MBBMap.end()) {
 | |
|     if (I->first >= End)
 | |
|       break;
 | |
|     MBBs.push_back(I->second);
 | |
|     ResVal = true;
 | |
|     ++I;
 | |
|   }
 | |
|   return ResVal;
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::findReachableMBBs(unsigned Start, unsigned End,
 | |
|                               SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
 | |
|   std::vector<IdxMBBPair>::const_iterator I =
 | |
|     std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), Start);
 | |
| 
 | |
|   bool ResVal = false;
 | |
|   while (I != Idx2MBBMap.end()) {
 | |
|     if (I->first > End)
 | |
|       break;
 | |
|     MachineBasicBlock *MBB = I->second;
 | |
|     if (getMBBEndIdx(MBB) > End)
 | |
|       break;
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|            SE = MBB->succ_end(); SI != SE; ++SI)
 | |
|       MBBs.push_back(*SI);
 | |
|     ResVal = true;
 | |
|     ++I;
 | |
|   }
 | |
|   return ResVal;
 | |
| }
 | |
| 
 | |
| LiveInterval* LiveIntervals::createInterval(unsigned reg) {
 | |
|   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
 | |
|   return new LiveInterval(reg, Weight);
 | |
| }
 | |
| 
 | |
| /// dupInterval - Duplicate a live interval. The caller is responsible for
 | |
| /// managing the allocated memory.
 | |
| LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
 | |
|   LiveInterval *NewLI = createInterval(li->reg);
 | |
|   NewLI->Copy(*li, getVNInfoAllocator());
 | |
|   return NewLI;
 | |
| }
 | |
| 
 | |
| /// getVNInfoSourceReg - Helper function that parses the specified VNInfo
 | |
| /// copy field and returns the source register that defines it.
 | |
| unsigned LiveIntervals::getVNInfoSourceReg(const VNInfo *VNI) const {
 | |
|   if (!VNI->copy)
 | |
|     return 0;
 | |
| 
 | |
|   if (VNI->copy->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG) {
 | |
|     // If it's extracting out of a physical register, return the sub-register.
 | |
|     unsigned Reg = VNI->copy->getOperand(1).getReg();
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       Reg = tri_->getSubReg(Reg, VNI->copy->getOperand(2).getImm());
 | |
|     return Reg;
 | |
|   } else if (VNI->copy->getOpcode() == TargetInstrInfo::INSERT_SUBREG ||
 | |
|              VNI->copy->getOpcode() == TargetInstrInfo::SUBREG_TO_REG)
 | |
|     return VNI->copy->getOperand(2).getReg();
 | |
| 
 | |
|   unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
 | |
|   if (tii_->isMoveInstr(*VNI->copy, SrcReg, DstReg, SrcSubReg, DstSubReg))
 | |
|     return SrcReg;
 | |
|   assert(0 && "Unrecognized copy instruction!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Register allocator hooks.
 | |
| //
 | |
| 
 | |
| /// getReMatImplicitUse - If the remat definition MI has one (for now, we only
 | |
| /// allow one) virtual register operand, then its uses are implicitly using
 | |
| /// the register. Returns the virtual register.
 | |
| unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
 | |
|                                             MachineInstr *MI) const {
 | |
|   unsigned RegOp = 0;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0 || Reg == li.reg)
 | |
|       continue;
 | |
|     // FIXME: For now, only remat MI with at most one register operand.
 | |
|     assert(!RegOp &&
 | |
|            "Can't rematerialize instruction with multiple register operand!");
 | |
|     RegOp = MO.getReg();
 | |
| #ifndef NDEBUG
 | |
|     break;
 | |
| #endif
 | |
|   }
 | |
|   return RegOp;
 | |
| }
 | |
| 
 | |
| /// isValNoAvailableAt - Return true if the val# of the specified interval
 | |
| /// which reaches the given instruction also reaches the specified use index.
 | |
| bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
 | |
|                                        unsigned UseIdx) const {
 | |
|   unsigned Index = getInstructionIndex(MI);  
 | |
|   VNInfo *ValNo = li.FindLiveRangeContaining(Index)->valno;
 | |
|   LiveInterval::const_iterator UI = li.FindLiveRangeContaining(UseIdx);
 | |
|   return UI != li.end() && UI->valno == ValNo;
 | |
| }
 | |
| 
 | |
| /// isReMaterializable - Returns true if the definition MI of the specified
 | |
| /// val# of the specified interval is re-materializable.
 | |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li,
 | |
|                                        const VNInfo *ValNo, MachineInstr *MI,
 | |
|                                        SmallVectorImpl<LiveInterval*> &SpillIs,
 | |
|                                        bool &isLoad) {
 | |
|   if (DisableReMat)
 | |
|     return false;
 | |
| 
 | |
|   if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
 | |
|     return true;
 | |
| 
 | |
|   int FrameIdx = 0;
 | |
|   if (tii_->isLoadFromStackSlot(MI, FrameIdx) &&
 | |
|       mf_->getFrameInfo()->isImmutableObjectIndex(FrameIdx))
 | |
|     // FIXME: Let target specific isReallyTriviallyReMaterializable determines
 | |
|     // this but remember this is not safe to fold into a two-address
 | |
|     // instruction.
 | |
|     // This is a load from fixed stack slot. It can be rematerialized.
 | |
|     return true;
 | |
| 
 | |
|   // If the target-specific rules don't identify an instruction as
 | |
|   // being trivially rematerializable, use some target-independent
 | |
|   // rules.
 | |
|   if (!MI->getDesc().isRematerializable() ||
 | |
|       !tii_->isTriviallyReMaterializable(MI)) {
 | |
|     if (!EnableAggressiveRemat)
 | |
|       return false;
 | |
| 
 | |
|     // If the instruction accesses memory but the memoperands have been lost,
 | |
|     // we can't analyze it.
 | |
|     const TargetInstrDesc &TID = MI->getDesc();
 | |
|     if ((TID.mayLoad() || TID.mayStore()) && MI->memoperands_empty())
 | |
|       return false;
 | |
| 
 | |
|     // Avoid instructions obviously unsafe for remat.
 | |
|     if (TID.hasUnmodeledSideEffects() || TID.isNotDuplicable())
 | |
|       return false;
 | |
| 
 | |
|     // If the instruction accesses memory and the memory could be non-constant,
 | |
|     // assume the instruction is not rematerializable.
 | |
|     for (std::list<MachineMemOperand>::const_iterator
 | |
|            I = MI->memoperands_begin(), E = MI->memoperands_end(); I != E; ++I){
 | |
|       const MachineMemOperand &MMO = *I;
 | |
|       if (MMO.isVolatile() || MMO.isStore())
 | |
|         return false;
 | |
|       const Value *V = MMO.getValue();
 | |
|       if (!V)
 | |
|         return false;
 | |
|       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
 | |
|         if (!PSV->isConstant(mf_->getFrameInfo()))
 | |
|           return false;
 | |
|       } else if (!aa_->pointsToConstantMemory(V))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If any of the registers accessed are non-constant, conservatively assume
 | |
|     // the instruction is not rematerializable.
 | |
|     unsigned ImpUse = 0;
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i);
 | |
|       if (MO.isReg()) {
 | |
|         unsigned Reg = MO.getReg();
 | |
|         if (Reg == 0)
 | |
|           continue;
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|           return false;
 | |
| 
 | |
|         // Only allow one def, and that in the first operand.
 | |
|         if (MO.isDef() != (i == 0))
 | |
|           return false;
 | |
| 
 | |
|         // Only allow constant-valued registers.
 | |
|         bool IsLiveIn = mri_->isLiveIn(Reg);
 | |
|         MachineRegisterInfo::def_iterator I = mri_->def_begin(Reg),
 | |
|                                           E = mri_->def_end();
 | |
| 
 | |
|         // For the def, it should be the only def of that register.
 | |
|         if (MO.isDef() && (next(I) != E || IsLiveIn))
 | |
|           return false;
 | |
| 
 | |
|         if (MO.isUse()) {
 | |
|           // Only allow one use other register use, as that's all the
 | |
|           // remat mechanisms support currently.
 | |
|           if (Reg != li.reg) {
 | |
|             if (ImpUse == 0)
 | |
|               ImpUse = Reg;
 | |
|             else if (Reg != ImpUse)
 | |
|               return false;
 | |
|           }
 | |
|           // For the use, there should be only one associated def.
 | |
|           if (I != E && (next(I) != E || IsLiveIn))
 | |
|             return false;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned ImpUse = getReMatImplicitUse(li, MI);
 | |
|   if (ImpUse) {
 | |
|     const LiveInterval &ImpLi = getInterval(ImpUse);
 | |
|     for (MachineRegisterInfo::use_iterator ri = mri_->use_begin(li.reg),
 | |
|            re = mri_->use_end(); ri != re; ++ri) {
 | |
|       MachineInstr *UseMI = &*ri;
 | |
|       unsigned UseIdx = getInstructionIndex(UseMI);
 | |
|       if (li.FindLiveRangeContaining(UseIdx)->valno != ValNo)
 | |
|         continue;
 | |
|       if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If a register operand of the re-materialized instruction is going to
 | |
|     // be spilled next, then it's not legal to re-materialize this instruction.
 | |
|     for (unsigned i = 0, e = SpillIs.size(); i != e; ++i)
 | |
|       if (ImpUse == SpillIs[i]->reg)
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isReMaterializable - Returns true if the definition MI of the specified
 | |
| /// val# of the specified interval is re-materializable.
 | |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li,
 | |
|                                        const VNInfo *ValNo, MachineInstr *MI) {
 | |
|   SmallVector<LiveInterval*, 4> Dummy1;
 | |
|   bool Dummy2;
 | |
|   return isReMaterializable(li, ValNo, MI, Dummy1, Dummy2);
 | |
| }
 | |
| 
 | |
| /// isReMaterializable - Returns true if every definition of MI of every
 | |
| /// val# of the specified interval is re-materializable.
 | |
| bool LiveIntervals::isReMaterializable(const LiveInterval &li,
 | |
|                                        SmallVectorImpl<LiveInterval*> &SpillIs,
 | |
|                                        bool &isLoad) {
 | |
|   isLoad = false;
 | |
|   for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
 | |
|        i != e; ++i) {
 | |
|     const VNInfo *VNI = *i;
 | |
|     unsigned DefIdx = VNI->def;
 | |
|     if (DefIdx == ~1U)
 | |
|       continue; // Dead val#.
 | |
|     // Is the def for the val# rematerializable?
 | |
|     if (DefIdx == ~0u)
 | |
|       return false;
 | |
|     MachineInstr *ReMatDefMI = getInstructionFromIndex(DefIdx);
 | |
|     bool DefIsLoad = false;
 | |
|     if (!ReMatDefMI ||
 | |
|         !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
 | |
|       return false;
 | |
|     isLoad |= DefIsLoad;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FilterFoldedOps - Filter out two-address use operands. Return
 | |
| /// true if it finds any issue with the operands that ought to prevent
 | |
| /// folding.
 | |
| static bool FilterFoldedOps(MachineInstr *MI,
 | |
|                             SmallVector<unsigned, 2> &Ops,
 | |
|                             unsigned &MRInfo,
 | |
|                             SmallVector<unsigned, 2> &FoldOps) {
 | |
|   MRInfo = 0;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|     unsigned OpIdx = Ops[i];
 | |
|     MachineOperand &MO = MI->getOperand(OpIdx);
 | |
|     // FIXME: fold subreg use.
 | |
|     if (MO.getSubReg())
 | |
|       return true;
 | |
|     if (MO.isDef())
 | |
|       MRInfo |= (unsigned)VirtRegMap::isMod;
 | |
|     else {
 | |
|       // Filter out two-address use operand(s).
 | |
|       if (MI->isRegTiedToDefOperand(OpIdx)) {
 | |
|         MRInfo = VirtRegMap::isModRef;
 | |
|         continue;
 | |
|       }
 | |
|       MRInfo |= (unsigned)VirtRegMap::isRef;
 | |
|     }
 | |
|     FoldOps.push_back(OpIdx);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
|                            
 | |
| 
 | |
| /// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
 | |
| /// slot / to reg or any rematerialized load into ith operand of specified
 | |
| /// MI. If it is successul, MI is updated with the newly created MI and
 | |
| /// returns true.
 | |
| bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
 | |
|                                          VirtRegMap &vrm, MachineInstr *DefMI,
 | |
|                                          unsigned InstrIdx,
 | |
|                                          SmallVector<unsigned, 2> &Ops,
 | |
|                                          bool isSS, int Slot, unsigned Reg) {
 | |
|   // If it is an implicit def instruction, just delete it.
 | |
|   if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
 | |
|     RemoveMachineInstrFromMaps(MI);
 | |
|     vrm.RemoveMachineInstrFromMaps(MI);
 | |
|     MI->eraseFromParent();
 | |
|     ++numFolds;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Filter the list of operand indexes that are to be folded. Abort if
 | |
|   // any operand will prevent folding.
 | |
|   unsigned MRInfo = 0;
 | |
|   SmallVector<unsigned, 2> FoldOps;
 | |
|   if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
 | |
|     return false;
 | |
| 
 | |
|   // The only time it's safe to fold into a two address instruction is when
 | |
|   // it's folding reload and spill from / into a spill stack slot.
 | |
|   if (DefMI && (MRInfo & VirtRegMap::isMod))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *fmi = isSS ? tii_->foldMemoryOperand(*mf_, MI, FoldOps, Slot)
 | |
|                            : tii_->foldMemoryOperand(*mf_, MI, FoldOps, DefMI);
 | |
|   if (fmi) {
 | |
|     // Remember this instruction uses the spill slot.
 | |
|     if (isSS) vrm.addSpillSlotUse(Slot, fmi);
 | |
| 
 | |
|     // Attempt to fold the memory reference into the instruction. If
 | |
|     // we can do this, we don't need to insert spill code.
 | |
|     MachineBasicBlock &MBB = *MI->getParent();
 | |
|     if (isSS && !mf_->getFrameInfo()->isImmutableObjectIndex(Slot))
 | |
|       vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
 | |
|     vrm.transferSpillPts(MI, fmi);
 | |
|     vrm.transferRestorePts(MI, fmi);
 | |
|     vrm.transferEmergencySpills(MI, fmi);
 | |
|     mi2iMap_.erase(MI);
 | |
|     i2miMap_[InstrIdx /InstrSlots::NUM] = fmi;
 | |
|     mi2iMap_[fmi] = InstrIdx;
 | |
|     MI = MBB.insert(MBB.erase(MI), fmi);
 | |
|     ++numFolds;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canFoldMemoryOperand - Returns true if the specified load / store
 | |
| /// folding is possible.
 | |
| bool LiveIntervals::canFoldMemoryOperand(MachineInstr *MI,
 | |
|                                          SmallVector<unsigned, 2> &Ops,
 | |
|                                          bool ReMat) const {
 | |
|   // Filter the list of operand indexes that are to be folded. Abort if
 | |
|   // any operand will prevent folding.
 | |
|   unsigned MRInfo = 0;
 | |
|   SmallVector<unsigned, 2> FoldOps;
 | |
|   if (FilterFoldedOps(MI, Ops, MRInfo, FoldOps))
 | |
|     return false;
 | |
| 
 | |
|   // It's only legal to remat for a use, not a def.
 | |
|   if (ReMat && (MRInfo & VirtRegMap::isMod))
 | |
|     return false;
 | |
| 
 | |
|   return tii_->canFoldMemoryOperand(MI, FoldOps);
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> MBBs;
 | |
|   for (LiveInterval::Ranges::const_iterator
 | |
|          I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
 | |
|     std::vector<IdxMBBPair>::const_iterator II =
 | |
|       std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), I->start);
 | |
|     if (II == Idx2MBBMap.end())
 | |
|       continue;
 | |
|     if (I->end > II->first)  // crossing a MBB.
 | |
|       return false;
 | |
|     MBBs.insert(II->second);
 | |
|     if (MBBs.size() > 1)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
 | |
| /// interval on to-be re-materialized operands of MI) with new register.
 | |
| void LiveIntervals::rewriteImplicitOps(const LiveInterval &li,
 | |
|                                        MachineInstr *MI, unsigned NewVReg,
 | |
|                                        VirtRegMap &vrm) {
 | |
|   // There is an implicit use. That means one of the other operand is
 | |
|   // being remat'ed and the remat'ed instruction has li.reg as an
 | |
|   // use operand. Make sure we rewrite that as well.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
|     if (!vrm.isReMaterialized(Reg))
 | |
|       continue;
 | |
|     MachineInstr *ReMatMI = vrm.getReMaterializedMI(Reg);
 | |
|     MachineOperand *UseMO = ReMatMI->findRegisterUseOperand(li.reg);
 | |
|     if (UseMO)
 | |
|       UseMO->setReg(NewVReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
 | |
| /// for addIntervalsForSpills to rewrite uses / defs for the given live range.
 | |
| bool LiveIntervals::
 | |
| rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
 | |
|                  bool TrySplit, unsigned index, unsigned end,  MachineInstr *MI,
 | |
|                  MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
 | |
|                  unsigned Slot, int LdSlot,
 | |
|                  bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
 | |
|                  VirtRegMap &vrm,
 | |
|                  const TargetRegisterClass* rc,
 | |
|                  SmallVector<int, 4> &ReMatIds,
 | |
|                  const MachineLoopInfo *loopInfo,
 | |
|                  unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
 | |
|                  DenseMap<unsigned,unsigned> &MBBVRegsMap,
 | |
|                  std::vector<LiveInterval*> &NewLIs) {
 | |
|   bool CanFold = false;
 | |
|  RestartInstruction:
 | |
|   for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | |
|     MachineOperand& mop = MI->getOperand(i);
 | |
|     if (!mop.isReg())
 | |
|       continue;
 | |
|     unsigned Reg = mop.getReg();
 | |
|     unsigned RegI = Reg;
 | |
|     if (Reg == 0 || TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
|     if (Reg != li.reg)
 | |
|       continue;
 | |
| 
 | |
|     bool TryFold = !DefIsReMat;
 | |
|     bool FoldSS = true; // Default behavior unless it's a remat.
 | |
|     int FoldSlot = Slot;
 | |
|     if (DefIsReMat) {
 | |
|       // If this is the rematerializable definition MI itself and
 | |
|       // all of its uses are rematerialized, simply delete it.
 | |
|       if (MI == ReMatOrigDefMI && CanDelete) {
 | |
|         DOUT << "\t\t\t\tErasing re-materlizable def: ";
 | |
|         DOUT << MI << '\n';
 | |
|         RemoveMachineInstrFromMaps(MI);
 | |
|         vrm.RemoveMachineInstrFromMaps(MI);
 | |
|         MI->eraseFromParent();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If def for this use can't be rematerialized, then try folding.
 | |
|       // If def is rematerializable and it's a load, also try folding.
 | |
|       TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
 | |
|       if (isLoad) {
 | |
|         // Try fold loads (from stack slot, constant pool, etc.) into uses.
 | |
|         FoldSS = isLoadSS;
 | |
|         FoldSlot = LdSlot;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Scan all of the operands of this instruction rewriting operands
 | |
|     // to use NewVReg instead of li.reg as appropriate.  We do this for
 | |
|     // two reasons:
 | |
|     //
 | |
|     //   1. If the instr reads the same spilled vreg multiple times, we
 | |
|     //      want to reuse the NewVReg.
 | |
|     //   2. If the instr is a two-addr instruction, we are required to
 | |
|     //      keep the src/dst regs pinned.
 | |
|     //
 | |
|     // Keep track of whether we replace a use and/or def so that we can
 | |
|     // create the spill interval with the appropriate range. 
 | |
| 
 | |
|     HasUse = mop.isUse();
 | |
|     HasDef = mop.isDef();
 | |
|     SmallVector<unsigned, 2> Ops;
 | |
|     Ops.push_back(i);
 | |
|     for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
 | |
|       const MachineOperand &MOj = MI->getOperand(j);
 | |
|       if (!MOj.isReg())
 | |
|         continue;
 | |
|       unsigned RegJ = MOj.getReg();
 | |
|       if (RegJ == 0 || TargetRegisterInfo::isPhysicalRegister(RegJ))
 | |
|         continue;
 | |
|       if (RegJ == RegI) {
 | |
|         Ops.push_back(j);
 | |
|         HasUse |= MOj.isUse();
 | |
|         HasDef |= MOj.isDef();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (HasUse && !li.liveAt(getUseIndex(index)))
 | |
|       // Must be defined by an implicit def. It should not be spilled. Note,
 | |
|       // this is for correctness reason. e.g.
 | |
|       // 8   %reg1024<def> = IMPLICIT_DEF
 | |
|       // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
 | |
|       // The live range [12, 14) are not part of the r1024 live interval since
 | |
|       // it's defined by an implicit def. It will not conflicts with live
 | |
|       // interval of r1025. Now suppose both registers are spilled, you can
 | |
|       // easily see a situation where both registers are reloaded before
 | |
|       // the INSERT_SUBREG and both target registers that would overlap.
 | |
|       HasUse = false;
 | |
| 
 | |
|     // Create a new virtual register for the spill interval.
 | |
|     // Create the new register now so we can map the fold instruction
 | |
|     // to the new register so when it is unfolded we get the correct
 | |
|     // answer.
 | |
|     bool CreatedNewVReg = false;
 | |
|     if (NewVReg == 0) {
 | |
|       NewVReg = mri_->createVirtualRegister(rc);
 | |
|       vrm.grow();
 | |
|       CreatedNewVReg = true;
 | |
|     }
 | |
| 
 | |
|     if (!TryFold)
 | |
|       CanFold = false;
 | |
|     else {
 | |
|       // Do not fold load / store here if we are splitting. We'll find an
 | |
|       // optimal point to insert a load / store later.
 | |
|       if (!TrySplit) {
 | |
|         if (tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
 | |
|                                  Ops, FoldSS, FoldSlot, NewVReg)) {
 | |
|           // Folding the load/store can completely change the instruction in
 | |
|           // unpredictable ways, rescan it from the beginning.
 | |
| 
 | |
|           if (FoldSS) {
 | |
|             // We need to give the new vreg the same stack slot as the
 | |
|             // spilled interval.
 | |
|             vrm.assignVirt2StackSlot(NewVReg, FoldSlot);
 | |
|           }
 | |
| 
 | |
|           HasUse = false;
 | |
|           HasDef = false;
 | |
|           CanFold = false;
 | |
|           if (isNotInMIMap(MI))
 | |
|             break;
 | |
|           goto RestartInstruction;
 | |
|         }
 | |
|       } else {
 | |
|         // We'll try to fold it later if it's profitable.
 | |
|         CanFold = canFoldMemoryOperand(MI, Ops, DefIsReMat);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     mop.setReg(NewVReg);
 | |
|     if (mop.isImplicit())
 | |
|       rewriteImplicitOps(li, MI, NewVReg, vrm);
 | |
| 
 | |
|     // Reuse NewVReg for other reads.
 | |
|     for (unsigned j = 0, e = Ops.size(); j != e; ++j) {
 | |
|       MachineOperand &mopj = MI->getOperand(Ops[j]);
 | |
|       mopj.setReg(NewVReg);
 | |
|       if (mopj.isImplicit())
 | |
|         rewriteImplicitOps(li, MI, NewVReg, vrm);
 | |
|     }
 | |
|             
 | |
|     if (CreatedNewVReg) {
 | |
|       if (DefIsReMat) {
 | |
|         vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/);
 | |
|         if (ReMatIds[VNI->id] == VirtRegMap::MAX_STACK_SLOT) {
 | |
|           // Each valnum may have its own remat id.
 | |
|           ReMatIds[VNI->id] = vrm.assignVirtReMatId(NewVReg);
 | |
|         } else {
 | |
|           vrm.assignVirtReMatId(NewVReg, ReMatIds[VNI->id]);
 | |
|         }
 | |
|         if (!CanDelete || (HasUse && HasDef)) {
 | |
|           // If this is a two-addr instruction then its use operands are
 | |
|           // rematerializable but its def is not. It should be assigned a
 | |
|           // stack slot.
 | |
|           vrm.assignVirt2StackSlot(NewVReg, Slot);
 | |
|         }
 | |
|       } else {
 | |
|         vrm.assignVirt2StackSlot(NewVReg, Slot);
 | |
|       }
 | |
|     } else if (HasUse && HasDef &&
 | |
|                vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
 | |
|       // If this interval hasn't been assigned a stack slot (because earlier
 | |
|       // def is a deleted remat def), do it now.
 | |
|       assert(Slot != VirtRegMap::NO_STACK_SLOT);
 | |
|       vrm.assignVirt2StackSlot(NewVReg, Slot);
 | |
|     }
 | |
| 
 | |
|     // Re-matting an instruction with virtual register use. Add the
 | |
|     // register as an implicit use on the use MI.
 | |
|     if (DefIsReMat && ImpUse)
 | |
|       MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
 | |
| 
 | |
|     // Create a new register interval for this spill / remat.
 | |
|     LiveInterval &nI = getOrCreateInterval(NewVReg);
 | |
|     if (CreatedNewVReg) {
 | |
|       NewLIs.push_back(&nI);
 | |
|       MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
 | |
|       if (TrySplit)
 | |
|         vrm.setIsSplitFromReg(NewVReg, li.reg);
 | |
|     }
 | |
| 
 | |
|     if (HasUse) {
 | |
|       if (CreatedNewVReg) {
 | |
|         LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
 | |
|                      nI.getNextValue(~0U, 0, VNInfoAllocator));
 | |
|         DOUT << " +" << LR;
 | |
|         nI.addRange(LR);
 | |
|       } else {
 | |
|         // Extend the split live interval to this def / use.
 | |
|         unsigned End = getUseIndex(index)+1;
 | |
|         LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
 | |
|                      nI.getValNumInfo(nI.getNumValNums()-1));
 | |
|         DOUT << " +" << LR;
 | |
|         nI.addRange(LR);
 | |
|       }
 | |
|     }
 | |
|     if (HasDef) {
 | |
|       LiveRange LR(getDefIndex(index), getStoreIndex(index),
 | |
|                    nI.getNextValue(~0U, 0, VNInfoAllocator));
 | |
|       DOUT << " +" << LR;
 | |
|       nI.addRange(LR);
 | |
|     }
 | |
| 
 | |
|     DOUT << "\t\t\t\tAdded new interval: ";
 | |
|     nI.print(DOUT, tri_);
 | |
|     DOUT << '\n';
 | |
|   }
 | |
|   return CanFold;
 | |
| }
 | |
| bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
 | |
|                                    const VNInfo *VNI,
 | |
|                                    MachineBasicBlock *MBB, unsigned Idx) const {
 | |
|   unsigned End = getMBBEndIdx(MBB);
 | |
|   for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
 | |
|     unsigned KillIdx = VNI->kills[j];
 | |
|     if (KillIdx > Idx && KillIdx < End)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RewriteInfo - Keep track of machine instrs that will be rewritten
 | |
| /// during spilling.
 | |
| namespace {
 | |
|   struct RewriteInfo {
 | |
|     unsigned Index;
 | |
|     MachineInstr *MI;
 | |
|     bool HasUse;
 | |
|     bool HasDef;
 | |
|     RewriteInfo(unsigned i, MachineInstr *mi, bool u, bool d)
 | |
|       : Index(i), MI(mi), HasUse(u), HasDef(d) {}
 | |
|   };
 | |
| 
 | |
|   struct RewriteInfoCompare {
 | |
|     bool operator()(const RewriteInfo &LHS, const RewriteInfo &RHS) const {
 | |
|       return LHS.Index < RHS.Index;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void LiveIntervals::
 | |
| rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
 | |
|                     LiveInterval::Ranges::const_iterator &I,
 | |
|                     MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
 | |
|                     unsigned Slot, int LdSlot,
 | |
|                     bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
 | |
|                     VirtRegMap &vrm,
 | |
|                     const TargetRegisterClass* rc,
 | |
|                     SmallVector<int, 4> &ReMatIds,
 | |
|                     const MachineLoopInfo *loopInfo,
 | |
|                     BitVector &SpillMBBs,
 | |
|                     DenseMap<unsigned, std::vector<SRInfo> > &SpillIdxes,
 | |
|                     BitVector &RestoreMBBs,
 | |
|                     DenseMap<unsigned, std::vector<SRInfo> > &RestoreIdxes,
 | |
|                     DenseMap<unsigned,unsigned> &MBBVRegsMap,
 | |
|                     std::vector<LiveInterval*> &NewLIs) {
 | |
|   bool AllCanFold = true;
 | |
|   unsigned NewVReg = 0;
 | |
|   unsigned start = getBaseIndex(I->start);
 | |
|   unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
 | |
| 
 | |
|   // First collect all the def / use in this live range that will be rewritten.
 | |
|   // Make sure they are sorted according to instruction index.
 | |
|   std::vector<RewriteInfo> RewriteMIs;
 | |
|   for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
 | |
|          re = mri_->reg_end(); ri != re; ) {
 | |
|     MachineInstr *MI = &*ri;
 | |
|     MachineOperand &O = ri.getOperand();
 | |
|     ++ri;
 | |
|     assert(!O.isImplicit() && "Spilling register that's used as implicit use?");
 | |
|     unsigned index = getInstructionIndex(MI);
 | |
|     if (index < start || index >= end)
 | |
|       continue;
 | |
|     if (O.isUse() && !li.liveAt(getUseIndex(index)))
 | |
|       // Must be defined by an implicit def. It should not be spilled. Note,
 | |
|       // this is for correctness reason. e.g.
 | |
|       // 8   %reg1024<def> = IMPLICIT_DEF
 | |
|       // 12  %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
 | |
|       // The live range [12, 14) are not part of the r1024 live interval since
 | |
|       // it's defined by an implicit def. It will not conflicts with live
 | |
|       // interval of r1025. Now suppose both registers are spilled, you can
 | |
|       // easily see a situation where both registers are reloaded before
 | |
|       // the INSERT_SUBREG and both target registers that would overlap.
 | |
|       continue;
 | |
|     RewriteMIs.push_back(RewriteInfo(index, MI, O.isUse(), O.isDef()));
 | |
|   }
 | |
|   std::sort(RewriteMIs.begin(), RewriteMIs.end(), RewriteInfoCompare());
 | |
| 
 | |
|   unsigned ImpUse = DefIsReMat ? getReMatImplicitUse(li, ReMatDefMI) : 0;
 | |
|   // Now rewrite the defs and uses.
 | |
|   for (unsigned i = 0, e = RewriteMIs.size(); i != e; ) {
 | |
|     RewriteInfo &rwi = RewriteMIs[i];
 | |
|     ++i;
 | |
|     unsigned index = rwi.Index;
 | |
|     bool MIHasUse = rwi.HasUse;
 | |
|     bool MIHasDef = rwi.HasDef;
 | |
|     MachineInstr *MI = rwi.MI;
 | |
|     // If MI def and/or use the same register multiple times, then there
 | |
|     // are multiple entries.
 | |
|     unsigned NumUses = MIHasUse;
 | |
|     while (i != e && RewriteMIs[i].MI == MI) {
 | |
|       assert(RewriteMIs[i].Index == index);
 | |
|       bool isUse = RewriteMIs[i].HasUse;
 | |
|       if (isUse) ++NumUses;
 | |
|       MIHasUse |= isUse;
 | |
|       MIHasDef |= RewriteMIs[i].HasDef;
 | |
|       ++i;
 | |
|     }
 | |
|     MachineBasicBlock *MBB = MI->getParent();
 | |
| 
 | |
|     if (ImpUse && MI != ReMatDefMI) {
 | |
|       // Re-matting an instruction with virtual register use. Update the
 | |
|       // register interval's spill weight to HUGE_VALF to prevent it from
 | |
|       // being spilled.
 | |
|       LiveInterval &ImpLi = getInterval(ImpUse);
 | |
|       ImpLi.weight = HUGE_VALF;
 | |
|     }
 | |
| 
 | |
|     unsigned MBBId = MBB->getNumber();
 | |
|     unsigned ThisVReg = 0;
 | |
|     if (TrySplit) {
 | |
|       DenseMap<unsigned,unsigned>::iterator NVI = MBBVRegsMap.find(MBBId);
 | |
|       if (NVI != MBBVRegsMap.end()) {
 | |
|         ThisVReg = NVI->second;
 | |
|         // One common case:
 | |
|         // x = use
 | |
|         // ...
 | |
|         // ...
 | |
|         // def = ...
 | |
|         //     = use
 | |
|         // It's better to start a new interval to avoid artifically
 | |
|         // extend the new interval.
 | |
|         if (MIHasDef && !MIHasUse) {
 | |
|           MBBVRegsMap.erase(MBB->getNumber());
 | |
|           ThisVReg = 0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool IsNew = ThisVReg == 0;
 | |
|     if (IsNew) {
 | |
|       // This ends the previous live interval. If all of its def / use
 | |
|       // can be folded, give it a low spill weight.
 | |
|       if (NewVReg && TrySplit && AllCanFold) {
 | |
|         LiveInterval &nI = getOrCreateInterval(NewVReg);
 | |
|         nI.weight /= 10.0F;
 | |
|       }
 | |
|       AllCanFold = true;
 | |
|     }
 | |
|     NewVReg = ThisVReg;
 | |
| 
 | |
|     bool HasDef = false;
 | |
|     bool HasUse = false;
 | |
|     bool CanFold = rewriteInstructionForSpills(li, I->valno, TrySplit,
 | |
|                          index, end, MI, ReMatOrigDefMI, ReMatDefMI,
 | |
|                          Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
 | |
|                          CanDelete, vrm, rc, ReMatIds, loopInfo, NewVReg,
 | |
|                          ImpUse, HasDef, HasUse, MBBVRegsMap, NewLIs);
 | |
|     if (!HasDef && !HasUse)
 | |
|       continue;
 | |
| 
 | |
|     AllCanFold &= CanFold;
 | |
| 
 | |
|     // Update weight of spill interval.
 | |
|     LiveInterval &nI = getOrCreateInterval(NewVReg);
 | |
|     if (!TrySplit) {
 | |
|       // The spill weight is now infinity as it cannot be spilled again.
 | |
|       nI.weight = HUGE_VALF;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Keep track of the last def and first use in each MBB.
 | |
|     if (HasDef) {
 | |
|       if (MI != ReMatOrigDefMI || !CanDelete) {
 | |
|         bool HasKill = false;
 | |
|         if (!HasUse)
 | |
|           HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index));
 | |
|         else {
 | |
|           // If this is a two-address code, then this index starts a new VNInfo.
 | |
|           const VNInfo *VNI = li.findDefinedVNInfo(getDefIndex(index));
 | |
|           if (VNI)
 | |
|             HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index));
 | |
|         }
 | |
|         DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
 | |
|           SpillIdxes.find(MBBId);
 | |
|         if (!HasKill) {
 | |
|           if (SII == SpillIdxes.end()) {
 | |
|             std::vector<SRInfo> S;
 | |
|             S.push_back(SRInfo(index, NewVReg, true));
 | |
|             SpillIdxes.insert(std::make_pair(MBBId, S));
 | |
|           } else if (SII->second.back().vreg != NewVReg) {
 | |
|             SII->second.push_back(SRInfo(index, NewVReg, true));
 | |
|           } else if ((int)index > SII->second.back().index) {
 | |
|             // If there is an earlier def and this is a two-address
 | |
|             // instruction, then it's not possible to fold the store (which
 | |
|             // would also fold the load).
 | |
|             SRInfo &Info = SII->second.back();
 | |
|             Info.index = index;
 | |
|             Info.canFold = !HasUse;
 | |
|           }
 | |
|           SpillMBBs.set(MBBId);
 | |
|         } else if (SII != SpillIdxes.end() &&
 | |
|                    SII->second.back().vreg == NewVReg &&
 | |
|                    (int)index > SII->second.back().index) {
 | |
|           // There is an earlier def that's not killed (must be two-address).
 | |
|           // The spill is no longer needed.
 | |
|           SII->second.pop_back();
 | |
|           if (SII->second.empty()) {
 | |
|             SpillIdxes.erase(MBBId);
 | |
|             SpillMBBs.reset(MBBId);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (HasUse) {
 | |
|       DenseMap<unsigned, std::vector<SRInfo> >::iterator SII =
 | |
|         SpillIdxes.find(MBBId);
 | |
|       if (SII != SpillIdxes.end() &&
 | |
|           SII->second.back().vreg == NewVReg &&
 | |
|           (int)index > SII->second.back().index)
 | |
|         // Use(s) following the last def, it's not safe to fold the spill.
 | |
|         SII->second.back().canFold = false;
 | |
|       DenseMap<unsigned, std::vector<SRInfo> >::iterator RII =
 | |
|         RestoreIdxes.find(MBBId);
 | |
|       if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
 | |
|         // If we are splitting live intervals, only fold if it's the first
 | |
|         // use and there isn't another use later in the MBB.
 | |
|         RII->second.back().canFold = false;
 | |
|       else if (IsNew) {
 | |
|         // Only need a reload if there isn't an earlier def / use.
 | |
|         if (RII == RestoreIdxes.end()) {
 | |
|           std::vector<SRInfo> Infos;
 | |
|           Infos.push_back(SRInfo(index, NewVReg, true));
 | |
|           RestoreIdxes.insert(std::make_pair(MBBId, Infos));
 | |
|         } else {
 | |
|           RII->second.push_back(SRInfo(index, NewVReg, true));
 | |
|         }
 | |
|         RestoreMBBs.set(MBBId);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Update spill weight.
 | |
|     unsigned loopDepth = loopInfo->getLoopDepth(MBB);
 | |
|     nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
 | |
|   }
 | |
| 
 | |
|   if (NewVReg && TrySplit && AllCanFold) {
 | |
|     // If all of its def / use can be folded, give it a low spill weight.
 | |
|     LiveInterval &nI = getOrCreateInterval(NewVReg);
 | |
|     nI.weight /= 10.0F;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
 | |
|                         BitVector &RestoreMBBs,
 | |
|                         DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
 | |
|   if (!RestoreMBBs[Id])
 | |
|     return false;
 | |
|   std::vector<SRInfo> &Restores = RestoreIdxes[Id];
 | |
|   for (unsigned i = 0, e = Restores.size(); i != e; ++i)
 | |
|     if (Restores[i].index == index &&
 | |
|         Restores[i].vreg == vr &&
 | |
|         Restores[i].canFold)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr,
 | |
|                         BitVector &RestoreMBBs,
 | |
|                         DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
 | |
|   if (!RestoreMBBs[Id])
 | |
|     return;
 | |
|   std::vector<SRInfo> &Restores = RestoreIdxes[Id];
 | |
|   for (unsigned i = 0, e = Restores.size(); i != e; ++i)
 | |
|     if (Restores[i].index == index && Restores[i].vreg)
 | |
|       Restores[i].index = -1;
 | |
| }
 | |
| 
 | |
| /// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
 | |
| /// spilled and create empty intervals for their uses.
 | |
| void
 | |
| LiveIntervals::handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
 | |
|                                     const TargetRegisterClass* rc,
 | |
|                                     std::vector<LiveInterval*> &NewLIs) {
 | |
|   for (MachineRegisterInfo::reg_iterator ri = mri_->reg_begin(li.reg),
 | |
|          re = mri_->reg_end(); ri != re; ) {
 | |
|     MachineOperand &O = ri.getOperand();
 | |
|     MachineInstr *MI = &*ri;
 | |
|     ++ri;
 | |
|     if (O.isDef()) {
 | |
|       assert(MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF &&
 | |
|              "Register def was not rewritten?");
 | |
|       RemoveMachineInstrFromMaps(MI);
 | |
|       vrm.RemoveMachineInstrFromMaps(MI);
 | |
|       MI->eraseFromParent();
 | |
|     } else {
 | |
|       // This must be an use of an implicit_def so it's not part of the live
 | |
|       // interval. Create a new empty live interval for it.
 | |
|       // FIXME: Can we simply erase some of the instructions? e.g. Stores?
 | |
|       unsigned NewVReg = mri_->createVirtualRegister(rc);
 | |
|       vrm.grow();
 | |
|       vrm.setIsImplicitlyDefined(NewVReg);
 | |
|       NewLIs.push_back(&getOrCreateInterval(NewVReg));
 | |
|       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         if (MO.isReg() && MO.getReg() == li.reg)
 | |
|           MO.setReg(NewVReg);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::vector<LiveInterval*> LiveIntervals::
 | |
| addIntervalsForSpillsFast(const LiveInterval &li,
 | |
|                           const MachineLoopInfo *loopInfo,
 | |
|                           VirtRegMap &vrm) {
 | |
|   unsigned slot = vrm.assignVirt2StackSlot(li.reg);
 | |
| 
 | |
|   std::vector<LiveInterval*> added;
 | |
| 
 | |
|   assert(li.weight != HUGE_VALF &&
 | |
|          "attempt to spill already spilled interval!");
 | |
| 
 | |
|   DOUT << "\t\t\t\tadding intervals for spills for interval: ";
 | |
|   DEBUG(li.dump());
 | |
|   DOUT << '\n';
 | |
| 
 | |
|   const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
 | |
| 
 | |
|   MachineRegisterInfo::reg_iterator RI = mri_->reg_begin(li.reg);
 | |
|   while (RI != mri_->reg_end()) {
 | |
|     MachineInstr* MI = &*RI;
 | |
|     
 | |
|     SmallVector<unsigned, 2> Indices;
 | |
|     bool HasUse = false;
 | |
|     bool HasDef = false;
 | |
|     
 | |
|     for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | |
|       MachineOperand& mop = MI->getOperand(i);
 | |
|       if (!mop.isReg() || mop.getReg() != li.reg) continue;
 | |
|       
 | |
|       HasUse |= MI->getOperand(i).isUse();
 | |
|       HasDef |= MI->getOperand(i).isDef();
 | |
|       
 | |
|       Indices.push_back(i);
 | |
|     }
 | |
|     
 | |
|     if (!tryFoldMemoryOperand(MI, vrm, NULL, getInstructionIndex(MI),
 | |
|                               Indices, true, slot, li.reg)) {
 | |
|       unsigned NewVReg = mri_->createVirtualRegister(rc);
 | |
|       vrm.grow();
 | |
|       vrm.assignVirt2StackSlot(NewVReg, slot);
 | |
|       
 | |
|       // create a new register for this spill
 | |
|       LiveInterval &nI = getOrCreateInterval(NewVReg);
 | |
| 
 | |
|       // the spill weight is now infinity as it
 | |
|       // cannot be spilled again
 | |
|       nI.weight = HUGE_VALF;
 | |
|       
 | |
|       // Rewrite register operands to use the new vreg.
 | |
|       for (SmallVectorImpl<unsigned>::iterator I = Indices.begin(),
 | |
|            E = Indices.end(); I != E; ++I) {
 | |
|         MI->getOperand(*I).setReg(NewVReg);
 | |
|         
 | |
|         if (MI->getOperand(*I).isUse())
 | |
|           MI->getOperand(*I).setIsKill(true);
 | |
|       }
 | |
|       
 | |
|       // Fill in  the new live interval.
 | |
|       unsigned index = getInstructionIndex(MI);
 | |
|       if (HasUse) {
 | |
|         LiveRange LR(getLoadIndex(index), getUseIndex(index),
 | |
|                      nI.getNextValue(~0U, 0, getVNInfoAllocator()));
 | |
|         DOUT << " +" << LR;
 | |
|         nI.addRange(LR);
 | |
|         vrm.addRestorePoint(NewVReg, MI);
 | |
|       }
 | |
|       if (HasDef) {
 | |
|         LiveRange LR(getDefIndex(index), getStoreIndex(index),
 | |
|                      nI.getNextValue(~0U, 0, getVNInfoAllocator()));
 | |
|         DOUT << " +" << LR;
 | |
|         nI.addRange(LR);
 | |
|         vrm.addSpillPoint(NewVReg, true, MI);
 | |
|       }
 | |
|       
 | |
|       added.push_back(&nI);
 | |
|         
 | |
|       DOUT << "\t\t\t\tadded new interval: ";
 | |
|       DEBUG(nI.dump());
 | |
|       DOUT << '\n';
 | |
|     }
 | |
|     
 | |
|     
 | |
|     RI = mri_->reg_begin(li.reg);
 | |
|   }
 | |
| 
 | |
|   return added;
 | |
| }
 | |
| 
 | |
| std::vector<LiveInterval*> LiveIntervals::
 | |
| addIntervalsForSpills(const LiveInterval &li,
 | |
|                       SmallVectorImpl<LiveInterval*> &SpillIs,
 | |
|                       const MachineLoopInfo *loopInfo, VirtRegMap &vrm) {
 | |
|   
 | |
|   if (EnableFastSpilling)
 | |
|     return addIntervalsForSpillsFast(li, loopInfo, vrm);
 | |
|   
 | |
|   assert(li.weight != HUGE_VALF &&
 | |
|          "attempt to spill already spilled interval!");
 | |
| 
 | |
|   DOUT << "\t\t\t\tadding intervals for spills for interval: ";
 | |
|   li.print(DOUT, tri_);
 | |
|   DOUT << '\n';
 | |
| 
 | |
|   // Each bit specify whether a spill is required in the MBB.
 | |
|   BitVector SpillMBBs(mf_->getNumBlockIDs());
 | |
|   DenseMap<unsigned, std::vector<SRInfo> > SpillIdxes;
 | |
|   BitVector RestoreMBBs(mf_->getNumBlockIDs());
 | |
|   DenseMap<unsigned, std::vector<SRInfo> > RestoreIdxes;
 | |
|   DenseMap<unsigned,unsigned> MBBVRegsMap;
 | |
|   std::vector<LiveInterval*> NewLIs;
 | |
|   const TargetRegisterClass* rc = mri_->getRegClass(li.reg);
 | |
| 
 | |
|   unsigned NumValNums = li.getNumValNums();
 | |
|   SmallVector<MachineInstr*, 4> ReMatDefs;
 | |
|   ReMatDefs.resize(NumValNums, NULL);
 | |
|   SmallVector<MachineInstr*, 4> ReMatOrigDefs;
 | |
|   ReMatOrigDefs.resize(NumValNums, NULL);
 | |
|   SmallVector<int, 4> ReMatIds;
 | |
|   ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
 | |
|   BitVector ReMatDelete(NumValNums);
 | |
|   unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
 | |
| 
 | |
|   // Spilling a split live interval. It cannot be split any further. Also,
 | |
|   // it's also guaranteed to be a single val# / range interval.
 | |
|   if (vrm.getPreSplitReg(li.reg)) {
 | |
|     vrm.setIsSplitFromReg(li.reg, 0);
 | |
|     // Unset the split kill marker on the last use.
 | |
|     unsigned KillIdx = vrm.getKillPoint(li.reg);
 | |
|     if (KillIdx) {
 | |
|       MachineInstr *KillMI = getInstructionFromIndex(KillIdx);
 | |
|       assert(KillMI && "Last use disappeared?");
 | |
|       int KillOp = KillMI->findRegisterUseOperandIdx(li.reg, true);
 | |
|       assert(KillOp != -1 && "Last use disappeared?");
 | |
|       KillMI->getOperand(KillOp).setIsKill(false);
 | |
|     }
 | |
|     vrm.removeKillPoint(li.reg);
 | |
|     bool DefIsReMat = vrm.isReMaterialized(li.reg);
 | |
|     Slot = vrm.getStackSlot(li.reg);
 | |
|     assert(Slot != VirtRegMap::MAX_STACK_SLOT);
 | |
|     MachineInstr *ReMatDefMI = DefIsReMat ?
 | |
|       vrm.getReMaterializedMI(li.reg) : NULL;
 | |
|     int LdSlot = 0;
 | |
|     bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
 | |
|     bool isLoad = isLoadSS ||
 | |
|       (DefIsReMat && (ReMatDefMI->getDesc().canFoldAsLoad()));
 | |
|     bool IsFirstRange = true;
 | |
|     for (LiveInterval::Ranges::const_iterator
 | |
|            I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
 | |
|       // If this is a split live interval with multiple ranges, it means there
 | |
|       // are two-address instructions that re-defined the value. Only the
 | |
|       // first def can be rematerialized!
 | |
|       if (IsFirstRange) {
 | |
|         // Note ReMatOrigDefMI has already been deleted.
 | |
|         rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
 | |
|                              Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
 | |
|                              false, vrm, rc, ReMatIds, loopInfo,
 | |
|                              SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
 | |
|                              MBBVRegsMap, NewLIs);
 | |
|       } else {
 | |
|         rewriteInstructionsForSpills(li, false, I, NULL, 0,
 | |
|                              Slot, 0, false, false, false,
 | |
|                              false, vrm, rc, ReMatIds, loopInfo,
 | |
|                              SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
 | |
|                              MBBVRegsMap, NewLIs);
 | |
|       }
 | |
|       IsFirstRange = false;
 | |
|     }
 | |
| 
 | |
|     handleSpilledImpDefs(li, vrm, rc, NewLIs);
 | |
|     return NewLIs;
 | |
|   }
 | |
| 
 | |
|   bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li);
 | |
|   if (SplitLimit != -1 && (int)numSplits >= SplitLimit)
 | |
|     TrySplit = false;
 | |
|   if (TrySplit)
 | |
|     ++numSplits;
 | |
|   bool NeedStackSlot = false;
 | |
|   for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
 | |
|        i != e; ++i) {
 | |
|     const VNInfo *VNI = *i;
 | |
|     unsigned VN = VNI->id;
 | |
|     unsigned DefIdx = VNI->def;
 | |
|     if (DefIdx == ~1U)
 | |
|       continue; // Dead val#.
 | |
|     // Is the def for the val# rematerializable?
 | |
|     MachineInstr *ReMatDefMI = (DefIdx == ~0u)
 | |
|       ? 0 : getInstructionFromIndex(DefIdx);
 | |
|     bool dummy;
 | |
|     if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI, SpillIs, dummy)) {
 | |
|       // Remember how to remat the def of this val#.
 | |
|       ReMatOrigDefs[VN] = ReMatDefMI;
 | |
|       // Original def may be modified so we have to make a copy here.
 | |
|       MachineInstr *Clone = mf_->CloneMachineInstr(ReMatDefMI);
 | |
|       ClonedMIs.push_back(Clone);
 | |
|       ReMatDefs[VN] = Clone;
 | |
| 
 | |
|       bool CanDelete = true;
 | |
|       if (VNI->hasPHIKill) {
 | |
|         // A kill is a phi node, not all of its uses can be rematerialized.
 | |
|         // It must not be deleted.
 | |
|         CanDelete = false;
 | |
|         // Need a stack slot if there is any live range where uses cannot be
 | |
|         // rematerialized.
 | |
|         NeedStackSlot = true;
 | |
|       }
 | |
|       if (CanDelete)
 | |
|         ReMatDelete.set(VN);
 | |
|     } else {
 | |
|       // Need a stack slot if there is any live range where uses cannot be
 | |
|       // rematerialized.
 | |
|       NeedStackSlot = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // One stack slot per live interval.
 | |
|   if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0) {
 | |
|     if (vrm.getStackSlot(li.reg) == VirtRegMap::NO_STACK_SLOT)
 | |
|       Slot = vrm.assignVirt2StackSlot(li.reg);
 | |
|     
 | |
|     // This case only occurs when the prealloc splitter has already assigned
 | |
|     // a stack slot to this vreg.
 | |
|     else
 | |
|       Slot = vrm.getStackSlot(li.reg);
 | |
|   }
 | |
| 
 | |
|   // Create new intervals and rewrite defs and uses.
 | |
|   for (LiveInterval::Ranges::const_iterator
 | |
|          I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
 | |
|     MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
 | |
|     MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
 | |
|     bool DefIsReMat = ReMatDefMI != NULL;
 | |
|     bool CanDelete = ReMatDelete[I->valno->id];
 | |
|     int LdSlot = 0;
 | |
|     bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
 | |
|     bool isLoad = isLoadSS ||
 | |
|       (DefIsReMat && ReMatDefMI->getDesc().canFoldAsLoad());
 | |
|     rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
 | |
|                                Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
 | |
|                                CanDelete, vrm, rc, ReMatIds, loopInfo,
 | |
|                                SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
 | |
|                                MBBVRegsMap, NewLIs);
 | |
|   }
 | |
| 
 | |
|   // Insert spills / restores if we are splitting.
 | |
|   if (!TrySplit) {
 | |
|     handleSpilledImpDefs(li, vrm, rc, NewLIs);
 | |
|     return NewLIs;
 | |
|   }
 | |
| 
 | |
|   SmallPtrSet<LiveInterval*, 4> AddedKill;
 | |
|   SmallVector<unsigned, 2> Ops;
 | |
|   if (NeedStackSlot) {
 | |
|     int Id = SpillMBBs.find_first();
 | |
|     while (Id != -1) {
 | |
|       std::vector<SRInfo> &spills = SpillIdxes[Id];
 | |
|       for (unsigned i = 0, e = spills.size(); i != e; ++i) {
 | |
|         int index = spills[i].index;
 | |
|         unsigned VReg = spills[i].vreg;
 | |
|         LiveInterval &nI = getOrCreateInterval(VReg);
 | |
|         bool isReMat = vrm.isReMaterialized(VReg);
 | |
|         MachineInstr *MI = getInstructionFromIndex(index);
 | |
|         bool CanFold = false;
 | |
|         bool FoundUse = false;
 | |
|         Ops.clear();
 | |
|         if (spills[i].canFold) {
 | |
|           CanFold = true;
 | |
|           for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
 | |
|             MachineOperand &MO = MI->getOperand(j);
 | |
|             if (!MO.isReg() || MO.getReg() != VReg)
 | |
|               continue;
 | |
| 
 | |
|             Ops.push_back(j);
 | |
|             if (MO.isDef())
 | |
|               continue;
 | |
|             if (isReMat || 
 | |
|                 (!FoundUse && !alsoFoldARestore(Id, index, VReg,
 | |
|                                                 RestoreMBBs, RestoreIdxes))) {
 | |
|               // MI has two-address uses of the same register. If the use
 | |
|               // isn't the first and only use in the BB, then we can't fold
 | |
|               // it. FIXME: Move this to rewriteInstructionsForSpills.
 | |
|               CanFold = false;
 | |
|               break;
 | |
|             }
 | |
|             FoundUse = true;
 | |
|           }
 | |
|         }
 | |
|         // Fold the store into the def if possible.
 | |
|         bool Folded = false;
 | |
|         if (CanFold && !Ops.empty()) {
 | |
|           if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
 | |
|             Folded = true;
 | |
|             if (FoundUse) {
 | |
|               // Also folded uses, do not issue a load.
 | |
|               eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
 | |
|               nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
 | |
|             }
 | |
|             nI.removeRange(getDefIndex(index), getStoreIndex(index));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Otherwise tell the spiller to issue a spill.
 | |
|         if (!Folded) {
 | |
|           LiveRange *LR = &nI.ranges[nI.ranges.size()-1];
 | |
|           bool isKill = LR->end == getStoreIndex(index);
 | |
|           if (!MI->registerDefIsDead(nI.reg))
 | |
|             // No need to spill a dead def.
 | |
|             vrm.addSpillPoint(VReg, isKill, MI);
 | |
|           if (isKill)
 | |
|             AddedKill.insert(&nI);
 | |
|         }
 | |
|       }
 | |
|       Id = SpillMBBs.find_next(Id);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int Id = RestoreMBBs.find_first();
 | |
|   while (Id != -1) {
 | |
|     std::vector<SRInfo> &restores = RestoreIdxes[Id];
 | |
|     for (unsigned i = 0, e = restores.size(); i != e; ++i) {
 | |
|       int index = restores[i].index;
 | |
|       if (index == -1)
 | |
|         continue;
 | |
|       unsigned VReg = restores[i].vreg;
 | |
|       LiveInterval &nI = getOrCreateInterval(VReg);
 | |
|       bool isReMat = vrm.isReMaterialized(VReg);
 | |
|       MachineInstr *MI = getInstructionFromIndex(index);
 | |
|       bool CanFold = false;
 | |
|       Ops.clear();
 | |
|       if (restores[i].canFold) {
 | |
|         CanFold = true;
 | |
|         for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
 | |
|           MachineOperand &MO = MI->getOperand(j);
 | |
|           if (!MO.isReg() || MO.getReg() != VReg)
 | |
|             continue;
 | |
| 
 | |
|           if (MO.isDef()) {
 | |
|             // If this restore were to be folded, it would have been folded
 | |
|             // already.
 | |
|             CanFold = false;
 | |
|             break;
 | |
|           }
 | |
|           Ops.push_back(j);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Fold the load into the use if possible.
 | |
|       bool Folded = false;
 | |
|       if (CanFold && !Ops.empty()) {
 | |
|         if (!isReMat)
 | |
|           Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
 | |
|         else {
 | |
|           MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
 | |
|           int LdSlot = 0;
 | |
|           bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
 | |
|           // If the rematerializable def is a load, also try to fold it.
 | |
|           if (isLoadSS || ReMatDefMI->getDesc().canFoldAsLoad())
 | |
|             Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
 | |
|                                           Ops, isLoadSS, LdSlot, VReg);
 | |
|           if (!Folded) {
 | |
|             unsigned ImpUse = getReMatImplicitUse(li, ReMatDefMI);
 | |
|             if (ImpUse) {
 | |
|               // Re-matting an instruction with virtual register use. Add the
 | |
|               // register as an implicit use on the use MI and update the register
 | |
|               // interval's spill weight to HUGE_VALF to prevent it from being
 | |
|               // spilled.
 | |
|               LiveInterval &ImpLi = getInterval(ImpUse);
 | |
|               ImpLi.weight = HUGE_VALF;
 | |
|               MI->addOperand(MachineOperand::CreateReg(ImpUse, false, true));
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       // If folding is not possible / failed, then tell the spiller to issue a
 | |
|       // load / rematerialization for us.
 | |
|       if (Folded)
 | |
|         nI.removeRange(getLoadIndex(index), getUseIndex(index)+1);
 | |
|       else
 | |
|         vrm.addRestorePoint(VReg, MI);
 | |
|     }
 | |
|     Id = RestoreMBBs.find_next(Id);
 | |
|   }
 | |
| 
 | |
|   // Finalize intervals: add kills, finalize spill weights, and filter out
 | |
|   // dead intervals.
 | |
|   std::vector<LiveInterval*> RetNewLIs;
 | |
|   for (unsigned i = 0, e = NewLIs.size(); i != e; ++i) {
 | |
|     LiveInterval *LI = NewLIs[i];
 | |
|     if (!LI->empty()) {
 | |
|       LI->weight /= InstrSlots::NUM * getApproximateInstructionCount(*LI);
 | |
|       if (!AddedKill.count(LI)) {
 | |
|         LiveRange *LR = &LI->ranges[LI->ranges.size()-1];
 | |
|         unsigned LastUseIdx = getBaseIndex(LR->end);
 | |
|         MachineInstr *LastUse = getInstructionFromIndex(LastUseIdx);
 | |
|         int UseIdx = LastUse->findRegisterUseOperandIdx(LI->reg, false);
 | |
|         assert(UseIdx != -1);
 | |
|         if (!LastUse->isRegTiedToDefOperand(UseIdx)) {
 | |
|           LastUse->getOperand(UseIdx).setIsKill();
 | |
|           vrm.addKillPoint(LI->reg, LastUseIdx);
 | |
|         }
 | |
|       }
 | |
|       RetNewLIs.push_back(LI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   handleSpilledImpDefs(li, vrm, rc, RetNewLIs);
 | |
|   return RetNewLIs;
 | |
| }
 | |
| 
 | |
| /// hasAllocatableSuperReg - Return true if the specified physical register has
 | |
| /// any super register that's allocatable.
 | |
| bool LiveIntervals::hasAllocatableSuperReg(unsigned Reg) const {
 | |
|   for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS)
 | |
|     if (allocatableRegs_[*AS] && hasInterval(*AS))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getRepresentativeReg - Find the largest super register of the specified
 | |
| /// physical register.
 | |
| unsigned LiveIntervals::getRepresentativeReg(unsigned Reg) const {
 | |
|   // Find the largest super-register that is allocatable. 
 | |
|   unsigned BestReg = Reg;
 | |
|   for (const unsigned* AS = tri_->getSuperRegisters(Reg); *AS; ++AS) {
 | |
|     unsigned SuperReg = *AS;
 | |
|     if (!hasAllocatableSuperReg(SuperReg) && hasInterval(SuperReg)) {
 | |
|       BestReg = SuperReg;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return BestReg;
 | |
| }
 | |
| 
 | |
| /// getNumConflictsWithPhysReg - Return the number of uses and defs of the
 | |
| /// specified interval that conflicts with the specified physical register.
 | |
| unsigned LiveIntervals::getNumConflictsWithPhysReg(const LiveInterval &li,
 | |
|                                                    unsigned PhysReg) const {
 | |
|   unsigned NumConflicts = 0;
 | |
|   const LiveInterval &pli = getInterval(getRepresentativeReg(PhysReg));
 | |
|   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
 | |
|          E = mri_->reg_end(); I != E; ++I) {
 | |
|     MachineOperand &O = I.getOperand();
 | |
|     MachineInstr *MI = O.getParent();
 | |
|     unsigned Index = getInstructionIndex(MI);
 | |
|     if (pli.liveAt(Index))
 | |
|       ++NumConflicts;
 | |
|   }
 | |
|   return NumConflicts;
 | |
| }
 | |
| 
 | |
| /// spillPhysRegAroundRegDefsUses - Spill the specified physical register
 | |
| /// around all defs and uses of the specified interval. Return true if it
 | |
| /// was able to cut its interval.
 | |
| bool LiveIntervals::spillPhysRegAroundRegDefsUses(const LiveInterval &li,
 | |
|                                             unsigned PhysReg, VirtRegMap &vrm) {
 | |
|   unsigned SpillReg = getRepresentativeReg(PhysReg);
 | |
| 
 | |
|   for (const unsigned *AS = tri_->getAliasSet(PhysReg); *AS; ++AS)
 | |
|     // If there are registers which alias PhysReg, but which are not a
 | |
|     // sub-register of the chosen representative super register. Assert
 | |
|     // since we can't handle it yet.
 | |
|     assert(*AS == SpillReg || !allocatableRegs_[*AS] || !hasInterval(*AS) ||
 | |
|            tri_->isSuperRegister(*AS, SpillReg));
 | |
| 
 | |
|   bool Cut = false;
 | |
|   LiveInterval &pli = getInterval(SpillReg);
 | |
|   SmallPtrSet<MachineInstr*, 8> SeenMIs;
 | |
|   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li.reg),
 | |
|          E = mri_->reg_end(); I != E; ++I) {
 | |
|     MachineOperand &O = I.getOperand();
 | |
|     MachineInstr *MI = O.getParent();
 | |
|     if (SeenMIs.count(MI))
 | |
|       continue;
 | |
|     SeenMIs.insert(MI);
 | |
|     unsigned Index = getInstructionIndex(MI);
 | |
|     if (pli.liveAt(Index)) {
 | |
|       vrm.addEmergencySpill(SpillReg, MI);
 | |
|       unsigned StartIdx = getLoadIndex(Index);
 | |
|       unsigned EndIdx = getStoreIndex(Index)+1;
 | |
|       if (pli.isInOneLiveRange(StartIdx, EndIdx)) {
 | |
|         pli.removeRange(StartIdx, EndIdx);
 | |
|         Cut = true;
 | |
|       } else {
 | |
|         cerr << "Ran out of registers during register allocation!\n";
 | |
|         if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
 | |
|           cerr << "Please check your inline asm statement for invalid "
 | |
|                << "constraints:\n";
 | |
|           MI->print(cerr.stream(), tm_);
 | |
|         }
 | |
|         exit(1);
 | |
|       }
 | |
|       for (const unsigned* AS = tri_->getSubRegisters(SpillReg); *AS; ++AS) {
 | |
|         if (!hasInterval(*AS))
 | |
|           continue;
 | |
|         LiveInterval &spli = getInterval(*AS);
 | |
|         if (spli.liveAt(Index))
 | |
|           spli.removeRange(getLoadIndex(Index), getStoreIndex(Index)+1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Cut;
 | |
| }
 | |
| 
 | |
| LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
 | |
|                                                    MachineInstr* startInst) {
 | |
|   LiveInterval& Interval = getOrCreateInterval(reg);
 | |
|   VNInfo* VN = Interval.getNextValue(
 | |
|             getInstructionIndex(startInst) + InstrSlots::DEF,
 | |
|             startInst, getVNInfoAllocator());
 | |
|   VN->hasPHIKill = true;
 | |
|   VN->kills.push_back(getMBBEndIdx(startInst->getParent()));
 | |
|   LiveRange LR(getInstructionIndex(startInst) + InstrSlots::DEF,
 | |
|                getMBBEndIdx(startInst->getParent()) + 1, VN);
 | |
|   Interval.addRange(LR);
 | |
|   
 | |
|   return LR;
 | |
| }
 |