mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	already checked that TmpBB->getSinglePredecessor() is non-null. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94451 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2253 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2253 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs global value numbering to eliminate fully redundant
 | |
| // instructions.  It also performs simple dead load elimination.
 | |
| //
 | |
| // Note that this pass does the value numbering itself; it does not use the
 | |
| // ValueNumbering analysis passes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "gvn"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/PHITransAddr.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumGVNInstr,  "Number of instructions deleted");
 | |
| STATISTIC(NumGVNLoad,   "Number of loads deleted");
 | |
| STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
 | |
| STATISTIC(NumGVNBlocks, "Number of blocks merged");
 | |
| STATISTIC(NumPRELoad,   "Number of loads PRE'd");
 | |
| 
 | |
| static cl::opt<bool> EnablePRE("enable-pre",
 | |
|                                cl::init(true), cl::Hidden);
 | |
| static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         ValueTable Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This class holds the mapping between values and value numbers.  It is used
 | |
| /// as an efficient mechanism to determine the expression-wise equivalence of
 | |
| /// two values.
 | |
| namespace {
 | |
|   struct Expression {
 | |
|     enum ExpressionOpcode { 
 | |
|       ADD = Instruction::Add,
 | |
|       FADD = Instruction::FAdd,
 | |
|       SUB = Instruction::Sub,
 | |
|       FSUB = Instruction::FSub,
 | |
|       MUL = Instruction::Mul,
 | |
|       FMUL = Instruction::FMul,
 | |
|       UDIV = Instruction::UDiv,
 | |
|       SDIV = Instruction::SDiv,
 | |
|       FDIV = Instruction::FDiv,
 | |
|       UREM = Instruction::URem,
 | |
|       SREM = Instruction::SRem,
 | |
|       FREM = Instruction::FRem,
 | |
|       SHL = Instruction::Shl,
 | |
|       LSHR = Instruction::LShr,
 | |
|       ASHR = Instruction::AShr,
 | |
|       AND = Instruction::And,
 | |
|       OR = Instruction::Or,
 | |
|       XOR = Instruction::Xor,
 | |
|       TRUNC = Instruction::Trunc,
 | |
|       ZEXT = Instruction::ZExt,
 | |
|       SEXT = Instruction::SExt,
 | |
|       FPTOUI = Instruction::FPToUI,
 | |
|       FPTOSI = Instruction::FPToSI,
 | |
|       UITOFP = Instruction::UIToFP,
 | |
|       SITOFP = Instruction::SIToFP,
 | |
|       FPTRUNC = Instruction::FPTrunc,
 | |
|       FPEXT = Instruction::FPExt,
 | |
|       PTRTOINT = Instruction::PtrToInt,
 | |
|       INTTOPTR = Instruction::IntToPtr,
 | |
|       BITCAST = Instruction::BitCast,
 | |
|       ICMPEQ, ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
 | |
|       ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
 | |
|       FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
 | |
|       FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
 | |
|       FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
 | |
|       SHUFFLE, SELECT, GEP, CALL, CONSTANT,
 | |
|       INSERTVALUE, EXTRACTVALUE, EMPTY, TOMBSTONE };
 | |
| 
 | |
|     ExpressionOpcode opcode;
 | |
|     const Type* type;
 | |
|     SmallVector<uint32_t, 4> varargs;
 | |
|     Value *function;
 | |
| 
 | |
|     Expression() { }
 | |
|     Expression(ExpressionOpcode o) : opcode(o) { }
 | |
| 
 | |
|     bool operator==(const Expression &other) const {
 | |
|       if (opcode != other.opcode)
 | |
|         return false;
 | |
|       else if (opcode == EMPTY || opcode == TOMBSTONE)
 | |
|         return true;
 | |
|       else if (type != other.type)
 | |
|         return false;
 | |
|       else if (function != other.function)
 | |
|         return false;
 | |
|       else {
 | |
|         if (varargs.size() != other.varargs.size())
 | |
|           return false;
 | |
| 
 | |
|         for (size_t i = 0; i < varargs.size(); ++i)
 | |
|           if (varargs[i] != other.varargs[i])
 | |
|             return false;
 | |
| 
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool operator!=(const Expression &other) const {
 | |
|       return !(*this == other);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   class ValueTable {
 | |
|     private:
 | |
|       DenseMap<Value*, uint32_t> valueNumbering;
 | |
|       DenseMap<Expression, uint32_t> expressionNumbering;
 | |
|       AliasAnalysis* AA;
 | |
|       MemoryDependenceAnalysis* MD;
 | |
|       DominatorTree* DT;
 | |
| 
 | |
|       uint32_t nextValueNumber;
 | |
| 
 | |
|       Expression::ExpressionOpcode getOpcode(CmpInst* C);
 | |
|       Expression create_expression(BinaryOperator* BO);
 | |
|       Expression create_expression(CmpInst* C);
 | |
|       Expression create_expression(ShuffleVectorInst* V);
 | |
|       Expression create_expression(ExtractElementInst* C);
 | |
|       Expression create_expression(InsertElementInst* V);
 | |
|       Expression create_expression(SelectInst* V);
 | |
|       Expression create_expression(CastInst* C);
 | |
|       Expression create_expression(GetElementPtrInst* G);
 | |
|       Expression create_expression(CallInst* C);
 | |
|       Expression create_expression(Constant* C);
 | |
|       Expression create_expression(ExtractValueInst* C);
 | |
|       Expression create_expression(InsertValueInst* C);
 | |
|       
 | |
|       uint32_t lookup_or_add_call(CallInst* C);
 | |
|     public:
 | |
|       ValueTable() : nextValueNumber(1) { }
 | |
|       uint32_t lookup_or_add(Value *V);
 | |
|       uint32_t lookup(Value *V) const;
 | |
|       void add(Value *V, uint32_t num);
 | |
|       void clear();
 | |
|       void erase(Value *v);
 | |
|       unsigned size();
 | |
|       void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
 | |
|       AliasAnalysis *getAliasAnalysis() const { return AA; }
 | |
|       void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
 | |
|       void setDomTree(DominatorTree* D) { DT = D; }
 | |
|       uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
 | |
|       void verifyRemoved(const Value *) const;
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| template <> struct DenseMapInfo<Expression> {
 | |
|   static inline Expression getEmptyKey() {
 | |
|     return Expression(Expression::EMPTY);
 | |
|   }
 | |
| 
 | |
|   static inline Expression getTombstoneKey() {
 | |
|     return Expression(Expression::TOMBSTONE);
 | |
|   }
 | |
| 
 | |
|   static unsigned getHashValue(const Expression e) {
 | |
|     unsigned hash = e.opcode;
 | |
| 
 | |
|     hash = ((unsigned)((uintptr_t)e.type >> 4) ^
 | |
|             (unsigned)((uintptr_t)e.type >> 9));
 | |
| 
 | |
|     for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
 | |
|          E = e.varargs.end(); I != E; ++I)
 | |
|       hash = *I + hash * 37;
 | |
| 
 | |
|     hash = ((unsigned)((uintptr_t)e.function >> 4) ^
 | |
|             (unsigned)((uintptr_t)e.function >> 9)) +
 | |
|            hash * 37;
 | |
| 
 | |
|     return hash;
 | |
|   }
 | |
|   static bool isEqual(const Expression &LHS, const Expression &RHS) {
 | |
|     return LHS == RHS;
 | |
|   }
 | |
| };
 | |
|   
 | |
| template <>
 | |
| struct isPodLike<Expression> { static const bool value = true; };
 | |
| 
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     ValueTable Internal Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
 | |
|   if (isa<ICmpInst>(C)) {
 | |
|     switch (C->getPredicate()) {
 | |
|     default:  // THIS SHOULD NEVER HAPPEN
 | |
|       llvm_unreachable("Comparison with unknown predicate?");
 | |
|     case ICmpInst::ICMP_EQ:  return Expression::ICMPEQ;
 | |
|     case ICmpInst::ICMP_NE:  return Expression::ICMPNE;
 | |
|     case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
 | |
|     case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
 | |
|     case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
 | |
|     case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
 | |
|     case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
 | |
|     case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
 | |
|     case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
 | |
|     case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
 | |
|     }
 | |
|   } else {
 | |
|     switch (C->getPredicate()) {
 | |
|     default: // THIS SHOULD NEVER HAPPEN
 | |
|       llvm_unreachable("Comparison with unknown predicate?");
 | |
|     case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
 | |
|     case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
 | |
|     case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
 | |
|     case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
 | |
|     case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
 | |
|     case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
 | |
|     case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
 | |
|     case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
 | |
|     case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
 | |
|     case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
 | |
|     case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
 | |
|     case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
 | |
|     case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
 | |
|     case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(CallInst* C) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.type = C->getType();
 | |
|   e.function = C->getCalledFunction();
 | |
|   e.opcode = Expression::CALL;
 | |
| 
 | |
|   for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
 | |
|        I != E; ++I)
 | |
|     e.varargs.push_back(lookup_or_add(*I));
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(BinaryOperator* BO) {
 | |
|   Expression e;
 | |
|   e.varargs.push_back(lookup_or_add(BO->getOperand(0)));
 | |
|   e.varargs.push_back(lookup_or_add(BO->getOperand(1)));
 | |
|   e.function = 0;
 | |
|   e.type = BO->getType();
 | |
|   e.opcode = static_cast<Expression::ExpressionOpcode>(BO->getOpcode());
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(CmpInst* C) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(C->getOperand(0)));
 | |
|   e.varargs.push_back(lookup_or_add(C->getOperand(1)));
 | |
|   e.function = 0;
 | |
|   e.type = C->getType();
 | |
|   e.opcode = getOpcode(C);
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(CastInst* C) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(C->getOperand(0)));
 | |
|   e.function = 0;
 | |
|   e.type = C->getType();
 | |
|   e.opcode = static_cast<Expression::ExpressionOpcode>(C->getOpcode());
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(ShuffleVectorInst* S) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(S->getOperand(0)));
 | |
|   e.varargs.push_back(lookup_or_add(S->getOperand(1)));
 | |
|   e.varargs.push_back(lookup_or_add(S->getOperand(2)));
 | |
|   e.function = 0;
 | |
|   e.type = S->getType();
 | |
|   e.opcode = Expression::SHUFFLE;
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(ExtractElementInst* E) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(E->getOperand(0)));
 | |
|   e.varargs.push_back(lookup_or_add(E->getOperand(1)));
 | |
|   e.function = 0;
 | |
|   e.type = E->getType();
 | |
|   e.opcode = Expression::EXTRACT;
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(InsertElementInst* I) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(I->getOperand(0)));
 | |
|   e.varargs.push_back(lookup_or_add(I->getOperand(1)));
 | |
|   e.varargs.push_back(lookup_or_add(I->getOperand(2)));
 | |
|   e.function = 0;
 | |
|   e.type = I->getType();
 | |
|   e.opcode = Expression::INSERT;
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(SelectInst* I) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(I->getCondition()));
 | |
|   e.varargs.push_back(lookup_or_add(I->getTrueValue()));
 | |
|   e.varargs.push_back(lookup_or_add(I->getFalseValue()));
 | |
|   e.function = 0;
 | |
|   e.type = I->getType();
 | |
|   e.opcode = Expression::SELECT;
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(GetElementPtrInst* G) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(G->getPointerOperand()));
 | |
|   e.function = 0;
 | |
|   e.type = G->getType();
 | |
|   e.opcode = Expression::GEP;
 | |
| 
 | |
|   for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
 | |
|        I != E; ++I)
 | |
|     e.varargs.push_back(lookup_or_add(*I));
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(ExtractValueInst* E) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
 | |
|   for (ExtractValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
 | |
|        II != IE; ++II)
 | |
|     e.varargs.push_back(*II);
 | |
|   e.function = 0;
 | |
|   e.type = E->getType();
 | |
|   e.opcode = Expression::EXTRACTVALUE;
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| Expression ValueTable::create_expression(InsertValueInst* E) {
 | |
|   Expression e;
 | |
| 
 | |
|   e.varargs.push_back(lookup_or_add(E->getAggregateOperand()));
 | |
|   e.varargs.push_back(lookup_or_add(E->getInsertedValueOperand()));
 | |
|   for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
 | |
|        II != IE; ++II)
 | |
|     e.varargs.push_back(*II);
 | |
|   e.function = 0;
 | |
|   e.type = E->getType();
 | |
|   e.opcode = Expression::INSERTVALUE;
 | |
| 
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                     ValueTable External Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// add - Insert a value into the table with a specified value number.
 | |
| void ValueTable::add(Value *V, uint32_t num) {
 | |
|   valueNumbering.insert(std::make_pair(V, num));
 | |
| }
 | |
| 
 | |
| uint32_t ValueTable::lookup_or_add_call(CallInst* C) {
 | |
|   if (AA->doesNotAccessMemory(C)) {
 | |
|     Expression exp = create_expression(C);
 | |
|     uint32_t& e = expressionNumbering[exp];
 | |
|     if (!e) e = nextValueNumber++;
 | |
|     valueNumbering[C] = e;
 | |
|     return e;
 | |
|   } else if (AA->onlyReadsMemory(C)) {
 | |
|     Expression exp = create_expression(C);
 | |
|     uint32_t& e = expressionNumbering[exp];
 | |
|     if (!e) {
 | |
|       e = nextValueNumber++;
 | |
|       valueNumbering[C] = e;
 | |
|       return e;
 | |
|     }
 | |
|     if (!MD) {
 | |
|       e = nextValueNumber++;
 | |
|       valueNumbering[C] = e;
 | |
|       return e;
 | |
|     }
 | |
| 
 | |
|     MemDepResult local_dep = MD->getDependency(C);
 | |
| 
 | |
|     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
 | |
|       valueNumbering[C] =  nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
| 
 | |
|     if (local_dep.isDef()) {
 | |
|       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
 | |
| 
 | |
|       if (local_cdep->getNumOperands() != C->getNumOperands()) {
 | |
|         valueNumbering[C] = nextValueNumber;
 | |
|         return nextValueNumber++;
 | |
|       }
 | |
| 
 | |
|       for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | |
|         uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | |
|         uint32_t cd_vn = lookup_or_add(local_cdep->getOperand(i));
 | |
|         if (c_vn != cd_vn) {
 | |
|           valueNumbering[C] = nextValueNumber;
 | |
|           return nextValueNumber++;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       uint32_t v = lookup_or_add(local_cdep);
 | |
|       valueNumbering[C] = v;
 | |
|       return v;
 | |
|     }
 | |
| 
 | |
|     // Non-local case.
 | |
|     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
 | |
|       MD->getNonLocalCallDependency(CallSite(C));
 | |
|     // FIXME: call/call dependencies for readonly calls should return def, not
 | |
|     // clobber!  Move the checking logic to MemDep!
 | |
|     CallInst* cdep = 0;
 | |
| 
 | |
|     // Check to see if we have a single dominating call instruction that is
 | |
|     // identical to C.
 | |
|     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
 | |
|       const NonLocalDepEntry *I = &deps[i];
 | |
|       // Ignore non-local dependencies.
 | |
|       if (I->getResult().isNonLocal())
 | |
|         continue;
 | |
| 
 | |
|       // We don't handle non-depedencies.  If we already have a call, reject
 | |
|       // instruction dependencies.
 | |
|       if (I->getResult().isClobber() || cdep != 0) {
 | |
|         cdep = 0;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
 | |
|       // FIXME: All duplicated with non-local case.
 | |
|       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
 | |
|         cdep = NonLocalDepCall;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       cdep = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (!cdep) {
 | |
|       valueNumbering[C] = nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
| 
 | |
|     if (cdep->getNumOperands() != C->getNumOperands()) {
 | |
|       valueNumbering[C] = nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|     }
 | |
|     for (unsigned i = 1; i < C->getNumOperands(); ++i) {
 | |
|       uint32_t c_vn = lookup_or_add(C->getOperand(i));
 | |
|       uint32_t cd_vn = lookup_or_add(cdep->getOperand(i));
 | |
|       if (c_vn != cd_vn) {
 | |
|         valueNumbering[C] = nextValueNumber;
 | |
|         return nextValueNumber++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     uint32_t v = lookup_or_add(cdep);
 | |
|     valueNumbering[C] = v;
 | |
|     return v;
 | |
| 
 | |
|   } else {
 | |
|     valueNumbering[C] = nextValueNumber;
 | |
|     return nextValueNumber++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// lookup_or_add - Returns the value number for the specified value, assigning
 | |
| /// it a new number if it did not have one before.
 | |
| uint32_t ValueTable::lookup_or_add(Value *V) {
 | |
|   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
 | |
|   if (VI != valueNumbering.end())
 | |
|     return VI->second;
 | |
| 
 | |
|   if (!isa<Instruction>(V)) {
 | |
|     valueNumbering[V] = nextValueNumber;
 | |
|     return nextValueNumber++;
 | |
|   }
 | |
|   
 | |
|   Instruction* I = cast<Instruction>(V);
 | |
|   Expression exp;
 | |
|   switch (I->getOpcode()) {
 | |
|     case Instruction::Call:
 | |
|       return lookup_or_add_call(cast<CallInst>(I));
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or :
 | |
|     case Instruction::Xor:
 | |
|       exp = create_expression(cast<BinaryOperator>(I));
 | |
|       break;
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp:
 | |
|       exp = create_expression(cast<CmpInst>(I));
 | |
|       break;
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::BitCast:
 | |
|       exp = create_expression(cast<CastInst>(I));
 | |
|       break;
 | |
|     case Instruction::Select:
 | |
|       exp = create_expression(cast<SelectInst>(I));
 | |
|       break;
 | |
|     case Instruction::ExtractElement:
 | |
|       exp = create_expression(cast<ExtractElementInst>(I));
 | |
|       break;
 | |
|     case Instruction::InsertElement:
 | |
|       exp = create_expression(cast<InsertElementInst>(I));
 | |
|       break;
 | |
|     case Instruction::ShuffleVector:
 | |
|       exp = create_expression(cast<ShuffleVectorInst>(I));
 | |
|       break;
 | |
|     case Instruction::ExtractValue:
 | |
|       exp = create_expression(cast<ExtractValueInst>(I));
 | |
|       break;
 | |
|     case Instruction::InsertValue:
 | |
|       exp = create_expression(cast<InsertValueInst>(I));
 | |
|       break;      
 | |
|     case Instruction::GetElementPtr:
 | |
|       exp = create_expression(cast<GetElementPtrInst>(I));
 | |
|       break;
 | |
|     default:
 | |
|       valueNumbering[V] = nextValueNumber;
 | |
|       return nextValueNumber++;
 | |
|   }
 | |
| 
 | |
|   uint32_t& e = expressionNumbering[exp];
 | |
|   if (!e) e = nextValueNumber++;
 | |
|   valueNumbering[V] = e;
 | |
|   return e;
 | |
| }
 | |
| 
 | |
| /// lookup - Returns the value number of the specified value. Fails if
 | |
| /// the value has not yet been numbered.
 | |
| uint32_t ValueTable::lookup(Value *V) const {
 | |
|   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
 | |
|   assert(VI != valueNumbering.end() && "Value not numbered?");
 | |
|   return VI->second;
 | |
| }
 | |
| 
 | |
| /// clear - Remove all entries from the ValueTable
 | |
| void ValueTable::clear() {
 | |
|   valueNumbering.clear();
 | |
|   expressionNumbering.clear();
 | |
|   nextValueNumber = 1;
 | |
| }
 | |
| 
 | |
| /// erase - Remove a value from the value numbering
 | |
| void ValueTable::erase(Value *V) {
 | |
|   valueNumbering.erase(V);
 | |
| }
 | |
| 
 | |
| /// verifyRemoved - Verify that the value is removed from all internal data
 | |
| /// structures.
 | |
| void ValueTable::verifyRemoved(const Value *V) const {
 | |
|   for (DenseMap<Value*, uint32_t>::const_iterator
 | |
|          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
 | |
|     assert(I->first != V && "Inst still occurs in value numbering map!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                GVN Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   struct ValueNumberScope {
 | |
|     ValueNumberScope* parent;
 | |
|     DenseMap<uint32_t, Value*> table;
 | |
| 
 | |
|     ValueNumberScope(ValueNumberScope* p) : parent(p) { }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class GVN : public FunctionPass {
 | |
|     bool runOnFunction(Function &F);
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit GVN(bool nopre = false, bool noloads = false)
 | |
|       : FunctionPass(&ID), NoPRE(nopre), NoLoads(noloads), MD(0) { }
 | |
| 
 | |
|   private:
 | |
|     bool NoPRE;
 | |
|     bool NoLoads;
 | |
|     MemoryDependenceAnalysis *MD;
 | |
|     DominatorTree *DT;
 | |
| 
 | |
|     ValueTable VN;
 | |
|     DenseMap<BasicBlock*, ValueNumberScope*> localAvail;
 | |
| 
 | |
|     // This transformation requires dominator postdominator info
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       if (!NoLoads)
 | |
|         AU.addRequired<MemoryDependenceAnalysis>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
| 
 | |
|       AU.addPreserved<DominatorTree>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|     }
 | |
| 
 | |
|     // Helper fuctions
 | |
|     // FIXME: eliminate or document these better
 | |
|     bool processLoad(LoadInst* L,
 | |
|                      SmallVectorImpl<Instruction*> &toErase);
 | |
|     bool processInstruction(Instruction *I,
 | |
|                             SmallVectorImpl<Instruction*> &toErase);
 | |
|     bool processNonLocalLoad(LoadInst* L,
 | |
|                              SmallVectorImpl<Instruction*> &toErase);
 | |
|     bool processBlock(BasicBlock *BB);
 | |
|     void dump(DenseMap<uint32_t, Value*>& d);
 | |
|     bool iterateOnFunction(Function &F);
 | |
|     Value *CollapsePhi(PHINode* p);
 | |
|     bool performPRE(Function& F);
 | |
|     Value *lookupNumber(BasicBlock *BB, uint32_t num);
 | |
|     void cleanupGlobalSets();
 | |
|     void verifyRemoved(const Instruction *I) const;
 | |
|   };
 | |
| 
 | |
|   char GVN::ID = 0;
 | |
| }
 | |
| 
 | |
| // createGVNPass - The public interface to this file...
 | |
| FunctionPass *llvm::createGVNPass(bool NoPRE, bool NoLoads) {
 | |
|   return new GVN(NoPRE, NoLoads);
 | |
| }
 | |
| 
 | |
| static RegisterPass<GVN> X("gvn",
 | |
|                            "Global Value Numbering");
 | |
| 
 | |
| void GVN::dump(DenseMap<uint32_t, Value*>& d) {
 | |
|   errs() << "{\n";
 | |
|   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
 | |
|        E = d.end(); I != E; ++I) {
 | |
|       errs() << I->first << "\n";
 | |
|       I->second->dump();
 | |
|   }
 | |
|   errs() << "}\n";
 | |
| }
 | |
| 
 | |
| static bool isSafeReplacement(PHINode* p, Instruction *inst) {
 | |
|   if (!isa<PHINode>(inst))
 | |
|     return true;
 | |
| 
 | |
|   for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
 | |
|        UI != E; ++UI)
 | |
|     if (PHINode* use_phi = dyn_cast<PHINode>(UI))
 | |
|       if (use_phi->getParent() == inst->getParent())
 | |
|         return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Value *GVN::CollapsePhi(PHINode *PN) {
 | |
|   Value *ConstVal = PN->hasConstantValue(DT);
 | |
|   if (!ConstVal) return 0;
 | |
| 
 | |
|   Instruction *Inst = dyn_cast<Instruction>(ConstVal);
 | |
|   if (!Inst)
 | |
|     return ConstVal;
 | |
| 
 | |
|   if (DT->dominates(Inst, PN))
 | |
|     if (isSafeReplacement(PN, Inst))
 | |
|       return Inst;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// IsValueFullyAvailableInBlock - Return true if we can prove that the value
 | |
| /// we're analyzing is fully available in the specified block.  As we go, keep
 | |
| /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
 | |
| /// map is actually a tri-state map with the following values:
 | |
| ///   0) we know the block *is not* fully available.
 | |
| ///   1) we know the block *is* fully available.
 | |
| ///   2) we do not know whether the block is fully available or not, but we are
 | |
| ///      currently speculating that it will be.
 | |
| ///   3) we are speculating for this block and have used that to speculate for
 | |
| ///      other blocks.
 | |
| static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
 | |
|                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks) {
 | |
|   // Optimistically assume that the block is fully available and check to see
 | |
|   // if we already know about this block in one lookup.
 | |
|   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
 | |
|     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
 | |
| 
 | |
|   // If the entry already existed for this block, return the precomputed value.
 | |
|   if (!IV.second) {
 | |
|     // If this is a speculative "available" value, mark it as being used for
 | |
|     // speculation of other blocks.
 | |
|     if (IV.first->second == 2)
 | |
|       IV.first->second = 3;
 | |
|     return IV.first->second != 0;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, see if it is fully available in all predecessors.
 | |
|   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
 | |
| 
 | |
|   // If this block has no predecessors, it isn't live-in here.
 | |
|   if (PI == PE)
 | |
|     goto SpeculationFailure;
 | |
| 
 | |
|   for (; PI != PE; ++PI)
 | |
|     // If the value isn't fully available in one of our predecessors, then it
 | |
|     // isn't fully available in this block either.  Undo our previous
 | |
|     // optimistic assumption and bail out.
 | |
|     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
 | |
|       goto SpeculationFailure;
 | |
| 
 | |
|   return true;
 | |
| 
 | |
| // SpeculationFailure - If we get here, we found out that this is not, after
 | |
| // all, a fully-available block.  We have a problem if we speculated on this and
 | |
| // used the speculation to mark other blocks as available.
 | |
| SpeculationFailure:
 | |
|   char &BBVal = FullyAvailableBlocks[BB];
 | |
| 
 | |
|   // If we didn't speculate on this, just return with it set to false.
 | |
|   if (BBVal == 2) {
 | |
|     BBVal = 0;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If we did speculate on this value, we could have blocks set to 1 that are
 | |
|   // incorrect.  Walk the (transitive) successors of this block and mark them as
 | |
|   // 0 if set to one.
 | |
|   SmallVector<BasicBlock*, 32> BBWorklist;
 | |
|   BBWorklist.push_back(BB);
 | |
| 
 | |
|   do {
 | |
|     BasicBlock *Entry = BBWorklist.pop_back_val();
 | |
|     // Note that this sets blocks to 0 (unavailable) if they happen to not
 | |
|     // already be in FullyAvailableBlocks.  This is safe.
 | |
|     char &EntryVal = FullyAvailableBlocks[Entry];
 | |
|     if (EntryVal == 0) continue;  // Already unavailable.
 | |
| 
 | |
|     // Mark as unavailable.
 | |
|     EntryVal = 0;
 | |
| 
 | |
|     for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I)
 | |
|       BBWorklist.push_back(*I);
 | |
|   } while (!BBWorklist.empty());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CanCoerceMustAliasedValueToLoad - Return true if
 | |
| /// CoerceAvailableValueToLoadType will succeed.
 | |
| static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
 | |
|                                             const Type *LoadTy,
 | |
|                                             const TargetData &TD) {
 | |
|   // If the loaded or stored value is an first class array or struct, don't try
 | |
|   // to transform them.  We need to be able to bitcast to integer.
 | |
|   if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy) ||
 | |
|       isa<StructType>(StoredVal->getType()) ||
 | |
|       isa<ArrayType>(StoredVal->getType()))
 | |
|     return false;
 | |
|   
 | |
|   // The store has to be at least as big as the load.
 | |
|   if (TD.getTypeSizeInBits(StoredVal->getType()) <
 | |
|         TD.getTypeSizeInBits(LoadTy))
 | |
|     return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
|   
 | |
| 
 | |
| /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and
 | |
| /// then a load from a must-aliased pointer of a different type, try to coerce
 | |
| /// the stored value.  LoadedTy is the type of the load we want to replace and
 | |
| /// InsertPt is the place to insert new instructions.
 | |
| ///
 | |
| /// If we can't do it, return null.
 | |
| static Value *CoerceAvailableValueToLoadType(Value *StoredVal, 
 | |
|                                              const Type *LoadedTy,
 | |
|                                              Instruction *InsertPt,
 | |
|                                              const TargetData &TD) {
 | |
|   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD))
 | |
|     return 0;
 | |
|   
 | |
|   const Type *StoredValTy = StoredVal->getType();
 | |
|   
 | |
|   uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy);
 | |
|   uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy);
 | |
|   
 | |
|   // If the store and reload are the same size, we can always reuse it.
 | |
|   if (StoreSize == LoadSize) {
 | |
|     if (isa<PointerType>(StoredValTy) && isa<PointerType>(LoadedTy)) {
 | |
|       // Pointer to Pointer -> use bitcast.
 | |
|       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
 | |
|     }
 | |
|     
 | |
|     // Convert source pointers to integers, which can be bitcast.
 | |
|     if (isa<PointerType>(StoredValTy)) {
 | |
|       StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
 | |
|       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | |
|     }
 | |
|     
 | |
|     const Type *TypeToCastTo = LoadedTy;
 | |
|     if (isa<PointerType>(TypeToCastTo))
 | |
|       TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext());
 | |
|     
 | |
|     if (StoredValTy != TypeToCastTo)
 | |
|       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
 | |
|     
 | |
|     // Cast to pointer if the load needs a pointer type.
 | |
|     if (isa<PointerType>(LoadedTy))
 | |
|       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
 | |
|     
 | |
|     return StoredVal;
 | |
|   }
 | |
|   
 | |
|   // If the loaded value is smaller than the available value, then we can
 | |
|   // extract out a piece from it.  If the available value is too small, then we
 | |
|   // can't do anything.
 | |
|   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
 | |
|   
 | |
|   // Convert source pointers to integers, which can be manipulated.
 | |
|   if (isa<PointerType>(StoredValTy)) {
 | |
|     StoredValTy = TD.getIntPtrType(StoredValTy->getContext());
 | |
|     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
 | |
|   }
 | |
|   
 | |
|   // Convert vectors and fp to integer, which can be manipulated.
 | |
|   if (!isa<IntegerType>(StoredValTy)) {
 | |
|     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
 | |
|     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
 | |
|   }
 | |
|   
 | |
|   // If this is a big-endian system, we need to shift the value down to the low
 | |
|   // bits so that a truncate will work.
 | |
|   if (TD.isBigEndian()) {
 | |
|     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
 | |
|     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
 | |
|   }
 | |
|   
 | |
|   // Truncate the integer to the right size now.
 | |
|   const Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
 | |
|   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
 | |
|   
 | |
|   if (LoadedTy == NewIntTy)
 | |
|     return StoredVal;
 | |
|   
 | |
|   // If the result is a pointer, inttoptr.
 | |
|   if (isa<PointerType>(LoadedTy))
 | |
|     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
 | |
|   
 | |
|   // Otherwise, bitcast.
 | |
|   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
 | |
| }
 | |
| 
 | |
| /// GetBaseWithConstantOffset - Analyze the specified pointer to see if it can
 | |
| /// be expressed as a base pointer plus a constant offset.  Return the base and
 | |
| /// offset to the caller.
 | |
| static Value *GetBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
 | |
|                                         const TargetData &TD) {
 | |
|   Operator *PtrOp = dyn_cast<Operator>(Ptr);
 | |
|   if (PtrOp == 0) return Ptr;
 | |
|   
 | |
|   // Just look through bitcasts.
 | |
|   if (PtrOp->getOpcode() == Instruction::BitCast)
 | |
|     return GetBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
 | |
|   
 | |
|   // If this is a GEP with constant indices, we can look through it.
 | |
|   GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
 | |
|   if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
 | |
|   
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
 | |
|        ++I, ++GTI) {
 | |
|     ConstantInt *OpC = cast<ConstantInt>(*I);
 | |
|     if (OpC->isZero()) continue;
 | |
|     
 | |
|     // Handle a struct and array indices which add their offset to the pointer.
 | |
|     if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | |
|     } else {
 | |
|       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|       Offset += OpC->getSExtValue()*Size;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Re-sign extend from the pointer size if needed to get overflow edge cases
 | |
|   // right.
 | |
|   unsigned PtrSize = TD.getPointerSizeInBits();
 | |
|   if (PtrSize < 64)
 | |
|     Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
 | |
|   
 | |
|   return GetBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AnalyzeLoadFromClobberingWrite - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering memory write (store,
 | |
| /// memset, memcpy, memmove).  This means that the write *may* provide bits used
 | |
| /// by the load but we can't be sure because the pointers don't mustalias.
 | |
| ///
 | |
| /// Check this case to see if there is anything more we can do before we give
 | |
| /// up.  This returns -1 if we have to give up, or a byte number in the stored
 | |
| /// value of the piece that feeds the load.
 | |
| static int AnalyzeLoadFromClobberingWrite(const Type *LoadTy, Value *LoadPtr,
 | |
|                                           Value *WritePtr,
 | |
|                                           uint64_t WriteSizeInBits,
 | |
|                                           const TargetData &TD) {
 | |
|   // If the loaded or stored value is an first class array or struct, don't try
 | |
|   // to transform them.  We need to be able to bitcast to integer.
 | |
|   if (isa<StructType>(LoadTy) || isa<ArrayType>(LoadTy))
 | |
|     return -1;
 | |
|   
 | |
|   int64_t StoreOffset = 0, LoadOffset = 0;
 | |
|   Value *StoreBase = GetBaseWithConstantOffset(WritePtr, StoreOffset, TD);
 | |
|   Value *LoadBase = 
 | |
|     GetBaseWithConstantOffset(LoadPtr, LoadOffset, TD);
 | |
|   if (StoreBase != LoadBase)
 | |
|     return -1;
 | |
|   
 | |
|   // If the load and store are to the exact same address, they should have been
 | |
|   // a must alias.  AA must have gotten confused.
 | |
|   // FIXME: Study to see if/when this happens.
 | |
|   if (LoadOffset == StoreOffset) {
 | |
| #if 0
 | |
|     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
 | |
|     << "Base       = " << *StoreBase << "\n"
 | |
|     << "Store Ptr  = " << *WritePtr << "\n"
 | |
|     << "Store Offs = " << StoreOffset << "\n"
 | |
|     << "Load Ptr   = " << *LoadPtr << "\n";
 | |
|     abort();
 | |
| #endif
 | |
|     return -1;
 | |
|   }
 | |
|   
 | |
|   // If the load and store don't overlap at all, the store doesn't provide
 | |
|   // anything to the load.  In this case, they really don't alias at all, AA
 | |
|   // must have gotten confused.
 | |
|   // FIXME: Investigate cases where this bails out, e.g. rdar://7238614. Then
 | |
|   // remove this check, as it is duplicated with what we have below.
 | |
|   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy);
 | |
|   
 | |
|   if ((WriteSizeInBits & 7) | (LoadSize & 7))
 | |
|     return -1;
 | |
|   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
 | |
|   LoadSize >>= 3;
 | |
|   
 | |
|   
 | |
|   bool isAAFailure = false;
 | |
|   if (StoreOffset < LoadOffset) {
 | |
|     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
 | |
|   } else {
 | |
|     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
 | |
|   }
 | |
|   if (isAAFailure) {
 | |
| #if 0
 | |
|     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
 | |
|     << "Base       = " << *StoreBase << "\n"
 | |
|     << "Store Ptr  = " << *WritePtr << "\n"
 | |
|     << "Store Offs = " << StoreOffset << "\n"
 | |
|     << "Load Ptr   = " << *LoadPtr << "\n";
 | |
|     abort();
 | |
| #endif
 | |
|     return -1;
 | |
|   }
 | |
|   
 | |
|   // If the Load isn't completely contained within the stored bits, we don't
 | |
|   // have all the bits to feed it.  We could do something crazy in the future
 | |
|   // (issue a smaller load then merge the bits in) but this seems unlikely to be
 | |
|   // valuable.
 | |
|   if (StoreOffset > LoadOffset ||
 | |
|       StoreOffset+StoreSize < LoadOffset+LoadSize)
 | |
|     return -1;
 | |
|   
 | |
|   // Okay, we can do this transformation.  Return the number of bytes into the
 | |
|   // store that the load is.
 | |
|   return LoadOffset-StoreOffset;
 | |
| }  
 | |
| 
 | |
| /// AnalyzeLoadFromClobberingStore - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering store.
 | |
| static int AnalyzeLoadFromClobberingStore(const Type *LoadTy, Value *LoadPtr,
 | |
|                                           StoreInst *DepSI,
 | |
|                                           const TargetData &TD) {
 | |
|   // Cannot handle reading from store of first-class aggregate yet.
 | |
|   if (isa<StructType>(DepSI->getOperand(0)->getType()) ||
 | |
|       isa<ArrayType>(DepSI->getOperand(0)->getType()))
 | |
|     return -1;
 | |
| 
 | |
|   Value *StorePtr = DepSI->getPointerOperand();
 | |
|   uint64_t StoreSize = TD.getTypeSizeInBits(DepSI->getOperand(0)->getType());
 | |
|   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
 | |
|                                         StorePtr, StoreSize, TD);
 | |
| }
 | |
| 
 | |
| static int AnalyzeLoadFromClobberingMemInst(const Type *LoadTy, Value *LoadPtr,
 | |
|                                             MemIntrinsic *MI,
 | |
|                                             const TargetData &TD) {
 | |
|   // If the mem operation is a non-constant size, we can't handle it.
 | |
|   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   if (SizeCst == 0) return -1;
 | |
|   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
 | |
| 
 | |
|   // If this is memset, we just need to see if the offset is valid in the size
 | |
|   // of the memset..
 | |
|   if (MI->getIntrinsicID() == Intrinsic::memset)
 | |
|     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
 | |
|                                           MemSizeInBits, TD);
 | |
|   
 | |
|   // If we have a memcpy/memmove, the only case we can handle is if this is a
 | |
|   // copy from constant memory.  In that case, we can read directly from the
 | |
|   // constant memory.
 | |
|   MemTransferInst *MTI = cast<MemTransferInst>(MI);
 | |
|   
 | |
|   Constant *Src = dyn_cast<Constant>(MTI->getSource());
 | |
|   if (Src == 0) return -1;
 | |
|   
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(Src->getUnderlyingObject());
 | |
|   if (GV == 0 || !GV->isConstant()) return -1;
 | |
|   
 | |
|   // See if the access is within the bounds of the transfer.
 | |
|   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
 | |
|                                               MI->getDest(), MemSizeInBits, TD);
 | |
|   if (Offset == -1)
 | |
|     return Offset;
 | |
|   
 | |
|   // Otherwise, see if we can constant fold a load from the constant with the
 | |
|   // offset applied as appropriate.
 | |
|   Src = ConstantExpr::getBitCast(Src,
 | |
|                                  llvm::Type::getInt8PtrTy(Src->getContext()));
 | |
|   Constant *OffsetCst = 
 | |
|     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | |
|   Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
 | |
|   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
 | |
|   if (ConstantFoldLoadFromConstPtr(Src, &TD))
 | |
|     return Offset;
 | |
|   return -1;
 | |
| }
 | |
|                                             
 | |
| 
 | |
| /// GetStoreValueForLoad - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering store.  This means
 | |
| /// that the store *may* provide bits used by the load but we can't be sure
 | |
| /// because the pointers don't mustalias.  Check this case to see if there is
 | |
| /// anything more we can do before we give up.
 | |
| static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
 | |
|                                    const Type *LoadTy,
 | |
|                                    Instruction *InsertPt, const TargetData &TD){
 | |
|   LLVMContext &Ctx = SrcVal->getType()->getContext();
 | |
|   
 | |
|   uint64_t StoreSize = TD.getTypeSizeInBits(SrcVal->getType())/8;
 | |
|   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
 | |
|   
 | |
|   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 | |
|   
 | |
|   // Compute which bits of the stored value are being used by the load.  Convert
 | |
|   // to an integer type to start with.
 | |
|   if (isa<PointerType>(SrcVal->getType()))
 | |
|     SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx), "tmp");
 | |
|   if (!isa<IntegerType>(SrcVal->getType()))
 | |
|     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8),
 | |
|                                    "tmp");
 | |
|   
 | |
|   // Shift the bits to the least significant depending on endianness.
 | |
|   unsigned ShiftAmt;
 | |
|   if (TD.isLittleEndian())
 | |
|     ShiftAmt = Offset*8;
 | |
|   else
 | |
|     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
 | |
|   
 | |
|   if (ShiftAmt)
 | |
|     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt, "tmp");
 | |
|   
 | |
|   if (LoadSize != StoreSize)
 | |
|     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8),
 | |
|                                  "tmp");
 | |
|   
 | |
|   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD);
 | |
| }
 | |
| 
 | |
| /// GetMemInstValueForLoad - This function is called when we have a
 | |
| /// memdep query of a load that ends up being a clobbering mem intrinsic.
 | |
| static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
 | |
|                                      const Type *LoadTy, Instruction *InsertPt,
 | |
|                                      const TargetData &TD){
 | |
|   LLVMContext &Ctx = LoadTy->getContext();
 | |
|   uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8;
 | |
| 
 | |
|   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
 | |
|   
 | |
|   // We know that this method is only called when the mem transfer fully
 | |
|   // provides the bits for the load.
 | |
|   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
 | |
|     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
 | |
|     // independently of what the offset is.
 | |
|     Value *Val = MSI->getValue();
 | |
|     if (LoadSize != 1)
 | |
|       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
 | |
|     
 | |
|     Value *OneElt = Val;
 | |
|     
 | |
|     // Splat the value out to the right number of bits.
 | |
|     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
 | |
|       // If we can double the number of bytes set, do it.
 | |
|       if (NumBytesSet*2 <= LoadSize) {
 | |
|         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
 | |
|         Val = Builder.CreateOr(Val, ShVal);
 | |
|         NumBytesSet <<= 1;
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // Otherwise insert one byte at a time.
 | |
|       Value *ShVal = Builder.CreateShl(Val, 1*8);
 | |
|       Val = Builder.CreateOr(OneElt, ShVal);
 | |
|       ++NumBytesSet;
 | |
|     }
 | |
|     
 | |
|     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD);
 | |
|   }
 | |
|  
 | |
|   // Otherwise, this is a memcpy/memmove from a constant global.
 | |
|   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
 | |
|   Constant *Src = cast<Constant>(MTI->getSource());
 | |
| 
 | |
|   // Otherwise, see if we can constant fold a load from the constant with the
 | |
|   // offset applied as appropriate.
 | |
|   Src = ConstantExpr::getBitCast(Src,
 | |
|                                  llvm::Type::getInt8PtrTy(Src->getContext()));
 | |
|   Constant *OffsetCst = 
 | |
|   ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
 | |
|   Src = ConstantExpr::getGetElementPtr(Src, &OffsetCst, 1);
 | |
|   Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy));
 | |
|   return ConstantFoldLoadFromConstPtr(Src, &TD);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| struct AvailableValueInBlock {
 | |
|   /// BB - The basic block in question.
 | |
|   BasicBlock *BB;
 | |
|   enum ValType {
 | |
|     SimpleVal,  // A simple offsetted value that is accessed.
 | |
|     MemIntrin   // A memory intrinsic which is loaded from.
 | |
|   };
 | |
|   
 | |
|   /// V - The value that is live out of the block.
 | |
|   PointerIntPair<Value *, 1, ValType> Val;
 | |
|   
 | |
|   /// Offset - The byte offset in Val that is interesting for the load query.
 | |
|   unsigned Offset;
 | |
|   
 | |
|   static AvailableValueInBlock get(BasicBlock *BB, Value *V,
 | |
|                                    unsigned Offset = 0) {
 | |
|     AvailableValueInBlock Res;
 | |
|     Res.BB = BB;
 | |
|     Res.Val.setPointer(V);
 | |
|     Res.Val.setInt(SimpleVal);
 | |
|     Res.Offset = Offset;
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
 | |
|                                      unsigned Offset = 0) {
 | |
|     AvailableValueInBlock Res;
 | |
|     Res.BB = BB;
 | |
|     Res.Val.setPointer(MI);
 | |
|     Res.Val.setInt(MemIntrin);
 | |
|     Res.Offset = Offset;
 | |
|     return Res;
 | |
|   }
 | |
|   
 | |
|   bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
 | |
|   Value *getSimpleValue() const {
 | |
|     assert(isSimpleValue() && "Wrong accessor");
 | |
|     return Val.getPointer();
 | |
|   }
 | |
|   
 | |
|   MemIntrinsic *getMemIntrinValue() const {
 | |
|     assert(!isSimpleValue() && "Wrong accessor");
 | |
|     return cast<MemIntrinsic>(Val.getPointer());
 | |
|   }
 | |
|   
 | |
|   /// MaterializeAdjustedValue - Emit code into this block to adjust the value
 | |
|   /// defined here to the specified type.  This handles various coercion cases.
 | |
|   Value *MaterializeAdjustedValue(const Type *LoadTy,
 | |
|                                   const TargetData *TD) const {
 | |
|     Value *Res;
 | |
|     if (isSimpleValue()) {
 | |
|       Res = getSimpleValue();
 | |
|       if (Res->getType() != LoadTy) {
 | |
|         assert(TD && "Need target data to handle type mismatch case");
 | |
|         Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(),
 | |
|                                    *TD);
 | |
|         
 | |
|         DEBUG(errs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
 | |
|                      << *getSimpleValue() << '\n'
 | |
|                      << *Res << '\n' << "\n\n\n");
 | |
|       }
 | |
|     } else {
 | |
|       Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset,
 | |
|                                    LoadTy, BB->getTerminator(), *TD);
 | |
|       DEBUG(errs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
 | |
|                    << "  " << *getMemIntrinValue() << '\n'
 | |
|                    << *Res << '\n' << "\n\n\n");
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock,
 | |
| /// construct SSA form, allowing us to eliminate LI.  This returns the value
 | |
| /// that should be used at LI's definition site.
 | |
| static Value *ConstructSSAForLoadSet(LoadInst *LI, 
 | |
|                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
 | |
|                                      const TargetData *TD,
 | |
|                                      const DominatorTree &DT,
 | |
|                                      AliasAnalysis *AA) {
 | |
|   // Check for the fully redundant, dominating load case.  In this case, we can
 | |
|   // just use the dominating value directly.
 | |
|   if (ValuesPerBlock.size() == 1 && 
 | |
|       DT.properlyDominates(ValuesPerBlock[0].BB, LI->getParent()))
 | |
|     return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), TD);
 | |
| 
 | |
|   // Otherwise, we have to construct SSA form.
 | |
|   SmallVector<PHINode*, 8> NewPHIs;
 | |
|   SSAUpdater SSAUpdate(&NewPHIs);
 | |
|   SSAUpdate.Initialize(LI);
 | |
|   
 | |
|   const Type *LoadTy = LI->getType();
 | |
|   
 | |
|   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
 | |
|     const AvailableValueInBlock &AV = ValuesPerBlock[i];
 | |
|     BasicBlock *BB = AV.BB;
 | |
|     
 | |
|     if (SSAUpdate.HasValueForBlock(BB))
 | |
|       continue;
 | |
| 
 | |
|     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, TD));
 | |
|   }
 | |
|   
 | |
|   // Perform PHI construction.
 | |
|   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
 | |
|   
 | |
|   // If new PHI nodes were created, notify alias analysis.
 | |
|   if (isa<PointerType>(V->getType()))
 | |
|     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
 | |
|       AA->copyValue(LI, NewPHIs[i]);
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| static bool isLifetimeStart(Instruction *Inst) {
 | |
|   if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
 | |
|     return II->getIntrinsicID() == Intrinsic::lifetime_start;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
 | |
| /// non-local by performing PHI construction.
 | |
| bool GVN::processNonLocalLoad(LoadInst *LI,
 | |
|                               SmallVectorImpl<Instruction*> &toErase) {
 | |
|   // Find the non-local dependencies of the load.
 | |
|   SmallVector<NonLocalDepResult, 64> Deps;
 | |
|   MD->getNonLocalPointerDependency(LI->getOperand(0), true, LI->getParent(),
 | |
|                                    Deps);
 | |
|   //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: "
 | |
|   //             << Deps.size() << *LI << '\n');
 | |
| 
 | |
|   // If we had to process more than one hundred blocks to find the
 | |
|   // dependencies, this load isn't worth worrying about.  Optimizing
 | |
|   // it will be too expensive.
 | |
|   if (Deps.size() > 100)
 | |
|     return false;
 | |
| 
 | |
|   // If we had a phi translation failure, we'll have a single entry which is a
 | |
|   // clobber in the current block.  Reject this early.
 | |
|   if (Deps.size() == 1 && Deps[0].getResult().isClobber()) {
 | |
|     DEBUG(
 | |
|       dbgs() << "GVN: non-local load ";
 | |
|       WriteAsOperand(dbgs(), LI);
 | |
|       dbgs() << " is clobbered by " << *Deps[0].getResult().getInst() << '\n';
 | |
|     );
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Filter out useless results (non-locals, etc).  Keep track of the blocks
 | |
|   // where we have a value available in repl, also keep track of whether we see
 | |
|   // dependencies that produce an unknown value for the load (such as a call
 | |
|   // that could potentially clobber the load).
 | |
|   SmallVector<AvailableValueInBlock, 16> ValuesPerBlock;
 | |
|   SmallVector<BasicBlock*, 16> UnavailableBlocks;
 | |
| 
 | |
|   const TargetData *TD = 0;
 | |
|   
 | |
|   for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
 | |
|     BasicBlock *DepBB = Deps[i].getBB();
 | |
|     MemDepResult DepInfo = Deps[i].getResult();
 | |
| 
 | |
|     if (DepInfo.isClobber()) {
 | |
|       // The address being loaded in this non-local block may not be the same as
 | |
|       // the pointer operand of the load if PHI translation occurs.  Make sure
 | |
|       // to consider the right address.
 | |
|       Value *Address = Deps[i].getAddress();
 | |
|       
 | |
|       // If the dependence is to a store that writes to a superset of the bits
 | |
|       // read by the load, we can extract the bits we need for the load from the
 | |
|       // stored value.
 | |
|       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
 | |
|         if (TD == 0)
 | |
|           TD = getAnalysisIfAvailable<TargetData>();
 | |
|         if (TD && Address) {
 | |
|           int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address,
 | |
|                                                       DepSI, *TD);
 | |
|           if (Offset != -1) {
 | |
|             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | |
|                                                            DepSI->getOperand(0),
 | |
|                                                                 Offset));
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the clobbering value is a memset/memcpy/memmove, see if we can
 | |
|       // forward a value on from it.
 | |
|       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
 | |
|         if (TD == 0)
 | |
|           TD = getAnalysisIfAvailable<TargetData>();
 | |
|         if (TD && Address) {
 | |
|           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
 | |
|                                                         DepMI, *TD);
 | |
|           if (Offset != -1) {
 | |
|             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
 | |
|                                                                   Offset));
 | |
|             continue;
 | |
|           }            
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       UnavailableBlocks.push_back(DepBB);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Instruction *DepInst = DepInfo.getInst();
 | |
| 
 | |
|     // Loading the allocation -> undef.
 | |
|     if (isa<AllocaInst>(DepInst) || isMalloc(DepInst) ||
 | |
|         // Loading immediately after lifetime begin -> undef.
 | |
|         isLifetimeStart(DepInst)) {
 | |
|       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | |
|                                              UndefValue::get(LI->getType())));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
 | |
|       // Reject loads and stores that are to the same address but are of
 | |
|       // different types if we have to.
 | |
|       if (S->getOperand(0)->getType() != LI->getType()) {
 | |
|         if (TD == 0)
 | |
|           TD = getAnalysisIfAvailable<TargetData>();
 | |
|         
 | |
|         // If the stored value is larger or equal to the loaded value, we can
 | |
|         // reuse it.
 | |
|         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getOperand(0),
 | |
|                                                         LI->getType(), *TD)) {
 | |
|           UnavailableBlocks.push_back(DepBB);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
 | |
|                                                           S->getOperand(0)));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
 | |
|       // If the types mismatch and we can't handle it, reject reuse of the load.
 | |
|       if (LD->getType() != LI->getType()) {
 | |
|         if (TD == 0)
 | |
|           TD = getAnalysisIfAvailable<TargetData>();
 | |
|         
 | |
|         // If the stored value is larger or equal to the loaded value, we can
 | |
|         // reuse it.
 | |
|         if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){
 | |
|           UnavailableBlocks.push_back(DepBB);
 | |
|           continue;
 | |
|         }          
 | |
|       }
 | |
|       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, LD));
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     UnavailableBlocks.push_back(DepBB);
 | |
|     continue;
 | |
|   }
 | |
| 
 | |
|   // If we have no predecessors that produce a known value for this load, exit
 | |
|   // early.
 | |
|   if (ValuesPerBlock.empty()) return false;
 | |
| 
 | |
|   // If all of the instructions we depend on produce a known value for this
 | |
|   // load, then it is fully redundant and we can use PHI insertion to compute
 | |
|   // its value.  Insert PHIs and remove the fully redundant value now.
 | |
|   if (UnavailableBlocks.empty()) {
 | |
|     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
 | |
|     
 | |
|     // Perform PHI construction.
 | |
|     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
 | |
|                                       VN.getAliasAnalysis());
 | |
|     LI->replaceAllUsesWith(V);
 | |
| 
 | |
|     if (isa<PHINode>(V))
 | |
|       V->takeName(LI);
 | |
|     if (isa<PointerType>(V->getType()))
 | |
|       MD->invalidateCachedPointerInfo(V);
 | |
|     toErase.push_back(LI);
 | |
|     NumGVNLoad++;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!EnablePRE || !EnableLoadPRE)
 | |
|     return false;
 | |
| 
 | |
|   // Okay, we have *some* definitions of the value.  This means that the value
 | |
|   // is available in some of our (transitive) predecessors.  Lets think about
 | |
|   // doing PRE of this load.  This will involve inserting a new load into the
 | |
|   // predecessor when it's not available.  We could do this in general, but
 | |
|   // prefer to not increase code size.  As such, we only do this when we know
 | |
|   // that we only have to insert *one* load (which means we're basically moving
 | |
|   // the load, not inserting a new one).
 | |
| 
 | |
|   SmallPtrSet<BasicBlock *, 4> Blockers;
 | |
|   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | |
|     Blockers.insert(UnavailableBlocks[i]);
 | |
| 
 | |
|   // Lets find first basic block with more than one predecessor.  Walk backwards
 | |
|   // through predecessors if needed.
 | |
|   BasicBlock *LoadBB = LI->getParent();
 | |
|   BasicBlock *TmpBB = LoadBB;
 | |
| 
 | |
|   bool isSinglePred = false;
 | |
|   bool allSingleSucc = true;
 | |
|   while (TmpBB->getSinglePredecessor()) {
 | |
|     isSinglePred = true;
 | |
|     TmpBB = TmpBB->getSinglePredecessor();
 | |
|     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
 | |
|       return false;
 | |
|     if (Blockers.count(TmpBB))
 | |
|       return false;
 | |
|     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
 | |
|       allSingleSucc = false;
 | |
|   }
 | |
| 
 | |
|   assert(TmpBB);
 | |
|   LoadBB = TmpBB;
 | |
| 
 | |
|   // If we have a repl set with LI itself in it, this means we have a loop where
 | |
|   // at least one of the values is LI.  Since this means that we won't be able
 | |
|   // to eliminate LI even if we insert uses in the other predecessors, we will
 | |
|   // end up increasing code size.  Reject this by scanning for LI.
 | |
|   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | |
|     if (ValuesPerBlock[i].isSimpleValue() &&
 | |
|         ValuesPerBlock[i].getSimpleValue() == LI)
 | |
|       return false;
 | |
| 
 | |
|   // FIXME: It is extremely unclear what this loop is doing, other than
 | |
|   // artificially restricting loadpre.
 | |
|   if (isSinglePred) {
 | |
|     bool isHot = false;
 | |
|     for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
 | |
|       const AvailableValueInBlock &AV = ValuesPerBlock[i];
 | |
|       if (AV.isSimpleValue())
 | |
|         // "Hot" Instruction is in some loop (because it dominates its dep.
 | |
|         // instruction).
 | |
|         if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue()))
 | |
|           if (DT->dominates(LI, I)) {
 | |
|             isHot = true;
 | |
|             break;
 | |
|           }
 | |
|     }
 | |
| 
 | |
|     // We are interested only in "hot" instructions. We don't want to do any
 | |
|     // mis-optimizations here.
 | |
|     if (!isHot)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, we have some hope :).  Check to see if the loaded value is fully
 | |
|   // available in all but one predecessor.
 | |
|   // FIXME: If we could restructure the CFG, we could make a common pred with
 | |
|   // all the preds that don't have an available LI and insert a new load into
 | |
|   // that one block.
 | |
|   BasicBlock *UnavailablePred = 0;
 | |
| 
 | |
|   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
 | |
|   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
 | |
|     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
 | |
|   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
 | |
|     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
 | |
| 
 | |
|   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
 | |
|        PI != E; ++PI) {
 | |
|     if (IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks))
 | |
|       continue;
 | |
| 
 | |
|     // If this load is not available in multiple predecessors, reject it.
 | |
|     if (UnavailablePred && UnavailablePred != *PI)
 | |
|       return false;
 | |
|     UnavailablePred = *PI;
 | |
|   }
 | |
| 
 | |
|   assert(UnavailablePred != 0 &&
 | |
|          "Fully available value should be eliminated above!");
 | |
| 
 | |
|   // We don't currently handle critical edges :(
 | |
|   if (UnavailablePred->getTerminator()->getNumSuccessors() != 1) {
 | |
|     DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF CRITICAL EDGE '"
 | |
|                  << UnavailablePred->getName() << "': " << *LI << '\n');
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // Do PHI translation to get its value in the predecessor if necessary.  The
 | |
|   // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
 | |
|   //
 | |
|   SmallVector<Instruction*, 8> NewInsts;
 | |
|   
 | |
|   // If all preds have a single successor, then we know it is safe to insert the
 | |
|   // load on the pred (?!?), so we can insert code to materialize the pointer if
 | |
|   // it is not available.
 | |
|   PHITransAddr Address(LI->getOperand(0), TD);
 | |
|   Value *LoadPtr = 0;
 | |
|   if (allSingleSucc) {
 | |
|     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
 | |
|                                                 *DT, NewInsts);
 | |
|   } else {
 | |
|     Address.PHITranslateValue(LoadBB, UnavailablePred);
 | |
|     LoadPtr = Address.getAddr();
 | |
|     
 | |
|     // Make sure the value is live in the predecessor.
 | |
|     if (Instruction *Inst = dyn_cast_or_null<Instruction>(LoadPtr))
 | |
|       if (!DT->dominates(Inst->getParent(), UnavailablePred))
 | |
|         LoadPtr = 0;
 | |
|   }
 | |
| 
 | |
|   // If we couldn't find or insert a computation of this phi translated value,
 | |
|   // we fail PRE.
 | |
|   if (LoadPtr == 0) {
 | |
|     assert(NewInsts.empty() && "Shouldn't insert insts on failure");
 | |
|     DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
 | |
|                  << *LI->getOperand(0) << "\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Assign value numbers to these new instructions.
 | |
|   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
 | |
|     // FIXME: We really _ought_ to insert these value numbers into their 
 | |
|     // parent's availability map.  However, in doing so, we risk getting into
 | |
|     // ordering issues.  If a block hasn't been processed yet, we would be
 | |
|     // marking a value as AVAIL-IN, which isn't what we intend.
 | |
|     VN.lookup_or_add(NewInsts[i]);
 | |
|   }
 | |
|   
 | |
|   // Make sure it is valid to move this load here.  We have to watch out for:
 | |
|   //  @1 = getelementptr (i8* p, ...
 | |
|   //  test p and branch if == 0
 | |
|   //  load @1
 | |
|   // It is valid to have the getelementptr before the test, even if p can be 0,
 | |
|   // as getelementptr only does address arithmetic.
 | |
|   // If we are not pushing the value through any multiple-successor blocks
 | |
|   // we do not have this case.  Otherwise, check that the load is safe to
 | |
|   // put anywhere; this can be improved, but should be conservatively safe.
 | |
|   if (!allSingleSucc &&
 | |
|       // FIXME: REEVALUTE THIS.
 | |
|       !isSafeToLoadUnconditionally(LoadPtr, UnavailablePred->getTerminator())) {
 | |
|     assert(NewInsts.empty() && "Should not have inserted instructions");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, we can eliminate this load by inserting a reload in the predecessor
 | |
|   // and using PHI construction to get the value in the other predecessors, do
 | |
|   // it.
 | |
|   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
 | |
|   DEBUG(if (!NewInsts.empty())
 | |
|           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
 | |
|                  << *NewInsts.back() << '\n');
 | |
|   
 | |
|   Value *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
 | |
|                                 LI->getAlignment(),
 | |
|                                 UnavailablePred->getTerminator());
 | |
| 
 | |
|   // Add the newly created load.
 | |
|   ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,NewLoad));
 | |
| 
 | |
|   // Perform PHI construction.
 | |
|   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, TD, *DT,
 | |
|                                     VN.getAliasAnalysis());
 | |
|   LI->replaceAllUsesWith(V);
 | |
|   if (isa<PHINode>(V))
 | |
|     V->takeName(LI);
 | |
|   if (isa<PointerType>(V->getType()))
 | |
|     MD->invalidateCachedPointerInfo(V);
 | |
|   toErase.push_back(LI);
 | |
|   NumPRELoad++;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// processLoad - Attempt to eliminate a load, first by eliminating it
 | |
| /// locally, and then attempting non-local elimination if that fails.
 | |
| bool GVN::processLoad(LoadInst *L, SmallVectorImpl<Instruction*> &toErase) {
 | |
|   if (!MD)
 | |
|     return false;
 | |
| 
 | |
|   if (L->isVolatile())
 | |
|     return false;
 | |
| 
 | |
|   // ... to a pointer that has been loaded from before...
 | |
|   MemDepResult Dep = MD->getDependency(L);
 | |
| 
 | |
|   // If the value isn't available, don't do anything!
 | |
|   if (Dep.isClobber()) {
 | |
|     // Check to see if we have something like this:
 | |
|     //   store i32 123, i32* %P
 | |
|     //   %A = bitcast i32* %P to i8*
 | |
|     //   %B = gep i8* %A, i32 1
 | |
|     //   %C = load i8* %B
 | |
|     //
 | |
|     // We could do that by recognizing if the clobber instructions are obviously
 | |
|     // a common base + constant offset, and if the previous store (or memset)
 | |
|     // completely covers this load.  This sort of thing can happen in bitfield
 | |
|     // access code.
 | |
|     Value *AvailVal = 0;
 | |
|     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst()))
 | |
|       if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
 | |
|         int Offset = AnalyzeLoadFromClobberingStore(L->getType(),
 | |
|                                                     L->getPointerOperand(),
 | |
|                                                     DepSI, *TD);
 | |
|         if (Offset != -1)
 | |
|           AvailVal = GetStoreValueForLoad(DepSI->getOperand(0), Offset,
 | |
|                                           L->getType(), L, *TD);
 | |
|       }
 | |
|     
 | |
|     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
 | |
|     // a value on from it.
 | |
|     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
 | |
|       if (const TargetData *TD = getAnalysisIfAvailable<TargetData>()) {
 | |
|         int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(),
 | |
|                                                       L->getPointerOperand(),
 | |
|                                                       DepMI, *TD);
 | |
|         if (Offset != -1)
 | |
|           AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L,*TD);
 | |
|       }
 | |
|     }
 | |
|         
 | |
|     if (AvailVal) {
 | |
|       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
 | |
|             << *AvailVal << '\n' << *L << "\n\n\n");
 | |
|       
 | |
|       // Replace the load!
 | |
|       L->replaceAllUsesWith(AvailVal);
 | |
|       if (isa<PointerType>(AvailVal->getType()))
 | |
|         MD->invalidateCachedPointerInfo(AvailVal);
 | |
|       toErase.push_back(L);
 | |
|       NumGVNLoad++;
 | |
|       return true;
 | |
|     }
 | |
|         
 | |
|     DEBUG(
 | |
|       // fast print dep, using operator<< on instruction would be too slow
 | |
|       dbgs() << "GVN: load ";
 | |
|       WriteAsOperand(dbgs(), L);
 | |
|       Instruction *I = Dep.getInst();
 | |
|       dbgs() << " is clobbered by " << *I << '\n';
 | |
|     );
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If it is defined in another block, try harder.
 | |
|   if (Dep.isNonLocal())
 | |
|     return processNonLocalLoad(L, toErase);
 | |
| 
 | |
|   Instruction *DepInst = Dep.getInst();
 | |
|   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
 | |
|     Value *StoredVal = DepSI->getOperand(0);
 | |
|     
 | |
|     // The store and load are to a must-aliased pointer, but they may not
 | |
|     // actually have the same type.  See if we know how to reuse the stored
 | |
|     // value (depending on its type).
 | |
|     const TargetData *TD = 0;
 | |
|     if (StoredVal->getType() != L->getType()) {
 | |
|       if ((TD = getAnalysisIfAvailable<TargetData>())) {
 | |
|         StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(),
 | |
|                                                    L, *TD);
 | |
|         if (StoredVal == 0)
 | |
|           return false;
 | |
|         
 | |
|         DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
 | |
|                      << '\n' << *L << "\n\n\n");
 | |
|       }
 | |
|       else 
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Remove it!
 | |
|     L->replaceAllUsesWith(StoredVal);
 | |
|     if (isa<PointerType>(StoredVal->getType()))
 | |
|       MD->invalidateCachedPointerInfo(StoredVal);
 | |
|     toErase.push_back(L);
 | |
|     NumGVNLoad++;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
 | |
|     Value *AvailableVal = DepLI;
 | |
|     
 | |
|     // The loads are of a must-aliased pointer, but they may not actually have
 | |
|     // the same type.  See if we know how to reuse the previously loaded value
 | |
|     // (depending on its type).
 | |
|     const TargetData *TD = 0;
 | |
|     if (DepLI->getType() != L->getType()) {
 | |
|       if ((TD = getAnalysisIfAvailable<TargetData>())) {
 | |
|         AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L,*TD);
 | |
|         if (AvailableVal == 0)
 | |
|           return false;
 | |
|       
 | |
|         DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
 | |
|                      << "\n" << *L << "\n\n\n");
 | |
|       }
 | |
|       else 
 | |
|         return false;
 | |
|     }
 | |
|     
 | |
|     // Remove it!
 | |
|     L->replaceAllUsesWith(AvailableVal);
 | |
|     if (isa<PointerType>(DepLI->getType()))
 | |
|       MD->invalidateCachedPointerInfo(DepLI);
 | |
|     toErase.push_back(L);
 | |
|     NumGVNLoad++;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this load really doesn't depend on anything, then we must be loading an
 | |
|   // undef value.  This can happen when loading for a fresh allocation with no
 | |
|   // intervening stores, for example.
 | |
|   if (isa<AllocaInst>(DepInst) || isMalloc(DepInst)) {
 | |
|     L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | |
|     toErase.push_back(L);
 | |
|     NumGVNLoad++;
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If this load occurs either right after a lifetime begin,
 | |
|   // then the loaded value is undefined.
 | |
|   if (IntrinsicInst* II = dyn_cast<IntrinsicInst>(DepInst)) {
 | |
|     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
 | |
|       L->replaceAllUsesWith(UndefValue::get(L->getType()));
 | |
|       toErase.push_back(L);
 | |
|       NumGVNLoad++;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *GVN::lookupNumber(BasicBlock *BB, uint32_t num) {
 | |
|   DenseMap<BasicBlock*, ValueNumberScope*>::iterator I = localAvail.find(BB);
 | |
|   if (I == localAvail.end())
 | |
|     return 0;
 | |
| 
 | |
|   ValueNumberScope *Locals = I->second;
 | |
|   while (Locals) {
 | |
|     DenseMap<uint32_t, Value*>::iterator I = Locals->table.find(num);
 | |
|     if (I != Locals->table.end())
 | |
|       return I->second;
 | |
|     Locals = Locals->parent;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// processInstruction - When calculating availability, handle an instruction
 | |
| /// by inserting it into the appropriate sets
 | |
| bool GVN::processInstruction(Instruction *I,
 | |
|                              SmallVectorImpl<Instruction*> &toErase) {
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     bool Changed = processLoad(LI, toErase);
 | |
| 
 | |
|     if (!Changed) {
 | |
|       unsigned Num = VN.lookup_or_add(LI);
 | |
|       localAvail[I->getParent()]->table.insert(std::make_pair(Num, LI));
 | |
|     }
 | |
| 
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   uint32_t NextNum = VN.getNextUnusedValueNumber();
 | |
|   unsigned Num = VN.lookup_or_add(I);
 | |
| 
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
 | |
|     localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | |
| 
 | |
|     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
 | |
|       return false;
 | |
| 
 | |
|     Value *BranchCond = BI->getCondition();
 | |
|     uint32_t CondVN = VN.lookup_or_add(BranchCond);
 | |
| 
 | |
|     BasicBlock *TrueSucc = BI->getSuccessor(0);
 | |
|     BasicBlock *FalseSucc = BI->getSuccessor(1);
 | |
| 
 | |
|     if (TrueSucc->getSinglePredecessor())
 | |
|       localAvail[TrueSucc]->table[CondVN] =
 | |
|         ConstantInt::getTrue(TrueSucc->getContext());
 | |
|     if (FalseSucc->getSinglePredecessor())
 | |
|       localAvail[FalseSucc]->table[CondVN] =
 | |
|         ConstantInt::getFalse(TrueSucc->getContext());
 | |
| 
 | |
|     return false;
 | |
| 
 | |
|   // Allocations are always uniquely numbered, so we can save time and memory
 | |
|   // by fast failing them.
 | |
|   } else if (isa<AllocaInst>(I) || isa<TerminatorInst>(I)) {
 | |
|     localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Collapse PHI nodes
 | |
|   if (PHINode* p = dyn_cast<PHINode>(I)) {
 | |
|     Value *constVal = CollapsePhi(p);
 | |
| 
 | |
|     if (constVal) {
 | |
|       p->replaceAllUsesWith(constVal);
 | |
|       if (MD && isa<PointerType>(constVal->getType()))
 | |
|         MD->invalidateCachedPointerInfo(constVal);
 | |
|       VN.erase(p);
 | |
| 
 | |
|       toErase.push_back(p);
 | |
|     } else {
 | |
|       localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | |
|     }
 | |
| 
 | |
|   // If the number we were assigned was a brand new VN, then we don't
 | |
|   // need to do a lookup to see if the number already exists
 | |
|   // somewhere in the domtree: it can't!
 | |
|   } else if (Num == NextNum) {
 | |
|     localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | |
| 
 | |
|   // Perform fast-path value-number based elimination of values inherited from
 | |
|   // dominators.
 | |
|   } else if (Value *repl = lookupNumber(I->getParent(), Num)) {
 | |
|     // Remove it!
 | |
|     VN.erase(I);
 | |
|     I->replaceAllUsesWith(repl);
 | |
|     if (MD && isa<PointerType>(repl->getType()))
 | |
|       MD->invalidateCachedPointerInfo(repl);
 | |
|     toErase.push_back(I);
 | |
|     return true;
 | |
| 
 | |
|   } else {
 | |
|     localAvail[I->getParent()]->table.insert(std::make_pair(Num, I));
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// runOnFunction - This is the main transformation entry point for a function.
 | |
| bool GVN::runOnFunction(Function& F) {
 | |
|   if (!NoLoads)
 | |
|     MD = &getAnalysis<MemoryDependenceAnalysis>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
 | |
|   VN.setMemDep(MD);
 | |
|   VN.setDomTree(DT);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   bool ShouldContinue = true;
 | |
| 
 | |
|   // Merge unconditional branches, allowing PRE to catch more
 | |
|   // optimization opportunities.
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
 | |
|     BasicBlock *BB = FI;
 | |
|     ++FI;
 | |
|     bool removedBlock = MergeBlockIntoPredecessor(BB, this);
 | |
|     if (removedBlock) NumGVNBlocks++;
 | |
| 
 | |
|     Changed |= removedBlock;
 | |
|   }
 | |
| 
 | |
|   unsigned Iteration = 0;
 | |
| 
 | |
|   while (ShouldContinue) {
 | |
|     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
 | |
|     ShouldContinue = iterateOnFunction(F);
 | |
|     Changed |= ShouldContinue;
 | |
|     ++Iteration;
 | |
|   }
 | |
| 
 | |
|   if (EnablePRE) {
 | |
|     bool PREChanged = true;
 | |
|     while (PREChanged) {
 | |
|       PREChanged = performPRE(F);
 | |
|       Changed |= PREChanged;
 | |
|     }
 | |
|   }
 | |
|   // FIXME: Should perform GVN again after PRE does something.  PRE can move
 | |
|   // computations into blocks where they become fully redundant.  Note that
 | |
|   // we can't do this until PRE's critical edge splitting updates memdep.
 | |
|   // Actually, when this happens, we should just fully integrate PRE into GVN.
 | |
| 
 | |
|   cleanupGlobalSets();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool GVN::processBlock(BasicBlock *BB) {
 | |
|   // FIXME: Kill off toErase by doing erasing eagerly in a helper function (and
 | |
|   // incrementing BI before processing an instruction).
 | |
|   SmallVector<Instruction*, 8> toErase;
 | |
|   bool ChangedFunction = false;
 | |
| 
 | |
|   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
 | |
|        BI != BE;) {
 | |
|     ChangedFunction |= processInstruction(BI, toErase);
 | |
|     if (toErase.empty()) {
 | |
|       ++BI;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we need some instructions deleted, do it now.
 | |
|     NumGVNInstr += toErase.size();
 | |
| 
 | |
|     // Avoid iterator invalidation.
 | |
|     bool AtStart = BI == BB->begin();
 | |
|     if (!AtStart)
 | |
|       --BI;
 | |
| 
 | |
|     for (SmallVector<Instruction*, 4>::iterator I = toErase.begin(),
 | |
|          E = toErase.end(); I != E; ++I) {
 | |
|       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
 | |
|       if (MD) MD->removeInstruction(*I);
 | |
|       (*I)->eraseFromParent();
 | |
|       DEBUG(verifyRemoved(*I));
 | |
|     }
 | |
|     toErase.clear();
 | |
| 
 | |
|     if (AtStart)
 | |
|       BI = BB->begin();
 | |
|     else
 | |
|       ++BI;
 | |
|   }
 | |
| 
 | |
|   return ChangedFunction;
 | |
| }
 | |
| 
 | |
| /// performPRE - Perform a purely local form of PRE that looks for diamond
 | |
| /// control flow patterns and attempts to perform simple PRE at the join point.
 | |
| bool GVN::performPRE(Function &F) {
 | |
|   bool Changed = false;
 | |
|   SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
 | |
|   DenseMap<BasicBlock*, Value*> predMap;
 | |
|   for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
 | |
|        DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
 | |
|     BasicBlock *CurrentBlock = *DI;
 | |
| 
 | |
|     // Nothing to PRE in the entry block.
 | |
|     if (CurrentBlock == &F.getEntryBlock()) continue;
 | |
| 
 | |
|     for (BasicBlock::iterator BI = CurrentBlock->begin(),
 | |
|          BE = CurrentBlock->end(); BI != BE; ) {
 | |
|       Instruction *CurInst = BI++;
 | |
| 
 | |
|       if (isa<AllocaInst>(CurInst) ||
 | |
|           isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) ||
 | |
|           CurInst->getType()->isVoidTy() ||
 | |
|           CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
 | |
|           isa<DbgInfoIntrinsic>(CurInst))
 | |
|         continue;
 | |
| 
 | |
|       uint32_t ValNo = VN.lookup(CurInst);
 | |
| 
 | |
|       // Look for the predecessors for PRE opportunities.  We're
 | |
|       // only trying to solve the basic diamond case, where
 | |
|       // a value is computed in the successor and one predecessor,
 | |
|       // but not the other.  We also explicitly disallow cases
 | |
|       // where the successor is its own predecessor, because they're
 | |
|       // more complicated to get right.
 | |
|       unsigned NumWith = 0;
 | |
|       unsigned NumWithout = 0;
 | |
|       BasicBlock *PREPred = 0;
 | |
|       predMap.clear();
 | |
| 
 | |
|       for (pred_iterator PI = pred_begin(CurrentBlock),
 | |
|            PE = pred_end(CurrentBlock); PI != PE; ++PI) {
 | |
|         // We're not interested in PRE where the block is its
 | |
|         // own predecessor, on in blocks with predecessors
 | |
|         // that are not reachable.
 | |
|         if (*PI == CurrentBlock) {
 | |
|           NumWithout = 2;
 | |
|           break;
 | |
|         } else if (!localAvail.count(*PI))  {
 | |
|           NumWithout = 2;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         DenseMap<uint32_t, Value*>::iterator predV =
 | |
|                                             localAvail[*PI]->table.find(ValNo);
 | |
|         if (predV == localAvail[*PI]->table.end()) {
 | |
|           PREPred = *PI;
 | |
|           NumWithout++;
 | |
|         } else if (predV->second == CurInst) {
 | |
|           NumWithout = 2;
 | |
|         } else {
 | |
|           predMap[*PI] = predV->second;
 | |
|           NumWith++;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Don't do PRE when it might increase code size, i.e. when
 | |
|       // we would need to insert instructions in more than one pred.
 | |
|       if (NumWithout != 1 || NumWith == 0)
 | |
|         continue;
 | |
|       
 | |
|       // Don't do PRE across indirect branch.
 | |
|       if (isa<IndirectBrInst>(PREPred->getTerminator()))
 | |
|         continue;
 | |
| 
 | |
|       // We can't do PRE safely on a critical edge, so instead we schedule
 | |
|       // the edge to be split and perform the PRE the next time we iterate
 | |
|       // on the function.
 | |
|       unsigned SuccNum = 0;
 | |
|       for (unsigned i = 0, e = PREPred->getTerminator()->getNumSuccessors();
 | |
|            i != e; ++i)
 | |
|         if (PREPred->getTerminator()->getSuccessor(i) == CurrentBlock) {
 | |
|           SuccNum = i;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
 | |
|         toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Instantiate the expression the in predecessor that lacked it.
 | |
|       // Because we are going top-down through the block, all value numbers
 | |
|       // will be available in the predecessor by the time we need them.  Any
 | |
|       // that weren't original present will have been instantiated earlier
 | |
|       // in this loop.
 | |
|       Instruction *PREInstr = CurInst->clone();
 | |
|       bool success = true;
 | |
|       for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) {
 | |
|         Value *Op = PREInstr->getOperand(i);
 | |
|         if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
 | |
|           continue;
 | |
| 
 | |
|         if (Value *V = lookupNumber(PREPred, VN.lookup(Op))) {
 | |
|           PREInstr->setOperand(i, V);
 | |
|         } else {
 | |
|           success = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Fail out if we encounter an operand that is not available in
 | |
|       // the PRE predecessor.  This is typically because of loads which
 | |
|       // are not value numbered precisely.
 | |
|       if (!success) {
 | |
|         delete PREInstr;
 | |
|         DEBUG(verifyRemoved(PREInstr));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       PREInstr->insertBefore(PREPred->getTerminator());
 | |
|       PREInstr->setName(CurInst->getName() + ".pre");
 | |
|       predMap[PREPred] = PREInstr;
 | |
|       VN.add(PREInstr, ValNo);
 | |
|       NumGVNPRE++;
 | |
| 
 | |
|       // Update the availability map to include the new instruction.
 | |
|       localAvail[PREPred]->table.insert(std::make_pair(ValNo, PREInstr));
 | |
| 
 | |
|       // Create a PHI to make the value available in this block.
 | |
|       PHINode* Phi = PHINode::Create(CurInst->getType(),
 | |
|                                      CurInst->getName() + ".pre-phi",
 | |
|                                      CurrentBlock->begin());
 | |
|       for (pred_iterator PI = pred_begin(CurrentBlock),
 | |
|            PE = pred_end(CurrentBlock); PI != PE; ++PI)
 | |
|         Phi->addIncoming(predMap[*PI], *PI);
 | |
| 
 | |
|       VN.add(Phi, ValNo);
 | |
|       localAvail[CurrentBlock]->table[ValNo] = Phi;
 | |
| 
 | |
|       CurInst->replaceAllUsesWith(Phi);
 | |
|       if (MD && isa<PointerType>(Phi->getType()))
 | |
|         MD->invalidateCachedPointerInfo(Phi);
 | |
|       VN.erase(CurInst);
 | |
| 
 | |
|       DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
 | |
|       if (MD) MD->removeInstruction(CurInst);
 | |
|       CurInst->eraseFromParent();
 | |
|       DEBUG(verifyRemoved(CurInst));
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (SmallVector<std::pair<TerminatorInst*, unsigned>, 4>::iterator
 | |
|        I = toSplit.begin(), E = toSplit.end(); I != E; ++I)
 | |
|     SplitCriticalEdge(I->first, I->second, this);
 | |
| 
 | |
|   return Changed || toSplit.size();
 | |
| }
 | |
| 
 | |
| /// iterateOnFunction - Executes one iteration of GVN
 | |
| bool GVN::iterateOnFunction(Function &F) {
 | |
|   cleanupGlobalSets();
 | |
| 
 | |
|   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | |
|        DE = df_end(DT->getRootNode()); DI != DE; ++DI) {
 | |
|     if (DI->getIDom())
 | |
|       localAvail[DI->getBlock()] =
 | |
|                    new ValueNumberScope(localAvail[DI->getIDom()->getBlock()]);
 | |
|     else
 | |
|       localAvail[DI->getBlock()] = new ValueNumberScope(0);
 | |
|   }
 | |
| 
 | |
|   // Top-down walk of the dominator tree
 | |
|   bool Changed = false;
 | |
| #if 0
 | |
|   // Needed for value numbering with phi construction to work.
 | |
|   ReversePostOrderTraversal<Function*> RPOT(&F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(),
 | |
|        RE = RPOT.end(); RI != RE; ++RI)
 | |
|     Changed |= processBlock(*RI);
 | |
| #else
 | |
|   for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()),
 | |
|        DE = df_end(DT->getRootNode()); DI != DE; ++DI)
 | |
|     Changed |= processBlock(DI->getBlock());
 | |
| #endif
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void GVN::cleanupGlobalSets() {
 | |
|   VN.clear();
 | |
| 
 | |
|   for (DenseMap<BasicBlock*, ValueNumberScope*>::iterator
 | |
|        I = localAvail.begin(), E = localAvail.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
|   localAvail.clear();
 | |
| }
 | |
| 
 | |
| /// verifyRemoved - Verify that the specified instruction does not occur in our
 | |
| /// internal data structures.
 | |
| void GVN::verifyRemoved(const Instruction *Inst) const {
 | |
|   VN.verifyRemoved(Inst);
 | |
| 
 | |
|   // Walk through the value number scope to make sure the instruction isn't
 | |
|   // ferreted away in it.
 | |
|   for (DenseMap<BasicBlock*, ValueNumberScope*>::const_iterator
 | |
|          I = localAvail.begin(), E = localAvail.end(); I != E; ++I) {
 | |
|     const ValueNumberScope *VNS = I->second;
 | |
| 
 | |
|     while (VNS) {
 | |
|       for (DenseMap<uint32_t, Value*>::const_iterator
 | |
|              II = VNS->table.begin(), IE = VNS->table.end(); II != IE; ++II) {
 | |
|         assert(II->second != Inst && "Inst still in value numbering scope!");
 | |
|       }
 | |
| 
 | |
|       VNS = VNS->parent;
 | |
|     }
 | |
|   }
 | |
| }
 |