mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31250 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1599 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1599 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file declares the SDNode class and derived classes, which are used to
 | |
| // represent the nodes and operations present in a SelectionDAG.  These nodes
 | |
| // and operations are machine code level operations, with some similarities to
 | |
| // the GCC RTL representation.
 | |
| //
 | |
| // Clients should include the SelectionDAG.h file instead of this file directly.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
 | |
| #define LLVM_CODEGEN_SELECTIONDAGNODES_H
 | |
| 
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/GraphTraits.h"
 | |
| #include "llvm/ADT/iterator"
 | |
| #include "llvm/CodeGen/ValueTypes.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include <cassert>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class SelectionDAG;
 | |
| class GlobalValue;
 | |
| class MachineBasicBlock;
 | |
| class MachineConstantPoolValue;
 | |
| class SDNode;
 | |
| template <typename T> struct simplify_type;
 | |
| template <typename T> struct ilist_traits;
 | |
| template<typename NodeTy, typename Traits> class iplist;
 | |
| template<typename NodeTy> class ilist_iterator;
 | |
| 
 | |
| /// SDVTList - This represents a list of ValueType's that has been intern'd by
 | |
| /// a SelectionDAG.  Instances of this simple value class are returned by
 | |
| /// SelectionDAG::getVTList(...).
 | |
| ///
 | |
| struct SDVTList {
 | |
|   const MVT::ValueType *VTs;
 | |
|   unsigned short NumVTs;
 | |
| };
 | |
| 
 | |
| 
 | |
| /// ISD namespace - This namespace contains an enum which represents all of the
 | |
| /// SelectionDAG node types and value types.
 | |
| ///
 | |
| namespace ISD {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISD::NodeType enum - This enum defines all of the operators valid in a
 | |
|   /// SelectionDAG.
 | |
|   ///
 | |
|   enum NodeType {
 | |
|     // DELETED_NODE - This is an illegal flag value that is used to catch
 | |
|     // errors.  This opcode is not a legal opcode for any node.
 | |
|     DELETED_NODE,
 | |
|     
 | |
|     // EntryToken - This is the marker used to indicate the start of the region.
 | |
|     EntryToken,
 | |
| 
 | |
|     // Token factor - This node takes multiple tokens as input and produces a
 | |
|     // single token result.  This is used to represent the fact that the operand
 | |
|     // operators are independent of each other.
 | |
|     TokenFactor,
 | |
|     
 | |
|     // AssertSext, AssertZext - These nodes record if a register contains a 
 | |
|     // value that has already been zero or sign extended from a narrower type.  
 | |
|     // These nodes take two operands.  The first is the node that has already 
 | |
|     // been extended, and the second is a value type node indicating the width
 | |
|     // of the extension
 | |
|     AssertSext, AssertZext,
 | |
| 
 | |
|     // Various leaf nodes.
 | |
|     STRING, BasicBlock, VALUETYPE, CONDCODE, Register,
 | |
|     Constant, ConstantFP,
 | |
|     GlobalAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol,
 | |
| 
 | |
|     // The address of the GOT
 | |
|     GLOBAL_OFFSET_TABLE,
 | |
| 
 | |
|     // TargetConstant* - Like Constant*, but the DAG does not do any folding or
 | |
|     // simplification of the constant.
 | |
|     TargetConstant,
 | |
|     TargetConstantFP,
 | |
|     
 | |
|     // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
 | |
|     // anything else with this node, and this is valid in the target-specific
 | |
|     // dag, turning into a GlobalAddress operand.
 | |
|     TargetGlobalAddress,
 | |
|     TargetFrameIndex,
 | |
|     TargetJumpTable,
 | |
|     TargetConstantPool,
 | |
|     TargetExternalSymbol,
 | |
|     
 | |
|     /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
 | |
|     /// This node represents a target intrinsic function with no side effects.
 | |
|     /// The first operand is the ID number of the intrinsic from the
 | |
|     /// llvm::Intrinsic namespace.  The operands to the intrinsic follow.  The
 | |
|     /// node has returns the result of the intrinsic.
 | |
|     INTRINSIC_WO_CHAIN,
 | |
|     
 | |
|     /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
 | |
|     /// This node represents a target intrinsic function with side effects that
 | |
|     /// returns a result.  The first operand is a chain pointer.  The second is
 | |
|     /// the ID number of the intrinsic from the llvm::Intrinsic namespace.  The
 | |
|     /// operands to the intrinsic follow.  The node has two results, the result
 | |
|     /// of the intrinsic and an output chain.
 | |
|     INTRINSIC_W_CHAIN,
 | |
| 
 | |
|     /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
 | |
|     /// This node represents a target intrinsic function with side effects that
 | |
|     /// does not return a result.  The first operand is a chain pointer.  The
 | |
|     /// second is the ID number of the intrinsic from the llvm::Intrinsic
 | |
|     /// namespace.  The operands to the intrinsic follow.
 | |
|     INTRINSIC_VOID,
 | |
|     
 | |
|     // CopyToReg - This node has three operands: a chain, a register number to
 | |
|     // set to this value, and a value.  
 | |
|     CopyToReg,
 | |
| 
 | |
|     // CopyFromReg - This node indicates that the input value is a virtual or
 | |
|     // physical register that is defined outside of the scope of this
 | |
|     // SelectionDAG.  The register is available from the RegSDNode object.
 | |
|     CopyFromReg,
 | |
| 
 | |
|     // UNDEF - An undefined node
 | |
|     UNDEF,
 | |
|     
 | |
|     /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG) - This node represents the formal
 | |
|     /// arguments for a function.  CC# is a Constant value indicating the
 | |
|     /// calling convention of the function, and ISVARARG is a flag that
 | |
|     /// indicates whether the function is varargs or not.  This node has one
 | |
|     /// result value for each incoming argument, plus one for the output chain.
 | |
|     /// It must be custom legalized.
 | |
|     /// 
 | |
|     FORMAL_ARGUMENTS,
 | |
|     
 | |
|     /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE,
 | |
|     ///                              ARG0, SIGN0, ARG1, SIGN1, ... ARGn, SIGNn)
 | |
|     /// This node represents a fully general function call, before the legalizer
 | |
|     /// runs.  This has one result value for each argument / signness pair, plus
 | |
|     /// a chain result. It must be custom legalized.
 | |
|     CALL,
 | |
| 
 | |
|     // EXTRACT_ELEMENT - This is used to get the first or second (determined by
 | |
|     // a Constant, which is required to be operand #1), element of the aggregate
 | |
|     // value specified as operand #0.  This is only for use before legalization,
 | |
|     // for values that will be broken into multiple registers.
 | |
|     EXTRACT_ELEMENT,
 | |
| 
 | |
|     // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.  Given
 | |
|     // two values of the same integer value type, this produces a value twice as
 | |
|     // big.  Like EXTRACT_ELEMENT, this can only be used before legalization.
 | |
|     BUILD_PAIR,
 | |
|     
 | |
|     // MERGE_VALUES - This node takes multiple discrete operands and returns
 | |
|     // them all as its individual results.  This nodes has exactly the same
 | |
|     // number of inputs and outputs, and is only valid before legalization.
 | |
|     // This node is useful for some pieces of the code generator that want to
 | |
|     // think about a single node with multiple results, not multiple nodes.
 | |
|     MERGE_VALUES,
 | |
| 
 | |
|     // Simple integer binary arithmetic operators.
 | |
|     ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
 | |
|     
 | |
|     // Carry-setting nodes for multiple precision addition and subtraction.
 | |
|     // These nodes take two operands of the same value type, and produce two
 | |
|     // results.  The first result is the normal add or sub result, the second
 | |
|     // result is the carry flag result.
 | |
|     ADDC, SUBC,
 | |
|     
 | |
|     // Carry-using nodes for multiple precision addition and subtraction.  These
 | |
|     // nodes take three operands: The first two are the normal lhs and rhs to
 | |
|     // the add or sub, and the third is the input carry flag.  These nodes
 | |
|     // produce two results; the normal result of the add or sub, and the output
 | |
|     // carry flag.  These nodes both read and write a carry flag to allow them
 | |
|     // to them to be chained together for add and sub of arbitrarily large
 | |
|     // values.
 | |
|     ADDE, SUBE,
 | |
|     
 | |
|     // Simple binary floating point operators.
 | |
|     FADD, FSUB, FMUL, FDIV, FREM,
 | |
| 
 | |
|     // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This
 | |
|     // DAG node does not require that X and Y have the same type, just that they
 | |
|     // are both floating point.  X and the result must have the same type.
 | |
|     // FCOPYSIGN(f32, f64) is allowed.
 | |
|     FCOPYSIGN,
 | |
| 
 | |
|     /// VBUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...,  COUNT,TYPE) - Return a vector
 | |
|     /// with the specified, possibly variable, elements.  The number of elements
 | |
|     /// is required to be a power of two.
 | |
|     VBUILD_VECTOR,
 | |
| 
 | |
|     /// BUILD_VECTOR(ELT1, ELT2, ELT3, ELT4,...) - Return a vector
 | |
|     /// with the specified, possibly variable, elements.  The number of elements
 | |
|     /// is required to be a power of two.
 | |
|     BUILD_VECTOR,
 | |
|     
 | |
|     /// VINSERT_VECTOR_ELT(VECTOR, VAL, IDX,  COUNT,TYPE) - Given a vector
 | |
|     /// VECTOR, an element ELEMENT, and a (potentially variable) index IDX,
 | |
|     /// return an vector with the specified element of VECTOR replaced with VAL.
 | |
|     /// COUNT and TYPE specify the type of vector, as is standard for V* nodes.
 | |
|     VINSERT_VECTOR_ELT,
 | |
|     
 | |
|     /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR (a legal packed
 | |
|     /// type) with the element at IDX replaced with VAL.
 | |
|     INSERT_VECTOR_ELT,
 | |
| 
 | |
|     /// VEXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
 | |
|     /// (an MVT::Vector value) identified by the (potentially variable) element
 | |
|     /// number IDX.
 | |
|     VEXTRACT_VECTOR_ELT,
 | |
|     
 | |
|     /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
 | |
|     /// (a legal packed type vector) identified by the (potentially variable)
 | |
|     /// element number IDX.
 | |
|     EXTRACT_VECTOR_ELT,
 | |
|     
 | |
|     /// VVECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC, COUNT,TYPE) - Returns a vector,
 | |
|     /// of the same type as VEC1/VEC2.  SHUFFLEVEC is a VBUILD_VECTOR of
 | |
|     /// constant int values that indicate which value each result element will
 | |
|     /// get.  The elements of VEC1/VEC2 are enumerated in order.  This is quite
 | |
|     /// similar to the Altivec 'vperm' instruction, except that the indices must
 | |
|     /// be constants and are in terms of the element size of VEC1/VEC2, not in
 | |
|     /// terms of bytes.
 | |
|     VVECTOR_SHUFFLE,
 | |
| 
 | |
|     /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same
 | |
|     /// type as VEC1/VEC2.  SHUFFLEVEC is a BUILD_VECTOR of constant int values
 | |
|     /// (regardless of whether its datatype is legal or not) that indicate
 | |
|     /// which value each result element will get.  The elements of VEC1/VEC2 are
 | |
|     /// enumerated in order.  This is quite similar to the Altivec 'vperm'
 | |
|     /// instruction, except that the indices must be constants and are in terms
 | |
|     /// of the element size of VEC1/VEC2, not in terms of bytes.
 | |
|     VECTOR_SHUFFLE,
 | |
|     
 | |
|     /// X = VBIT_CONVERT(Y)  and X = VBIT_CONVERT(Y, COUNT,TYPE) - This node
 | |
|     /// represents a conversion from or to an ISD::Vector type.
 | |
|     ///
 | |
|     /// This is lowered to a BIT_CONVERT of the appropriate input/output types.
 | |
|     /// The input and output are required to have the same size and at least one
 | |
|     /// is required to be a vector (if neither is a vector, just use
 | |
|     /// BIT_CONVERT).
 | |
|     ///
 | |
|     /// If the result is a vector, this takes three operands (like any other
 | |
|     /// vector producer) which indicate the size and type of the vector result.
 | |
|     /// Otherwise it takes one input.
 | |
|     VBIT_CONVERT,
 | |
|     
 | |
|     /// BINOP(LHS, RHS,  COUNT,TYPE)
 | |
|     /// Simple abstract vector operators.  Unlike the integer and floating point
 | |
|     /// binary operators, these nodes also take two additional operands:
 | |
|     /// a constant element count, and a value type node indicating the type of
 | |
|     /// the elements.  The order is count, type, op0, op1.  All vector opcodes,
 | |
|     /// including VLOAD and VConstant must currently have count and type as
 | |
|     /// their last two operands.
 | |
|     VADD, VSUB, VMUL, VSDIV, VUDIV,
 | |
|     VAND, VOR, VXOR,
 | |
|     
 | |
|     /// VSELECT(COND,LHS,RHS,  COUNT,TYPE) - Select for MVT::Vector values.
 | |
|     /// COND is a boolean value.  This node return LHS if COND is true, RHS if
 | |
|     /// COND is false.
 | |
|     VSELECT,
 | |
|     
 | |
|     /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
 | |
|     /// scalar value into the low element of the resultant vector type.  The top
 | |
|     /// elements of the vector are undefined.
 | |
|     SCALAR_TO_VECTOR,
 | |
|     
 | |
|     // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
 | |
|     // an unsigned/signed value of type i[2*n], then return the top part.
 | |
|     MULHU, MULHS,
 | |
| 
 | |
|     // Bitwise operators - logical and, logical or, logical xor, shift left,
 | |
|     // shift right algebraic (shift in sign bits), shift right logical (shift in
 | |
|     // zeroes), rotate left, rotate right, and byteswap.
 | |
|     AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
 | |
| 
 | |
|     // Counting operators
 | |
|     CTTZ, CTLZ, CTPOP,
 | |
| 
 | |
|     // Select(COND, TRUEVAL, FALSEVAL)
 | |
|     SELECT, 
 | |
|     
 | |
|     // Select with condition operator - This selects between a true value and 
 | |
|     // a false value (ops #2 and #3) based on the boolean result of comparing
 | |
|     // the lhs and rhs (ops #0 and #1) of a conditional expression with the 
 | |
|     // condition code in op #4, a CondCodeSDNode.
 | |
|     SELECT_CC,
 | |
| 
 | |
|     // SetCC operator - This evaluates to a boolean (i1) true value if the
 | |
|     // condition is true.  The operands to this are the left and right operands
 | |
|     // to compare (ops #0, and #1) and the condition code to compare them with
 | |
|     // (op #2) as a CondCodeSDNode.
 | |
|     SETCC,
 | |
| 
 | |
|     // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
 | |
|     // integer shift operations, just like ADD/SUB_PARTS.  The operation
 | |
|     // ordering is:
 | |
|     //       [Lo,Hi] = op [LoLHS,HiLHS], Amt
 | |
|     SHL_PARTS, SRA_PARTS, SRL_PARTS,
 | |
| 
 | |
|     // Conversion operators.  These are all single input single output
 | |
|     // operations.  For all of these, the result type must be strictly
 | |
|     // wider or narrower (depending on the operation) than the source
 | |
|     // type.
 | |
| 
 | |
|     // SIGN_EXTEND - Used for integer types, replicating the sign bit
 | |
|     // into new bits.
 | |
|     SIGN_EXTEND,
 | |
| 
 | |
|     // ZERO_EXTEND - Used for integer types, zeroing the new bits.
 | |
|     ZERO_EXTEND,
 | |
| 
 | |
|     // ANY_EXTEND - Used for integer types.  The high bits are undefined.
 | |
|     ANY_EXTEND,
 | |
|     
 | |
|     // TRUNCATE - Completely drop the high bits.
 | |
|     TRUNCATE,
 | |
| 
 | |
|     // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
 | |
|     // depends on the first letter) to floating point.
 | |
|     SINT_TO_FP,
 | |
|     UINT_TO_FP,
 | |
| 
 | |
|     // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
 | |
|     // sign extend a small value in a large integer register (e.g. sign
 | |
|     // extending the low 8 bits of a 32-bit register to fill the top 24 bits
 | |
|     // with the 7th bit).  The size of the smaller type is indicated by the 1th
 | |
|     // operand, a ValueType node.
 | |
|     SIGN_EXTEND_INREG,
 | |
| 
 | |
|     // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
 | |
|     // integer.
 | |
|     FP_TO_SINT,
 | |
|     FP_TO_UINT,
 | |
| 
 | |
|     // FP_ROUND - Perform a rounding operation from the current
 | |
|     // precision down to the specified precision (currently always 64->32).
 | |
|     FP_ROUND,
 | |
| 
 | |
|     // FP_ROUND_INREG - This operator takes a floating point register, and
 | |
|     // rounds it to a floating point value.  It then promotes it and returns it
 | |
|     // in a register of the same size.  This operation effectively just discards
 | |
|     // excess precision.  The type to round down to is specified by the 1th
 | |
|     // operation, a VTSDNode (currently always 64->32->64).
 | |
|     FP_ROUND_INREG,
 | |
| 
 | |
|     // FP_EXTEND - Extend a smaller FP type into a larger FP type.
 | |
|     FP_EXTEND,
 | |
| 
 | |
|     // BIT_CONVERT - Theis operator converts between integer and FP values, as
 | |
|     // if one was stored to memory as integer and the other was loaded from the
 | |
|     // same address (or equivalently for vector format conversions, etc).  The 
 | |
|     // source and result are required to have the same bit size (e.g. 
 | |
|     // f32 <-> i32).  This can also be used for int-to-int or fp-to-fp 
 | |
|     // conversions, but that is a noop, deleted by getNode().
 | |
|     BIT_CONVERT,
 | |
|     
 | |
|     // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point
 | |
|     // negation, absolute value, square root, sine and cosine, and powi
 | |
|     // operations.
 | |
|     FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI,
 | |
|     
 | |
|     // LOAD and STORE have token chains as their first operand, then the same
 | |
|     // operands as an LLVM load/store instruction, then an offset node that
 | |
|     // is added / subtracted from the base pointer to form the address (for
 | |
|     // indexed memory ops).
 | |
|     LOAD, STORE,
 | |
|     
 | |
|     // Abstract vector version of LOAD.  VLOAD has a constant element count as
 | |
|     // the first operand, followed by a value type node indicating the type of
 | |
|     // the elements, a token chain, a pointer operand, and a SRCVALUE node.
 | |
|     VLOAD,
 | |
| 
 | |
|     // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a
 | |
|     // value and stores it to memory in one operation.  This can be used for
 | |
|     // either integer or floating point operands.  The first four operands of
 | |
|     // this are the same as a standard store.  The fifth is the ValueType to
 | |
|     // store it as (which will be smaller than the source value).
 | |
|     TRUNCSTORE,
 | |
| 
 | |
|     // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
 | |
|     // to a specified boundary.  The first operand is the token chain, the
 | |
|     // second is the number of bytes to allocate, and the third is the alignment
 | |
|     // boundary.  The size is guaranteed to be a multiple of the stack 
 | |
|     // alignment, and the alignment is guaranteed to be bigger than the stack 
 | |
|     // alignment (if required) or 0 to get standard stack alignment.
 | |
|     DYNAMIC_STACKALLOC,
 | |
| 
 | |
|     // Control flow instructions.  These all have token chains.
 | |
| 
 | |
|     // BR - Unconditional branch.  The first operand is the chain
 | |
|     // operand, the second is the MBB to branch to.
 | |
|     BR,
 | |
| 
 | |
|     // BRIND - Indirect branch.  The first operand is the chain, the second
 | |
|     // is the value to branch to, which must be of the same type as the target's
 | |
|     // pointer type.
 | |
|     BRIND,
 | |
|     
 | |
|     // BRCOND - Conditional branch.  The first operand is the chain,
 | |
|     // the second is the condition, the third is the block to branch
 | |
|     // to if the condition is true.
 | |
|     BRCOND,
 | |
| 
 | |
|     // BR_CC - Conditional branch.  The behavior is like that of SELECT_CC, in
 | |
|     // that the condition is represented as condition code, and two nodes to
 | |
|     // compare, rather than as a combined SetCC node.  The operands in order are
 | |
|     // chain, cc, lhs, rhs, block to branch to if condition is true.
 | |
|     BR_CC,
 | |
|     
 | |
|     // RET - Return from function.  The first operand is the chain,
 | |
|     // and any subsequent operands are pairs of return value and return value
 | |
|     // signness for the function.  This operation can have variable number of
 | |
|     // operands.
 | |
|     RET,
 | |
| 
 | |
|     // INLINEASM - Represents an inline asm block.  This node always has two
 | |
|     // return values: a chain and a flag result.  The inputs are as follows:
 | |
|     //   Operand #0   : Input chain.
 | |
|     //   Operand #1   : a ExternalSymbolSDNode with a pointer to the asm string.
 | |
|     //   Operand #2n+2: A RegisterNode.
 | |
|     //   Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
 | |
|     //   Operand #last: Optional, an incoming flag.
 | |
|     INLINEASM,
 | |
| 
 | |
|     // STACKSAVE - STACKSAVE has one operand, an input chain.  It produces a
 | |
|     // value, the same type as the pointer type for the system, and an output
 | |
|     // chain.
 | |
|     STACKSAVE,
 | |
|     
 | |
|     // STACKRESTORE has two operands, an input chain and a pointer to restore to
 | |
|     // it returns an output chain.
 | |
|     STACKRESTORE,
 | |
|     
 | |
|     // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest
 | |
|     // correspond to the operands of the LLVM intrinsic functions.  The only
 | |
|     // result is a token chain.  The alignment argument is guaranteed to be a
 | |
|     // Constant node.
 | |
|     MEMSET,
 | |
|     MEMMOVE,
 | |
|     MEMCPY,
 | |
| 
 | |
|     // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
 | |
|     // a call sequence, and carry arbitrary information that target might want
 | |
|     // to know.  The first operand is a chain, the rest are specified by the
 | |
|     // target and not touched by the DAG optimizers.
 | |
|     CALLSEQ_START,  // Beginning of a call sequence
 | |
|     CALLSEQ_END,    // End of a call sequence
 | |
|     
 | |
|     // VAARG - VAARG has three operands: an input chain, a pointer, and a 
 | |
|     // SRCVALUE.  It returns a pair of values: the vaarg value and a new chain.
 | |
|     VAARG,
 | |
|     
 | |
|     // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
 | |
|     // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
 | |
|     // source.
 | |
|     VACOPY,
 | |
|     
 | |
|     // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
 | |
|     // pointer, and a SRCVALUE.
 | |
|     VAEND, VASTART,
 | |
| 
 | |
|     // SRCVALUE - This corresponds to a Value*, and is used to associate memory
 | |
|     // locations with their value.  This allows one use alias analysis
 | |
|     // information in the backend.
 | |
|     SRCVALUE,
 | |
| 
 | |
|     // PCMARKER - This corresponds to the pcmarker intrinsic.
 | |
|     PCMARKER,
 | |
| 
 | |
|     // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
 | |
|     // The only operand is a chain and a value and a chain are produced.  The
 | |
|     // value is the contents of the architecture specific cycle counter like 
 | |
|     // register (or other high accuracy low latency clock source)
 | |
|     READCYCLECOUNTER,
 | |
| 
 | |
|     // HANDLENODE node - Used as a handle for various purposes.
 | |
|     HANDLENODE,
 | |
| 
 | |
|     // LOCATION - This node is used to represent a source location for debug
 | |
|     // info.  It takes token chain as input, then a line number, then a column
 | |
|     // number, then a filename, then a working dir.  It produces a token chain
 | |
|     // as output.
 | |
|     LOCATION,
 | |
|     
 | |
|     // DEBUG_LOC - This node is used to represent source line information
 | |
|     // embedded in the code.  It takes a token chain as input, then a line
 | |
|     // number, then a column then a file id (provided by MachineDebugInfo.) It
 | |
|     // produces a token chain as output.
 | |
|     DEBUG_LOC,
 | |
|     
 | |
|     // DEBUG_LABEL - This node is used to mark a location in the code where a
 | |
|     // label should be generated for use by the debug information.  It takes a
 | |
|     // token chain as input and then a unique id (provided by MachineDebugInfo.)
 | |
|     // It produces a token chain as output.
 | |
|     DEBUG_LABEL,
 | |
|     
 | |
|     // BUILTIN_OP_END - This must be the last enum value in this list.
 | |
|     BUILTIN_OP_END
 | |
|   };
 | |
| 
 | |
|   /// Node predicates
 | |
| 
 | |
|   /// isBuildVectorAllOnes - Return true if the specified node is a
 | |
|   /// BUILD_VECTOR where all of the elements are ~0 or undef.
 | |
|   bool isBuildVectorAllOnes(const SDNode *N);
 | |
| 
 | |
|   /// isBuildVectorAllZeros - Return true if the specified node is a
 | |
|   /// BUILD_VECTOR where all of the elements are 0 or undef.
 | |
|   bool isBuildVectorAllZeros(const SDNode *N);
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// MemOpAddrMode enum - This enum defines the three load / store addressing
 | |
|   /// modes.
 | |
|   ///
 | |
|   /// UNINDEXED    "Normal" load / store. The effective address is already
 | |
|   ///              computed and is available in the base pointer. The offset
 | |
|   ///              operand is always undefined. In addition to producing a
 | |
|   ///              chain, an unindexed load produces one value (result of the
 | |
|   ///              load); an unindexed store does not produces a value.
 | |
|   ///
 | |
|   /// PRE_INC      Similar to the unindexed mode where the effective address is
 | |
|   /// PRE_DEC      the value of the base pointer add / subtract the offset.
 | |
|   ///              It considers the computation as being folded into the load /
 | |
|   ///              store operation (i.e. the load / store does the address
 | |
|   ///              computation as well as performing the memory transaction).
 | |
|   ///              The base operand is always undefined. In addition to
 | |
|   ///              producing a chain, pre-indexed load produces two values
 | |
|   ///              (result of the load and the result of the address
 | |
|   ///              computation); a pre-indexed store produces one value (result
 | |
|   ///              of the address computation).
 | |
|   ///
 | |
|   /// POST_INC     The effective address is the value of the base pointer. The
 | |
|   /// POST_DEC     value of the offset operand is then added to / subtracted
 | |
|   ///              from the base after memory transaction. In addition to
 | |
|   ///              producing a chain, post-indexed load produces two values
 | |
|   ///              (the result of the load and the result of the base +/- offset
 | |
|   ///              computation); a post-indexed store produces one value (the
 | |
|   ///              the result of the base +/- offset computation).
 | |
|   ///
 | |
|   enum MemOpAddrMode {
 | |
|     UNINDEXED = 0,
 | |
|     PRE_INC,
 | |
|     PRE_DEC,
 | |
|     POST_INC,
 | |
|     POST_DEC
 | |
|   };
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// LoadExtType enum - This enum defines the three variants of LOADEXT
 | |
|   /// (load with extension).
 | |
|   ///
 | |
|   /// SEXTLOAD loads the integer operand and sign extends it to a larger
 | |
|   ///          integer result type.
 | |
|   /// ZEXTLOAD loads the integer operand and zero extends it to a larger
 | |
|   ///          integer result type.
 | |
|   /// EXTLOAD  is used for three things: floating point extending loads, 
 | |
|   ///          integer extending loads [the top bits are undefined], and vector
 | |
|   ///          extending loads [load into low elt].
 | |
|   ///
 | |
|   enum LoadExtType {
 | |
|     NON_EXTLOAD = 0,
 | |
|     EXTLOAD,
 | |
|     SEXTLOAD,
 | |
|     ZEXTLOAD,
 | |
|     LAST_LOADX_TYPE
 | |
|   };
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   /// ISD::CondCode enum - These are ordered carefully to make the bitfields
 | |
|   /// below work out, when considering SETFALSE (something that never exists
 | |
|   /// dynamically) as 0.  "U" -> Unsigned (for integer operands) or Unordered
 | |
|   /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
 | |
|   /// to.  If the "N" column is 1, the result of the comparison is undefined if
 | |
|   /// the input is a NAN.
 | |
|   ///
 | |
|   /// All of these (except for the 'always folded ops') should be handled for
 | |
|   /// floating point.  For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
 | |
|   /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
 | |
|   ///
 | |
|   /// Note that these are laid out in a specific order to allow bit-twiddling
 | |
|   /// to transform conditions.
 | |
|   enum CondCode {
 | |
|     // Opcode          N U L G E       Intuitive operation
 | |
|     SETFALSE,      //    0 0 0 0       Always false (always folded)
 | |
|     SETOEQ,        //    0 0 0 1       True if ordered and equal
 | |
|     SETOGT,        //    0 0 1 0       True if ordered and greater than
 | |
|     SETOGE,        //    0 0 1 1       True if ordered and greater than or equal
 | |
|     SETOLT,        //    0 1 0 0       True if ordered and less than
 | |
|     SETOLE,        //    0 1 0 1       True if ordered and less than or equal
 | |
|     SETONE,        //    0 1 1 0       True if ordered and operands are unequal
 | |
|     SETO,          //    0 1 1 1       True if ordered (no nans)
 | |
|     SETUO,         //    1 0 0 0       True if unordered: isnan(X) | isnan(Y)
 | |
|     SETUEQ,        //    1 0 0 1       True if unordered or equal
 | |
|     SETUGT,        //    1 0 1 0       True if unordered or greater than
 | |
|     SETUGE,        //    1 0 1 1       True if unordered, greater than, or equal
 | |
|     SETULT,        //    1 1 0 0       True if unordered or less than
 | |
|     SETULE,        //    1 1 0 1       True if unordered, less than, or equal
 | |
|     SETUNE,        //    1 1 1 0       True if unordered or not equal
 | |
|     SETTRUE,       //    1 1 1 1       Always true (always folded)
 | |
|     // Don't care operations: undefined if the input is a nan.
 | |
|     SETFALSE2,     //  1 X 0 0 0       Always false (always folded)
 | |
|     SETEQ,         //  1 X 0 0 1       True if equal
 | |
|     SETGT,         //  1 X 0 1 0       True if greater than
 | |
|     SETGE,         //  1 X 0 1 1       True if greater than or equal
 | |
|     SETLT,         //  1 X 1 0 0       True if less than
 | |
|     SETLE,         //  1 X 1 0 1       True if less than or equal
 | |
|     SETNE,         //  1 X 1 1 0       True if not equal
 | |
|     SETTRUE2,      //  1 X 1 1 1       Always true (always folded)
 | |
| 
 | |
|     SETCC_INVALID       // Marker value.
 | |
|   };
 | |
| 
 | |
|   /// isSignedIntSetCC - Return true if this is a setcc instruction that
 | |
|   /// performs a signed comparison when used with integer operands.
 | |
|   inline bool isSignedIntSetCC(CondCode Code) {
 | |
|     return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
 | |
|   }
 | |
| 
 | |
|   /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
 | |
|   /// performs an unsigned comparison when used with integer operands.
 | |
|   inline bool isUnsignedIntSetCC(CondCode Code) {
 | |
|     return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
 | |
|   }
 | |
| 
 | |
|   /// isTrueWhenEqual - Return true if the specified condition returns true if
 | |
|   /// the two operands to the condition are equal.  Note that if one of the two
 | |
|   /// operands is a NaN, this value is meaningless.
 | |
|   inline bool isTrueWhenEqual(CondCode Cond) {
 | |
|     return ((int)Cond & 1) != 0;
 | |
|   }
 | |
| 
 | |
|   /// getUnorderedFlavor - This function returns 0 if the condition is always
 | |
|   /// false if an operand is a NaN, 1 if the condition is always true if the
 | |
|   /// operand is a NaN, and 2 if the condition is undefined if the operand is a
 | |
|   /// NaN.
 | |
|   inline unsigned getUnorderedFlavor(CondCode Cond) {
 | |
|     return ((int)Cond >> 3) & 3;
 | |
|   }
 | |
| 
 | |
|   /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
 | |
|   /// 'op' is a valid SetCC operation.
 | |
|   CondCode getSetCCInverse(CondCode Operation, bool isInteger);
 | |
| 
 | |
|   /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
 | |
|   /// when given the operation for (X op Y).
 | |
|   CondCode getSetCCSwappedOperands(CondCode Operation);
 | |
| 
 | |
|   /// getSetCCOrOperation - Return the result of a logical OR between different
 | |
|   /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This
 | |
|   /// function returns SETCC_INVALID if it is not possible to represent the
 | |
|   /// resultant comparison.
 | |
|   CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | |
| 
 | |
|   /// getSetCCAndOperation - Return the result of a logical AND between
 | |
|   /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
 | |
|   /// function returns SETCC_INVALID if it is not possible to represent the
 | |
|   /// resultant comparison.
 | |
|   CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
 | |
| }  // end llvm::ISD namespace
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple
 | |
| /// values as the result of a computation.  Many nodes return multiple values,
 | |
| /// from loads (which define a token and a return value) to ADDC (which returns
 | |
| /// a result and a carry value), to calls (which may return an arbitrary number
 | |
| /// of values).
 | |
| ///
 | |
| /// As such, each use of a SelectionDAG computation must indicate the node that
 | |
| /// computes it as well as which return value to use from that node.  This pair
 | |
| /// of information is represented with the SDOperand value type.
 | |
| ///
 | |
| class SDOperand {
 | |
| public:
 | |
|   SDNode *Val;        // The node defining the value we are using.
 | |
|   unsigned ResNo;     // Which return value of the node we are using.
 | |
| 
 | |
|   SDOperand() : Val(0), ResNo(0) {}
 | |
|   SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {}
 | |
| 
 | |
|   bool operator==(const SDOperand &O) const {
 | |
|     return Val == O.Val && ResNo == O.ResNo;
 | |
|   }
 | |
|   bool operator!=(const SDOperand &O) const {
 | |
|     return !operator==(O);
 | |
|   }
 | |
|   bool operator<(const SDOperand &O) const {
 | |
|     return Val < O.Val || (Val == O.Val && ResNo < O.ResNo);
 | |
|   }
 | |
| 
 | |
|   SDOperand getValue(unsigned R) const {
 | |
|     return SDOperand(Val, R);
 | |
|   }
 | |
| 
 | |
|   // isOperand - Return true if this node is an operand of N.
 | |
|   bool isOperand(SDNode *N) const;
 | |
| 
 | |
|   /// getValueType - Return the ValueType of the referenced return value.
 | |
|   ///
 | |
|   inline MVT::ValueType getValueType() const;
 | |
| 
 | |
|   // Forwarding methods - These forward to the corresponding methods in SDNode.
 | |
|   inline unsigned getOpcode() const;
 | |
|   inline unsigned getNumOperands() const;
 | |
|   inline const SDOperand &getOperand(unsigned i) const;
 | |
|   inline uint64_t getConstantOperandVal(unsigned i) const;
 | |
|   inline bool isTargetOpcode() const;
 | |
|   inline unsigned getTargetOpcode() const;
 | |
| 
 | |
|   /// hasOneUse - Return true if there is exactly one operation using this
 | |
|   /// result value of the defining operator.
 | |
|   inline bool hasOneUse() const;
 | |
| };
 | |
| 
 | |
| 
 | |
| /// simplify_type specializations - Allow casting operators to work directly on
 | |
| /// SDOperands as if they were SDNode*'s.
 | |
| template<> struct simplify_type<SDOperand> {
 | |
|   typedef SDNode* SimpleType;
 | |
|   static SimpleType getSimplifiedValue(const SDOperand &Val) {
 | |
|     return static_cast<SimpleType>(Val.Val);
 | |
|   }
 | |
| };
 | |
| template<> struct simplify_type<const SDOperand> {
 | |
|   typedef SDNode* SimpleType;
 | |
|   static SimpleType getSimplifiedValue(const SDOperand &Val) {
 | |
|     return static_cast<SimpleType>(Val.Val);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// SDNode - Represents one node in the SelectionDAG.
 | |
| ///
 | |
| class SDNode : public FoldingSetNode {
 | |
|   /// NodeType - The operation that this node performs.
 | |
|   ///
 | |
|   unsigned short NodeType;
 | |
| 
 | |
|   /// NodeId - Unique id per SDNode in the DAG.
 | |
|   int NodeId;
 | |
| 
 | |
|   /// OperandList - The values that are used by this operation.
 | |
|   ///
 | |
|   SDOperand *OperandList;
 | |
|   
 | |
|   /// ValueList - The types of the values this node defines.  SDNode's may
 | |
|   /// define multiple values simultaneously.
 | |
|   const MVT::ValueType *ValueList;
 | |
| 
 | |
|   /// NumOperands/NumValues - The number of entries in the Operand/Value list.
 | |
|   unsigned short NumOperands, NumValues;
 | |
|   
 | |
|   /// Prev/Next pointers - These pointers form the linked list of of the
 | |
|   /// AllNodes list in the current DAG.
 | |
|   SDNode *Prev, *Next;
 | |
|   friend struct ilist_traits<SDNode>;
 | |
| 
 | |
|   /// Uses - These are all of the SDNode's that use a value produced by this
 | |
|   /// node.
 | |
|   SmallVector<SDNode*,3> Uses;
 | |
|   
 | |
|   // Out-of-line virtual method to give class a home.
 | |
|   virtual void ANCHOR();
 | |
| public:
 | |
|   virtual ~SDNode() {
 | |
|     assert(NumOperands == 0 && "Operand list not cleared before deletion");
 | |
|     NodeType = ISD::DELETED_NODE;
 | |
|   }
 | |
|   
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //  Accessors
 | |
|   //
 | |
|   unsigned getOpcode()  const { return NodeType; }
 | |
|   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
 | |
|   unsigned getTargetOpcode() const {
 | |
|     assert(isTargetOpcode() && "Not a target opcode!");
 | |
|     return NodeType - ISD::BUILTIN_OP_END;
 | |
|   }
 | |
| 
 | |
|   size_t use_size() const { return Uses.size(); }
 | |
|   bool use_empty() const { return Uses.empty(); }
 | |
|   bool hasOneUse() const { return Uses.size() == 1; }
 | |
| 
 | |
|   /// getNodeId - Return the unique node id.
 | |
|   ///
 | |
|   int getNodeId() const { return NodeId; }
 | |
| 
 | |
|   typedef SmallVector<SDNode*,3>::const_iterator use_iterator;
 | |
|   use_iterator use_begin() const { return Uses.begin(); }
 | |
|   use_iterator use_end() const { return Uses.end(); }
 | |
| 
 | |
|   /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
 | |
|   /// indicated value.  This method ignores uses of other values defined by this
 | |
|   /// operation.
 | |
|   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
 | |
| 
 | |
|   // isOnlyUse - Return true if this node is the only use of N.
 | |
|   bool isOnlyUse(SDNode *N) const;
 | |
| 
 | |
|   // isOperand - Return true if this node is an operand of N.
 | |
|   bool isOperand(SDNode *N) const;
 | |
| 
 | |
|   /// getNumOperands - Return the number of values used by this operation.
 | |
|   ///
 | |
|   unsigned getNumOperands() const { return NumOperands; }
 | |
| 
 | |
|   /// getConstantOperandVal - Helper method returns the integer value of a 
 | |
|   /// ConstantSDNode operand.
 | |
|   uint64_t getConstantOperandVal(unsigned Num) const;
 | |
| 
 | |
|   const SDOperand &getOperand(unsigned Num) const {
 | |
|     assert(Num < NumOperands && "Invalid child # of SDNode!");
 | |
|     return OperandList[Num];
 | |
|   }
 | |
| 
 | |
|   typedef const SDOperand* op_iterator;
 | |
|   op_iterator op_begin() const { return OperandList; }
 | |
|   op_iterator op_end() const { return OperandList+NumOperands; }
 | |
| 
 | |
| 
 | |
|   SDVTList getVTList() const {
 | |
|     SDVTList X = { ValueList, NumValues };
 | |
|     return X;
 | |
|   };
 | |
|   
 | |
|   /// getNumValues - Return the number of values defined/returned by this
 | |
|   /// operator.
 | |
|   ///
 | |
|   unsigned getNumValues() const { return NumValues; }
 | |
| 
 | |
|   /// getValueType - Return the type of a specified result.
 | |
|   ///
 | |
|   MVT::ValueType getValueType(unsigned ResNo) const {
 | |
|     assert(ResNo < NumValues && "Illegal result number!");
 | |
|     return ValueList[ResNo];
 | |
|   }
 | |
| 
 | |
|   typedef const MVT::ValueType* value_iterator;
 | |
|   value_iterator value_begin() const { return ValueList; }
 | |
|   value_iterator value_end() const { return ValueList+NumValues; }
 | |
| 
 | |
|   /// getOperationName - Return the opcode of this operation for printing.
 | |
|   ///
 | |
|   const char* getOperationName(const SelectionDAG *G = 0) const;
 | |
|   static const char* getAddressingModeName(ISD::MemOpAddrMode AM);
 | |
|   void dump() const;
 | |
|   void dump(const SelectionDAG *G) const;
 | |
| 
 | |
|   static bool classof(const SDNode *) { return true; }
 | |
| 
 | |
|   /// Profile - Gather unique data for the node.
 | |
|   ///
 | |
|   void Profile(FoldingSetNodeID &ID);
 | |
| 
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   
 | |
|   /// getValueTypeList - Return a pointer to the specified value type.
 | |
|   ///
 | |
|   static MVT::ValueType *getValueTypeList(MVT::ValueType VT);
 | |
| 
 | |
|   SDNode(unsigned NT, MVT::ValueType VT) : NodeType(NT), NodeId(-1) {
 | |
|     OperandList = 0; NumOperands = 0;
 | |
|     ValueList = getValueTypeList(VT);
 | |
|     NumValues = 1;
 | |
|     Prev = 0; Next = 0;
 | |
|   }
 | |
|   SDNode(unsigned NT, SDOperand Op)
 | |
|     : NodeType(NT), NodeId(-1) {
 | |
|     OperandList = new SDOperand[1];
 | |
|     OperandList[0] = Op;
 | |
|     NumOperands = 1;
 | |
|     Op.Val->Uses.push_back(this);
 | |
|     ValueList = 0;
 | |
|     NumValues = 0;
 | |
|     Prev = 0; Next = 0;
 | |
|   }
 | |
|   SDNode(unsigned NT, SDOperand N1, SDOperand N2)
 | |
|     : NodeType(NT), NodeId(-1) {
 | |
|     OperandList = new SDOperand[2];
 | |
|     OperandList[0] = N1;
 | |
|     OperandList[1] = N2;
 | |
|     NumOperands = 2;
 | |
|     N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
 | |
|     ValueList = 0;
 | |
|     NumValues = 0;
 | |
|     Prev = 0; Next = 0;
 | |
|   }
 | |
|   SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3)
 | |
|     : NodeType(NT), NodeId(-1) {
 | |
|     OperandList = new SDOperand[3];
 | |
|     OperandList[0] = N1;
 | |
|     OperandList[1] = N2;
 | |
|     OperandList[2] = N3;
 | |
|     NumOperands = 3;
 | |
|     
 | |
|     N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
 | |
|     N3.Val->Uses.push_back(this);
 | |
|     ValueList = 0;
 | |
|     NumValues = 0;
 | |
|     Prev = 0; Next = 0;
 | |
|   }
 | |
|   SDNode(unsigned NT, SDOperand N1, SDOperand N2, SDOperand N3, SDOperand N4)
 | |
|     : NodeType(NT), NodeId(-1) {
 | |
|     OperandList = new SDOperand[4];
 | |
|     OperandList[0] = N1;
 | |
|     OperandList[1] = N2;
 | |
|     OperandList[2] = N3;
 | |
|     OperandList[3] = N4;
 | |
|     NumOperands = 4;
 | |
|     
 | |
|     N1.Val->Uses.push_back(this); N2.Val->Uses.push_back(this);
 | |
|     N3.Val->Uses.push_back(this); N4.Val->Uses.push_back(this);
 | |
|     ValueList = 0;
 | |
|     NumValues = 0;
 | |
|     Prev = 0; Next = 0;
 | |
|   }
 | |
|   SDNode(unsigned Opc, const SDOperand *Ops, unsigned NumOps)
 | |
|     : NodeType(Opc), NodeId(-1) {
 | |
|     NumOperands = NumOps;
 | |
|     OperandList = new SDOperand[NumOperands];
 | |
|     
 | |
|     for (unsigned i = 0, e = NumOps; i != e; ++i) {
 | |
|       OperandList[i] = Ops[i];
 | |
|       SDNode *N = OperandList[i].Val;
 | |
|       N->Uses.push_back(this);
 | |
|     }
 | |
|     ValueList = 0;
 | |
|     NumValues = 0;
 | |
|     Prev = 0; Next = 0;
 | |
|   }
 | |
| 
 | |
|   /// MorphNodeTo - This clears the return value and operands list, and sets the
 | |
|   /// opcode of the node to the specified value.  This should only be used by
 | |
|   /// the SelectionDAG class.
 | |
|   void MorphNodeTo(unsigned Opc) {
 | |
|     NodeType = Opc;
 | |
|     ValueList = 0;
 | |
|     NumValues = 0;
 | |
|     
 | |
|     // Clear the operands list, updating used nodes to remove this from their
 | |
|     // use list.
 | |
|     for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
 | |
|       I->Val->removeUser(this);
 | |
|     delete [] OperandList;
 | |
|     OperandList = 0;
 | |
|     NumOperands = 0;
 | |
|   }
 | |
|   
 | |
|   void setValueTypes(SDVTList L) {
 | |
|     assert(NumValues == 0 && "Should not have values yet!");
 | |
|     ValueList = L.VTs;
 | |
|     NumValues = L.NumVTs;
 | |
|   }
 | |
|   
 | |
|   void setOperands(SDOperand Op0) {
 | |
|     assert(NumOperands == 0 && "Should not have operands yet!");
 | |
|     OperandList = new SDOperand[1];
 | |
|     OperandList[0] = Op0;
 | |
|     NumOperands = 1;
 | |
|     Op0.Val->Uses.push_back(this);
 | |
|   }
 | |
|   void setOperands(SDOperand Op0, SDOperand Op1) {
 | |
|     assert(NumOperands == 0 && "Should not have operands yet!");
 | |
|     OperandList = new SDOperand[2];
 | |
|     OperandList[0] = Op0;
 | |
|     OperandList[1] = Op1;
 | |
|     NumOperands = 2;
 | |
|     Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | |
|   }
 | |
|   void setOperands(SDOperand Op0, SDOperand Op1, SDOperand Op2) {
 | |
|     assert(NumOperands == 0 && "Should not have operands yet!");
 | |
|     OperandList = new SDOperand[3];
 | |
|     OperandList[0] = Op0;
 | |
|     OperandList[1] = Op1;
 | |
|     OperandList[2] = Op2;
 | |
|     NumOperands = 3;
 | |
|     Op0.Val->Uses.push_back(this); Op1.Val->Uses.push_back(this);
 | |
|     Op2.Val->Uses.push_back(this);
 | |
|   }
 | |
|   void setOperands(const SDOperand *Ops, unsigned NumOps) {
 | |
|     assert(NumOperands == 0 && "Should not have operands yet!");
 | |
|     NumOperands = NumOps;
 | |
|     OperandList = new SDOperand[NumOperands];
 | |
| 
 | |
|     for (unsigned i = 0, e = NumOps; i != e; ++i) {
 | |
|       OperandList[i] = Ops[i];
 | |
|       SDNode *N = OperandList[i].Val;
 | |
|       N->Uses.push_back(this);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void addUser(SDNode *User) {
 | |
|     Uses.push_back(User);
 | |
|   }
 | |
|   void removeUser(SDNode *User) {
 | |
|     // Remove this user from the operand's use list.
 | |
|     for (unsigned i = Uses.size(); ; --i) {
 | |
|       assert(i != 0 && "Didn't find user!");
 | |
|       if (Uses[i-1] == User) {
 | |
|         Uses[i-1] = Uses.back();
 | |
|         Uses.pop_back();
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setNodeId(int Id) {
 | |
|     NodeId = Id;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| // Define inline functions from the SDOperand class.
 | |
| 
 | |
| inline unsigned SDOperand::getOpcode() const {
 | |
|   return Val->getOpcode();
 | |
| }
 | |
| inline MVT::ValueType SDOperand::getValueType() const {
 | |
|   return Val->getValueType(ResNo);
 | |
| }
 | |
| inline unsigned SDOperand::getNumOperands() const {
 | |
|   return Val->getNumOperands();
 | |
| }
 | |
| inline const SDOperand &SDOperand::getOperand(unsigned i) const {
 | |
|   return Val->getOperand(i);
 | |
| }
 | |
| inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const {
 | |
|   return Val->getConstantOperandVal(i);
 | |
| }
 | |
| inline bool SDOperand::isTargetOpcode() const {
 | |
|   return Val->isTargetOpcode();
 | |
| }
 | |
| inline unsigned SDOperand::getTargetOpcode() const {
 | |
|   return Val->getTargetOpcode();
 | |
| }
 | |
| inline bool SDOperand::hasOneUse() const {
 | |
|   return Val->hasNUsesOfValue(1, ResNo);
 | |
| }
 | |
| 
 | |
| /// HandleSDNode - This class is used to form a handle around another node that
 | |
| /// is persistant and is updated across invocations of replaceAllUsesWith on its
 | |
| /// operand.  This node should be directly created by end-users and not added to
 | |
| /// the AllNodes list.
 | |
| class HandleSDNode : public SDNode {
 | |
| public:
 | |
|   HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, X) {}
 | |
|   ~HandleSDNode() {
 | |
|     MorphNodeTo(ISD::HANDLENODE);  // Drops operand uses.
 | |
|   }
 | |
|   
 | |
|   SDOperand getValue() const { return getOperand(0); }
 | |
| };
 | |
| 
 | |
| class StringSDNode : public SDNode {
 | |
|   std::string Value;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   StringSDNode(const std::string &val)
 | |
|     : SDNode(ISD::STRING, MVT::Other), Value(val) {
 | |
|   }
 | |
| public:
 | |
|   const std::string &getValue() const { return Value; }
 | |
|   static bool classof(const StringSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::STRING;
 | |
|   }
 | |
| };  
 | |
| 
 | |
| class ConstantSDNode : public SDNode {
 | |
|   uint64_t Value;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT)
 | |
|     : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, VT), Value(val) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   uint64_t getValue() const { return Value; }
 | |
| 
 | |
|   int64_t getSignExtended() const {
 | |
|     unsigned Bits = MVT::getSizeInBits(getValueType(0));
 | |
|     return ((int64_t)Value << (64-Bits)) >> (64-Bits);
 | |
|   }
 | |
| 
 | |
|   bool isNullValue() const { return Value == 0; }
 | |
|   bool isAllOnesValue() const {
 | |
|     return Value == MVT::getIntVTBitMask(getValueType(0));
 | |
|   }
 | |
| 
 | |
|   static bool classof(const ConstantSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::Constant ||
 | |
|            N->getOpcode() == ISD::TargetConstant;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConstantFPSDNode : public SDNode {
 | |
|   double Value;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   ConstantFPSDNode(bool isTarget, double val, MVT::ValueType VT)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, VT), 
 | |
|       Value(val) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   double getValue() const { return Value; }
 | |
| 
 | |
|   /// isExactlyValue - We don't rely on operator== working on double values, as
 | |
|   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
 | |
|   /// As such, this method can be used to do an exact bit-for-bit comparison of
 | |
|   /// two floating point values.
 | |
|   bool isExactlyValue(double V) const;
 | |
| 
 | |
|   static bool classof(const ConstantFPSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::ConstantFP || 
 | |
|            N->getOpcode() == ISD::TargetConstantFP;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class GlobalAddressSDNode : public SDNode {
 | |
|   GlobalValue *TheGlobal;
 | |
|   int Offset;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT,
 | |
|                       int o=0)
 | |
|     : SDNode(isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress, VT),
 | |
|       Offset(o) {
 | |
|     TheGlobal = const_cast<GlobalValue*>(GA);
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   GlobalValue *getGlobal() const { return TheGlobal; }
 | |
|   int getOffset() const { return Offset; }
 | |
| 
 | |
|   static bool classof(const GlobalAddressSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::GlobalAddress ||
 | |
|            N->getOpcode() == ISD::TargetGlobalAddress;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| class FrameIndexSDNode : public SDNode {
 | |
|   int FI;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg)
 | |
|     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, VT), FI(fi) {}
 | |
| public:
 | |
| 
 | |
|   int getIndex() const { return FI; }
 | |
| 
 | |
|   static bool classof(const FrameIndexSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::FrameIndex ||
 | |
|            N->getOpcode() == ISD::TargetFrameIndex;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class JumpTableSDNode : public SDNode {
 | |
|   int JTI;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg)
 | |
|     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, VT), 
 | |
|     JTI(jti) {}
 | |
| public:
 | |
|     
 | |
|     int getIndex() const { return JTI; }
 | |
|   
 | |
|   static bool classof(const JumpTableSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::JumpTable ||
 | |
|            N->getOpcode() == ISD::TargetJumpTable;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ConstantPoolSDNode : public SDNode {
 | |
|   union {
 | |
|     Constant *ConstVal;
 | |
|     MachineConstantPoolValue *MachineCPVal;
 | |
|   } Val;
 | |
|   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
 | |
|   unsigned Alignment;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT,
 | |
|                      int o=0)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
 | |
|       Offset(o), Alignment(0) {
 | |
|     assert((int)Offset >= 0 && "Offset is too large");
 | |
|     Val.ConstVal = c;
 | |
|   }
 | |
|   ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o,
 | |
|                      unsigned Align)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
 | |
|       Offset(o), Alignment(Align) {
 | |
|     assert((int)Offset >= 0 && "Offset is too large");
 | |
|     Val.ConstVal = c;
 | |
|   }
 | |
|   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
 | |
|                      MVT::ValueType VT, int o=0)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
 | |
|       Offset(o), Alignment(0) {
 | |
|     assert((int)Offset >= 0 && "Offset is too large");
 | |
|     Val.MachineCPVal = v;
 | |
|     Offset |= 1 << (sizeof(unsigned)*8-1);
 | |
|   }
 | |
|   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
 | |
|                      MVT::ValueType VT, int o, unsigned Align)
 | |
|     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, VT),
 | |
|       Offset(o), Alignment(Align) {
 | |
|     assert((int)Offset >= 0 && "Offset is too large");
 | |
|     Val.MachineCPVal = v;
 | |
|     Offset |= 1 << (sizeof(unsigned)*8-1);
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   bool isMachineConstantPoolEntry() const {
 | |
|     return (int)Offset < 0;
 | |
|   }
 | |
| 
 | |
|   Constant *getConstVal() const {
 | |
|     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
 | |
|     return Val.ConstVal;
 | |
|   }
 | |
| 
 | |
|   MachineConstantPoolValue *getMachineCPVal() const {
 | |
|     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
 | |
|     return Val.MachineCPVal;
 | |
|   }
 | |
| 
 | |
|   int getOffset() const {
 | |
|     return Offset & ~(1 << (sizeof(unsigned)*8-1));
 | |
|   }
 | |
|   
 | |
|   // Return the alignment of this constant pool object, which is either 0 (for
 | |
|   // default alignment) or log2 of the desired value.
 | |
|   unsigned getAlignment() const { return Alignment; }
 | |
| 
 | |
|   const Type *getType() const;
 | |
| 
 | |
|   static bool classof(const ConstantPoolSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::ConstantPool ||
 | |
|            N->getOpcode() == ISD::TargetConstantPool;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class BasicBlockSDNode : public SDNode {
 | |
|   MachineBasicBlock *MBB;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   BasicBlockSDNode(MachineBasicBlock *mbb)
 | |
|     : SDNode(ISD::BasicBlock, MVT::Other), MBB(mbb) {}
 | |
| public:
 | |
| 
 | |
|   MachineBasicBlock *getBasicBlock() const { return MBB; }
 | |
| 
 | |
|   static bool classof(const BasicBlockSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::BasicBlock;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SrcValueSDNode : public SDNode {
 | |
|   const Value *V;
 | |
|   int offset;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   SrcValueSDNode(const Value* v, int o)
 | |
|     : SDNode(ISD::SRCVALUE, MVT::Other), V(v), offset(o) {}
 | |
| 
 | |
| public:
 | |
|   const Value *getValue() const { return V; }
 | |
|   int getOffset() const { return offset; }
 | |
| 
 | |
|   static bool classof(const SrcValueSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::SRCVALUE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| class RegisterSDNode : public SDNode {
 | |
|   unsigned Reg;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   RegisterSDNode(unsigned reg, MVT::ValueType VT)
 | |
|     : SDNode(ISD::Register, VT), Reg(reg) {}
 | |
| public:
 | |
| 
 | |
|   unsigned getReg() const { return Reg; }
 | |
| 
 | |
|   static bool classof(const RegisterSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::Register;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class ExternalSymbolSDNode : public SDNode {
 | |
|   const char *Symbol;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT)
 | |
|     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, VT),
 | |
|       Symbol(Sym) {
 | |
|     }
 | |
| public:
 | |
| 
 | |
|   const char *getSymbol() const { return Symbol; }
 | |
| 
 | |
|   static bool classof(const ExternalSymbolSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::ExternalSymbol ||
 | |
|            N->getOpcode() == ISD::TargetExternalSymbol;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class CondCodeSDNode : public SDNode {
 | |
|   ISD::CondCode Condition;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   CondCodeSDNode(ISD::CondCode Cond)
 | |
|     : SDNode(ISD::CONDCODE, MVT::Other), Condition(Cond) {
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   ISD::CondCode get() const { return Condition; }
 | |
| 
 | |
|   static bool classof(const CondCodeSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::CONDCODE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// VTSDNode - This class is used to represent MVT::ValueType's, which are used
 | |
| /// to parameterize some operations.
 | |
| class VTSDNode : public SDNode {
 | |
|   MVT::ValueType ValueType;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   VTSDNode(MVT::ValueType VT)
 | |
|     : SDNode(ISD::VALUETYPE, MVT::Other), ValueType(VT) {}
 | |
| public:
 | |
| 
 | |
|   MVT::ValueType getVT() const { return ValueType; }
 | |
| 
 | |
|   static bool classof(const VTSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::VALUETYPE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// LoadSDNode - This class is used to represent ISD::LOAD nodes.
 | |
| ///
 | |
| class LoadSDNode : public SDNode {
 | |
|   // AddrMode - unindexed, pre-indexed, post-indexed.
 | |
|   ISD::MemOpAddrMode AddrMode;
 | |
| 
 | |
|   // ExtType - non-ext, anyext, sext, zext.
 | |
|   ISD::LoadExtType ExtType;
 | |
| 
 | |
|   // LoadedVT - VT of loaded value before extension.
 | |
|   MVT::ValueType LoadedVT;
 | |
| 
 | |
|   // SrcValue - Memory location for alias analysis.
 | |
|   const Value *SrcValue;
 | |
| 
 | |
|   // SVOffset - Memory location offset.
 | |
|   int SVOffset;
 | |
| 
 | |
|   // Alignment - Alignment of memory location in bytes.
 | |
|   unsigned Alignment;
 | |
| 
 | |
|   // IsVolatile - True if the load is volatile.
 | |
|   bool IsVolatile;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   LoadSDNode(SDOperand Chain, SDOperand Ptr, SDOperand Off,
 | |
|              ISD::MemOpAddrMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT,
 | |
|              const Value *SV, int O=0, unsigned Align=1, bool Vol=false)
 | |
|     : SDNode(ISD::LOAD, Chain, Ptr, Off),
 | |
|       AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O),
 | |
|       Alignment(Align), IsVolatile(Vol) {
 | |
|     assert((Off.getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) &&
 | |
|            "Only indexed load has a non-undef offset operand");
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   const SDOperand getChain() const { return getOperand(0); }
 | |
|   const SDOperand getBasePtr() const { return getOperand(1); }
 | |
|   const SDOperand getOffset() const { return getOperand(2); }
 | |
|   ISD::MemOpAddrMode getAddressingMode() const { return AddrMode; }
 | |
|   ISD::LoadExtType getExtensionType() const { return ExtType; }
 | |
|   MVT::ValueType getLoadedVT() const { return LoadedVT; }
 | |
|   const Value *getSrcValue() const { return SrcValue; }
 | |
|   int getSrcValueOffset() const { return SVOffset; }
 | |
|   unsigned getAlignment() const { return Alignment; }
 | |
|   bool isVolatile() const { return IsVolatile; }
 | |
| 
 | |
|   static bool classof(const LoadSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::LOAD;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// StoreSDNode - This class is used to represent ISD::STORE nodes.
 | |
| ///
 | |
| class StoreSDNode : public SDNode {
 | |
|   // AddrMode - unindexed, pre-indexed, post-indexed.
 | |
|   ISD::MemOpAddrMode AddrMode;
 | |
| 
 | |
|   // IsTruncStore - True is the op does a truncation before store.
 | |
|   bool IsTruncStore;
 | |
| 
 | |
|   // StoredVT - VT of the value after truncation.
 | |
|   MVT::ValueType StoredVT;
 | |
| 
 | |
|   // SrcValue - Memory location for alias analysis.
 | |
|   const Value *SrcValue;
 | |
| 
 | |
|   // SVOffset - Memory location offset.
 | |
|   int SVOffset;
 | |
| 
 | |
|   // Alignment - Alignment of memory location in bytes.
 | |
|   unsigned Alignment;
 | |
| 
 | |
|   // IsVolatile - True if the store is volatile.
 | |
|   bool IsVolatile;
 | |
| protected:
 | |
|   friend class SelectionDAG;
 | |
|   StoreSDNode(SDOperand Chain, SDOperand Value, SDOperand Ptr, SDOperand Off,
 | |
|               ISD::MemOpAddrMode AM, bool isTrunc, MVT::ValueType SVT,
 | |
|               const Value *SV, int O=0, unsigned Align=0, bool Vol=false)
 | |
|     : SDNode(ISD::STORE, Chain, Value, Ptr, Off),
 | |
|       AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV),
 | |
|       SVOffset(O), Alignment(Align), IsVolatile(Vol) {
 | |
|     assert((Off.getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) &&
 | |
|            "Only indexed store has a non-undef offset operand");
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   const SDOperand getChain() const { return getOperand(0); }
 | |
|   const SDOperand getValue() const { return getOperand(1); }
 | |
|   const SDOperand getBasePtr() const { return getOperand(2); }
 | |
|   const SDOperand getOffset() const { return getOperand(3); }
 | |
|   ISD::MemOpAddrMode getAddressingMode() const { return AddrMode; }
 | |
|   bool isTruncatingStore() const { return IsTruncStore; }
 | |
|   MVT::ValueType getStoredVT() const { return StoredVT; }
 | |
|   const Value *getSrcValue() const { return SrcValue; }
 | |
|   int getSrcValueOffset() const { return SVOffset; }
 | |
|   unsigned getAlignment() const { return Alignment; }
 | |
|   bool isVolatile() const { return IsVolatile; }
 | |
| 
 | |
|   static bool classof(const LoadSDNode *) { return true; }
 | |
|   static bool classof(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::STORE;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| class SDNodeIterator : public forward_iterator<SDNode, ptrdiff_t> {
 | |
|   SDNode *Node;
 | |
|   unsigned Operand;
 | |
| 
 | |
|   SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
 | |
| public:
 | |
|   bool operator==(const SDNodeIterator& x) const {
 | |
|     return Operand == x.Operand;
 | |
|   }
 | |
|   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
 | |
| 
 | |
|   const SDNodeIterator &operator=(const SDNodeIterator &I) {
 | |
|     assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
 | |
|     Operand = I.Operand;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   pointer operator*() const {
 | |
|     return Node->getOperand(Operand).Val;
 | |
|   }
 | |
|   pointer operator->() const { return operator*(); }
 | |
| 
 | |
|   SDNodeIterator& operator++() {                // Preincrement
 | |
|     ++Operand;
 | |
|     return *this;
 | |
|   }
 | |
|   SDNodeIterator operator++(int) { // Postincrement
 | |
|     SDNodeIterator tmp = *this; ++*this; return tmp;
 | |
|   }
 | |
| 
 | |
|   static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
 | |
|   static SDNodeIterator end  (SDNode *N) {
 | |
|     return SDNodeIterator(N, N->getNumOperands());
 | |
|   }
 | |
| 
 | |
|   unsigned getOperand() const { return Operand; }
 | |
|   const SDNode *getNode() const { return Node; }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<SDNode*> {
 | |
|   typedef SDNode NodeType;
 | |
|   typedef SDNodeIterator ChildIteratorType;
 | |
|   static inline NodeType *getEntryNode(SDNode *N) { return N; }
 | |
|   static inline ChildIteratorType child_begin(NodeType *N) {
 | |
|     return SDNodeIterator::begin(N);
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType *N) {
 | |
|     return SDNodeIterator::end(N);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template<>
 | |
| struct ilist_traits<SDNode> {
 | |
|   static SDNode *getPrev(const SDNode *N) { return N->Prev; }
 | |
|   static SDNode *getNext(const SDNode *N) { return N->Next; }
 | |
|   
 | |
|   static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; }
 | |
|   static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; }
 | |
|   
 | |
|   static SDNode *createSentinel() {
 | |
|     return new SDNode(ISD::EntryToken, MVT::Other);
 | |
|   }
 | |
|   static void destroySentinel(SDNode *N) { delete N; }
 | |
|   //static SDNode *createNode(const SDNode &V) { return new SDNode(V); }
 | |
|   
 | |
|   
 | |
|   void addNodeToList(SDNode *NTy) {}
 | |
|   void removeNodeFromList(SDNode *NTy) {}
 | |
|   void transferNodesFromList(iplist<SDNode, ilist_traits> &L2,
 | |
|                              const ilist_iterator<SDNode> &X,
 | |
|                              const ilist_iterator<SDNode> &Y) {}
 | |
| };
 | |
| 
 | |
| namespace ISD {
 | |
|   /// isNON_EXTLoad - Returns true if the specified node is a non-extending
 | |
|   /// load.
 | |
|   inline bool isNON_EXTLoad(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::LOAD &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
 | |
|   ///
 | |
|   inline bool isEXTLoad(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::LOAD &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
 | |
|   ///
 | |
|   inline bool isSEXTLoad(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::LOAD &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
 | |
|   ///
 | |
|   inline bool isZEXTLoad(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::LOAD &&
 | |
|       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
 | |
|   }
 | |
| 
 | |
|   /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
 | |
|   /// store.
 | |
|   inline bool isNON_TRUNCStore(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::STORE &&
 | |
|       !cast<StoreSDNode>(N)->isTruncatingStore();
 | |
|   }
 | |
| 
 | |
|   /// isTRUNCStore - Returns true if the specified node is a truncating
 | |
|   /// store.
 | |
|   inline bool isTRUNCStore(const SDNode *N) {
 | |
|     return N->getOpcode() == ISD::STORE &&
 | |
|       cast<StoreSDNode>(N)->isTruncatingStore();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| } // end llvm namespace
 | |
| 
 | |
| #endif
 |